JP7132874B2 - pressure control valve - Google Patents

pressure control valve Download PDF

Info

Publication number
JP7132874B2
JP7132874B2 JP2019033679A JP2019033679A JP7132874B2 JP 7132874 B2 JP7132874 B2 JP 7132874B2 JP 2019033679 A JP2019033679 A JP 2019033679A JP 2019033679 A JP2019033679 A JP 2019033679A JP 7132874 B2 JP7132874 B2 JP 7132874B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
pressure control
valve body
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019033679A
Other languages
Japanese (ja)
Other versions
JP2020139523A (en
Inventor
友泰 安部
義史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2019033679A priority Critical patent/JP7132874B2/en
Publication of JP2020139523A publication Critical patent/JP2020139523A/en
Application granted granted Critical
Publication of JP7132874B2 publication Critical patent/JP7132874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、圧力制御弁に関する。 The present invention relates to pressure control valves.

圧力制御弁は、開弁圧を調節して上流側の圧力を制御する弁であって、たとえば、車両の車体と車軸との間に介装される緩衝器の減衰力を可変にする可変減衰弁に使用される。 The pressure control valve is a valve that adjusts the valve opening pressure to control the pressure on the upstream side. Used for valves.

圧力制御弁を用いた可変減衰弁は、たとえば、緩衝器のシリンダからリザーバへ通じる流路の途中に設けた環状弁座と、当該環状弁座に離着座して上記流路を開閉する主弁体と、流路から分岐されるパイロット通路と、パイロット通路の途中に設けたオリフィスと、上記パイロット通路の前記オリフィスよりも下流に設けた圧力制御弁と、上記主弁体の反弁座側の背面側に設けられて前記オリフィスと前記圧力制御弁との間の圧力が導入される背圧室とを備えて構成されている。 A variable damping valve using a pressure control valve, for example, has an annular valve seat provided in the middle of a flow path leading from a cylinder of a shock absorber to a reservoir, and a main valve that opens and closes the flow path by separating and seating on the annular valve seat. a body, a pilot passage branched from the flow passage, an orifice provided in the middle of the pilot passage, a pressure control valve provided downstream of the orifice in the pilot passage, and a valve seat side of the main valve body. A back pressure chamber is provided on the rear side and into which the pressure between the orifice and the pressure control valve is introduced.

このように構成された可変減衰弁では、主弁体が背圧室の圧力によって弁座側へ押しつけられており、主弁体の正面には流路の上流から主弁体を撓ませて弁座から離座させるように圧力が作用する。よって、可変減衰弁は、流路の上流側の圧力で主弁体を弁座から離座させる力が背圧室の圧力による主弁体を弁座へ押しつける力を上回ると開弁動作する。 In the variable damping valve configured in this manner, the main valve body is pressed against the valve seat side by the pressure in the back pressure chamber, and the main valve body is flexed from the upstream side of the flow path in front of the main valve body. Pressure acts to force it off the seat. Therefore, the variable damping valve opens when the force of the pressure on the upstream side of the flow path, which separates the main valve body from the valve seat, exceeds the force of the pressure in the back pressure chamber, which presses the main valve body against the valve seat.

また、圧力制御弁は、弁座を備えた弁座部材と、弁座に離着座する弁体と、弁体と弁座部材との間に介装されて弁体を弁座から離座する方向へ付勢するコイルばねと、弁体を弁座へ接近させる方向へ推力を与えるソレノイドとを備えて構成されている。このように構成された圧力制御弁は、ソレノイドの推力調整によって弁体が弁座から離座する際の開弁圧を調節して、背圧室の圧力を制御する。 In addition, the pressure control valve includes a valve seat member having a valve seat, a valve body that is seated on and off the valve seat, and a valve body that is interposed between the valve body and the valve seat member to separate the valve body from the valve seat. It is composed of a coil spring that biases in a direction and a solenoid that provides a thrust in a direction to bring the valve element closer to the valve seat. The pressure control valve configured in this way adjusts the valve opening pressure when the valve body is separated from the valve seat by adjusting the thrust force of the solenoid, thereby controlling the pressure in the back pressure chamber.

このように、圧力制御弁によって背圧室の圧力を調節できるので、可変減衰弁は、流路を通過する作動油の流れに与える抵抗を調節でき、所望する減衰力を緩衝器に発生させ得る(たとえば、特許文献1参照)。 Since the pressure in the back pressure chamber can be adjusted by the pressure control valve in this way, the variable damping valve can adjust the resistance given to the flow of hydraulic oil passing through the flow path, and can generate a desired damping force in the shock absorber. (See Patent Document 1, for example).

特開2014-173714号公報JP 2014-173714 A

従来の圧力制御弁は、ソレノイドの推力調整によって開弁圧を調節するために弁体と弁座部材との間に弁体を弁座から離間させる方向に付勢するコイルばねを備えており、構造上、弁体と弁座との間を通過した作動油はコイルばねの線材間を通って下流に向かう。 A conventional pressure control valve is provided with a coil spring between a valve body and a valve seat member to bias the valve body away from the valve seat in order to adjust the valve opening pressure by adjusting the thrust force of the solenoid. Structurally, hydraulic fluid that has passed between the valve body and the valve seat flows downstream through the wire rods of the coil spring.

