JP7143707B2 - valve device - Google Patents

valve device Download PDF

Info

Publication number
JP7143707B2
JP7143707B2 JP2018182436A JP2018182436A JP7143707B2 JP 7143707 B2 JP7143707 B2 JP 7143707B2 JP 2018182436 A JP2018182436 A JP 2018182436A JP 2018182436 A JP2018182436 A JP 2018182436A JP 7143707 B2 JP7143707 B2 JP 7143707B2
Authority
JP
Japan
Prior art keywords
valve body
radius
housing
fluid
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018182436A
Other languages
Japanese (ja)
Other versions
JP2020051548A (en
Inventor
幸一 柏木
信隆 菊
俊秀 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2018182436A priority Critical patent/JP7143707B2/en
Priority to US16/577,130 priority patent/US11255449B2/en
Priority to DE102019126035.3A priority patent/DE102019126035A1/en
Priority to CN201910915921.3A priority patent/CN110953378B/en
Publication of JP2020051548A publication Critical patent/JP2020051548A/en
Application granted granted Critical
Publication of JP7143707B2 publication Critical patent/JP7143707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Multiple-Way Valves (AREA)
  • Taps Or Cocks (AREA)

Description

本発明は、流体導入路と流体排出路との連通を制限可能なバルブ装置に関する。 The present invention relates to a valve device capable of restricting communication between a fluid introduction path and a fluid discharge path.

従来、車両の排ガスによる地球環境汚染を改善すべく車両の電動化が検討されてきた。このような車両の一例として、例えば特許文献1に記載されるような燃料電池を動力源とするものがある。 Conventionally, electrification of vehicles has been studied in order to improve global environmental pollution caused by vehicle exhaust gas. As an example of such a vehicle, there is a vehicle using a fuel cell as a power source as described in Patent Document 1, for example.

特許文献1に記載の燃料電池システムが備える燃料電池は、燃料電池スタック内の膜の湿潤状況により発電性能が著しく変化することが知られている。そこで、特許文献1に記載の技術では、膜が乾燥状態である時には加湿器を流通させた空気をスタックに供給し、膜が湿潤状態である時には加湿器をバイパスした空気をスタックに供給している。このため、空気を加湿器及びバイパス供給路への流通を制御する供給側開閉弁と、バイパス供給路への空気の流通を制御する開閉弁とを備えている。また、車両の停止中にはスタックの劣化を防止するために、供給側開閉弁及び開閉弁の夫々に封止機能が必要となる。このような特許文献1に記載の技術はコストダウンの余地があり、その一つとして複数の弁を1つに統合することが考えられる(例えば特許文献2-4)。 It is known that the power generation performance of the fuel cell included in the fuel cell system described in Patent Literature 1 significantly changes depending on the wetness of the membrane in the fuel cell stack. Therefore, in the technique described in Patent Document 1, when the membrane is in a dry state, the air that has passed through the humidifier is supplied to the stack, and when the membrane is in a wet state, the air that has bypassed the humidifier is supplied to the stack. there is For this reason, a supply-side on-off valve for controlling air flow to the humidifier and the bypass supply path and an on-off valve for controlling air flow to the bypass supply path are provided. Further, in order to prevent deterioration of the stack while the vehicle is stopped, each of the supply side on-off valve and the on-off valve requires a sealing function. Such a technique described in Patent Document 1 has room for cost reduction, and one of the possibilities is to integrate a plurality of valves into one (for example, Patent Documents 2 to 4).

特許文献2に記載のロータリー式バルブは、回転に応じて流路を開閉するロータと、当該ロータを収容するケーシングとを備えて構成され、ケーシングの内面に流体の経路となるケーシング開口部が設けられる。このケーシング開口部には、ロータの外周面に当接するように筒状のシール部材が設けられる。 The rotary valve described in Patent Document 2 includes a rotor that opens and closes a flow path according to rotation, and a casing that houses the rotor. be done. A tubular seal member is provided in the casing opening so as to abut on the outer peripheral surface of the rotor.

特許文献3に記載の制御弁は、ハウジングと、ハウジング内に収容される弁体と、ハウジングの連通孔と弁体の外周面との間に設けられるシール部材と、を備えて構成される。シール部材の外周縁には面取り部を設け、シール部材の損傷を防止している。 The control valve described in Patent Document 3 includes a housing, a valve body housed in the housing, and a seal member provided between a communicating hole of the housing and an outer peripheral surface of the valve body. A chamfered portion is provided on the outer peripheral edge of the seal member to prevent damage to the seal member.

特許文献4に記載のバルブ装置は、球状の弁体と、弁体を収容するハウジングと、ハウジング内において環状のシート部材とを備えて構成される。流体を流通させる場合には、弁体とシート部材とが非接触の状態で行われる。 The valve device described in Patent Document 4 includes a spherical valve body, a housing that accommodates the valve body, and an annular seat member within the housing. When the fluid is circulated, the valve body and the seat member are kept out of contact with each other.

特開2018-18683号公報JP 2018-18683 A 特開2013-245738号公報JP 2013-245738 A 特開2018-80724号公報JP 2018-80724 A 特開2012-145154号公報JP 2012-145154 A

特許文献2に記載の技術のように、ロータの外周面にシール部材を当接させてシールを行うと、シール部材の周方向のズレがシール性に大きく影響し、わずかな周方向のズレでもシール性が悪化する。また、シール部材としてゴムシールを用いているので、摺動抵抗が大きくなり、モータの大型化を招来する。更に、摺動抵抗が大きいと、ゴムシールとロータとが常に接触しているため、シール部材の摩耗が顕著になる。 When sealing is performed by bringing a seal member into contact with the outer peripheral surface of the rotor, as in the technique described in Patent Document 2, circumferential misalignment of the seal member greatly affects the sealing performance, and even a slight circumferential misalignment can cause damage. Sealability deteriorates. In addition, since a rubber seal is used as the sealing member, the sliding resistance increases, leading to an increase in the size of the motor. Furthermore, if the sliding resistance is large, the rubber seal and the rotor are always in contact with each other, resulting in significant wear of the seal member.

特許文献3に記載の技術は、シール部材はロータに対して常に摺動しているため、特許文献2に記載の技術と同様に、シール部材の摩耗が大きくなる可能性がある。そこで、摩擦係数の小さい樹脂部品を用いることが考えられるが、樹脂では燃料電池システムから要求されるシール性を具備することができない。 In the technique described in Patent Document 3, since the seal member constantly slides against the rotor, there is a possibility that the wear of the seal member increases, as in the technique described in Patent Document 2. Therefore, it is conceivable to use a resin component with a small coefficient of friction, but resin cannot provide the sealing performance required by the fuel cell system.

特許文献4に記載の技術は、流体の流通時は弁体とシート部材とが接触せず、流体が流通していない時は弁体とシート部材とが接触するため、摩耗対策に優れている。しかしながら、ロータ径に応じてシート高さを変更しているため、仮にシート部材の周方向のズレがあった場合にはシール性能に大きく寄与することになる。 The technology described in Patent Document 4 is excellent in anti-abrasion measures because the valve body and the seat member do not come into contact with each other when the fluid is circulating, and the valve body and the seat member come into contact with each other when the fluid is not circulating. . However, since the seat height is changed in accordance with the rotor diameter, if there is a circumferential displacement of the seat member, it will greatly contribute to the sealing performance.

そこで、低コストで実現可能であって、シール部材のシール性に優れたバルブ装置が求められる。 Therefore, there is a demand for a valve device that can be realized at a low cost and that has a seal member with excellent sealing performance.

