JP7139624B2 - Granule hopper and its control device - Google Patents

Granule hopper and its control device Download PDF

Info

Publication number
JP7139624B2
JP7139624B2 JP2018037662A JP2018037662A JP7139624B2 JP 7139624 B2 JP7139624 B2 JP 7139624B2 JP 2018037662 A JP2018037662 A JP 2018037662A JP 2018037662 A JP2018037662 A JP 2018037662A JP 7139624 B2 JP7139624 B2 JP 7139624B2
Authority
JP
Japan
Prior art keywords
hopper
granular material
gate
belt conveyor
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018037662A
Other languages
Japanese (ja)
Other versions
JP2019151456A (en
Inventor
康夫 村井
隆昌 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018037662A priority Critical patent/JP7139624B2/en
Publication of JP2019151456A publication Critical patent/JP2019151456A/en
Application granted granted Critical
Publication of JP7139624B2 publication Critical patent/JP7139624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Description

本発明は、ホッパ内に間欠的に投入される石炭や石膏などの粉粒体を、ホッパ下に配置したベルトコンベア上に連続的に払い出す粉粒体ホッパ及びその制御装置に関する。 TECHNICAL FIELD The present invention relates to a granular material hopper that continuously discharges granular materials such as coal and gypsum that are intermittently put into the hopper onto a belt conveyor arranged below the hopper, and a control device thereof.

石炭や石膏などの粉粒体を所定箇所へ連続供給する場合、下部にベルトコンベアを備えた粉粒体ホッパが利用されている。
この粉粒体ホッパは、ホッパの上面開口からバケットクレーン又は車両等から粉粒体が投入される。そして、ホッパ下のベルトコンベア上に連続的に払い出して次工程へ供給運搬される。
A granular material hopper equipped with a belt conveyor at the bottom is used to continuously supply granular materials such as coal and gypsum to a predetermined location.
This granular material hopper is charged with granular material from a bucket crane, a vehicle, or the like through an upper opening of the hopper. Then, it is continuously discharged onto the belt conveyor under the hopper and supplied and transported to the next process.

このような粉粒体ホッパにおいて、グラブバケットやバケット付きホイールローダによってホッパに粉粒体を投入する場合、受け入れたホッパ内の粉粒体量が一定ではなく常に変動しており、ホッパ下部のベルトコンベアへ投入される粉粒体量も一定ではない。そしてこのときホッパ内の堆積高さ、粉粒体の水分又は粒度などによってホッパ下から切り出され易さの違いにより切り出し量も変動してくる。
従って、ベルトコンベアへの切り出し量を一定にする目的でホッパ下に機械式のゲートを取り付けている(特許文献1,2に開示のゲート構造)。従来、このゲートの開度によってホッパ下からの排出量を制限していた。
In such a granular material hopper, when the granular material is charged into the hopper by a grab bucket or a wheel loader with a bucket, the amount of granular material received in the hopper is not constant and always fluctuates, and the belt at the bottom of the hopper The amount of granules thrown into the conveyor is also not constant. At this time, the cutout amount also varies due to the difference in the ease with which the powder is cut out from under the hopper due to the height of the accumulation in the hopper, the water content of the granular material, the particle size, and the like.
Therefore, a mechanical gate is attached under the hopper for the purpose of making the amount of cut out to the belt conveyor constant (gate structure disclosed in Patent Documents 1 and 2). Conventionally, the amount of waste discharged from the bottom of the hopper was limited by the degree of opening of this gate.

ホッパ下からの排出量は、ホッパ下のベルトコンベアの動きによってベルトコンベアに接する粉粒体を移動させた分だけホッパ内の粉粒体が下降して排出されることにより決まる。
ホッパ下のベルトコンベアにおいて、ホッパ下に投入される粉粒体の性状(一例として石炭の場合には炭種、水分など(屋外保管状態により変動))でホッパ切り出し抵抗が変化する。このときベルトコンベアの駆動電動機の電流値が高くなって自動的に遮断(トリップ)する場合があり、ベルト搬送時においては不都合を生じていた。
例えばホッパ内とベルトコンベア上に粉粒体が大量に載った状態で設備が停止した場合、再起動するためにはベルトコンベア上に残留した粉粒体を除去しなければならないことがある。この作業は稼働時間の低下に伴う生産性の低下のみならず、人手による煩雑な作業であり安全と作業環境の確保上できる限り避けたい作業である。
The amount of powder discharged from below the hopper is determined by the movement of the belt conveyor under the hopper to move the powder in contact with the belt conveyor, and the powder in the hopper descends and is discharged.
In the belt conveyor under the hopper, the hopper discharge resistance changes depending on the properties of the granular material (for example, in the case of coal, the type of coal, water content, etc. (varies depending on outdoor storage conditions)). At this time, the electric current value of the driving motor of the belt conveyor becomes high and may automatically trip (trip), which is inconvenient when the belt is conveyed.
For example, if the facility stops with a large amount of powder on the hopper and on the belt conveyor, it may be necessary to remove the powder remaining on the belt conveyor in order to restart the equipment. This work not only lowers productivity due to a decrease in operating time, but is also a complicated manual work, and should be avoided as much as possible in terms of ensuring safety and working environment.