他方、緩衝器は、車両における車体と車輪との間の狭い搭載スペースに収容される関係上、圧力制御弁も小型となる場合が多く、作動油がコイルばねの狭い線材間を通過する際に、圧力損失が生じてしまう。また、コイルばねの線材間を通過する作動油量が多くなると、大きな流体力が生じて、コイルばねが振動する場合がある。 On the other hand, since the shock absorber is housed in a narrow mounting space between the vehicle body and the wheels, the pressure control valve is often small, and when the hydraulic oil passes through the narrow wires of the coil spring, , pressure loss occurs. Further, when the amount of hydraulic oil passing between the wire rods of the coil spring increases, a large fluid force is generated, which may cause the coil spring to vibrate.

このように、圧力制御弁の弁体を付勢するコイルばねの線材間を作動油が通過する際に圧力損失が生じたり、コイルばねが振動したりすると、上流側の圧力が変動して緩衝器の減衰力が乱れてしまう。 In this way, if pressure loss occurs or the coil spring vibrates when hydraulic oil passes between the wires of the coil spring that urges the valve body of the pressure control valve, the pressure on the upstream side fluctuates and buffers. The damping force of the device is disturbed.

そこで、本発明は、安定した圧力制御が可能な圧力制御弁の提供を目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a pressure control valve capable of stable pressure control.

前記課題を解決するため、本発明の圧力制御弁は、弁座と、弁座に離着座する弁体と、弁体を弁座から離間させる方向へ付勢するばねと、弁体を弁座へ接近させる方向へ推力を付与可能なアクチュエータと、ばねで仕切られる弁座側の空間をばねの一端から他端までの間を介さずに下流に連通する通路とを備えている。 In order to solve the above-described problems, the pressure control valve of the present invention comprises a valve seat, a valve body that sits on and off the valve seat, a spring that urges the valve body in a direction to move the valve body away from the valve seat, and a valve body that includes the valve seat. and a passage that communicates the space on the side of the valve seat partitioned by the spring with the downstream without intervening between one end and the other end of the spring.

このように圧力制御弁が構成されると、圧力制御弁を通過して弁座側の空間から下流へ移動する作動油は、ばねの一端から他端までの狭い隙間を通過する以外にもこの隙間を迂回する通路をも通過でき、ばねの一端から他端の間の狭い隙間を通過する作動油の流量を減らせる。なお、通路は、弁座部材に設けてもよいし、弁体に設けられもよい。 When the pressure control valve is configured in this way, the hydraulic fluid that passes through the pressure control valve and moves downstream from the space on the valve seat side passes through this narrow gap from one end to the other end of the spring. Passages that bypass the gap can also be passed, reducing the flow of hydraulic fluid through the narrow gap between one end of the spring and the other. In addition, the passage may be provided in the valve seat member, or may be provided in the valve body.

また、通路の形成にあたっては、弁座を有する弁座側部材と、弁座側部材に嵌合してばねを内部に収容する筒部材とで弁座部材を構成し、弁座側部材と筒部材の組み合わせ部に設けた凹部で通路を形成してもよい。このように構成された圧力制御弁によれば、製造コストを低減できる。 Further, in forming the passage, the valve seat member is composed of a valve seat side member having a valve seat and a tubular member that is fitted to the valve seat side member and accommodates the spring therein. The passage may be formed by a recess provided in the assembly of the members. According to the pressure control valve configured in this way, manufacturing costs can be reduced.

本発明の圧力制御弁によれば、安定した圧力制御が可能となる。 According to the pressure control valve of the present invention, stable pressure control becomes possible.

一実施の形態における圧力制御弁が適用された可変減衰弁の断面図である。1 is a cross-sectional view of a variable damping valve to which a pressure control valve according to one embodiment is applied; FIG. 一実施の形態における圧力制御弁が適用された可変減衰弁を備えた緩衝器の断面図である。1 is a cross-sectional view of a damper equipped with a variable damping valve to which a pressure control valve is applied according to one embodiment; FIG. 一実施の形態における圧力制御弁の拡大断面図である。1 is an enlarged cross-sectional view of a pressure control valve in one embodiment; FIG. 一実施の形態の第一変形例における圧力制御弁の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a pressure control valve in a first modified example of one embodiment; 一実施の形態の第二変形例における圧力制御弁の拡大断面図である。FIG. 7 is an enlarged cross-sectional view of a pressure control valve in a second modified example of one embodiment;

以下に、図示した一実施の形態に基づいて、この発明を説明する。一実施の形態における圧力制御弁PVは、図1に示すように、弁座1aと、弁座1aに離着座する弁体2と、弁体2を弁座1aから離間させる方向へ付勢するばね3と、弁体2を弁座1aへ接近させる方向へ推力を付与可能なアクチュエータとしてのソレノイドSolと、通路Pとを備えて構成されており、本実施の形態では可変減衰弁DVに利用されて可変減衰弁DVの一部を構成している。 The present invention will be described below based on an illustrated embodiment. As shown in FIG. 1, the pressure control valve PV in one embodiment includes a valve seat 1a, a valve body 2 that is seated on and off the valve seat 1a, and a biasing force that moves the valve body 2 away from the valve seat 1a. It is composed of a spring 3, a solenoid Sol as an actuator capable of applying thrust in a direction to bring the valve body 2 closer to the valve seat 1a, and a passage P. In this embodiment, the valve body 2 is used for the variable damping valve DV. and constitutes a part of the variable damping valve DV.