本発明に係るバルブ装置の特徴構成は、内部に円柱状の空間が形成される円筒状の内周壁を有するハウジングと、前記ハウジングに形成され、前記内周壁において前記円柱状の空間と連通する流体導入路と、前記ハウジングに形成され、前記内周壁において前記円柱状の空間と連通する複数の流体排出路と、前記円柱状の空間に収容され、前記円柱状の空間の軸心に沿って見たときに、前記ハウジングの内周壁の内半径に応じた所定の第1内半径で形成された大半径部と、前記第1内半径よりも小さい第2内半径で形成された小半径部と、前記大半径部と前記小半径部とをつなぐように形成され、前記軸心からの距離が前記第1内半径と前記第2内半径との中間の距離である中間部とを有し、前記小半径部及び前記中間部の少なくともいずれか一方において開口する開口部分を有すると共に、前記流体導入路と前記複数の流体排出路のうちの少なくとも一つとを連通可能とする連通路を内部に有する球状体からなる弁体と、前記軸心を回転軸心として前記弁体を前記円柱状の空間内で回転させる弁体回転機構と、を備えている点にある。 A characteristic configuration of the valve device according to the present invention is a housing having a cylindrical inner peripheral wall in which a columnar space is formed, and a fluid formed in the housing and communicating with the columnar space at the inner peripheral wall. an introduction passage, a plurality of fluid discharge passages formed in the housing and communicating with the cylindrical space on the inner peripheral wall, and a plurality of fluid discharge passages accommodated in the cylindrical space and viewed along the axis of the cylindrical space. a large-radius portion formed with a predetermined first inner radius corresponding to the inner radius of the inner peripheral wall of the housing, and a small-radius portion formed with a second inner radius smaller than the first inner radius. an intermediate portion formed to connect the large radius portion and the small radius portion and having a distance from the axial center that is an intermediate distance between the first inner radius and the second inner radius; At least one of the small-radius portion and the intermediate portion has an opening portion, and a communication passage is provided therein to enable communication between the fluid introduction passage and at least one of the plurality of fluid discharge passages. The present invention is characterized by including a valve body made of a spherical body, and a valve body rotating mechanism for rotating the valve body within the cylindrical space with the axis as the rotation axis.

このような特徴構成とすれば、大半径部と小半径部との間に中間部が設けられ、更には弁体が球状体で構成されているので、弁体が回転して大半径部がハウジングに当接するに際し、小半径部から徐々に大半径部に至るにつれてハウジング(流体導入路の開口部分のハウジング)に滑らかに押し付けられる(徐々に当接する)ことになる。したがって、シール性を維持しつつ、弁体の劣化を抑制できる。また、本バルブ装置によれば、複数の流体排出路を切り換えることができるので、夫々の流体排出路に対してバルブ装置を設ける場合と比較して、バルブ装置を低コスト化することが可能となる。 With such a characteristic configuration, since the intermediate portion is provided between the large radius portion and the small radius portion, and the valve body is made of a spherical body, the valve body rotates to form the large radius portion. When coming into contact with the housing, it is smoothly pressed (gradually brought into contact) with the housing (the housing at the opening of the fluid introduction path) as it gradually increases from the small radius portion to the large radius portion. Therefore, deterioration of the valve body can be suppressed while maintaining sealing performance. In addition, according to the present valve device, since a plurality of fluid discharge paths can be switched, the cost of the valve device can be reduced compared to the case where a valve device is provided for each fluid discharge path. Become.

また、前記ハウジングの内周壁における前記流体導入路の開口部分と前記ハウジングの内周壁との間に前記弁体の前記大半径部と当接可能なシール部材が設けられていると好適である。 Further, it is preferable that a seal member capable of coming into contact with the large-radius portion of the valve body is provided between the opening portion of the fluid introduction passage in the inner peripheral wall of the housing and the inner peripheral wall of the housing.

このような構成とすれば、大半径部と小半径部との間に中間部が設けられた中間部により、弁体が回転してシール部材が大半径部に当接するに際し、シール部材に作用する押圧力を徐々に変化させることができる。したがって、シール部材の弁体の回転方向に沿った急激な変形や、シール部材の摩耗による劣化を抑制できる。 With such a configuration, the intermediate portion provided between the large-radius portion and the small-radius portion acts on the seal member when the valve body rotates and the seal member comes into contact with the large-radius portion. The pressing force applied can be gradually changed. Therefore, it is possible to suppress rapid deformation of the seal member along the direction of rotation of the valve body and deterioration due to abrasion of the seal member.

また、前記シール部材は、前記弁体側の先端部が、前記弁体の前記大半径部に当接し、且つ、前記小半径部に当接しない状態で設けられていると好適である。 Further, it is preferable that the sealing member is provided in a state in which a tip portion on the valve body side abuts against the large radius portion of the valve body and does not abut against the small radius portion.

このような構成とすれば、流体の流通時はシール部材の近傍に位置している小半径部にはシール部材が接触することなく弁体が回転するので、摺動抵抗を低減することができる。したがって、弁体を回転させる弁体回転機構を小型化することができる。更には、弁体におけるシール部材との摺動距離が短くできるため、シール部材の摩耗による劣化を抑制し耐久性を向上させることが可能となる。したがって、例えば安価なゴム材料を用いて要求されるシール性を実現できるので、バルブ装置を低コスト化できる。 With such a configuration, the valve body rotates without the seal member coming into contact with the small-radius portion positioned near the seal member when the fluid is flowing, so sliding resistance can be reduced. . Therefore, it is possible to reduce the size of the valve body rotation mechanism that rotates the valve body. Furthermore, since the sliding distance between the valve body and the seal member can be shortened, deterioration due to wear of the seal member can be suppressed and durability can be improved. Therefore, since the required sealing performance can be achieved by using, for example, an inexpensive rubber material, the cost of the valve device can be reduced.

また、前記流体導入路の上流側から前記弁体側に向けて前記シール部材を付勢する付勢部材と、前記シール部材の前記弁体側の先端部が前記第2内半径よりも前記弁体側に突出しないように規制する規制機構と、を更に備えると好適である。 a biasing member that biases the seal member from the upstream side of the fluid introduction path toward the valve body; It is preferable to further include a regulation mechanism that regulates the projection so as not to protrude.

このような構成とすれば、シール部材が付勢部材により大半径部に押圧されて弁体との液密性を高めると共に、シール部材が小半径部に当接しないので弁体の回転に伴う摩擦によりシール部材が摩耗して劣化するのを抑制することが可能となる。 With such a configuration, the seal member is pressed against the large radius portion by the biasing member to enhance the liquid tightness with the valve body, and since the seal member does not abut against the small radius portion, the seal member rotates as the valve body rotates. It is possible to suppress wear and deterioration of the seal member due to friction.

また、前記複数の流体排出路のうち、前記流体導入路との連通状態が制限される流体排出路と前記弁体との間のシール性は、前記流体導入路と前記弁体との間のシール性よりも低く構成しても良い。 Further, among the plurality of fluid discharge passages, the sealing performance between the fluid discharge passage whose communication state with the fluid introduction passage is restricted and the valve body is It may be configured to be lower than the sealing property.

このような構成とすれば、流体排出路におけるシールに要するコストを低減できる。したがって、バルブ装置を低コスト化できる。 With such a configuration, the cost required for sealing the fluid discharge path can be reduced. Therefore, the cost of the valve device can be reduced.

バルブ装置の適用例を示す図である。It is a figure which shows the example of application of a valve apparatus. バルブ装置の斜視図である。1 is a perspective view of a valve device; FIG. 図2におけるIII-III線の断面図である。3 is a cross-sectional view taken along line III-III in FIG. 2; FIG. 図3におけるIV-IV線の断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3; 第2連通状態の断面図である。FIG. 11 is a cross-sectional view of a second communication state; 非連通状態の断面図である。FIG. 4 is a cross-sectional view of a non-communication state; シール部分の拡大図である。It is an enlarged view of a sealing portion.

本発明に係るバルブ装置は、シール部材が劣化し難いように構成される。以下、本実施形態のバルブ装置1について説明する。 The valve device according to the present invention is configured such that the seal member is less likely to deteriorate. The valve device 1 of this embodiment will be described below.

図1には、本実施形態のバルブ装置1の利用例が示される。バルブ装置1は、車両用燃料電池システム100のスタック2に供給する空気の加湿量、及びスタック2への空気の供給量を制御する。具体的には、スタック2内の膜が乾燥状態である時には加湿器3を流通させた空気をスタック2に供給する流路に切り換えられ、スタック2内の膜が湿潤状態である時には加湿器3をバイパスした空気をスタック2に供給する流路に切り換えられる。バルブ装置1は、このような流路切り換えが可能に構成される。 FIG. 1 shows a usage example of the valve device 1 of this embodiment. The valve device 1 controls the amount of humidification of air supplied to the stack 2 of the vehicle fuel cell system 100 and the amount of air supplied to the stack 2 . Specifically, when the membranes in the stack 2 are in a dry state, the flow path is switched to supply the air circulated through the humidifier 3 to the stack 2, and when the membranes in the stack 2 are in a wet state, the humidifier 3 is switched to the flow path for supplying the air bypassing to the stack 2 . The valve device 1 is configured to allow such channel switching.