ここでベルトコンベアの負荷が変動する要因としては、ホッパの堆積量、粉粒体の性状(粒径分布、粘性、水分など)が挙げられる。前述のようにゲート1でベルトコンベア2への切り出し量を調整しているが、ベルトコンベア2が移動する力がベルトコンベア2に接する粉粒体に作用してゲート1手前で最大圧縮される(図6参照)。ベルトコンベアの移動力によって粉粒体の堆積内部が粉粒体のせん断限度を超えると、粉粒体内部でせん断して粉粒体の一部が分離し、ベルトコンベア側の粉粒体がベルトコンベアの移動と共にホッパ下から排出される。せん断直後は、一時的に粉粒体内部の圧縮力が開放されるので電流値が低下する。そして粉粒体内部で加圧と開放を繰り返しながら、ホッパ内部の粉粒体を排出する。次いでホッパ内に粉粒体を投入すると前述と同じ動作を繰り返す。一例として、一回のホッパ投入後に7~8回の圧縮と開放後に次の粉粒体を投入する。以下これを繰り返している。このとき粉粒体内部に作用する圧縮の変化、粉粒体の挙動は、ベルトコンベア駆動装置の電流値変化で読み取ることができる。 Factors that cause the load on the belt conveyor to fluctuate include the amount of accumulation in the hopper and the properties of the granular material (particle size distribution, viscosity, moisture, etc.). As described above, gate 1 adjusts the amount to be cut out to belt conveyor 2, but the force of belt conveyor 2 movement acts on the granular material in contact with belt conveyor 2, and the maximum compression occurs before gate 1 ( See Figure 6). When the moving force of the belt conveyor exceeds the shear limit of the powder and granular material, the inside of the powder and granular material is sheared and part of the powder and granular material is separated, and the powder and granular material on the belt conveyor side is separated from the belt. It is discharged from below the hopper as the conveyor moves. Immediately after shearing, the compressive force inside the granular material is released temporarily, so the current value decreases. Then, the granular material inside the hopper is discharged while repeating pressurization and release inside the granular material. Next, when the granules are put into the hopper, the same operation as described above is repeated. As an example, after charging once into the hopper, after 7 to 8 times of compression and release, the next granular material is charged. This is repeated below. At this time, the change in compression acting on the inside of the granular material and the behavior of the granular material can be read from the change in the current value of the belt conveyor driving device.

図7は従来のホッパ下部のコンベア駆動電流値と時間の関係を示すグラフである。同グラフの縦軸は電流値(アンペア)を示し、横軸は時間(秒)を示している。ホッパ内が空状態のとき、ベルトコンベア駆動電流値は約15アンペアである。そしてホッパ内に1杯目の粉粒体を投入すると、ベルト駆動力により、ホッパ下ゲートの手前の粉粒体が圧縮される圧縮抵抗によって電流値が急激に上昇し、約10秒でピークに達する(図7中のA)。次いで粉粒体内部のせん断分離によって一時的に圧縮力が開放されて瞬間的に電流値が低下するがベルトコンベアの搬送によって粉粒体が圧縮されて、再び電流値が上昇する。このようにホッパ下のゲート手前で圧縮と開放を繰り返す。このとき、初期投入時においては、ホッパ内の堆積物がないため、負荷が少なくベルトコンベア駆動装置の電流値は定格(38アンペア)の範囲内となる。 FIG. 7 is a graph showing the relationship between the conventional conveyor drive current value at the bottom of the hopper and time. The vertical axis of the graph indicates current value (amperes), and the horizontal axis indicates time (seconds). When the hopper is empty, the belt conveyor drive current value is about 15 amperes. When the first granules are put into the hopper, the belt drive force compresses the granules in front of the bottom gate of the hopper, causing the current value to rise sharply and reach a peak in about 10 seconds. (A in FIG. 7). Next, the compressive force is temporarily released by shear separation inside the granular material, and the current value momentarily drops. In this way, compression and release are repeated in front of the gate under the hopper. At this time, since there is no sediment in the hopper at the time of initial charging, the load is small and the current value of the belt conveyor driving device is within the range of the rating (38 amperes).

