JP7139218B2 - Weld point evaluation method for indirect spot welding - Google Patents

Weld point evaluation method for indirect spot welding Download PDF

Info

Publication number
JP7139218B2
JP7139218B2 JP2018204355A JP2018204355A JP7139218B2 JP 7139218 B2 JP7139218 B2 JP 7139218B2 JP 2018204355 A JP2018204355 A JP 2018204355A JP 2018204355 A JP2018204355 A JP 2018204355A JP 7139218 B2 JP7139218 B2 JP 7139218B2
Authority
JP
Japan
Prior art keywords
current
welding
measured
current value
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018204355A
Other languages
Japanese (ja)
Other versions
JP2020069496A (en
Inventor
圭一郎 木許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018204355A priority Critical patent/JP7139218B2/en
Publication of JP2020069496A publication Critical patent/JP2020069496A/en
Application granted granted Critical
Publication of JP7139218B2 publication Critical patent/JP7139218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、インダイレクトスポット溶接により形成される溶接点の評価方法に関する。 The present invention relates to a method for evaluating weld points formed by indirect spot welding.

自動車の組立工程では、金属板からなる複数の部品をスポット溶接で接合することにより車体が組み立てられる。スポット溶接としては、複数の金属板を一対の電極で挟み込んで通電するダイレクトスポット溶接が多く用いられる。しかし、部品の形状によっては、複数の金属板を一対の電極で挟み込むことができず、ダイレクトスポット溶接を適用することができないことがある。この場合、複数の金属板の重合部を溶接電極で加圧すると共に、重合部と異なる部位にアース電極を当接させた状態で両電極間に通電することにより溶接するインダイレクトスポット溶接が適用される。 In the automobile assembly process, a vehicle body is assembled by joining a plurality of parts made of metal plates by spot welding. As spot welding, direct spot welding is often used in which a plurality of metal plates are sandwiched between a pair of electrodes and energized. However, depending on the shape of the part, it may not be possible to sandwich a plurality of metal plates between a pair of electrodes, and direct spot welding may not be applied. In this case, indirect spot welding is applied, in which welding is performed by applying pressure to the overlapped portions of a plurality of metal plates with a welding electrode and applying an electric current between the electrodes while a ground electrode is in contact with a portion different from the overlapped portion. be.

しかし、インダイレクトスポット溶接では、溶接電極とアース電極とが離れて配置されることが多く、重合部以外の金属板同士の接触部(例えば、先に溶接された溶接点)を介して流れる電流(無効電流)が生じやすいため、良好なナゲットを形成することが困難であることが問題となっている。 However, in indirect spot welding, the welding electrode and the ground electrode are often placed apart, and the current flowing through the contact portion between the metal plates (for example, the previously welded welding point) other than the overlapping portion The problem is that it is difficult to form a good nugget because (reactive current) is likely to occur.

例えば、下記の特許文献1には、金属板に予め座面を設け、この座面を溶接電極で押しつぶしながら加圧することにより、金属板同士の接触面積を小さくして電流密度を高めることで、ナゲットを形成しやすくする方法が示されている。 For example, in Patent Literature 1 below, a bearing surface is provided in advance on a metal plate, and by pressing the bearing surface while crushing it with a welding electrode, the contact area between the metal plates is reduced and the current density is increased. A method is presented to facilitate nugget formation.

また、下記の特許文献2には、加圧力及び電流値を制御することにより、ナゲットを安定して得ることができるインダイレクトスポット溶接方法が示されている。 Further, Patent Document 2 below discloses an indirect spot welding method capable of stably obtaining a nugget by controlling the applied pressure and the current value.

特開2002-239742号公報Japanese Patent Application Laid-Open No. 2002-239742 特開2010-194609号公報JP 2010-194609 A

しかしながら、溶接点におけるナゲットのできやすさを定量的に評価する手法がなかったため、上記のような手法を試しながら試行錯誤を繰り返し、適切なナゲットが形成される溶接条件を探し出すしかなかった。 However, since there was no method for quantitatively evaluating the ease of forming a nugget at a welding point, there was no choice but to search for suitable welding conditions for nugget formation by repeating trial and error while trying the above methods.

そこで、本発明者らは、溶接に寄与する有効電流経路の抵抗値と、溶接に寄与しない無効電流経路の抵抗値とをそれぞれ個別に測定し、これらの抵抗値に基づいて設定される有効電流率に基づいて、溶接点におけるナゲットのできやすさを評価することを試みた。 Therefore, the present inventors separately measured the resistance value of the active current path that contributes to welding and the resistance value of the reactive current path that does not contribute to welding, and set the active current based on these resistance values. An attempt was made to evaluate the susceptibility to nugget formation at weld points based on the rate.

具体的には、図4(A)に示すように、第1の金属板101と、断面ハット形状を成した第2の金属板102と、第1の金属板101と第2の金属板102とで構成される中空部に配された断面ハット形状を成した第3の金属板103とによって構成されるワーク100について、第1の金属板101と第3の金属板103の天板部103bとの重合部Pにインダイレクトスポット溶接を施す場合の評価方法について説明する。なお、各金属板の間には、既溶接点Q1,Q2が設けられている。 Specifically, as shown in FIG. 4A, a first metal plate 101, a second metal plate 102 having a hat-shaped cross section, and a first metal plate 101 and a second metal plate 102 and a third metal plate 103 having a hat-shaped cross section arranged in a hollow portion, the first metal plate 101 and the top plate portion 103b of the third metal plate 103 A description will be given of an evaluation method when indirect spot welding is applied to the overlapped portion P with. Note that pre-welded points Q1 and Q2 are provided between the respective metal plates.