図2にはバルブ装置1の斜視図が示される。図3には図2のIII-III線断面図が示される。図4には図3のIV-IV線断面図が示される。図2-図4に示されるように、バルブ装置1は、ハウジング10、流体導入路20、流体排出路30、弁体40、弁体回転機構50、突出部55、シール部材60、付勢部材70、規制機構80を備えて構成される。 A perspective view of the valve device 1 is shown in FIG. FIG. 3 shows a cross-sectional view taken along line III--III of FIG. FIG. 4 shows a sectional view taken along line IV-IV of FIG. As shown in FIGS. 2 to 4, the valve device 1 includes a housing 10, a fluid introduction path 20, a fluid discharge path 30, a valve body 40, a valve body rotation mechanism 50, a projecting portion 55, a sealing member 60, a biasing member. 70 and a regulation mechanism 80 .

ここで、理解を容易にするために、本実施形態では、特に断りがない限り、「上」は図2及び図4に示す状態でバルブ装置1の鉛直方向(垂直方向)に沿った矢印Uの方向を意味し、「下」は図2及び図4に示す状態でバルブ装置1の鉛直方向(垂直方向)に沿った矢印Dの方向を意味するものとする。 Here, in order to facilitate understanding, in this embodiment, unless otherwise specified, the "upper" means the arrow U along the vertical direction (perpendicular direction) of the valve device 1 in the state shown in FIGS. , and "downward" means the direction of arrow D along the vertical direction (vertical direction) of the valve device 1 in the state shown in FIGS.

ハウジング10は内部に円柱状の空間11が形成される円筒状の内周壁12を有する。本実施形態ではハウジング10は樹脂を用いて内周壁12により円柱状の空間11が形成されるように構成される。内周壁12は、円柱状の空間11の軸心Xに直交する断面が円形を呈するように構成される。本実施形態では、空間11は、軸心Xを中心とした均一の内径からなる内周壁12と底面13とで囲まれる。したがって、空間11は、椀形状の壁に囲まれて構成される。 The housing 10 has a cylindrical inner peripheral wall 12 in which a cylindrical space 11 is formed. In this embodiment, the housing 10 is made of resin so that the inner peripheral wall 12 forms a cylindrical space 11 . The inner peripheral wall 12 is configured such that a cross section perpendicular to the axis X of the cylindrical space 11 has a circular shape. In this embodiment, the space 11 is surrounded by an inner peripheral wall 12 and a bottom surface 13 having a uniform inner diameter around the axis X. As shown in FIG. Therefore, the space 11 is configured to be surrounded by bowl-shaped walls.

流体導入路20は、ハウジング10に形成され、内周壁12において円柱状の空間11と連通する。流体導入路20は、バルブ装置1により流量が制御される流体の、バルブ装置1への導入路となる。ハウジング10の内周壁12に開口部分14が設けられ、この開口部分14を介して流体導入路20が空間11と連通する。本実施形態では、ハウジング10には、1つの流体導入路20が設けられる。 A fluid introduction path 20 is formed in the housing 10 and communicates with the cylindrical space 11 on the inner peripheral wall 12 . The fluid introduction path 20 serves as an introduction path to the valve device 1 for the fluid whose flow rate is controlled by the valve device 1 . An opening 14 is provided in the inner peripheral wall 12 of the housing 10 , and the fluid introduction path 20 communicates with the space 11 through this opening 14 . In this embodiment, the housing 10 is provided with one fluid introduction path 20 .

流体排出路30は、ハウジング10に形成され、内周壁12において円柱状の空間11と連通する。流体排出路30は、バルブ装置1により流量が制御される流体の、バルブ装置1からの排出路となる。ハウジング10の内周壁12に、上述した開口部分14とは異なる別の開口部分15が設けられ、この開口部分15を介して流体排出路30が空間11と連通する。ハウジング10には流体排出路30は複数設けられるが、本実施形態では2つの流体排出路30が設けられる。 A fluid discharge path 30 is formed in the housing 10 and communicates with the cylindrical space 11 at the inner peripheral wall 12 . The fluid discharge path 30 serves as a discharge path from the valve device 1 for the fluid whose flow rate is controlled by the valve device 1 . The inner peripheral wall 12 of the housing 10 is provided with an opening portion 15 different from the opening portion 14 described above, and the fluid discharge path 30 communicates with the space 11 through this opening portion 15 . Although a plurality of fluid discharge paths 30 are provided in the housing 10, two fluid discharge paths 30 are provided in this embodiment.

ここで、特に限定されるものではないが、本実施形態では開口部分14及び2つの開口部分15は、夫々同じ内径で形成される。なお、2つの流体排出路30は理解を容易にするために、夫々を区別する場合には、周方向に沿って流体導入路20に近い方(上流側)を第1流体排出路31とし、周方向に沿って流体導入路20から遠い方(下流側)を第2流体排出路32として説明する。 Here, although it is not particularly limited, the opening 14 and the two openings 15 are formed with the same inner diameter in this embodiment. For ease of understanding, when distinguishing between the two fluid discharge paths 30, the one closer to the fluid introduction path 20 along the circumferential direction (upstream side) is referred to as the first fluid discharge path 31. A side (downstream side) farther from the fluid introduction path 20 along the circumferential direction will be described as a second fluid discharge path 32 .

弁体40は球状体で構成される。本実施形態では、図4に示されるように、弁体40は、球状体の上側及び下側が軸心Xに直交する面でカットされた形状で構成されるが、特にカットせずに構成することも可能である。また、本実施形態では、弁体40はハウジング10と同様に樹脂を用いて形成され、上述したハウジング10の円柱状の空間11に収容される。 The valve body 40 is composed of a spherical body. In the present embodiment, as shown in FIG. 4, the valve body 40 is configured in a shape in which the upper and lower sides of the spherical body are cut along a plane perpendicular to the axis X, but the valve body 40 is configured without such cuts. is also possible. Further, in the present embodiment, the valve body 40 is made of resin like the housing 10 and is housed in the cylindrical space 11 of the housing 10 described above.

弁体40は、図3に示されるように、平面視(軸心Xに沿う方向視)が単一の内半径からなる円弧を有するのではなく(真円ではなく)、複数の内半径からなる曲線や直線を有して構成される。具体的には、弁体40は、大半径部41、小半径部42、中間部43を有する。 As shown in FIG. 3, the valve body 40 does not have an arc consisting of a single inner radius (not a perfect circle) when viewed from above (when viewed in the direction along the axis X), but has multiple inner radii. It is composed of curved lines and straight lines. Specifically, the valve body 40 has a large radius portion 41 , a small radius portion 42 and an intermediate portion 43 .

大半径部41は、平面視で、ハウジング10の内周壁12の内半径に応じた所定の第1内半径で形成される。上述したように、ハウジング10の内周壁12は、軸心Xを中心とした均一の内径からなる。大半径部41は、軸心Xを回転軸として回転した際に内周壁12に接しないように、内周壁12の内半径よりも小さい内半径である第1内半径で形成される。特に限定されるものではないが、内周壁12の内半径と第1内半径との差異は、弁体40が軸心Xを回転軸として回転した際に内周壁12に接しないように(摺動抵抗が生じないように)少なくとも隙間が形成される程度で良い。 The large radius portion 41 is formed with a predetermined first inner radius corresponding to the inner radius of the inner peripheral wall 12 of the housing 10 in plan view. As described above, the inner peripheral wall 12 of the housing 10 has a uniform inner diameter centered on the axis X. As shown in FIG. The large-radius portion 41 is formed with a first inner radius that is smaller than the inner radius of the inner peripheral wall 12 so as not to come into contact with the inner peripheral wall 12 when rotated about the axis X as the rotation axis. Although not particularly limited, the difference between the inner radius of the inner peripheral wall 12 and the first inner radius is such that when the valve body 40 rotates about the axis X as the rotation axis, it does not come into contact with the inner peripheral wall 12 (sliding). It is sufficient that at least a gap is formed so that dynamic resistance does not occur.

本実施形態では、大半径部41は図3に示されるように、弁体40の周方向に沿って2箇所に設けられる。夫々の周方向における位置は、一方の大半径部41が、流体導入路20と第2流体排出路32との間の内周壁12に対向する位置にある場合に、他方の大半径部41が第1流体排出路31における開口部分15を閉じることが可能とする位置に設けられる。したがって、大半径部41は、周方向の位置が流体排出路30の周方向位置に応じて設定される。 In this embodiment, the large radius portion 41 is provided at two locations along the circumferential direction of the valve body 40, as shown in FIG. Positions in the respective circumferential directions are such that when one large-radius portion 41 faces the inner peripheral wall 12 between the fluid introduction passage 20 and the second fluid discharge passage 32, the other large-radius portion 41 It is provided at a position that allows the opening portion 15 in the first fluid discharge path 31 to be closed. Therefore, the position of the large radius portion 41 in the circumferential direction is set according to the position of the fluid discharge passage 30 in the circumferential direction.