なお、可変減衰弁DVは、緩衝器Dに適用されており、緩衝器Dは、主として伸縮時に可変減衰弁DVを通過する流体に抵抗を与えることによって減衰力を発生するようになっている。 The variable damping valve DV is applied to the shock absorber D, and the shock absorber D generates damping force mainly by giving resistance to the fluid passing through the variable damping valve DV during expansion and contraction.

この可変減衰弁DVが適用される緩衝器Dは、たとえば、図2に示すように、シリンダ100と、シリンダ100内に摺動自在に挿入されるピストン101と、シリンダ100内に移動挿入されてピストン101に連結されるロッド102と、シリンダ100内に挿入したピストン101で区画したロッド側室103とピストン側室104と、シリンダ100の外周を覆ってシリンダ100との間に排出通路105を形成する中間筒106と、さらに、中間筒106の外周を覆って中間筒106との間にリザーバ107を形成する外筒108とを備えて構成されており、ロッド側室103、ピストン側室104およびリザーバ107内には流体として作動油が充填されるとともにリザーバ107には作動油の他に気体が充填されている。なお、流体は、作動油以外にも、減衰力を発揮可能な流体であれば使用可能である。 The damper D to which the variable damping valve DV is applied includes, for example, a cylinder 100, a piston 101 slidably inserted into the cylinder 100, and a piston 101 movably inserted into the cylinder 100, as shown in FIG. A rod 102 connected to a piston 101, a rod side chamber 103 and a piston side chamber 104 partitioned by the piston 101 inserted into the cylinder 100, and an intermediate portion that covers the outer periphery of the cylinder 100 and forms a discharge passage 105 between the cylinder 100 and the cylinder 100. It comprises a cylinder 106 and an outer cylinder 108 that covers the outer circumference of the intermediate cylinder 106 and forms a reservoir 107 between itself and the intermediate cylinder 106 . is filled with hydraulic oil as a fluid, and the reservoir 107 is filled with gas in addition to the hydraulic oil. It should be noted that any fluid other than hydraulic oil can be used as long as it is capable of exerting a damping force.

そして、この緩衝器Dの場合、リザーバ107からピストン側室104へ向かう作動油の流れのみを許容する吸込通路109と、ピストン101に設けられてピストン側室104からロッド側室103へ向かう作動油の流れのみを許容する整流通路110とを備え、排出通路105はロッド側室103とリザーバ107とを連通し、可変減衰弁DVは、排出通路105の途中に設けられている。 In the case of this shock absorber D, there is only a suction passage 109 that allows only the flow of hydraulic fluid from the reservoir 107 to the piston side chamber 104, and only the flow of hydraulic fluid from the piston side chamber 104 to the rod side chamber 103 provided in the piston 101. The discharge passage 105 communicates the rod side chamber 103 and the reservoir 107, and the variable damping valve DV is provided in the middle of the discharge passage 105.

したがって、この緩衝器Dは、圧縮作動する際には、ピストン101が図2中下方へ移動してピストン側室104が圧縮され、ピストン側室104内の作動油が整流通路110を介してロッド側室103へ移動する。この圧縮作動時には、ロッド102がシリンダ100内に侵入するためシリンダ100内でロッド侵入体積分の作動油が過剰となり、過剰分の作動油がシリンダ100から押し出されて排出通路105を介してリザーバ107へ排出される。緩衝器Dは、排出通路105を通過してリザーバ107へ移動する作動油の流れに可変減衰弁DVで抵抗を与えることによって、シリンダ100内の圧力を上昇させて圧側減衰力を発揮する。 Therefore, when the shock absorber D performs a compression operation, the piston 101 moves downward in FIG. Move to At the time of this compression operation, the rod 102 enters the cylinder 100, and the working oil corresponding to the rod entering volume becomes excessive in the cylinder 100, and the excess working oil is pushed out from the cylinder 100 and flows through the discharge passage 105 to the reservoir 107. is discharged to The damper D raises the pressure in the cylinder 100 and exerts compression side damping force by applying resistance to the flow of the hydraulic oil passing through the discharge passage 105 and moving to the reservoir 107 with the variable damping valve DV.