まず、溶接に寄与しない無効電流経路の抵抗値RBを測定する。具体的には、抵抗測定器130の一方の端子131を、ワーク100のうち、溶接時に溶接電極を当接させる部位である重合部Pに上方から当接させる。また、抵抗測定器130の他方の端子132を、ワーク100のうち、溶接時にアース電極を当接させる部位である、一方の既溶接点Q2に下方から当接させる。この状態で、ワーク100の重合部Pを加圧することなく、両端子131、132間の電流経路の抵抗値を測定する。重合部Pを加圧していないことで、両金属板1,3の重合部Pは実質的に接触しておらず、絶縁しなくても重合部Pにほとんど電流が流れない。従って、一方の端子131→第1の金属板101→既溶接点Q1→第2の金属板102→他方の端子132という、重合部P(両金属板101,103の界面)を通らない電流経路C1が形成され、この電流経路C1を、溶接に寄与しない無効電流の電流経路とみなすことができる。 First, the resistance value RB of the reactive current path that does not contribute to welding is measured. Specifically, one terminal 131 of the resistance measuring device 130 is brought into contact with the overlapped portion P of the workpiece 100 from above, which is a portion of the workpiece 100 to which the welding electrode is brought into contact during welding. In addition, the other terminal 132 of the resistance measuring device 130 is brought into contact with one already-welded point Q2 of the work 100, which is a portion of the workpiece 100 to which the ground electrode is brought into contact during welding, from below. In this state, the resistance value of the current path between both terminals 131 and 132 is measured without pressurizing the overlapping portion P of the workpiece 100 . Since the overlapped portion P is not pressurized, the overlapped portion P of both metal plates 1 and 3 is not substantially in contact with each other, and almost no current flows through the overlapped portion P even without insulation. Therefore, one terminal 131 → first metal plate 101 → already welded point Q1 → second metal plate 102 → the other terminal 132, which is a current path that does not pass through overlapping portion P (interface between both metal plates 101 and 103). C1 is formed, and this current path C1 can be regarded as a current path of reactive current that does not contribute to welding.

次に、溶接に寄与する有効電流経路の抵抗値RAを測定する。具体的には、図4(B)に示すように、抵抗測定器130の一方の端子131を、第1の金属板101に設けられたスリットSに挿入して、第3の金属板103の天板部103bの重合部P付近に上方から当接させる。また、抵抗測定器130の他方の端子132を、一方の既溶接点Q2に下方から当接させる。これにより、一方の端子131→第3の金属板103→既溶接点Q2→第2の金属板102→他方の端子132という電流経路C2が形成され、この電流経路C2の抵抗値を測定する。 Next, the resistance value RA of the effective current path contributing to welding is measured. Specifically, as shown in FIG. 4B, one terminal 131 of the resistance measuring device 130 is inserted into the slit S provided in the first metal plate 101, and the third metal plate 103 is It is brought into contact with the vicinity of the overlapping portion P of the top plate portion 103b from above. Also, the other terminal 132 of the resistance measuring device 130 is brought into contact with one of the welded points Q2 from below. As a result, a current path C2 of one terminal 131→third metal plate 103→pre-welded point Q2→second metal plate 102→other terminal 132 is formed, and the resistance value of this current path C2 is measured.

以上のようにして測定された抵抗値RB、RAに基づいて、溶接点におけるナゲットのできやすさを評価することができる。例えば、有効電流経路の抵抗値RAと無効電流経路の抵抗値RBとの和を全体抵抗RT(=RA+RB)とし、有効電流率K’を、全体抵抗RTに対する無効電流経路の抵抗値RBの比率として求める(K’=RB/RT)。有効電流率K’は、有効電流の流れやすさを表す指標であり、有効電流率K’の値に基づいて、重合部Pにおけるナゲットのできやすさを評価することができる。 Based on the resistance values RB and RA measured as described above, the likelihood of forming a nugget at the welding point can be evaluated. For example, the sum of the resistance value R A of the active current path and the resistance value R B of the reactive current path is defined as the total resistance R T (=R A +R B ) . It is obtained as a ratio of the resistance value R B of the path (K'=R B /R T ). The effective current rate K' is an index representing the ease with which an effective current flows. Based on the value of the effective current rate K', the ease with which a nugget is formed in the overlapping portion P can be evaluated.