小半径部42は、第1内半径よりも小さい第2内半径で形成される。第1内半径とは大半径部41の内半径である。したがって、小半径部42は、図3に示されるように大半径部41よりも小さい内半径を有して構成される。上述したように、大半径部41は、弁体40が軸心Xを回転軸として回転した際に内周壁12に接しないように、内周壁12との間で隙間が形成される。小半径部42と内周壁12との間には、大半径部41と内周壁12との間の隙間よりも径方向長さが長い隙間(容積が大きい隙間)が形成される。 The small radius portion 42 is formed with a second inner radius that is smaller than the first inner radius. The first inner radius is the inner radius of the large radius portion 41 . Accordingly, the small radius portion 42 is configured with a smaller inner radius than the large radius portion 41 as shown in FIG. As described above, a gap is formed between the large radius portion 41 and the inner peripheral wall 12 so that the valve element 40 does not come into contact with the inner peripheral wall 12 when the valve body 40 rotates about the axis X as the rotation axis. Between the small radius portion 42 and the inner peripheral wall 12 , a gap having a radial length longer than the gap between the large radius portion 41 and the inner peripheral wall 12 (a gap having a large volume) is formed.

本実施形態では、小半径部42は図3に示されるように、弁体40の周方向に沿って2箇所に設けられる。夫々の周方向における位置は、一方の小半径部42が、流体導入路20と対向する位置にある場合に、他方の小半径部42が第2流体排出路32における開口部分15と対向する位置に設けられる。したがって、小半径部42は、周方向の位置が流体導入路20及び流体排出路30の周方向位置に応じて設定される。 In this embodiment, the small radius portions 42 are provided at two locations along the circumferential direction of the valve body 40, as shown in FIG. The respective positions in the circumferential direction are such that when one small radius portion 42 faces the fluid introduction passage 20, the other small radius portion 42 faces the opening portion 15 of the second fluid discharge passage 32. provided in Therefore, the position of the small radius portion 42 in the circumferential direction is set according to the circumferential positions of the fluid introduction path 20 and the fluid discharge path 30 .

中間部43は、大半径部41と小半径部42とをつなぐように形成され、軸心Xからの距離が第1内半径と第2内半径との中間の距離で形成される。「大半径部41と小半径部42とをつなぐように形成され」とは、弁体40の平面視において大半径部41と小半径部42とに亘って設けられることを意味する。本実施形態では、大半径部41と小半径部42とは、夫々2箇所に設けられる。したがって、中間部43は、夫々の大半径部41と小半径部42とをつなぐように4箇所に設けられる。「軸心Xからの距離が第1内半径と第2内半径との中間の距離で形成される」とは、中間部43の内半径が、大半径部41の第1内半径と小半径部42の第2内半径との間の内半径で形成されることを言う。ここで、大半径部41の第1内半径と小半径部42の第2内半径との間の内半径とは、単一の内半径でなく、大半径部41の第1内半径と小半径部42の第2内半径との範囲内で長さが変化する内半径である。中間部43は、平面視が滑らかな弧状で形成しても良い。すなわち、中間部43は、内半径が滑らかに除変される(徐々に変化する)ように構成しても良い。また、平面視で鋭角である鋭角部分を有するように形成しても良い。 The intermediate portion 43 is formed to connect the large-radius portion 41 and the small-radius portion 42, and has a distance from the axis X that is intermediate between the first inner radius and the second inner radius. “Formed so as to connect the large radius portion 41 and the small radius portion 42 ” means that it is provided across the large radius portion 41 and the small radius portion 42 in plan view of the valve body 40 . In this embodiment, the large-radius portion 41 and the small-radius portion 42 are each provided at two locations. Therefore, the intermediate portions 43 are provided at four locations so as to connect the large-radius portion 41 and the small-radius portion 42, respectively. "The distance from the axis X is formed by the middle distance between the first inner radius and the second inner radius" means that the inner radius of the intermediate portion 43 is equal to the first inner radius of the large radius portion 41 and the small radius. It means to be formed with an inner radius between the second inner radius of the portion 42 . Here, the inner radius between the first inner radius of the large radius portion 41 and the second inner radius of the small radius portion 42 is not a single inner radius, but the first inner radius of the large radius portion 41 and the smaller radius. It is an inner radius whose length varies within a range from the second inner radius of the radius portion 42 . The intermediate portion 43 may be formed in an arc shape that is smooth in plan view. That is, the intermediate portion 43 may be configured such that the inner radius is smoothly changed (gradually changed). Moreover, it may be formed so as to have an acute-angled portion that is acute in plan view.

弁体40は、小半径部42及び中間部43の少なくともいずれか一方において開口する開口部分44を有すると共に、流体導入路20と複数の流体排出路30のうちの少なくとも一つとを連通可能とする連通路45を内部に有する。本実施形態では、図3に示されるように、小半径部42及び中間部43の双方に亘って開口する開口部分44が弁体40の周方向に沿って2箇所に設けられる。また、これらの開口部分44は、図4に示されるように、空間11に収容された状態の弁体40における側面に設けられる。なお、開口部分44の外縁部は上面視が円弧状になるように構成しても良い。 The valve body 40 has an opening portion 44 that opens in at least one of the small radius portion 42 and the intermediate portion 43, and allows the fluid introduction passage 20 and at least one of the plurality of fluid discharge passages 30 to communicate with each other. It has a communicating passage 45 inside. In this embodiment, as shown in FIG. 3 , two opening portions 44 are provided along the circumferential direction of the valve body 40 so as to extend over both the small radius portion 42 and the intermediate portion 43 . Moreover, these opening portions 44 are provided on the side surface of the valve body 40 in the state accommodated in the space 11, as shown in FIG. Note that the outer edge of the opening 44 may be configured to have an arc shape when viewed from above.

連通路45は、上述した2箇所に設けられた開口部分44の少なくとも一方と連通し、弁体40を径方向に沿って貫通している。本実施形態では、弁体40を制御することにより、連通路45と流体導入路20と第1流体排出路31とを主として連通させる第1連通状態と、流体導入路20と第2流体排出路32とを主として連通させる第2連通状態と、流体導入路20と第1流体排出路31及び第2流体排出路32の双方とを遮断させる遮断状態とに切り換え可能に構成される。 The communicating passage 45 communicates with at least one of the opening portions 44 provided at the two locations, and penetrates the valve body 40 along the radial direction. In this embodiment, by controlling the valve body 40, a first communication state in which the communicating passage 45, the fluid introduction passage 20, and the first fluid discharge passage 31 are mainly communicated, and a first communication state in which the fluid introduction passage 20 and the second fluid discharge passage are communicated. 32 are mainly communicated with each other, and a blocking state in which communication between the fluid introduction passage 20 and both the first fluid discharge passage 31 and the second fluid discharge passage 32 is blocked.

弁体40は、径方向中央部に軸心Xの方向に沿って回転軸90が挿通され、ハウジング10の空間11に収容される。回転軸90は軸心Xと同軸心で、一方の端部が底面13に支持部材91を介して支持される。空間11の上側は、回転軸90が貫通された蓋部材18により液密的に閉じられる。本実施形態では、回転軸90の他方側は、支持部材92を介して蓋部材18に支持される。また、蓋部材18は、ハウジング10に対してボルト93により締結固定される。 The valve body 40 is accommodated in the space 11 of the housing 10 with the rotating shaft 90 inserted along the direction of the axis X in the radial center portion. A rotating shaft 90 is coaxial with the axis X, and one end thereof is supported by the bottom surface 13 via a supporting member 91 . The upper side of the space 11 is liquid-tightly closed by the lid member 18 through which the rotary shaft 90 is passed. In this embodiment, the other side of the rotary shaft 90 is supported by the cover member 18 via the support member 92 . Also, the lid member 18 is fastened and fixed to the housing 10 with bolts 93 .

弁体回転機構50は、軸心Xを回転軸心として回転軸90を介して弁体40を円柱状の空間11内で回転させる。弁体回転機構50は、モータMを有して構成され、上位システムからの指示に応じて回転軸90を回転させる。この指示に応じて、弁体40が回転し、弁体40が上述した第1連通状態と、第2連通状態と、遮断状態との何れかに切り換えられる。 The valve body rotation mechanism 50 rotates the valve body 40 within the columnar space 11 via the rotation shaft 90 with the axis X as the rotation axis. The valve body rotating mechanism 50 is configured with a motor M, and rotates a rotating shaft 90 according to an instruction from a host system. In response to this instruction, the valve body 40 rotates, and the valve body 40 is switched among the above-described first communication state, second communication state, and cutoff state.