反対に、緩衝器Dが伸長作動する際には、ピストン101が図2中上方へ移動してロッド側室103が圧縮され、ロッド側室103内の作動油が排出通路105を介してリザーバ107へ移動する。この伸長作動時には、ピストン101が上方へ移動してピストン側室104の容積が拡大して、この拡大分に見合った作動油が吸込通路109を介してリザーバ107から供給される。そして、緩衝器Dは、排出通路105を通過してリザーバ107へ移動する作動油の流れに可変減衰弁DVで抵抗を与えることによってロッド側室103内の圧力を上昇させて伸側減衰力を発揮する。 On the contrary, when the shock absorber D is extended, the piston 101 moves upward in FIG. do. During this extension operation, the piston 101 moves upward to expand the volume of the piston-side chamber 104 , and hydraulic oil corresponding to this expansion is supplied from the reservoir 107 through the suction passage 109 . The shock absorber D raises the pressure in the rod side chamber 103 by applying resistance to the flow of hydraulic oil moving to the reservoir 107 through the discharge passage 105 with the variable damping valve DV, thereby exerting a rebound damping force. do.

上述したところから理解できるように、緩衝器Dは、伸縮作動を呈すると、必ずシリンダ100内から排出通路105を介して作動油をリザーバ107へ排出し、作動油がピストン側室104、ロッド側室103、リザーバ107を順に一方通行で循環するユニフロー型の緩衝器に設定され、伸圧両側の減衰力を単一の可変減衰弁DVによって発生するようになっている。なお、ロッド102の断面積をピストン101の断面積の二分の一に設定すると、同振幅であればシリンダ100内から排出される作動油量を伸圧両側で等しく設定できる。このように設定すれば、可変減衰弁DVが流れに与える抵抗を同じにすると、伸側と圧側の減衰力を等しくできる。 As can be understood from the above description, when the shock absorber D exhibits an expansion and contraction operation, the hydraulic oil is always discharged from the cylinder 100 through the discharge passage 105 to the reservoir 107, and the hydraulic oil flows into the piston-side chamber 104 and the rod-side chamber 103. , and the reservoir 107 in order in a one-way circulation, and damping forces on both expansion and compression sides are generated by a single variable damping valve DV. If the cross-sectional area of the rod 102 is set to 1/2 of the cross-sectional area of the piston 101, the amount of hydraulic fluid discharged from the cylinder 100 can be set equally on both sides of the expansion and compression if the amplitude is the same. With this setting, the damping force on the expansion side and the compression side can be made equal if the resistance given to the flow by the variable damping valve DV is the same.

つづいて、可変減衰弁DVは、本実施の形態では、中間筒106の開口部に設けたスリーブ106aに嵌合されるバルブディスク10と、バルブディスク10に設けた組付軸10cの外周に装着されて主弁座10bに離着座する主弁体11と、バルブディスク10の組付軸10cに連結される中空なバルブハウジング12と、パイロット通路PPと、パイロット通路PPに連通される主弁体11を内部圧力で付勢する背圧室BPと、パイロット通路PPの途中に設けられて背圧室BP内の圧力を制御する圧力制御弁PVと、フェール弁FVとを備えている。 Next, in this embodiment, the variable damping valve DV is mounted on the outer periphery of the valve disk 10 fitted in the sleeve 106a provided in the opening of the intermediate cylinder 106 and the assembly shaft 10c provided on the valve disk 10. a hollow valve housing 12 connected to an assembly shaft 10c of the valve disc 10; a pilot passage PP; and a main valve body communicating with the pilot passage PP. 11, a pressure control valve PV provided in the middle of the pilot passage PP for controlling the pressure in the back pressure chamber BP, and a fail valve FV.

バルブディスク10は、図1に示すように、スリーブ106a内に嵌合される大径の基部10dと、基部10dから図1中右方へ突出する組付軸10cと、基部10dと組付軸10cとを軸方向に貫くように形成されてパイロット通路PPの一部を形成する中空部10eと、中空部10eの途中に設けたオリフィス10fと、基部10dの図1中左端から右端へ貫く複数のポート10aと、基部10dの図1中右端に設けられてポート10aの出口の外周側に形成される環状の主弁座10bとを備えて構成されている。 As shown in FIG. 1, the valve disc 10 includes a large-diameter base portion 10d fitted into the sleeve 106a, an assembly shaft 10c projecting from the base portion 10d to the right in FIG. A hollow portion 10e formed so as to axially penetrate through 10c and forming a part of the pilot passage PP, an orifice 10f provided in the middle of the hollow portion 10e, and a plurality of base portions 10d penetrating from the left end to the right end in FIG. and an annular main valve seat 10b provided at the right end of the base portion 10d in FIG. 1 and formed on the outer peripheral side of the outlet of the port 10a.