次に、ホッパ内に粉粒体の一部が残った状態(電流値が26アンペア)で2杯目の粉粒体を追加投入する(図7中のB)と電流値が定格値を超えて最高値44アンペアとなる。1杯目と同様に粉粒体内部でせん断分離により電流値の増減(1サイクルで約7回の内部せん断と開放を繰り返す)を繰り返しながらホッパから粉粒体が排出される。このような挙動は3杯目(図7中のC)においても同様である。
なお、上記電流値は一例であって、ホッパの堆積量、粉粒体の性状(粒径分布、粘性、水分など)の影響を受け、堆積物内部の流動性を阻害する粘性や粒度サイズ、粒度分布などの要因によってもちろん異なるが、電流値と時間の関係性はほぼ同等となる。
Next, when part of the powder remains in the hopper (current value is 26 amperes), a second bowl of powder is added (B in FIG. 7), and the current exceeds the rated value. The maximum value is 44 amperes. As in the first cup, the granules are discharged from the hopper while repeating the increase and decrease of the current value (repeated internal shearing and opening about 7 times in one cycle) due to shear separation inside the granules. Such behavior is the same in the third cup (C in FIG. 7).
The above current value is an example, and is affected by the amount of hopper deposits and the properties of the powder (particle size distribution, viscosity, moisture, etc.), and the viscosity and particle size that inhibit the fluidity inside the deposit. The relationship between the current value and the time is almost the same, although it is of course different depending on factors such as the particle size distribution.

特開2017-193391号公報JP 2017-193391 A 特許第4919381号公報Japanese Patent No. 4919381

前述のように、従来、粉粒体の圧縮抵抗によってコンベア駆動電流値が定格値を超えることが頻繁に生じていた。このため自動遮断(トリップ)により、設備が停止して生産性が著しく低下する不都合が生じていた。
そこで上記従来技術の問題点に鑑み、本発明は、ベルトコンベアの駆動部に過負荷をかけることなく連続かつ安定して払い出すことができる粉粒体ホッパ及びその制御装置を提供することを目的としている。
As described above, conventionally, the conveyor drive current value frequently exceeded the rated value due to the compression resistance of the granular material. As a result, the automatic shutoff (trip) causes the facility to stop, resulting in a significant drop in productivity.
SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, an object of the present invention is to provide a granule hopper and its control device that can continuously and stably dispense granules without overloading the drive section of a belt conveyor. and

上記課題を解決するための第1の手段として、本発明は、上下面に開口を有する箱状のホッパ本体の上部開口から粉粒体を投入して、前記ホッパ本体の下部開口と所定間隔を開けて配置したベルトコンベア上に払い出す粉粒体ホッパにおいて、
前記ホッパ本体の下部開口から払い出されて前記ベルトコンベア上を流れる前記粉粒体の搬送方向に対して前記ホッパ本体の下流側の側壁に前記搬送方向と直交する方向に軸心を設け扇状にスイング動作して前記ホッパ本体の下部とベルトコンベアの間前記粉粒体の払い出し量を調整するゲートと、前記ゲートの外面に接続するピストンおよびシリンダーを配置して前記ゲートのスイング動作を行い前記粉粒体の払い出し作業中に受ける前記ベルトコンベアの移動力に対し反力を与え前記粉粒体の押し付け力をゲート面に対して傾斜して作用させるシリンダー機構を設け、
前記ゲートは主面を前記ベルトコンベアの搬送方向に沿って湾曲させ、かつ前記ベルトコンベア側の下端部に鋸刃状に連続した凹凸を設けたことを特徴とする粉粒体ホッパを提供することにある。
上記第1の手段によれば、粉粒体と接触するゲート先端の圧縮抵抗を少なくすることができる。これにより粉粒体の圧縮抵抗を低減して、ベルトコンベアの駆動電流値の急激な上昇を抑えることができる。
As a first means for solving the above-mentioned problems, the present invention is a box-shaped hopper body having openings on the top and bottom surfaces . In the granule hopper that dispenses on the open belt conveyor,
A side wall of the hopper body on the downstream side with respect to the conveying direction of the powder discharged from the lower opening of the hopper body and flowing on the belt conveyor is fan -shaped with an axis centered in a direction perpendicular to the conveying direction . A gate that swings to adjust the discharge amount of the granular material between the lower part of the hopper body and the belt conveyor, and a piston and a cylinder that are connected to the outer surface of the gate are arranged to swing the gate. A cylinder mechanism is provided to apply a reaction force to the moving force of the belt conveyor received during the dispensing operation of the powder or granular material, and to apply the pressing force of the powder or granular material to the gate surface at an angle ,
Provided is a granular material hopper, wherein the main surface of the gate is curved along the conveying direction of the belt conveyor, and the lower end portion on the side of the belt conveyor is provided with continuous unevenness in a sawtooth shape. It is in.
According to the first means, it is possible to reduce the compression resistance of the tip of the gate that comes into contact with the granular material. As a result, the compression resistance of the granular material can be reduced, and a rapid increase in the driving current value of the belt conveyor can be suppressed.