第1連通状態は、図5に示されるように弁体40の連通路45により流体導入路20と第1流体排出路31とが主として連通状態になり、第2流体排出路32における開口部分15が大半径部41により閉状態になる。第2連通状態は、図3に示されるように弁体40の連通路45により流体導入路20と第2流体排出路32とが主として連通状態となり、第1流体排出路31における開口部分15が大半径部41により閉状態となる。 In the first communication state, as shown in FIG. 5, the fluid introduction passage 20 and the first fluid discharge passage 31 are mainly communicated by the communication passage 45 of the valve body 40, and the opening portion 15 of the second fluid discharge passage 32 is maintained. is closed by the large radius portion 41 . In the second communication state, as shown in FIG. 3, the fluid introduction passage 20 and the second fluid discharge passage 32 are mainly communicated by the communication passage 45 of the valve body 40, and the opening portion 15 of the first fluid discharge passage 31 is The large radius portion 41 causes the closed state.

なお、第1連通状態における第2流体排出路32は、完全に閉状態でなくても良く、第2流体排出路32を流通する流体の量が、第1連通状態における第1流体排出路31を流通する流体の量よりも少なくなるように閉じていれば良い。また、第2連通状態における第1流体排出路31も、完全に閉状態でなくても良く、第1流体排出路31を流通する流体の量が、第2連通状態における第2流体排出路32を流通する流体の量よりも少なくなるように閉じていれば良い。 It should be noted that the second fluid discharge path 32 in the first communication state does not have to be completely closed, and the amount of fluid flowing through the second fluid discharge path 32 is the same as that of the first fluid discharge path 31 in the first communication state. should be closed so as to be smaller than the amount of fluid flowing through. Also, the first fluid discharge passage 31 in the second communication state does not have to be completely closed, and the amount of fluid flowing through the first fluid discharge passage 31 is less than the second fluid discharge passage 32 in the second communication state. should be closed so as to be smaller than the amount of fluid flowing through.

遮断状態は、図6に示されるように弁体40の大半径部41が流体導入路20における開口部分14を閉状態にする。この状態では、流体導入路20と連通路45とは連通せず、流体導入路20を流通する流体は連通路45に流入しない。この時、第1流体排出路31の開口部分15及び第2流体排出路32の開口部分15は夫々、弁体40により閉じられていても閉じられていなくても良い。いずれであっても、大半径部41により流体導入路20における開口部分14が閉状態とされるので、空間11(連通路45)への流体の導入が妨げられる。 In the blocking state, the large-radius portion 41 of the valve body 40 closes the opening portion 14 of the fluid introducing passage 20, as shown in FIG. In this state, the fluid introduction path 20 and the communication path 45 are not communicated with each other, and the fluid flowing through the fluid introduction path 20 does not flow into the communication path 45 . At this time, the opening portion 15 of the first fluid discharge passage 31 and the opening portion 15 of the second fluid discharge passage 32 may or may not be closed by the valve bodies 40, respectively. In either case, since the large radius portion 41 closes the opening portion 14 of the fluid introduction passage 20, introduction of the fluid into the space 11 (communication passage 45) is prevented.

ここで、ハウジング10の内周壁12には、当該内周壁12おける流体導入路20の開口部分14の少なくとも一部をハウジング10の内周壁12から円柱状の空間11の軸心Xに向けて突出して囲む突出部55が設けられる。「流体導入路20の開口部分14の少なくとも一部をハウジング10の内周壁12から円柱状の空間11の軸心Xに向けて突出して囲む」とは、内周壁12において開口する開口部分14の縁部から空間11の軸心Xに向かって流体導入路20の少なくとも一部を筒状に延出させることをいう。このように流体導入路20の少なくとも一部を延出させる、内周壁12からの突出部分が突出部55に相当する。本実施形態では、図3及び図4に示されるように、流体導入路20の開口部分14の両側方の縁部どうしをつなぐように突出部55が設けられる。換言すれば、ハウジング10は、完全な円筒状ではなく、上面視がシール部材60(後述する)が挿入される箇所のみ平面を有するD形状で構成される。 Here, in the inner peripheral wall 12 of the housing 10, at least a part of the opening portion 14 of the fluid introduction path 20 in the inner peripheral wall 12 protrudes from the inner peripheral wall 12 of the housing 10 toward the axis X of the cylindrical space 11. A protrusion 55 is provided that encloses the "At least part of the opening 14 of the fluid introduction path 20 is protruded from the inner peripheral wall 12 of the housing 10 toward the axis X of the cylindrical space 11" means that the opening 14 of the inner peripheral wall 12 is It means that at least a portion of the fluid introduction path 20 extends cylindrically from the edge toward the axis X of the space 11 . The projecting portion from the inner peripheral wall 12 that extends at least a portion of the fluid introduction path 20 in this manner corresponds to the projecting portion 55 . In this embodiment, as shown in FIGS. 3 and 4, projections 55 are provided so as to connect the edges on both sides of the opening portion 14 of the fluid introduction path 20 . In other words, the housing 10 is not completely cylindrical, but has a D-shape when viewed from the top, which has a flat surface only where a sealing member 60 (described later) is inserted.

本実施形態では、突出部55は、軸心Xから突出部55までの距離が、小半径部42の内半径である第2内半径よりも長くなるように構成されている。これにより、突出部55が設けられた流体導入路20は、弁体40が回転され、少なくとも小半径部42が正面に位置する状態になった場合には、閉状態にならないようにできる。また、このような構成を有することにより、突出部55と小半径部42とを軸心Xに対する周方向の位置を合わせた状態で、弁体40をハウジング10の空間11内に収容し組み付けることができる。 In this embodiment, the protrusion 55 is configured such that the distance from the axis X to the protrusion 55 is longer than the second inner radius, which is the inner radius of the small radius portion 42 . As a result, the fluid introduction passage 20 provided with the projecting portion 55 can be prevented from being closed when the valve body 40 is rotated and at least the small radius portion 42 is positioned in front. Further, with such a configuration, the valve body 40 can be accommodated and assembled in the space 11 of the housing 10 with the projecting portion 55 and the small radius portion 42 aligned in the circumferential direction with respect to the axis X. can be done.

遮断状態にあっては、流体導入路20から空間11への流体の導入を確実に防止するために、シール部材60が設けられる。シール部材60は、ハウジング10の内周壁12における流体導入路20の開口部分14に(開口部分14とハウジング10の内周壁12との間に)弁体40の大半径部41と当接可能に設けられる。本実施形態では、シール部材60は突出部55に設けられ、弁体40と当接可能に設けられる。シール部材60は、開口部分14の形状(本実施形態では、突出部55の端部の内周面55Aの形状)に応じて形成される。本実施形態では、突出部55の端部の内周面55Aは、軸心Xからの径方向視で円形状であるため、シール部材60は流体導入路20を流通する流体の流通方向(以下、単に「軸方向」と称する)に直交する断面が円形状の円筒状に形成される。 A seal member 60 is provided to reliably prevent the introduction of fluid from the fluid introduction path 20 into the space 11 in the blocked state. The seal member 60 can contact the large radius portion 41 of the valve body 40 at the opening portion 14 of the fluid introduction passage 20 in the inner peripheral wall 12 of the housing 10 (between the opening portion 14 and the inner peripheral wall 12 of the housing 10). be provided. In this embodiment, the seal member 60 is provided on the protruding portion 55 so as to be able to contact the valve body 40 . The seal member 60 is formed according to the shape of the opening portion 14 (in this embodiment, the shape of the inner peripheral surface 55A at the end of the projecting portion 55). In the present embodiment, the inner peripheral surface 55A of the end portion of the protruding portion 55 has a circular shape when viewed in the radial direction from the axis X, so the seal member 60 is positioned in the direction in which the fluid flowing through the fluid introduction passage 20 flows (hereinafter referred to as , simply referred to as the “axial direction”) is formed into a circular cylinder.