しかし、上記の測定方法では、両端子131,132間の抵抗値しか測定できないため、図4(A)あるいは図4(B)のように、両端子131,132間に、無効電流経路C1、あるいは、有効電流経路C2のいずれか一方の経路にだけ電流が流れている場合に各経路の抵抗値を測定できても、実際の溶接時のように、溶接電極が重合部Pを加圧し、第1の金属板101と天板部103bとが接触することで、無効電流経路C1と有効電流経路C2の両方に電流が流れ、その経路が一部共通しているような状況では、各経路の抵抗値を切り分けて測定することができず、有効電流率を算出することもできなかった。 However, in the above measurement method, only the resistance value between both terminals 131 and 132 can be measured. Therefore, as shown in FIG. Alternatively, even if the resistance value of each path can be measured when the current is flowing in only one of the effective current paths C2, the welding electrode presses the overlapped portion P as in actual welding, When the first metal plate 101 and the top plate portion 103b are in contact with each other, current flows through both the reactive current path C1 and the effective current path C2, and in a situation where the paths are partially common, each path It was not possible to separate and measure the resistance value, and it was not possible to calculate the effective current rate.

ところが、金属板は電流が流れて発熱することにより、その抵抗値も変化するため、重合部Pが加圧されて電流の流れ方が変わると、各経路の抵抗値も変化してしまう。つまり、上記の測定方法で測定された抵抗値RB、RAと、実際の溶接時の抵抗値との間には乖離があり、上記の評価方法では、溶接点のナゲットのできやすさを正確に評価できているとは言えなかった。 However, the resistance value of the metal plate changes as the current flows and heat is generated. Therefore, when the overlapping portion P is pressurized and the current flow changes, the resistance value of each path also changes. In other words, there is a deviation between the resistance values RB and RA measured by the above measurement method and the resistance values during actual welding. I can't say that I was able to evaluate it accurately.

このような事情から、本発明では、溶接点のナゲットのできやすさを正確に評価することを目的とする。 In view of such circumstances, an object of the present invention is to accurately evaluate the likelihood of forming a nugget at a welding point.

上記の課題を解決するため、本発明は、 複数のワークの重合部を溶接電極で加圧すると共に、前記重合部と異なる部位にアース電極を当接させて両電極間に通電するインダイレクトスポット溶接によって形成される溶接点を評価するための方法であって、前記ワークの被測定部と、前記ワークの当該被測定部とは異なる位置の被測定部、あるいは、前記溶接電極および前記アース電極間の電流値を検出可能な箇所とに少なくとも電流検出手段を設け、複数の前記電流検出手段を用いて検出される、前記インダイレクトスポット溶接時に、前記被測定部を流れる電流、あるいは、前記溶接電極および前記アース電極間を流れる電流によって形成される磁界の強度に基づいて、有効電流値および無効電流値を算出する工程と、前記電流値に基づいて、有効電流値と無効電流値とによって表される有効電流率を算出する工程と、前記有効電流率に基づいて、溶接点を評価する工程とを含むことを特徴とする。 In order to solve the above problems, the present invention provides indirect spot welding in which overlapping portions of a plurality of workpieces are pressurized by a welding electrode, and a ground electrode is brought into contact with a portion different from the overlapped portion to energize between the electrodes. A method for evaluating a weld point formed by a part to be measured of the workpiece and a part to be measured of the workpiece at a position different from the part to be measured, or between the welding electrode and the ground electrode At least a current detection means is provided at a position where the current value of the welding electrode can be detected, and the current flowing through the part to be measured during the indirect spot welding , or the welding electrode, which is detected using a plurality of the current detection means and a step of calculating an active current value and a reactive current value based on the strength of the magnetic field formed by the current flowing between the ground electrode and the active current value and the reactive current value based on the current value. and a step of evaluating the welding point based on the effective current rate.

本発明では、ワークの被測定部に電流検出手段を設け、この被測定部を流れる電流によって形成される磁界の強度に基づいて電流値を測定する方法により、ワークの特定箇所を流れる電流値を個別に測定することができる。つまり、有効電流経路と無効電流経路のそれぞれに電流が流れ、両者の経路が一部共通しているような場合であっても、有効電流経路と無効電流経路のそれぞれの経路を流れる電流値を測定あるいは算出することができ、その電流値に基づいて、有効電流率を算出することができる。従って、実際の溶接時の電流値に基づいて有効電流率を算出でき、溶接点のナゲットのできやすさを正確に評価することができる。 In the present invention, a current detecting means is provided in the portion to be measured of the workpiece, and the value of the current flowing through the specific portion of the workpiece is detected by a method of measuring the current value based on the strength of the magnetic field formed by the current flowing through the portion to be measured. Can be measured individually. In other words, even if a current flows in each of the active current path and the reactive current path, and both paths are partially common, the value of the current flowing through each of the active current path and the reactive current path is It can be measured or calculated, and the effective current rate can be calculated based on the current value. Therefore, the effective current rate can be calculated based on the actual current value during welding, and the likelihood of forming a nugget at the welding point can be accurately evaluated.

本発明によれば、溶接点のナゲットのできやすさを正確に評価することができる。 According to the present invention, it is possible to accurately evaluate the likelihood of forming a nugget at a welding point.