上記課題を解決するための第3の手段として、本発明は、第1又は第2の手段において、前記ゲートは、前記ベルトコンベア側の端部に凹凸を設けたことを特徴とする粉粒体ホッパを提供することにある。
上記第3の手段によれば、ゲート先端に生じる反力のピークを回避できる。
As a third means for solving the above-mentioned problems, the present invention is the powder or granular material according to the first or second means, wherein the gate is provided with unevenness at the end on the belt conveyor side. It is to provide a hopper.
According to the third means, it is possible to avoid the reaction force peak occurring at the tip of the gate.

上記課題を解決するための第4の手段として、本発明は、第1ないし3のいずれか1に記載の粉粒体ホッパと、
前記ベルトコンベアの駆動電流を測定する電流測定部と、
前記ゲート及び前記電流測定部と電気的に接続し、前記電流測定部の測定値が設定範囲に収まるように前記ゲートの開度を制御する開閉制御部と、
を備えたことを特徴とする粉粒体ホッパの制御装置を提供することにある。
上記第4の手段によれば、ゲート手前の粉粒体圧縮時の負荷変化量を電流値変化量で判断でき、従来のホッパ下流の排出量測定と比べて搬送物(粉粒体)の変化に速やかに対応できる。
As a fourth means for solving the above problems, the present invention provides a granular material hopper according to any one of the first to third aspects,
a current measuring unit that measures the driving current of the belt conveyor;
an opening/closing control unit that is electrically connected to the gate and the current measurement unit and controls the degree of opening of the gate so that the measured value of the current measurement unit falls within a set range;
To provide a control device for a granular material hopper characterized by comprising
According to the fourth means, the amount of change in the load when compressing the powder before the gate can be determined from the amount of change in the current value. can promptly respond to

上記構成による本発明によれば、粉粒体と接触するゲート先端の圧縮抵抗を少なくすることができる。
またゲート手前の粉粒体圧縮時の負荷変化量を電流値変化量で判断でき、従来のホッパ下流の排出量測定と比べて搬送物(粉粒体)の変化に速やかに対応できる。
According to the present invention configured as described above, it is possible to reduce the compression resistance at the tip of the gate that comes into contact with the granular material.
In addition, the amount of change in the load during compaction of the powder before the gate can be determined from the amount of change in the current value, and changes in the conveyed material (granules) can be handled more quickly than in the conventional measurement of the discharge amount downstream of the hopper.

本発明の粉粒体ホッパの構成概略図である。It is a structural schematic diagram of the granular material hopper of the present invention. 変形例1の粉粒体ホッパの構成概略図である。FIG. 3 is a schematic configuration diagram of a granular material hopper of modification 1; 変形例2の粉粒体ホッパの説明図である。FIG. 11 is an explanatory diagram of a granular material hopper of modification 2; 本発明の粉粒体ホッパの制御装置の構成概略図である。1 is a schematic diagram of the configuration of a control device for a granular material hopper according to the present invention; FIG. 本発明のホッパ下部のコンベア駆動電流値と時間の関係を示すグラフである。It is a graph which shows the relationship between the conveyor drive current value of the hopper lower part of this invention, and time. 従来の粉粒体ホッパの説明図である。It is explanatory drawing of the conventional granular material hopper. 従来のホッパ下部のコンベア駆動電流値と時間の関係を示すグラフである。It is a graph which shows the conventional conveyor drive current value of the lower part of a hopper, and the relationship of time.

本発明の粉粒体ホッパ及びその制御装置の実施形態について、図面を参照しながら、以下詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a granular material hopper and its control device according to the present invention will be described in detail below with reference to the drawings.