シール部材60は、弾性材料(例えばゴム部材)を用いて形成され、軸方向の一方側端部がハウジング10の開口部分14及び突出部55に挿入され、軸方向の他方側端部が空間11に突出した状態で設けられる。シール部材60が空間11側に突出する量(長さ)は、弁体40が弁体回転機構50により回転され遮断状態に移行した際に、図6に示されように大半径部41がシール部材60の先端部61(上記「軸方向の他方側」に相当)と当接し、流体導入路20と空間11とが連通状態とならないように設定される。このとき、シール部材60が外周部分でハウジング10(突出部55の内周面55A)に対して液密的に当接(内嵌)しており、流体がシール部材60と突出部55との隙間から空間11に漏出するのを防止する。これにより、遮断状態のときには確実に空間11への流体の導入を妨げることが可能となる。 The sealing member 60 is formed using an elastic material (for example, a rubber member), has one axial end inserted into the opening 14 and the projecting portion 55 of the housing 10 , and has the other axial end inserted into the space 11 . It is provided in a state of protruding to the The amount (length) by which the seal member 60 protrudes toward the space 11 is such that when the valve body 40 is rotated by the valve body rotation mechanism 50 and shifted to the shut-off state, the large radius portion 41 is sealed as shown in FIG. It abuts against the tip portion 61 of the member 60 (corresponding to the “other side in the axial direction”), and is set so that the fluid introduction path 20 and the space 11 are not in a communicating state. At this time, the seal member 60 is in liquid-tight contact (inner fit) with the housing 10 (the inner peripheral surface 55A of the protruding portion 55) at the outer peripheral portion, and the fluid flows between the sealing member 60 and the protruding portion 55. To prevent leakage into the space 11 through the gap. This makes it possible to reliably prevent the introduction of fluid into the space 11 in the blocked state.

一方、第1流通状態及び第2流通状態にあっては、流体導入路20からの流体は空間11(連通路45)に導入される必要がある。このため、第1流通状態及び第2流通状態にあっては、シール部材60は、弁体40側の先端部61(上記「軸方向の他方側」が相当)が、小半径部42に当接しない状態で設けられる。 On the other hand, in the first circulating state and the second circulating state, the fluid from the fluid introduction path 20 needs to be introduced into the space 11 (communication path 45). Therefore, in the first flow state and the second flow state, the tip portion 61 of the seal member 60 on the side of the valve body 40 (corresponding to the “other side in the axial direction”) contacts the small radius portion 42 . It is provided in a non-contact state.

図7は、シール部材60によるシール部分を拡大した図である。図7では、大半径部41の第1内半径に沿う内半径が二点鎖線で示される。遮断状態では、シール部材60と大半径部41とが当接する状態であって、第1流通状態及び第2流通状態では、図7に示されるように、シール部材60と小半径部42とは当接しない状態で設けられる。 FIG. 7 is an enlarged view of the sealing portion by the sealing member 60. As shown in FIG. In FIG. 7, the inner radius along the first inner radius of the large radius portion 41 is indicated by a chain double-dashed line. In the blocking state, the seal member 60 and the large radius portion 41 are in contact with each other, and in the first and second flow states, as shown in FIG. It is provided in a non-contacting state.

このように、シール部材60は、後述する規制機構80により、弁体40が回転軸心Xに沿って回転している場合であっても小半径部42に接しないように、空間11に突出する量(長さ)が設定される。これにより、流体を空間11内に導入する際には、シール部材60と弁体40とが当接しないようにできるので、シール部材60に弁体40からの応力が作用せず、弁体40の回転に伴う摩擦によりシール部材60が摩耗して劣化するのを抑制することが可能となる。 In this way, the seal member 60 protrudes into the space 11 so as not to come into contact with the small radius portion 42 even when the valve element 40 is rotating along the rotation axis X by means of a regulation mechanism 80 which will be described later. The amount (length) to be applied is set. As a result, when the fluid is introduced into the space 11, the seal member 60 and the valve body 40 are prevented from coming into contact with each other. It is possible to suppress the wear and deterioration of the seal member 60 due to the friction associated with the rotation of the .

本実施形態では、流体導入路20が弁体40により遮断状態となった場合に、シール部材60の弁体40との液密性をより高めるために、付勢部材70が流体導入路20の上流側から弁体40側に向けてシール部材60を付勢するように構成されている。本実施形態では付勢部材70はコイル状のバネからなり、バネの軸心が軸方向に沿うように、ハウジング10の溝部16とフランジ200とに間に嵌め込まれる。したがって、付勢部材70の付勢力は、軸方向に沿って作用する。 In the present embodiment, when the fluid introduction path 20 is blocked by the valve body 40, the biasing member 70 is placed in the fluid introduction path 20 in order to increase the liquid tightness of the seal member 60 with the valve body 40. It is configured to bias the seal member 60 from the upstream side toward the valve body 40 side. In this embodiment, the biasing member 70 is a coiled spring, and is fitted between the groove 16 of the housing 10 and the flange 200 so that the axis of the spring extends along the axial direction. Therefore, the biasing force of the biasing member 70 acts along the axial direction.

本実施形態では、シール部材60と付勢部材70とに亘って、シール部材60の弁体40側の先端部61が第2内半径よりも弁体40側に突出しないようにシール部材60の突出量を規制する規制機構80が設けられる。規制機構80は、薄板を加工して環状に形成される。特に本実施形態では、図7に示されるように、規制機構80は、軸方向に垂直な面が軸方向に沿って階段状に複数形成されている。付勢部材70側の第1階段部81が、付勢部材70の付勢力により、ハウジング10の溝部16の壁部17に押し付けられ、弁体40側の第2階段部82がシール部材60の軸方向の一方側の端部と対向するように設けられる。シール部材60は規制機構80の弁体40側の端部に接着等により取り付けられ、シール部材60と規制機構80とは一体となって軸方向に移動するように構成されている。これにより、第1階段部81が溝部16の壁部17と当接した状態におけるシール部材60は、それ以上軸心X方向に突出しない。これにより、シール部材60は小半径部42に当接することはない。一方、図7に示すように、シール部材60が軸心X方向に最も突出した状態では二点鎖線で表された大半径部41と交差している。このため、シール部材60の先端部61が大半径部41と当接しているときは、シール部材60は付勢部材70の付勢力に抗して軸心Xから径外方向に移動している。このとき、規制機構80の第1階段部81は、ハウジング10の溝部16の壁部17から離間した状態になっており、付勢部材70の付勢力は直接シール部材60に作用している。すなわち、付勢部材70の付勢力がシール部材60の弁体40への押付力となっている。 In the present embodiment, the sealing member 60 is configured so that the tip portion 61 of the sealing member 60 on the side of the valve element 40 does not protrude toward the valve element 40 beyond the second inner radius. A regulation mechanism 80 is provided to regulate the amount of protrusion. The regulation mechanism 80 is formed in an annular shape by processing a thin plate. Particularly in this embodiment, as shown in FIG. 7, the regulation mechanism 80 has a plurality of surfaces perpendicular to the axial direction formed stepwise along the axial direction. A first stepped portion 81 on the side of the biasing member 70 is pressed against the wall portion 17 of the groove portion 16 of the housing 10 by the biasing force of the biasing member 70 , and a second stepped portion 82 on the side of the valve body 40 is pushed against the sealing member 60 . It is provided so as to face one end in the axial direction. The seal member 60 is attached to the end of the regulation mechanism 80 on the valve body 40 side by means of an adhesive or the like, and the seal member 60 and the regulation mechanism 80 are configured to move together in the axial direction. As a result, the seal member 60 in the state where the first stepped portion 81 is in contact with the wall portion 17 of the groove portion 16 does not protrude further in the axial center X direction. As a result, the seal member 60 does not come into contact with the small radius portion 42 . On the other hand, as shown in FIG. 7, when the seal member 60 protrudes most in the direction of the axis X, it intersects with the large radius portion 41 indicated by the chain double-dashed line. Therefore, when the tip portion 61 of the seal member 60 is in contact with the large radius portion 41, the seal member 60 moves radially outward from the axis X against the biasing force of the biasing member 70. . At this time, the first step portion 81 of the restricting mechanism 80 is separated from the wall portion 17 of the groove portion 16 of the housing 10 , and the biasing force of the biasing member 70 directly acts on the seal member 60 . That is, the biasing force of the biasing member 70 is the pressing force of the seal member 60 against the valve body 40 .

図3及び図4に示されるように、本実施形態では、第1流体排出路31の開口部分15及び第2流体排出路32における開口部分15には、夫々、コイル状のバネからなる付勢部材110が設けられ、付勢部材110の上流側(空間11側)に環状の弾性部材(例えばゴム部材)からなるシール部材111が設けられ、更にその上流側に環状の樹脂部材112(例えばポリテトラフルオロエチレン)が設けられる。ポリテトラフルオロエチレンは摺動性が良く耐摩耗性が高いので、このように構成することで、複数の流体排出路30における夫々の開口部分15と弁体40とのシール性を確保しつつ、樹脂部材112の摩耗を抑制することができる。 As shown in FIGS. 3 and 4, in this embodiment, the opening portion 15 of the first fluid discharge path 31 and the opening portion 15 of the second fluid discharge path 32 are biased by coil springs, respectively. A member 110 is provided, a seal member 111 made of an annular elastic member (for example, a rubber member) is provided on the upstream side (space 11 side) of the urging member 110, and an annular resin member 112 (for example, polyethylene) is provided on the upstream side. tetrafluoroethylene) is provided. Since polytetrafluoroethylene has good slidability and high wear resistance, by configuring in this way, while ensuring sealing performance between the opening portions 15 of the plurality of fluid discharge paths 30 and the valve body 40, Wear of the resin member 112 can be suppressed.