本発明の一実施形態に係る電流検出手段を用いて、溶接時に流れる各電流値を測定する様子を示す概略図である。FIG. 4 is a schematic diagram showing how current values flowing during welding are measured using current detection means according to one embodiment of the present invention. 図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; トロイダルコイルを示す断面図である。It is a sectional view showing a toroidal coil. 抵抗測定器を用いたワークの各電流経路の抵抗値を測定する様子を示す図である。FIG. 4 is a diagram showing how the resistance value of each current path of a work is measured using a resistance measuring instrument;

以下、本発明の実施の形態を図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態では、自動車の車体の組立工程において行われるインダイレクトスポット溶接方法を示す。具体的には、例えば図1に示すように、第一ワークとしてのピラーツーピラーメンバ1(以下、PPメンバ1という)に、第二ワークとしてのブラケット2を溶接する場合について説明する。 This embodiment shows an indirect spot welding method performed in the assembly process of an automobile body. Specifically, for example, as shown in FIG. 1, a case of welding a bracket 2 as a second work to a pillar-to-pillar member 1 (hereinafter referred to as a PP member 1) as a first work will be described.

PPメンバ1は、車体のピラー間に配設される鋼材製の筒状部材で、本実施形態では円筒状をなす。PPメンバ1の外周面側の長手方向の複数箇所には、ブラケット2を始めとした複数のブラケットが溶接され、各ブラケットに各種車載部品(例えば、ステアリング関連の部品や助手席用のエアバック等)が取り付けられる。 The PP member 1 is a cylindrical member made of steel and arranged between pillars of the vehicle body, and has a cylindrical shape in this embodiment. A plurality of brackets including a bracket 2 are welded to a plurality of locations in the longitudinal direction on the outer peripheral surface side of the PP member 1, and various in-vehicle parts (for example, steering-related parts, passenger airbags, etc.) are attached to each bracket. ) is attached.

ブラケット2は、PPメンバ1に溶接されるフランジ部2aを有する。フランジ部2aは、PPメンバ1の長手方向に延在する。 Bracket 2 has a flange portion 2 a welded to PP member 1 . The flange portion 2 a extends in the longitudinal direction of the PP member 1 .

溶接電極3、保持部4、第一アース電極5、保持部4を支持する多軸ロボット6等を備えたインダイレクトスポット溶接装置10と、インダイレクトスポット溶接装置10に接続され、溶接電極3の加圧力及び溶接電極3と各アース電極との電流値を制御する制御装置(図示省略)とを備えた設備により、PPメンバ1とフランジ部2aの重合部Pが溶接される。インダイレクトスポット溶接装置10は、溶接電極3を軸線方向に駆動して重合部を加圧する加圧手段(エアシリンダや電動シリンダ等)を備える。 an indirect spot welding device 10 including a welding electrode 3, a holding part 4, a first ground electrode 5, a multi-axis robot 6 supporting the holding part 4, etc.; The overlapped portion P of the PP member 1 and the flange portion 2a is welded by equipment having a control device (not shown) for controlling the applied pressure and the current value between the welding electrode 3 and each ground electrode. The indirect spot welding device 10 includes pressurizing means (such as an air cylinder or an electric cylinder) that drives the welding electrode 3 in the axial direction to pressurize the overlapped portion.

第一アース電極5は、筒状をなし、その内周面側にPPメンバ1が挿入される。第一アース電極5には、第一アース電極5をその外周面側から把持する図示しない把持機構が設けられており、この把持機構により、第一アース電極5をPPメンバ1の外周面に当接させている。 The first ground electrode 5 has a cylindrical shape, and the PP member 1 is inserted into the inner peripheral surface of the first ground electrode 5 . The first ground electrode 5 is provided with a gripping mechanism (not shown) that grips the first ground electrode 5 from its outer peripheral surface side. are in contact.

図2に示すように、第一アース電極5は、編成体51と、板状部材52とからなる。編成体51は、外周面側の第一層51aと、内周面側の第二層51bとの二層構造をしており、第一層51aと第二層51bとの間に、銅製の板状部材52が介挿される。編成体51は、市販の平編み銅線を手でほぐして軟化させ、筒状にすることで形成できる。板状部材52は、第一アース電極5の長手方向(図1の左右方向)に亘って設けられる。 As shown in FIG. 2 , the first ground electrode 5 is composed of a knitted body 51 and a plate member 52 . The knitted body 51 has a two-layer structure of a first layer 51a on the outer peripheral surface side and a second layer 51b on the inner peripheral surface side. A plate member 52 is inserted. The braided body 51 can be formed by loosening and softening a commercially available flat braided copper wire by hand and forming it into a tubular shape. The plate member 52 is provided along the longitudinal direction of the first ground electrode 5 (horizontal direction in FIG. 1).