[粉粒体ホッパ10]
図1は、本発明の粉粒体ホッパの構成概略図である。図示のように本発明の粉粒体ホッパ10は、ホッパ本体12と、ベルトコンベア14と、ゲート20を主な基本構成としている。
ホッパ本体12は、上下面に開口を有する箱状の容器であり、下部開口よりも上部開口を広くしている。これに伴いホッパ本体12は、側壁を下から上に拡径状に形成し、粉粒体を充填し易くしている。
ベルトコンベア14は、搬送面を前記ホッパ本体12の下部開口と対向するように所定間隔を開けて取り付けて、ホッパ本体12から落下する粉粒体を後工程の所定箇所へ搬送するものである。
ゲート20は、ホッパ本体12の下流側の側壁に取り付けて、粉粒体の払い出し量を調整するものである。本実施形態のゲート20は、主面をベルトコンベア14の搬送方向に沿って(向かって)湾曲させ、換言すると側面視でホッパ本体の側壁から外側に拡がる弧状に形成している。ゲート20は、ホッパ本体12の下流側の側壁に回転支持部22を介して取り付けている。回転支持部22は、ベルトコンベアの搬送方向と直交する方向に軸心を配置して、弧状のゲート20を扇状(コンベア上に接近又は離間する方向)に回転可能に軸支している。なおゲート20には、粉粒体の払い出し作業中に受けるベルトコンベア14の移動力に対し反力を与えるシリンダー機構50を取り付けている(後述する図2についても同様)。
[Particle hopper 10]
FIG. 1 is a schematic diagram of the configuration of the granular material hopper of the present invention. As illustrated, the granular material hopper 10 of the present invention has a hopper body 12, a belt conveyor 14, and a gate 20 as main basic components.
The hopper body 12 is a box-shaped container having openings on the upper and lower surfaces, and the upper opening is wider than the lower opening. Along with this, the hopper main body 12 has a side wall formed in a diameter-expanding shape from the bottom to the top to facilitate filling of the granules.
The belt conveyor 14 has a conveying surface facing the lower opening of the hopper main body 12 with a predetermined gap therebetween, and conveys the granular material falling from the hopper main body 12 to a predetermined location in the post-process.
The gate 20 is attached to the side wall on the downstream side of the hopper body 12 to adjust the discharge amount of the granules. The main surface of the gate 20 of this embodiment is curved along (toward) the conveying direction of the belt conveyor 14, in other words, it is formed in an arc shape extending outward from the side wall of the hopper body in a side view. The gate 20 is attached to the side wall on the downstream side of the hopper body 12 via a rotation support portion 22 . The rotation support part 22 has an axial center arranged in a direction perpendicular to the conveying direction of the belt conveyor, and supports the arc-shaped gate 20 so as to be rotatable in a fan shape (in a direction toward or away from the conveyor). A cylinder mechanism 50 is attached to the gate 20 to give a reaction force to the moving force of the belt conveyor 14 received during the work of discharging the granular material (the same applies to FIG. 2 described later).

このような構成の粉粒体ホッパ10は、従来構成のホッパ本体の側壁に沿った(コンベア面に直角)平板状のゲートに対してベルトコンベアの粉粒体搬送力が直角に作用して、ゲートの刃先が圧縮された粉粒体内部のせん断(面)線となり、粉粒体内部の応力が集中して搬送抵抗が生じていたのに比べて、ゲート先端の圧縮集中を緩和できる。換言すると、ゲートに対し直角方向に作用する粉粒体の押し付け力をゲート面に対して傾斜を付けて作用させることにより、下部方向(斜め下方向)のベクトルが生じてゲート反力が緩和する。従って、ゲート本来のベルトコンベア上の粉粒体量を掻き取りによって制限する機能を維持しながら、粉粒体と接触するゲート先端の圧縮抵抗を小さくして、ゲート先端部分の粉粒体がせん断し易くなりベルトコンベアの負荷電流値を少なくできる。 In the granule hopper 10 having such a configuration, the granule conveying force of the belt conveyor acts at right angles to the flat plate-shaped gate (perpendicular to the conveyor surface) along the side wall of the hopper body of the conventional configuration. The edge of the gate serves as a shear (plane) line inside the compressed granular material, and compared to the concentration of stress inside the granular material that causes transport resistance, the compression concentration at the tip of the gate can be alleviated. In other words, by causing the pressing force of the granular material acting in the direction perpendicular to the gate to be applied with an inclination to the gate surface, a vector in the downward direction (diagonally downward direction) is generated and the gate reaction force is alleviated. . Therefore, while maintaining the original function of the gate to limit the amount of powder on the belt conveyor by scraping, the compression resistance at the tip of the gate in contact with the powder is reduced, and the powder at the tip of the gate is sheared. and the load current value of the belt conveyor can be reduced.

図2は、変形例1の粉粒体ホッパの構成概略図である。図示のように変形例1の粉粒体ホッパは、ホッパ本体12Aの下流側の側壁をベルトコンベア14の搬送方向に沿って(向かって)湾曲させ、換言すると側面視で外側に拡がる弧状に形成している。そして、ゲート20Aは平板状に形成している。ゲート20Aは、ホッパ本体12の下流側の側壁に図1と同様の回転支持部22を介して取り付けている。
このような変形例1の粉粒体ホッパによっても図1に示す構成と同様の効果が得られる。
FIG. 2 is a schematic diagram of the configuration of the granular material hopper of Modification 1. As shown in FIG. As shown in the figure, the powdery or granular material hopper of Modification 1 has the downstream side wall of the hopper main body 12A curved along (toward) the conveying direction of the belt conveyor 14, in other words, formed into an arc shape that spreads outward when viewed from the side. is doing. The gate 20A is formed in a flat plate shape. The gate 20A is attached to the downstream side wall of the hopper main body 12 via the rotation support portion 22 similar to that shown in FIG.
The same effects as those of the configuration shown in FIG. 1 can be obtained by the granular material hopper of the first modification.