ここで、バルブ装置1が用いられるシステム(本実施形態では、車両用燃料電池システム100)において、複数の流体排出路30の夫々が、分流比率の誤差を許容できる構成である場合には、複数の流体排出路30のうち、流体導入路20との連通状態が制限される流体排出路30と弁体40との間のシール性が、流体導入路20と弁体40との間のシール性よりも低く構成されても良い。係る場合、複数の流体排出路30の夫々に設けられる付勢部材110、シール部材111、樹脂部材112等のシール機構を不要とすることができる。 Here, in a system (a vehicle fuel cell system 100 in this embodiment) in which the valve device 1 is used, if each of the plurality of fluid discharge paths 30 is configured to allow an error in the flow division ratio, a plurality of of the fluid discharge passages 30, the sealing performance between the fluid discharge passage 30 and the valve body 40, whose communication state with the fluid introduction passage 20 is restricted, is the seal performance between the fluid introduction passage 20 and the valve body 40 may be configured lower than In such a case, sealing mechanisms such as the biasing member 110, the sealing member 111, the resin member 112, etc. provided for each of the plurality of fluid discharge paths 30 can be eliminated.

本実施形態では上記のようにバルブ装置1が構成される。このようなバルブ装置1によれば、大半径部41と小半径部42との間に中間部43が設けられ、更には弁体40が球状体で構成されているので、弁体40が回転して大半径部41がハウジング10に当接するに際し、小半径部42から徐々に大半径部41に至るにつれてハウジング10(流体導入路20の開口部分14のハウジング10)に滑らかに押し付けられる(徐々に当接する)ことになる。したがって、シール性を維持しつつ、弁体40の劣化を抑制できる。また、本バルブ装置1によれば、複数の流体排出路30を切り換えることができるので、夫々の流体排出路30に対してバルブ装置1を設ける場合と比較して、バルブ装置1を低コスト化することが可能となる。 In this embodiment, the valve device 1 is configured as described above. According to the valve device 1, the intermediate portion 43 is provided between the large radius portion 41 and the small radius portion 42, and the valve body 40 is formed of a spherical body, so that the valve body 40 rotates. Then, when the large-radius portion 41 comes into contact with the housing 10, it is smoothly pressed against the housing 10 (the housing 10 at the opening portion 14 of the fluid introduction passage 20) as it gradually reaches the large-radius portion 41 from the small-radius portion 42 (gradually contact). Therefore, deterioration of the valve body 40 can be suppressed while maintaining sealing performance. Further, according to the present valve device 1, since a plurality of fluid discharge paths 30 can be switched, the cost of the valve device 1 can be reduced compared to the case where the valve device 1 is provided for each fluid discharge path 30. It becomes possible to

以上のように構成することで、バルブ装置1は車両用燃料電池システム100のスタック2に供給する空気の加湿量、及びスタック2への空気の供給を制御することが可能となる。 By configuring as described above, the valve device 1 can control the amount of humidification of the air supplied to the stack 2 of the vehicle fuel cell system 100 and the supply of air to the stack 2 .

〔その他の実施形態〕
上記実施形態では、バルブ装置1が、車両用燃料電池システム100のスタック2に供給する空気の加湿量、及びスタック2への空気の供給を制御する例を挙げて説明したが、バルブ装置1を他の用途に適用することも可能である。
[Other embodiments]
In the above embodiment, the valve device 1 controls the humidification amount of the air supplied to the stack 2 of the vehicle fuel cell system 100 and the air supply to the stack 2. Application to other uses is also possible.

上記実施形態では、ハウジング10に2つの流体排出路30が備えられている例を挙げて説明したが、ハウジング10は流体排出路30を3つ以上、備えていても良い。更に、バルブ装置1は、流体導入路20と流体排出路30との合計数が3つ以上のものに適用することも可能である。すなわち、バルブ装置1は、複数の流体導入路20と少なくとも1つの流体排出路30とを有するものであっても適用可能である。 In the above embodiment, an example in which the housing 10 is provided with two fluid discharge paths 30 has been described, but the housing 10 may be provided with three or more fluid discharge paths 30 . Furthermore, the valve device 1 can also be applied to a device in which the total number of the fluid introduction passages 20 and the fluid discharge passages 30 is three or more. That is, the valve device 1 can be applied even if it has a plurality of fluid introduction paths 20 and at least one fluid discharge path 30 .

上記実施形態では、ハウジング10の内周壁12における流体導入路20の開口部分14とハウジング10の内周壁12との間に弁体40の大半径部41と当接可能なシール部材60が設けられているとして説明したが、流体導入路20の開口部分14とハウジング10の内周壁12との間にシール部材60を設けなくても良い。 In the above embodiment, the seal member 60 is provided between the inner peripheral wall 12 of the housing 10 and the opening portion 14 of the fluid introduction passage 20 and the inner peripheral wall 12 of the housing 10 so as to be able to contact the large radius portion 41 of the valve body 40 . However, the seal member 60 may not be provided between the opening portion 14 of the fluid introduction passage 20 and the inner peripheral wall 12 of the housing 10 .

上記実施形態では、第1流体排出路31の開口部分15及び第2流体排出路32における開口部分15には、夫々、コイル状のバネからなる付勢部材110が設けられ、付勢部材110の上流側(空間11側)に環状の弾性部材(例えばゴム部材)からなるシール部材111が設けられ、更にその上流側に環状の樹脂部材112(例えばポリテトラフルオロエチレン)が設けられるとして説明したが、第1流体排出路31及び第2流体排出路32にも流体導入路20と同様に、規制機構80を設けることも可能である。 In the above-described embodiment, the opening portion 15 of the first fluid discharge path 31 and the opening portion 15 of the second fluid discharge path 32 are provided with the biasing members 110 made of coil springs. Although it has been described that the sealing member 111 made of an annular elastic member (eg, rubber member) is provided on the upstream side (space 11 side), and the annular resin member 112 (eg, polytetrafluoroethylene) is provided on the upstream side. , the first fluid discharge path 31 and the second fluid discharge path 32 can also be provided with the restriction mechanism 80 in the same manner as the fluid introduction path 20. FIG.

上記実施形態では、シール部材60が弁体40側の先端部61が、弁体40の大半径部41に当接し、且つ、小半径部42に当接しない状態で設けられているとして説明したが、シール部材60が弁体40側の先端部61が、弁体40の大半径部41及び小半径部42の双方に当接する状態で設けても良い。 In the above-described embodiment, the seal member 60 is provided so that the tip portion 61 on the side of the valve body 40 contacts the large radius portion 41 of the valve body 40 and does not contact the small radius portion 42 . However, the sealing member 60 may be provided in such a state that the tip portion 61 on the side of the valve body 40 contacts both the large radius portion 41 and the small radius portion 42 of the valve body 40 .

上記実施形態では、流体導入路20に付勢部材70と規制機構80とが備えられているとして説明したが、流体導入路20に付勢部材70及び規制機構80の双方を備えずに構成しても良いし、流体導入路20に付勢部材70のみを備えるように構成しても良い。また、複数の流体排出路30の少なくともいずれか一つに、付勢部材70及び規制機構80の双方を備えて構成しても良いし、付勢部材70のみを備えて構成しても良い。 In the above-described embodiment, the fluid introduction path 20 is provided with the biasing member 70 and the regulation mechanism 80 . Alternatively, the fluid introduction path 20 may be configured to include only the biasing member 70 . Also, at least one of the plurality of fluid discharge paths 30 may be provided with both the biasing member 70 and the regulation mechanism 80, or may be provided with the biasing member 70 only.

上記実施形態では、複数の流体排出路30のうち、流体導入路20との連通状態が制限される流体排出路30と弁体40との間のシール性は、流体導入路20と弁体40との間のシール性よりも低く構成されるとして説明したが、複数の流体排出路30のうち、流体導入路20との連通状態が制限される流体排出路30と弁体40との間のシール性は、流体導入路20と弁体40との間のシール性と同様に構成しても良い。 In the above-described embodiment, the sealing performance between the valve element 40 and the fluid discharge path 30, which is limited in communication with the fluid introduction path 20, among the plurality of fluid discharge paths 30, is Although described as having a lower sealing performance than between the fluid discharge passages 30, between the fluid discharge passage 30 whose communication state with the fluid introduction passage 20 is restricted and the valve body 40 among the plurality of fluid discharge passages 30 The sealing property may be configured in the same manner as the sealing property between the fluid introduction path 20 and the valve body 40 .