筒状に形成された第一アース電極5は、第二層51bを構成する銅線が、PPメンバ1の外周面に倣うようにしてPPメンバ1に接触する。これにより、第二層51bを構成する銅線とPPメンバ1との接触面積を大きくすることができ、第一アース電極5に流れる電流の電流密度が過大になることを防止し、第一アース電極の破損を防止したり、PPメンバ1表面の焼き付きや変形を抑制することができる。本実施形態では、第一アース電極5を、PPメンバ1の外周面全周を覆う筒状としたが、その一部を覆う円弧状であってもよい。また、第一層51aと第二層51bとの間に板状部材52を設けることで、第一層51aと第二層51bとを構成する銅線同士を直接接触させる場合と比較すると、各層を構成する銅線と板状部材52との接触箇所を増やし、第一アース電極5の熱伝導性を高めることができる。 The cylindrically formed first ground electrode 5 contacts the PP member 1 so that the copper wire forming the second layer 51b follows the outer peripheral surface of the PP member 1 . As a result, the contact area between the copper wire forming the second layer 51b and the PP member 1 can be increased, preventing the current density of the current flowing through the first ground electrode 5 from becoming excessive, and It is possible to prevent the electrode from being damaged, and to suppress seizure and deformation of the surface of the PP member 1 . In this embodiment, the first ground electrode 5 has a tubular shape covering the entire outer peripheral surface of the PP member 1, but may have an arcuate shape covering a part thereof. In addition, by providing the plate member 52 between the first layer 51a and the second layer 51b, compared to the case where the copper wires forming the first layer 51a and the second layer 51b are in direct contact with each other, each layer By increasing the number of contact points between the copper wire constituting the plate member 52 and the plate member 52, the thermal conductivity of the first ground electrode 5 can be enhanced.

図1に示すように、保持部4は、ブラケット2の一端部を把持して、ブラケット2をPPメンバ1に溶接可能な位置、つまり、フランジ部2aをPPメンバ1の外周面に対向させた位置に保持している。 As shown in FIG. 1, the holding part 4 grips one end of the bracket 2 and is positioned so that the bracket 2 can be welded to the PP member 1, that is, the flange part 2a faces the outer peripheral surface of the PP member 1. holding in position.

保持部4は、ブラケット2の一端部を把持するための把持アーム41,42を備えている。把持アーム42は、第二アース電極としての導電部42a(図1のクロスハッチング部参照)と絶縁性の基部42bからなる。また、把持アーム41は絶縁性の部材によって構成される。 The holding part 4 has gripping arms 41 and 42 for gripping one end of the bracket 2 . The gripping arm 42 comprises a conductive portion 42a (see the cross-hatched portion in FIG. 1) as a second ground electrode and an insulating base portion 42b. Also, the gripping arm 41 is made of an insulating member.

保持部4は、多軸ロボット6の先端部に取り付けられている。多軸ロボット6の駆動、および、把持アーム41の支軸を中心にした回転動作(図1の矢印参照)により、ブラケット2等の、PPメンバ1に溶接する部材を把持して溶接可能な位置まで移動させ、その位置で保持固定することができる。 The holding part 4 is attached to the tip of the multi-axis robot 6 . A position where a member to be welded to the PP member 1, such as the bracket 2, can be gripped and welded by driving the multi-axis robot 6 and rotating the gripping arm 41 around the spindle (see the arrow in FIG. 1). can be moved to and held and fixed at that position.

溶接時には、溶接電極3がブラケット2のフランジ部2aを加圧することで、フランジ部2aとPPメンバ1との間に重合部Pを形成し、溶接電極3→ブラケット2→重合部P→PPメンバ1→第一アース電極5までの経路R1に電流を流すことで、重合部Pを溶接する。また、把持アーム42の一部である導電部42aが第二アース電極として機能し、溶接電極3→ブラケット2→導電部42aまでの経路R2にも電流が流れる。さらに、ブラケット2は、重合部Pと異なる部分である端部2cでもPPメンバ1に接触しているため、溶接電極3→ブラケット2→端部2c→PPメンバ1→第一アース電極5までの経路R3にも電流が流れている。経路R3は、経路R2から途中で分流し、経路R1に合流する経路であり、経路R1,R2とその経路の一部が共通している。経路R1に流れる電流が、重合部Pの溶接に寄与する有効電流であり、経路R2、R3に流れる電流は、溶接に直接寄与しない無効電流である。 During welding, the welding electrode 3 presses the flange portion 2a of the bracket 2 to form an overlapping portion P between the flange portion 2a and the PP member 1, and the welding electrode 3→bracket 2→overlapping portion P→PP member. The overlapped portion P is welded by passing a current through the path R1 from 1 to the first ground electrode 5. In addition, the conductive portion 42a, which is a part of the gripping arm 42, functions as a second ground electrode, and current also flows through the route R2 from the welding electrode 3→bracket 2→conductive portion 42a. Furthermore, since the bracket 2 is also in contact with the PP member 1 at the end portion 2c, which is a portion different from the overlapping portion P, the welding electrode 3→bracket 2→end portion 2c→PP member 1→first ground electrode 5 A current is also flowing through the route R3. A route R3 is a route that diverges from the route R2 and merges with the route R1, and is partly shared with the routes R1 and R2. The current flowing through path R1 is an active current that contributes to welding of overlapping portion P, and the currents flowing through paths R2 and R3 are reactive currents that do not directly contribute to welding.

次に、溶接時にPPメンバ1やブラケット2を流れる電流値を測定し、溶接点におけるナゲットのできやすさを評価する方法について説明する。 Next, a method of measuring the current value flowing through the PP member 1 and the bracket 2 during welding and evaluating the ease of forming a nugget at the welding point will be described.