ポート10aは、上記したように基部10dを貫いていて、ポート10aにおける基部10dの図1中左端側の開口は、中間筒106で形成した排出通路105を介してロッド側室103内に連通され、ポート10aにおける基部10dの図1中右端側の開口は、リザーバ107に連通されている。つまり、この緩衝器Dの場合、伸縮時にロッド側室103から排出通路105およびポート10aを介してリザーバ107へ作動油を排出するようになっていて、ポート10aの上流はロッド側室103となる。また、中空部10eの図1中左端側の開口も、ポート10aと同様に、排出通路105を介してロッド側室103内に連通されている。 The port 10a penetrates the base portion 10d as described above, and the opening of the port 10a on the left end side of the base portion 10d in FIG. The opening of the base portion 10d of the port 10a on the right end side in FIG. That is, in the case of this shock absorber D, hydraulic oil is discharged from the rod side chamber 103 through the discharge passage 105 and the port 10a to the reservoir 107 during expansion and contraction, and the rod side chamber 103 is upstream of the port 10a. 1 of the hollow portion 10e also communicates with the rod-side chamber 103 via the discharge passage 105, like the port 10a.

なお、このバルブディスク10の基部10dの図1中左方側を小径にして形成した小径部10gをスリーブ106a内に嵌合しており、この小径部10gの外周には、シールリング13が装着されている。このようにシールリング13がスリーブ106aとバルブディスク10との間をシールするので、基部10dの外周を通じての排出通路105とリザーバ107との連通が阻止される。 A small diameter portion 10g formed by reducing the diameter of the base portion 10d of the valve disk 10 on the left side in FIG. It is Since the seal ring 13 thus seals between the sleeve 106a and the valve disc 10, communication between the discharge passage 105 and the reservoir 107 through the outer periphery of the base portion 10d is blocked.

つづいて、バルブディスク10の基部10dの図1中右端には、主弁座10bに離着座してポート10aを開閉する主弁体11が積層されている。この主弁体11は、環状の積層リーフバルブとされており、内周が組付軸10cに組付けられてバルブディスク10と組付軸10cに螺子締結されるバルブハウジング12とで挟持されている。したがって、主弁体11は、外周側の撓みが許容されて主弁座10bに着座しており、外周側が撓むと主弁座10bから離座してポート10aを開放する。 Next, on the right end of the base portion 10d of the valve disk 10 in FIG. 1, a main valve body 11 is stacked which is seated on and off the main valve seat 10b to open and close the port 10a. The main valve body 11 is an annular laminated leaf valve, the inner periphery of which is assembled to the assembly shaft 10c and sandwiched between the valve disc 10 and the valve housing 12 screwed to the assembly shaft 10c. there is Therefore, the main valve body 11 is seated on the main valve seat 10b with the bending of the outer peripheral side allowed, and when the outer peripheral side bends, it leaves the main valve seat 10b to open the port 10a.

なお、主弁体11は、複数の環状板を積層した積層リーフバルブとして構成されているが、環状板の枚数は任意である。また、主弁体11が離着座する主弁座10bには、切欠で形成されるオリフィスOが設けられている。 Although the main valve body 11 is configured as a laminated leaf valve in which a plurality of annular plates are laminated, the number of annular plates is arbitrary. A main valve seat 10b on which the main valve body 11 is seated is provided with an orifice O formed of a notch.

つづいて、主弁体11の図1中右方には、間座15、環状の板ばね16および間座17が順に積層されており、組付軸10cに組付けられる。そして、組付軸10cの先端である図1中右端には、バルブハウジング12が螺着される。すると、組付軸10cに組み付けられた主弁体11、間座15、板ばね16および間座17がバルブディスク10の基部10dとバルブハウジング12とで挟持されて固定される。 1, a spacer 15, an annular plate spring 16 and a spacer 17 are laminated in order on the right side of the main valve body 11 in FIG. 1, and are assembled to the assembly shaft 10c. A valve housing 12 is screwed to the right end in FIG. 1, which is the tip of the assembly shaft 10c. Then, the main valve body 11, the spacer 15, the leaf spring 16 and the spacer 17 assembled to the assembly shaft 10c are sandwiched between the base portion 10d of the valve disc 10 and the valve housing 12 and fixed.

バルブハウジング12は、図1に示すように、筒状であって、図1中左方の外径が小さい小径筒部12aと、図1中右方の外径が大きな大径筒部12bと、大径筒部12bの外周に設けた環状溝12cと、大径筒部12bの左端から開口して大径筒部12bの内周へ通じる圧力導入孔12dとを備えている。また、バルブハウジング12は、小径筒部12aの内方に設けた螺子孔部12eにバルブディスク10の組付軸10cが挿入されるとともに螺着されることによって、バルブディスク10に連結される。大径筒部12bには、図3中右端内周側に環状突部12fが設けられる他に、環状突部12fの外周に設けた環状溝12gと環状溝12gの外周に設けられた図3中右方へ突出する環状のフェール弁弁座12hと、大径筒部12bの内周から開口して環状溝12gに連通されるフェール通路12iとを備えている。 The valve housing 12, as shown in FIG. 1, is cylindrical, and has a small-diameter cylindrical portion 12a on the left in FIG. 1 and a large-diameter cylindrical portion 12b on the right in FIG. , an annular groove 12c provided on the outer periphery of the large-diameter cylindrical portion 12b, and a pressure introduction hole 12d that opens from the left end of the large-diameter cylindrical portion 12b and communicates with the inner periphery of the large-diameter cylindrical portion 12b. Further, the valve housing 12 is connected to the valve disc 10 by inserting and screwing the assembly shaft 10c of the valve disc 10 into the screw hole portion 12e provided inside the small-diameter cylindrical portion 12a. The large-diameter cylindrical portion 12b is provided with an annular protrusion 12f on the inner peripheral side of the right end in FIG. It has an annular fail valve seat 12h protruding to the middle right, and a fail passage 12i that opens from the inner periphery of the large-diameter cylindrical portion 12b and communicates with the annular groove 12g.