図3は、変形例2の粉粒体ホッパの説明図である。図示のように変形例2の粉粒体ホッパは、ゲート20(20A)のベルトコンベア側の端部(下端部)に凹凸24を設けている。凹凸24は、ゲートの下端部に鋸刃状に連続して形成している。
このような凹凸を備えたゲートは、先端に生じる反力のピークを回避できる。
FIG. 3 is an explanatory diagram of a granular material hopper of Modification 2. FIG. As shown in the drawing, the granular material hopper of Modification 2 has unevennesses 24 at the end (lower end) of the gate 20 (20A) on the side of the belt conveyor. The unevenness 24 is continuously formed in a sawtooth shape at the lower end of the gate.
A gate with such unevenness can avoid a reaction force peak occurring at the tip.

[粉粒体ホッパの制御装置30]
図4は、本発明の粉粒体ホッパの制御装置の構成概略図である。図示のように本発明の粉粒体ホッパの制御装置30は、前述の粉粒体ホッパ10と、駆動電流測定部40と、ゲートのシリンダー機構50と、開閉制御部60を主な基本構成としている。
駆動電流測定部40は、ベルトコンベア14の駆動部(電動モータ)に取り付けて、駆動電流値(アンペア)を測定可能なものである。
ゲートのシリンダー機構50は、ゲート20のスイング動作、換言するとダンパ状のゲートの開閉動作を行うものであり、駆動源に電動、油圧、空気圧、電磁式などを適用することができる。
[Control device 30 for granular material hopper]
FIG. 4 is a schematic diagram of the configuration of the granular material hopper control device of the present invention. As shown in the figure, the granular material hopper control device 30 of the present invention is mainly composed of the aforementioned granular material hopper 10, the drive current measuring section 40, the cylinder mechanism 50 of the gate, and the opening/closing control section 60. there is
The driving current measuring unit 40 is attached to the driving unit (electric motor) of the belt conveyor 14 and can measure the driving current value (amperes).
The gate cylinder mechanism 50 swings the gate 20, in other words, opens and closes the damper-like gate, and an electric, hydraulic, pneumatic, or electromagnetic drive source can be applied.

開閉制御部60は、駆動電流測定部40と、シリンダー機構50と電気的に接続している。開閉制御部60は、ベルトコンベア14の駆動電流値が定格値を超えないように安定した運転を行うために、ゲート20の開度を駆動電流値に応じてフィードバック制御している。すなわちベルト搬送力の反力となるゲート20に生じる反力が制限値を超えたときに、一時的に開放している。 The open/close control unit 60 is electrically connected to the drive current measurement unit 40 and the cylinder mechanism 50 . The opening/closing control unit 60 feedback-controls the opening degree of the gate 20 according to the drive current value in order to perform stable operation so that the drive current value of the belt conveyor 14 does not exceed the rated value. That is, the gate 20 is temporarily opened when the reaction force generated in the gate 20, which is the reaction force of the belt conveying force, exceeds the limit value.

[粉粒体ホッパの制御方法]
上記構成による本発明の粉粒体ホッパの制御装置を用いた制御方法について、以下説明する。
図5は、本発明のホッパ下部のコンベア駆動電流値と時間の関係を示すグラフである。
ホッパ本体が空の状態で1杯目の粉粒体を投入しベルトコンベアの駆動電流値を測定する。図5のグラフでは15アンペアから35アンペアまで約10秒で20アンペア上昇している(一点破線)。ここでゲートの開度をあらかじめ次にように段階的に設定する。駆動電流値が5アンペア以上上昇(3秒以内)したらゲート開度1とし、さらに駆動電流値が5アンペア以上上昇(3秒以内)したらゲート開度2とし、さらに駆動電流値が5アンペア以上上昇(3秒以内)したらゲート開度3とする。
一方、ゲートを閉じる場合についても段階的に開く場合の逆となる3段階で設定している。なお、ゲートを閉じる判断は、ベルトコンベアの搬送量が増えるので、駆動電流値の状況を考慮して閉じる方向に作動させている。これによりベルトコンベアの搬送能力の最大付近まで稼働できる。
[Method for controlling powder hopper]
A control method using the granular material hopper control device of the present invention configured as described above will be described below.
FIG. 5 is a graph showing the relationship between the conveyor drive current value for the lower part of the hopper and time according to the present invention.
With the hopper body empty, the first granules are put in and the driving current value of the belt conveyor is measured. In the graph of FIG. 5, the current increases by 20 amperes from 15 amperes to 35 amperes in about 10 seconds (one-dot dashed line). Here, the opening degree of the gate is set in advance step by step as follows. If the drive current value rises by 5 amperes or more (within 3 seconds), the gate opening is set to 1. If the drive current value rises by 5 amperes or more (within 3 seconds), the gate opening is set to 2, and the drive current value rises by 5 amperes or more. (Within 3 seconds), the gate opening degree is set to 3.
On the other hand, when the gate is closed, it is set in three steps, which is the reverse of the case where the gate is opened step by step. It should be noted that the decision to close the gate is made in the closing direction in consideration of the state of the drive current value, since the conveying amount of the belt conveyor increases. As a result, it is possible to operate up to near the maximum conveying capacity of the belt conveyor.