溶接電極3、第一アース電極5、導電部42aは、電気的に接続されており、トランス71を介して、溶接電極3に電力が供給される。溶接時に流れる全電流値を測定できる箇所、例えば、溶接電極3に接続された電線等に、第一のトロイダルコイル72が巻回されている。 Welding electrode 3 , first ground electrode 5 , and conductive portion 42 a are electrically connected, and power is supplied to welding electrode 3 via transformer 71 . A first toroidal coil 72 is wound around a location where the total current value flowing during welding can be measured, such as an electric wire connected to the welding electrode 3 .

ブラケット2の縦壁部の所定の位置である被測定部2bに、第二のトロイダルコイル(電流検出手段)73が巻回されている。被測定部2bは、有効電流経路R1が通らず、かつ、全ての無効電流経路R2、R3が通る部分である。 A second toroidal coil (current detection means) 73 is wound around the portion 2b to be measured, which is a predetermined position on the vertical wall portion of the bracket 2. As shown in FIG. The measured portion 2b is a portion through which the active current path R1 does not pass and all the reactive current paths R2 and R3 pass.

図3に示すように、第二のトロイダルコイル73は、一対の止め金具731を連結することにより、環状をなし、被測定部2bの全周を覆うように、被測定部2bに巻回される。 As shown in FIG. 3, the second toroidal coil 73 forms an annular shape by connecting a pair of fasteners 731, and is wound around the measured portion 2b so as to cover the entire circumference of the measured portion 2b. be.

図1に示すように、第二のトロイダルコイル73は、例えば把持アーム41に設けることができる。具体的には、第二のトロイダルコイル73に図示しない基部を設け、この基部を介して、把持アーム41に第二のトロイダルコイル73を保持させる。そして、把持アーム41が回転して、ブラケット2の一端部を把持する動作により、第二のトロイダルコイル73がブラケット2の被測定部2bに巻回される構成としてもよい。 As shown in FIG. 1, a second toroidal coil 73 may be provided on the gripping arm 41, for example. Specifically, the second toroidal coil 73 is provided with a base (not shown), and the grasping arm 41 holds the second toroidal coil 73 via this base. Then, the second toroidal coil 73 may be wound around the measured portion 2b of the bracket 2 by the gripping arm 41 rotating to grip one end of the bracket 2 .

トロイダルコイル72、73は、電流測定器74に接続されている。電流測定器74は、各トロイダルコイルが巻回された導体(溶接電極3に接続された電線、あるいは、被測定部2b)が発生させる磁界の強度に基づいて、各導体を流れる電流を測定する。具体的には、各トロイダルコイルが巻回された導体を通過する電流により磁界が発生し、電流測定器74が、この磁界によって各トロイダルコイルの両端に誘起される電圧を積分することにより、各導体を流れる電流の値を測定する。 The toroidal coils 72 , 73 are connected to a current measuring device 74 . The current measuring device 74 measures the current flowing through each conductor based on the strength of the magnetic field generated by the conductor around which each toroidal coil is wound (the electric wire connected to the welding electrode 3 or the measured portion 2b). . Specifically, the current passing through the conductor around which each toroidal coil is wound produces a magnetic field, and the current measuring device 74 integrates the voltage induced across each toroidal coil by this magnetic field. Measure the value of the current flowing through the conductor.

本実施形態の電流値の測定方法では、溶接電極3によりフランジ部2aを加圧すると共に、溶接電極3と各アース電極間(第一アース電極5、導電部42a)、つまり、経路R1,R2,R3に電流を流した状態で、電流測定器74により各電流値を測定する。具体的には、トロイダルコイル72によって検出される磁気強度により、電流測定器74が、溶接電極3から各アース電極間に流れる全電流値ITを測定する。また、トロイダルコイル73によって検出される磁界の強さにより、電流測定器74が、被測定部2bを流れる電流を測定する。前述のように、被測定部2bは、全ての無効電流経路である経路R2,R3が共通して通過する部分であり、この部分を流れる電流値を全無効電流値IBとして測定することができる。 In the method of measuring the current value of this embodiment, the flange portion 2a is pressed by the welding electrode 3, and the distance between the welding electrode 3 and each ground electrode (the first ground electrode 5, the conductive portion 42a), that is, the paths R1, R2, Each current value is measured by the current measuring device 74 while current is flowing through R3. Specifically, based on the magnetic intensity detected by the toroidal coil 72, the current measuring device 74 measures the total current value I T flowing from the welding electrode 3 to each ground electrode. Also, the current measuring device 74 measures the current flowing through the measured portion 2b based on the strength of the magnetic field detected by the toroidal coil 73 . As described above, the measured portion 2b is a portion through which all reactive current paths R2 and R3 commonly pass, and the current value flowing through this portion can be measured as the total reactive current value IB . can.

また、全電流値ITは、全有効電流値IAと全無効電流値IBとの和であるから、全電流値ITから全無効電流値IBを差し引いて、全有効電流値IAを求めることができる(IA=IT-IB)。このように、本実施形態では、全有効電流値IAを直接測定することができなくても、全電流値ITと全無効電流値IBから全有効電流値IAを算出することができる。 Also, since the total current value I T is the sum of the total active current value I A and the total reactive current value I B , the total reactive current value I B is subtracted from the total current value I T to obtain the total active current value I A can be determined (I A =I T -I B ). Thus, in this embodiment, even if the total active current value IA cannot be directly measured, the total active current value IA can be calculated from the total current value IT and the total reactive current value IB . can.