バルブハウジング12内は、バルブディスク10の中空部10eに連通されてオリフィス10fを介してポート10aの上流であるロッド側室103内に連通されている。そして、バルブハウジング12内は、中空部10eとともにパイロット通路PPの一部として機能している。 The inside of the valve housing 12 communicates with the hollow portion 10e of the valve disc 10 and communicates with the rod side chamber 103 upstream of the port 10a via an orifice 10f. The inside of the valve housing 12 functions as part of the pilot passage PP together with the hollow portion 10e.

また、バルブハウジング12の大径筒部12bの外周に設けた環状溝12cには、合成樹脂製のリング18が装着されており、このリング18の外周に筒状のスプール19が摺動自在に装着されている。スプール19は、筒状であって、下端に設けられて内方へ突出するフランジ19aと、このフランジ19aの下方に環状突起19bを備えている。つまり、スプール19は、バルブハウジング12に対して軸方向となる図1中左右方向へ移動可能となっている。 A synthetic resin ring 18 is mounted in an annular groove 12c provided on the outer periphery of the large-diameter cylindrical portion 12b of the valve housing 12, and a cylindrical spool 19 is slidably mounted on the outer periphery of the ring 18. is installed. The spool 19 has a tubular shape, and has a flange 19a provided at the lower end and protruding inward, and an annular projection 19b below the flange 19a. That is, the spool 19 can move in the lateral direction in FIG. 1, which is the axial direction with respect to the valve housing 12 .

さらに、フランジ19aの図1中右端には板ばね16の外周が当接しており、スプール19は、この板ばね16によって、図1中左方である主弁体11側へ向けて付勢されていて、環状突起19bが主弁体11の反主弁座側面に当接している。 1, the outer periphery of a leaf spring 16 is in contact with the right end of the flange 19a in FIG. The annular projection 19b is in contact with the side of the main valve body 11 opposite to the main valve seat.

そして、スプール19は、その内周側に、板ばね16およびバルブハウジング12と協働して背圧室BPを形成しており、この背圧室BPは、上記した圧力導入孔12dを介してバルブハウジング12内に連通されている。よって、ロッド側室103から排出された作動油は、オリフィス10fを介して背圧室BPに導かれるようになっており、ポート10aの上流の圧力がオリフィス10fによって減圧されて背圧室BPに導入される。以上から、主弁体11には、スプール19を付勢する板ばね16による付勢力以外に、背圧室BPの内部圧力によって主弁体11を主弁座10bへ向けて押しつける付勢力が作用している。 The spool 19 cooperates with the leaf spring 16 and the valve housing 12 to form a back pressure chamber BP on its inner peripheral side. It communicates with the inside of the valve housing 12 . Therefore, the hydraulic fluid discharged from the rod side chamber 103 is guided to the back pressure chamber BP via the orifice 10f, and the pressure upstream of the port 10a is reduced by the orifice 10f and introduced into the back pressure chamber BP. be done. As described above, in addition to the biasing force of the leaf spring 16 that biases the spool 19, the main valve body 11 is subjected to a biasing force that presses the main valve body 11 toward the main valve seat 10b due to the internal pressure of the back pressure chamber BP. is doing.

すなわち、緩衝器Dが伸縮作動する際に、主弁体11は、正面側からポート10aを介してロッド側室103内の圧力を受けるとともに、背面側からは背圧室BPの内部圧力と板ばね16による付勢力を受ける。なお、板ばね16に孔を設けておき、背圧室BP内の圧力を直接に主弁体11に作用させてもよい。 That is, when the shock absorber D expands and contracts, the main valve body 11 receives the pressure in the rod side chamber 103 from the front side through the port 10a, and receives the pressure inside the back pressure chamber BP and the leaf spring from the back side. 16 is biased. A hole may be provided in the plate spring 16 so that the pressure in the back pressure chamber BP directly acts on the main valve body 11 .

そして、ロッド側室103内の圧力によって、主弁体11の外周を図1中右方へ撓ませようとする力が、背圧室BPの内部圧力と板ばね16による付勢力に打ち勝つと、主弁体11が撓んで主弁座10bから離座して主弁体11と主弁座10bとの間に隙間が形成されてポート10aが開放される。 1 overcomes the internal pressure of the back pressure chamber BP and the urging force of the leaf spring 16, the pressure in the rod side chamber 103 causes the main The valve body 11 is bent and separated from the main valve seat 10b to form a gap between the main valve body 11 and the main valve seat 10b, thereby opening the port 10a.