開閉制御部60は、粉粒体の1杯目の駆動電流値の推移からゲートの開度を任意(前述のゲート開度1~3など)に設定し、駆動電流測定部40の測定値が設定範囲(定格値以下)に収まるをようにシリンダー機構50を介してゲートの開度を制御している。そして図5のグラフの実線に示すように、このようなゲートの開度設定により、粉粒体の1杯目の投入により駆動電流値は約30アンペアがピークとなり、2杯目の投入により駆動電流値は約35アンペアがピークとなり、3杯目の投入により駆動電流値は約36アンペアがピークとなり、設定範囲(定格値以下)に収まる制御が可能となる。
このような本発明の粉粒体ホッパの制御装置によれば、ゲート手前の粉粒体圧縮時の負荷変化量を電流値変化量で判断でき、従来のホッパ下流の排出量測定と比べて搬送物(粉粒体)の変化に速やかに対応できる。
The opening/closing control unit 60 arbitrarily sets the opening degree of the gate (such as the above-mentioned gate opening degree 1 to 3) from the transition of the driving current value for the first cup of the powder, and the measured value of the driving current measuring unit 40 is The opening of the gate is controlled via the cylinder mechanism 50 so that it falls within the set range (below the rated value). As shown by the solid line in the graph of FIG. 5, by setting the opening degree of the gate in this manner, the drive current peaks at about 30 amperes when the first bowl of powder is added, and the drive current value peaks at about 30 amperes when the second bowl is charged. The current value peaks at about 35 amperes, and the drive current value peaks at about 36 amperes after the third bowl is thrown, enabling control within the set range (below the rated value).
According to the granular material hopper control device of the present invention, the amount of change in the load at the time of compressing the granular material in front of the gate can be determined from the amount of change in the current value. It can respond quickly to changes in materials (granules).

以上、本発明の好ましい実施形態について説明した。しかしながら、本発明は、上記実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々の変更が可能である。
また、本発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention.
Moreover, the present invention is not limited to the combinations shown in the embodiments, and can be implemented in various combinations.

10………粉粒体ホッパ、12,12A………ホッパ本体、14………ベルトコンベア、
20,20A………ゲート、22………回転支持部、24………凹凸、
30………粉粒体ホッパの制御装置、
40………駆動電流測定部、
50………シリンダー機構、
60………開閉制御部。
10 …… Granular material hopper, 12, 12A …… Hopper body, 14 …… Belt conveyor,
20, 20A......gate, 22......rotation support part, 24......unevenness,
30 ...... Control device for granular material hopper,
40 …… drive current measuring unit,
50 …… Cylinder mechanism,
60: An opening/closing control section.

Claims (2)