そして、例えば、溶接時の有効電流率K(=IA/IT)として求めることができ、この有効電流率Kの大きさにより、重合部Pにおけるナゲットのできやすさを評価することができる。 Then, for example, it can be obtained as an effective current rate K (=I A /I T ) during welding, and the ease of forming a nugget in the overlapped portion P can be evaluated from the magnitude of this effective current rate K. .

以上のように、本実施形態の電流の測定方法によれば、経路R1と経路R3のように、有効電流経路と無効電流経路の一部が共通しているような場合であっても、溶接時の全有効電流値IAと全無効電流値IBとをそれぞれ測定あるいは算出することができ、溶接時の条件での有効電流率Kを算出することができる。従って、任意の溶接点におけるナゲットのできやすさを定量的に正確に評価することができる。従って、溶接条件(加圧力及び/又は電流値)や各ワークの設計及び組立工程(溶接点の位置・数・溶接順序、金属板の形状等)を調整して、溶接品質を向上させることができる。 As described above, according to the current measuring method of the present embodiment, even in the case where the active current path and the inactive current path are partly common, such as the path R1 and the path R3, welding The total active current value IA and the total reactive current value IB at the time of welding can be measured or calculated, respectively, and the effective current rate K under the conditions at the time of welding can be calculated. Therefore, it is possible to quantitatively and accurately evaluate the likelihood of forming a nugget at an arbitrary welding point. Therefore, it is possible to improve the welding quality by adjusting the welding conditions (pressure and/or current value) and the design and assembly process of each workpiece (position, number, welding order of welding points, shape of metal plate, etc.). can.

また、上記のように、無効電流経路が経路R3に分流し、有効電流経路に合流している場合であっても、有効電流率Kの算出が可能であるため、図1の端部2cがPPメンバ1に接触しているか否かを問わず、各電流値の測定および有効電流率Kの算出が可能である。このように、PPメンバ1とブラケット2との接触状態にかからず、有効電流率Kの算出が可能である。なお、被測定部2bは、本実施形態の位置に限らず、経路R2と経路R3が分流するまでの適宜の位置に設定することができる。 Further, as described above, even when the reactive current path diverges to the path R3 and joins the active current path, the effective current rate K can be calculated. Regardless of whether the PP member 1 is in contact or not, each current value can be measured and the effective current rate K can be calculated. In this way, the effective current rate K can be calculated regardless of the contact state between the PP member 1 and the bracket 2 . Note that the measured portion 2b is not limited to the position in the present embodiment, and can be set at an appropriate position until the path R2 and the path R3 split.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

また、上記の実施形態では、有効電流率Kを、全電流値ITに対する全有効電流値IAの比率とした場合を示したが、これに限られない。例えば、有効電流率Kを、全無効電流値IBに対する有効電流値IAの比率(IA/IB)としてもよい。また、有効電流率Kを各電流値の比として求めたが、各電流値から算出される各経路の抵抗値の比として求めてもよい。 Further, in the above-described embodiment, the effective current rate K is the ratio of the total effective current value IA to the total current value IT , but it is not limited to this. For example, the active current rate K may be the ratio (I A /I B ) of the active current value I A to the total reactive current value I B . Also, although the effective current rate K is determined as the ratio of each current value, it may be determined as the ratio of the resistance values of the paths calculated from the respective current values.

以上の実施形態では、全電流値ITと全無効電流値IBを測定し、その差分により、全有効電流値IAを算出するものとした。しかし、本発明はこれに限らない。例えば、複数のトロイダルコイルを用いて、経路R1と経路R3に共通する部分の電流値と、経路R3を流れる電流値を測定し、その差分により、有効電流値IAを算出してもよい。このように、本発明では、溶接されるワークの電流経路に応じて、適宜、必要測定箇所に電流検出手段を設け、その測定結果により、全無効電流値IBや全有効電流値IAを測定あるいは算出することができる。 In the above embodiment, the total current value I T and the total reactive current value I B are measured, and the difference between them is used to calculate the total active current value I A . However, the present invention is not limited to this. For example, a plurality of toroidal coils may be used to measure the current value of the portion common to the routes R1 and R3 and the value of the current flowing through the route R3, and the effective current value IA may be calculated from the difference. Thus, in the present invention, current detection means are appropriately provided at necessary measurement locations according to the current path of the workpiece to be welded, and the total reactive current value IB and the total active current value IA are determined based on the measurement results. It can be measured or calculated.