つづいて、バルブハウジング12内であって螺子孔部12eよりも図1中右方には、圧力制御弁PVが組み付けられている。圧力制御弁PVは、パイロット通路PPの途中に設けられており、非通電時にパイロット通路PPを閉じるとともに通電時に圧力制御を行う。 Next, a pressure control valve PV is assembled inside the valve housing 12 and to the right of the screw hole portion 12e in FIG. The pressure control valve PV is provided in the middle of the pilot passage PP, closes the pilot passage PP when not energized, and performs pressure control when energized.

圧力制御弁PVは、図1及び図3に示すように、弁座1aと弁収容筒1bとを備えた弁座部材1と、弁座1aに離着座する弁体2と、弁体2を弁座1aから離座させる方向に付勢するばね3と、弁体2に推力を与えこれを軸方向に駆動するアクチュエータとしてのソレノイドSolと、通路Pとを備えて構成されている。 As shown in FIGS. 1 and 3, the pressure control valve PV includes a valve seat member 1 having a valve seat 1a and a valve housing cylinder 1b, a valve body 2 which is seated on and off the valve seat 1a, and a valve body 2. It is composed of a spring 3 that biases the valve body 2 in a direction to separate it from the valve seat 1a, a solenoid Sol as an actuator that applies thrust to the valve body 2 and drives it in the axial direction, and a passage P.

そして、弁座部材1は、バルブハウジング12の大径筒部12b内に嵌合されて、大径筒部12bの図3中右端に重ねられて径方向へ位置決めされつつ、バルブハウジング12に組付けられる。弁座部材1は、有底筒状であって図3中右端外周にフランジ1cを備えた弁収容筒1bと、弁収容筒1bの図3中右端に軸方向へ向けて突出する環状の弁座1aと、フランジ1cの外周に図3中右方へ向けて設けられた外筒部1dと、弁収容筒1bの側方から開口して内部へ通じる透孔1eと、フランジ1cから外筒部1dにかけて設けられた溝でなる通路Pとを備えて構成されている。 The valve seat member 1 is fitted into the large-diameter cylindrical portion 12b of the valve housing 12 and is positioned radially by being superimposed on the right end of the large-diameter cylindrical portion 12b in FIG. Attached. The valve seat member 1 includes a bottomed cylindrical valve accommodating cylinder 1b having a flange 1c on the outer periphery of the right end in FIG. A seat 1a, an outer cylindrical portion 1d provided on the outer periphery of the flange 1c toward the right in FIG. and a channel P formed by a groove provided over the portion 1d.

また、弁座部材1の弁収容筒1bの外周には、環状のリーフバルブであるフェール弁弁体21が装着されている。弁収容筒1bをバルブハウジング12に挿入して弁座部材1をバルブハウジング12に組み付けると、フェール弁弁体21は、内周が弁座部材1におけるフランジ1cとバルブハウジング12の図3中右端とで挟持されて固定される。よって、フェール弁弁体21は、外周側がバルブハウジング12に設けたフェール弁弁座12hに初期撓みが与えられた状態で着座し、環状溝12gを閉塞する。このフェール弁弁体21は、フェール通路12iを通じて環状溝12g内に作用する圧力が開弁圧に達すると撓んで、フェール通路12iを開放してリザーバ107へ連通させる。このように、フェール弁弁体21とフェール弁弁座12hとでフェール弁FVが形成されている。 A fail valve body 21, which is an annular leaf valve, is attached to the outer periphery of the valve housing cylinder 1b of the valve seat member 1. As shown in FIG. When the valve housing cylinder 1b is inserted into the valve housing 12 and the valve seat member 1 is assembled to the valve housing 12, the inner periphery of the fail valve valve element 21 is aligned with the flange 1c of the valve seat member 1 and the right end of the valve housing 12 in FIG. is clamped and fixed. Therefore, the fail valve body 21 is seated on the fail valve valve seat 12h provided on the valve housing 12 on the outer peripheral side while being initially flexed, and closes the annular groove 12g. The fail valve body 21 bends when the pressure acting in the annular groove 12g through the fail passage 12i reaches the valve opening pressure, thereby opening the fail passage 12i to communicate with the reservoir 107. As shown in FIG. Thus, the fail valve FV is formed by the fail valve body 21 and the fail valve seat 12h.

また、弁収容筒1bの外径は、バルブハウジング12の内周径よりも小径であって、弁収容筒1bをバルブハウジング12に挿入して弁座部材1をバルブハウジング12に組み付けると、透孔1eが中空部10eを通じてロッド側室103に連通される。 The outer diameter of the valve housing cylinder 1b is smaller than the inner diameter of the valve housing 12. When the valve housing cylinder 1b is inserted into the valve housing 12 and the valve seat member 1 is assembled to the valve housing 12, the transparent The hole 1e communicates with the rod-side chamber 103 through the hollow portion 10e.