上下面に開口を有する箱状のホッパ本体の上部開口から粉粒体を投入して、前記ホッパ本体の下部開口と所定間隔を開けて配置したベルトコンベア上に払い出す粉粒体ホッパにおいて、
前記ホッパ本体の下部開口から払い出されて前記ベルトコンベア上を流れる前記粉粒体の搬送方向に対して前記ホッパ本体の下流側の側壁に前記搬送方向と直交する方向に軸心を設け扇状にスイング動作して前記ホッパ本体の下部とベルトコンベアの間前記粉粒体の払い出し量を調整するゲートと、前記ゲートの外面に接続するピストンおよびシリンダーを配置して前記ゲートのスイング動作を行い前記粉粒体の払い出し作業中に受ける前記ベルトコンベアの移動力に対し反力を与え前記粉粒体の押し付け力をゲート面に対して傾斜して作用させるシリンダー機構を設け、
前記ゲートは主面を前記ベルトコンベアの搬送方向に沿って湾曲させ、かつ前記ベルトコンベア側の下端部に鋸刃状に連続した凹凸を設けたことを特徴とする粉粒体ホッパ。
In a powdery or granular material hopper that feeds powdery or granular material from the upper opening of a box-shaped hopper body having openings on the top and bottom surfaces and discharges it onto a belt conveyor arranged at a predetermined distance from the lower opening of the hopper body,
A side wall of the hopper body on the downstream side with respect to the conveying direction of the powder discharged from the lower opening of the hopper body and flowing on the belt conveyor is fan -shaped with an axis centered in a direction perpendicular to the conveying direction . A gate that swings to adjust the discharge amount of the granular material between the lower part of the hopper body and the belt conveyor, and a piston and a cylinder that are connected to the outer surface of the gate are arranged to swing the gate. A cylinder mechanism is provided to apply a reaction force to the moving force of the belt conveyor received during the dispensing operation of the powder or granular material, and to apply the pressing force of the powder or granular material to the gate surface at an angle ,
A granular material hopper, wherein the main surface of the gate is curved along the conveying direction of the belt conveyor, and a continuous serrated unevenness is provided at the lower end on the side of the belt conveyor.
請求項1に記載の粉粒体ホッパと、
前記ベルトコンベアの駆動電流を測定する駆動電流測定部と、
前記ゲート及び前記駆動電流測定部と電気的に接続し、前記駆動電流測定部の測定値が設定範囲に収まるように前記ゲートの開度を制御する開閉制御部と、
を備えたことを特徴とする粉粒体ホッパの制御装置。
The granular material hopper according to claim 1;
a driving current measuring unit for measuring the driving current of the belt conveyor;
an opening/closing control unit electrically connected to the gate and the driving current measuring unit and controlling the opening degree of the gate so that the measured value of the driving current measuring unit falls within a set range;
A control device for a granular material hopper, comprising:
JP2018037662A 2018-03-02 2018-03-02 Granule hopper and its control device Active JP7139624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037662A JP7139624B2 (en) 2018-03-02 2018-03-02 Granule hopper and its control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037662A JP7139624B2 (en) 2018-03-02 2018-03-02 Granule hopper and its control device

Publications (2)

Publication Number Publication Date
JP2019151456A JP2019151456A (en) 2019-09-12
JP7139624B2 true JP7139624B2 (en) 2022-09-21

Family

ID=67948114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037662A Active JP7139624B2 (en) 2018-03-02 2018-03-02 Granule hopper and its control device

Country Status (1)

Country Link
JP (1) JP7139624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7521273B2 (en) 2020-06-26 2024-07-24 Ubeマシナリー株式会社 Powder and granular material hopper
CN114275472A (en) * 2021-12-16 2022-04-05 宁波北新建材有限公司 Material conveying system and material conveying method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255353A (en) 2001-03-01 2002-09-11 Ngk Insulators Ltd Raw material fixed volume supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218425U (en) * 1988-07-25 1990-02-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255353A (en) 2001-03-01 2002-09-11 Ngk Insulators Ltd Raw material fixed volume supply device

Also Published As

Publication number Publication date
JP2019151456A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP7139624B2 (en) Granule hopper and its control device
CA1163251A (en) Material discharge apparatus
CN105865590A (en) Metering method and device and feeding system with metering device
CN111201087B (en) Method for load dependent operation of a material comminution system
CN110921356A (en) Weighing feeding device and material processing system
JP2012201383A (en) Flake filling apparatus
CN103482094A (en) Valve bag padding packing machine
CN104909175A (en) Lead waste briquetting machine
CN102514099A (en) Automatic arch breaking device for material discharging bin hopper of concrete stirring station
US6295794B1 (en) Joint compound including recycled constituents and method and system for making the same
WO2014128733A2 (en) System and method for dosing of non-free flow materials
CN204656475U (en) A kind of closed feed proportioning system
US3994404A (en) Portable mixing plant for concrete and the like
Roberts Characterisation for hopper and stockpile design
RU2698361C1 (en) Method for loading mixture of charge and cullet into bins of glass melting furnace loaders
CN110836636B (en) Laser scanning type train loading detection device
US4559004A (en) Apparatus for manufacturing bricks of compressed earth
CN206812226U (en) Measurement of sandstone weight device
CN105292531A (en) Powder loading machine
CA2669568C (en) Method and apparatus for filling a package
CN212314956U (en) Weighing feeding device and material processing system
EP3585579B1 (en) Apparatus and method for producing fluid concrete
JP2012246111A (en) Fixed quantity feeder device of powder grain body
US963478A (en) Vertical hoist and dump.
SU1750966A1 (en) Device for volumetric powder batching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7139624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150