上記実施形態では、弁体40は樹脂を用いて形成されるとして説明した。弁体40を樹脂成形で構成する場合には、小半径部42にパーティングラインが位置するように構成すると良い。このような構成とすれば、大半径部41の表面を滑らかにできるので、パーティングラインにおける樹脂の突出部分によるシール部材60の摩耗、破損を抑制し、長期的に亘りシール性を確保することが可能となる。もちろん、弁体40は、樹脂に代えて金属を用いて構成することも可能である。 In the above embodiment, the valve body 40 is described as being made of resin. When the valve body 40 is formed by resin molding, it is preferable that the parting line is positioned at the small radius portion 42 . With such a configuration, the surface of the large-radius portion 41 can be made smooth, so that wear and damage of the seal member 60 due to the protruding portion of the resin at the parting line can be suppressed, and long-term sealing performance can be ensured. becomes possible. Of course, the valve body 40 can also be constructed using metal instead of resin.

本発明は、流体導入路と流体排出路との連通を制限可能なバルブ装置に用いることが可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in a valve device capable of restricting communication between a fluid introduction path and a fluid discharge path.

1:バルブ装置
10:ハウジング
11:空間
12:内周壁
14:開口部分
20:流体導入路
30:流体排出路
40:弁体
41:大半径部
42:小半径部
43:中間部
44:開口部分
45:連通路
50:弁体回転機構
60:シール部材
61:先端部
70:付勢部材
80:規制機構
X:軸心
1: Valve Device 10: Housing 11: Space 12: Inner Peripheral Wall 14: Opening Portion 20: Fluid Introduction Path 30: Fluid Discharge Path 40: Valve Body 41: Large Radius Portion 42: Small Radius Portion 43: Intermediate Portion 44: Opening Portion 45: Communicating passage 50: Valve body rotation mechanism 60: Sealing member 61: Tip part 70: Biasing member 80: Regulating mechanism X: Axial center

Claims (5)

内部に円柱状の空間が形成される円筒状の内周壁を有するハウジングと、
前記ハウジングに形成され、前記内周壁において前記円柱状の空間と連通する流体導入路と、
前記ハウジングに形成され、前記内周壁において前記円柱状の空間と連通する複数の流体排出路と、
前記円柱状の空間に収容され、前記円柱状の空間の軸心に沿って見たときに、前記ハウジングの内周壁の内半径に応じた所定の第1内半径で形成された大半径部と、前記第1内半径よりも小さい第2内半径で形成された小半径部と、前記大半径部と前記小半径部とをつなぐように形成され、前記軸心からの距離が前記第1内半径と前記第2内半径との中間の距離である中間部とを有し、前記小半径部及び前記中間部の少なくともいずれか一方において開口する開口部分を有すると共に、前記流体導入路と前記複数の流体排出路のうちの少なくとも一つとを連通可能とする連通路を内部に有する球状体からなる弁体と、
前記軸心を回転軸心として前記弁体を前記円柱状の空間内で回転させる弁体回転機構と、
を備えるバルブ装置。
a housing having a cylindrical inner peripheral wall in which a cylindrical space is formed;
a fluid introduction path formed in the housing and communicating with the cylindrical space on the inner peripheral wall;
a plurality of fluid discharge paths formed in the housing and communicating with the cylindrical space on the inner peripheral wall;
a large-radius portion accommodated in the cylindrical space and formed with a predetermined first inner radius corresponding to the inner radius of the inner peripheral wall of the housing when viewed along the axis of the cylindrical space; a small radius portion formed with a second inner radius smaller than the first inner radius; and a large radius portion and the small radius portion formed to connect the first inner radius. an intermediate portion that is an intermediate distance between the radius and the second inner radius; and an opening portion that opens in at least one of the small radius portion and the intermediate portion; a valve body made of a spherical body having therein a communication passage capable of communicating with at least one of the fluid discharge passages of
a valve body rotation mechanism that rotates the valve body within the cylindrical space with the axis as the rotation axis;
valve device.
前記ハウジングの内周壁における前記流体導入路の開口部分と前記ハウジングの内周壁との間に前記弁体の前記大半径部と当接可能なシール部材が設けられている請求項1に記載のバルブ装置。 2. The valve according to claim 1, wherein a seal member capable of coming into contact with the large radius portion of the valve body is provided between the opening portion of the fluid introduction passage in the inner peripheral wall of the housing and the inner peripheral wall of the housing. Device. 前記シール部材は、前記弁体側の先端部が、前記弁体の前記大半径部に当接し、且つ、前記小半径部に当接しない状態で設けられている請求項2に記載のバルブ装置。 3. The valve device according to claim 2, wherein the tip of the sealing member on the valve body side contacts the large-radius portion of the valve body and does not contact the small-radius portion. 前記流体導入路の上流側から前記弁体側に向けて前記シール部材を付勢する付勢部材と、
前記シール部材の前記弁体側の先端部が前記第2内半径よりも前記弁体側に突出しないように規制する規制機構と、を更に備える請求項2又は3に記載のバルブ装置。
a biasing member that biases the seal member from the upstream side of the fluid introduction path toward the valve body;
4 . The valve device according to claim 2 , further comprising a restriction mechanism that restricts a distal end portion of the seal member on the valve body side from protruding further toward the valve body than the second inner radius. 4 .
前記複数の流体排出路のうち、前記流体導入路との連通状態が制限される流体排出路と前記弁体との間のシール性は、前記流体導入路と前記弁体との間のシール性よりも低い請求項1から4のいずれか一項に記載のバルブ装置。 Among the plurality of fluid discharge passages, the sealing property between the fluid discharge passage whose communication state with the fluid introduction passage is restricted and the valve body is the seal performance between the fluid introduction passage and the valve body. 5. A valve device as claimed in any one of claims 1 to 4 which is lower than.
JP2018182436A 2018-09-27 2018-09-27 valve device Active JP7143707B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018182436A JP7143707B2 (en) 2018-09-27 2018-09-27 valve device
US16/577,130 US11255449B2 (en) 2018-09-27 2019-09-20 Valve device
DE102019126035.3A DE102019126035A1 (en) 2018-09-27 2019-09-26 VALVE DEVICE
CN201910915921.3A CN110953378B (en) 2018-09-27 2019-09-26 Valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182436A JP7143707B2 (en) 2018-09-27 2018-09-27 valve device

Publications (2)

Publication Number Publication Date
JP2020051548A JP2020051548A (en) 2020-04-02
JP7143707B2 true JP7143707B2 (en) 2022-09-29

Family

ID=69996477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182436A Active JP7143707B2 (en) 2018-09-27 2018-09-27 valve device

Country Status (1)

Country Link
JP (1) JP7143707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102525194B1 (en) * 2021-02-09 2023-05-08 지엠비코리아 주식회사 Integrated device for for water pump and valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291813A (en) 1999-04-09 2000-10-20 Nippo Valve Co Ltd Trunnion type three-way valve
JP2012251569A (en) 2011-05-31 2012-12-20 Lixil Corp Changeover valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0183973U (en) * 1987-11-27 1989-06-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291813A (en) 1999-04-09 2000-10-20 Nippo Valve Co Ltd Trunnion type three-way valve
JP2012251569A (en) 2011-05-31 2012-12-20 Lixil Corp Changeover valve

Also Published As

Publication number Publication date
JP2020051548A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
EP3550189B1 (en) Flow control device
US11098808B2 (en) Control valve
JP7163695B2 (en) valve device
JP2017044266A (en) Flow channel change-over valve and seal member
CN110953378B (en) Valve device
US11079028B2 (en) Valve device
JP7143707B2 (en) valve device
KR20240017075A (en) rotary disc valve
KR20240017926A (en) rotary disc valve
JP2020020366A (en) Pressure control valve
US20240003440A1 (en) Valve device
JP7084042B2 (en) Packing and rotary valves
JP6875012B2 (en) Flow control valve
KR20230091808A (en) Rotary disc valve
WO2022224745A1 (en) Valve device
US20210291621A1 (en) Control valve
CN117441076A (en) Rotary disk valve
JP7367730B2 (en) valve device
CN112189108B (en) Flow path switching valve
JP7036555B2 (en) Ball valve
JP2016056852A (en) Valve device
JP2020112259A (en) On-off valve
JP2024051330A (en) Rotary Valve
JP2021188641A (en) Valve packing
JP5690537B2 (en) Channel open / close valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7143707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150