1 PPメンバ(第一ワーク)
2 ブラケット(第二ワーク)
2a フランジ部
2b 被測定部
3 溶接電極
4 保持部
5 第一アース電極
6 多軸ロボット
10 インダイレクトスポット溶接装置
41 把持アーム
42 把持アーム
42a 導電部(第二アース電極)
42b 基部
71 トランス
72 第一のトロイダルコイル(電流検出手段)
73 第二のトロイダルコイル
74 電流測定器
P 重合部
R1,R2,R3 経路
1 PP member (first work)
2 Bracket (second workpiece)
2a flange portion 2b portion to be measured 3 welding electrode 4 holding portion 5 first ground electrode 6 multi-axis robot 10 indirect spot welding device 41 gripping arm 42 gripping arm 42a conductive portion (second ground electrode)
42b base 71 transformer 72 first toroidal coil (current detection means)
73 second toroidal coil 74 current measuring device P overlapping portion R1, R2, R3 path

Claims (1)

複数のワークの重合部を溶接電極で加圧すると共に、前記重合部と異なる部位にアース電極を当接させて両電極間に通電するインダイレクトスポット溶接によって形成される溶接点を評価するための方法であって、
前記ワークの被測定部と、前記ワークの当該被測定部とは異なる位置の被測定部、あるいは、前記溶接電極および前記アース電極間の電流値を検出可能な箇所とに少なくとも電流検出手段を設け、
複数の前記電流検出手段を用いて検出される、前記インダイレクトスポット溶接時に、前記被測定部を流れる電流、あるいは、前記溶接電極および前記アース電極間を流れる電流によって形成される磁界の強度に基づいて、有効電流値および無効電流値を算出する工程と、
前記電流値に基づいて、有効電流値と無効電流値とによって表される有効電流率を算出する工程と、
前記有効電流率に基づいて、溶接点を評価する工程とを含むことを特徴とするインダイレクトスポット溶接の溶接点の評価方法。
A method for evaluating weld points formed by indirect spot welding in which overlapping portions of a plurality of works are pressurized by a welding electrode, a ground electrode is brought into contact with a portion different from the overlapping portion, and an electric current is passed between the electrodes. and
At least a current detection means is provided at a portion to be measured of the work, a portion to be measured at a position different from the portion to be measured of the work, or a portion capable of detecting a current value between the welding electrode and the ground electrode. ,
Based on the strength of the magnetic field formed by the current flowing through the portion to be measured or the current flowing between the welding electrode and the ground electrode during the indirect spot welding, which is detected using the plurality of current detection means. and calculating an active current value and a reactive current value ;
calculating an active current rate represented by an active current value and a reactive current value based on the current value;
and a step of evaluating the welding point based on the effective current rate.
JP2018204355A 2018-10-30 2018-10-30 Weld point evaluation method for indirect spot welding Active JP7139218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018204355A JP7139218B2 (en) 2018-10-30 2018-10-30 Weld point evaluation method for indirect spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204355A JP7139218B2 (en) 2018-10-30 2018-10-30 Weld point evaluation method for indirect spot welding

Publications (2)

Publication Number Publication Date
JP2020069496A JP2020069496A (en) 2020-05-07
JP7139218B2 true JP7139218B2 (en) 2022-09-20

Family

ID=70548879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204355A Active JP7139218B2 (en) 2018-10-30 2018-10-30 Weld point evaluation method for indirect spot welding

Country Status (1)

Country Link
JP (1) JP7139218B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155830U (en) * 1974-10-25 1976-04-30
JPH0239661Y2 (en) * 1985-02-13 1990-10-24

Also Published As

Publication number Publication date
JP2020069496A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
CA2880953C (en) Stress-relief heat treatment apparatus comprising induction heating coils
US8278598B2 (en) Methods and systems for resistance spot welding using direct current micro pulses
US20120126780A1 (en) Resistance welding method, resistance welder, and method and device for evaluating resistance welding
CN101566546A (en) Online weld inspection and repair method for resistance welding and weld-bonding
US8283591B2 (en) Welding apparatus and welding method
JP7139218B2 (en) Weld point evaluation method for indirect spot welding
JP6971724B2 (en) One-sided spot welding equipment and one-sided spot welding method
JP7152618B2 (en) Quality Evaluation Method of Battery Resistance Welding Using Characteristics of Eddy Current Signals
JP7231533B2 (en) Stator manufacturing method
Warinsiriruk et al. Effect of double pulse MIG welding on porosity formation on aluminium 5083 fillet Joint
Kuebler et al. The effect of welding parameters and hydrogen levels on the weldability of high strength Q & T steel welded with FCAW consumables
TWI768567B (en) Connection structure for resistance detection means in resistance welding apparatus, and resistance welding method
WO2010146939A1 (en) Nondestructive testing device
JP7240135B2 (en) Indirect spot welding method
JP5450225B2 (en) Nondestructive inspection equipment
JP2002028784A (en) Method and equipment for consumable electrode type arc welding
JP6949764B2 (en) Gas sensor manufacturing method, sensor element protective cover fixing method, and welding equipment
JP4448422B2 (en) Resistance welding equipment
JP2023134976A (en) Monitoring method of spot weld and monitoring system
JP2021058829A (en) Evaluation method for electrophoretic coating property of weld joint, electrophoretic coating property evaluation device for weld joint, and method of manufacturing weld joint
KR102330768B1 (en) Measurement Apparatus of Welding without Extrinsic Power Source
JP4431784B2 (en) Method for manufacturing ultrafine wire thermocouple and jig for manufacturing
JP3540125B2 (en) Quality inspection method for resistance welding
Węglowski et al. Relationship between wire feed speed and metal transfer in GMAW
JP2005345307A (en) Sectional shape measuring method for spot weld zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220907

R150 Certificate of patent or registration of utility model

Ref document number: 7139218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150