さらに、弁座部材1の弁収容筒1b内には、弁体2が摺動自在に挿入されている。詳しくは、弁体2は、弁収容筒1b内に摺動自在に挿入される弁座部材側である図3中左側に設けた小径部2aと、反弁座部材側である図3中右側に設けた大径部2bと、小径部2aと大径部2bとの間に設けた環状の凹部2cと、反弁座部材側端の外周に設けたフランジ状のばね受部2dと、弁体2の先端から後端へ貫通する連通路2e、連通路2eの途中に設けたオリフィス2fとを備えて構成されている。 Further, a valve body 2 is slidably inserted into the valve housing cylinder 1b of the valve seat member 1. As shown in FIG. Specifically, the valve body 2 has a small diameter portion 2a provided on the left side in FIG. A large-diameter portion 2b provided in the valve, an annular recess 2c provided between the small-diameter portion 2a and the large-diameter portion 2b, a flange-like spring receiving portion 2d provided on the outer periphery of the end opposite to the valve seat member, and the valve It is composed of a communicating passage 2e penetrating from the front end to the rear end of the body 2 and an orifice 2f provided in the middle of the communicating passage 2e.

また、弁体2にあっては、前述したように、凹部2cを境にして反弁座部材側の外径が大径になっており、大径部2bの図3中左端に弁座1aに対向する環状の着座部2gを備えている。よって、弁体2が弁座部材1に対して軸方向へ移動して弁座部材1に遠近すると着座部2gが弁座1aに対して離着座する。そして、着座部2gが弁座1aに着座すると圧力制御弁PVが閉弁し、着座部2gが弁座1aから離座すると圧力制御弁PVが開弁する。圧力制御弁PVは、開弁すると中空部10eを介してロッド側室103をリザーバ107に連通し、閉弁すると中空部10eを介してのロッド側室103とリザーバ107との連通を断つ。 As described above, the valve body 2 has a larger outer diameter on the side opposite to the valve seat member than the recessed portion 2c. It has an annular seat portion 2g facing the . Therefore, when the valve body 2 moves in the axial direction with respect to the valve seat member 1 and moves away from the valve seat member 1, the seat portion 2g is seated and separated from the valve seat 1a. When the seat portion 2g is seated on the valve seat 1a, the pressure control valve PV is closed, and when the seat portion 2g is separated from the valve seat 1a, the pressure control valve PV is opened. The pressure control valve PV communicates the rod side chamber 103 with the reservoir 107 via the hollow portion 10e when opened, and cuts off communication between the rod side chamber 103 and the reservoir 107 via the hollow portion 10e when closed.

弁体2は、弁座部材1に対して軸方向へ移動でき、弁座部材1に着座した状態から最大限離間するまで凹部2cが透孔1eに対向した状態に維持される。よって、圧力制御弁PVの開弁時に、バルブディスク10の中空部10eからリザーバ107へ向かう作動油は、弁座部材1の弁収容筒1bと凹部2cとの間を通過し得る。他方、弁座部材1に対して軸方向へ最大限に離間した際に弁体2のばね受部2dが後述するキャップ20に当接してパイロット通路PPを閉塞するので、作動油は圧力制御弁PVを通過し得なくなる。 The valve body 2 can move in the axial direction with respect to the valve seat member 1, and is maintained in a state in which the concave portion 2c faces the through hole 1e until the valve body 2 is separated from the seated state on the valve seat member 1 to the maximum. Therefore, when the pressure control valve PV is opened, hydraulic fluid flowing from the hollow portion 10e of the valve disc 10 to the reservoir 107 can pass between the valve housing cylinder 1b and the recessed portion 2c of the valve seat member 1. FIG. On the other hand, when the valve seat member 1 is separated from the valve seat member 1 to the maximum in the axial direction, the spring receiving portion 2d of the valve body 2 comes into contact with the cap 20, which will be described later, and closes the pilot passage PP. It becomes impossible to pass through the PV.

このように、圧力制御弁PVは、本実施の形態では、着座部2gが弁座1aに着座した状態で閉弁するとともに、弁体2が弁座部材1から最大限離間した状態でも閉弁する。なお、圧力制御弁PVが閉弁した場合にあっても、フェール通路12iは、中空部10eを通じて常時ロッド側室103に連通されているので、ロッド側室103の圧力がフェール弁FVの開弁圧に達すると、フェール弁弁体21が撓んでフェール弁FVが開弁して、背圧室BP内の圧力はフェール弁FVによってフェール弁FVの開弁圧となるように調節される。 Thus, in this embodiment, the pressure control valve PV is closed when the seat portion 2g is seated on the valve seat 1a, and closed even when the valve body 2 is separated from the valve seat member 1 as much as possible. do. Even when the pressure control valve PV is closed, the fail passage 12i is always communicated with the rod-side chamber 103 through the hollow portion 10e, so the pressure in the rod-side chamber 103 is equal to the opening pressure of the fail valve FV. When it reaches, the fail valve body 21 bends to open the fail valve FV, and the pressure in the back pressure chamber BP is adjusted by the fail valve FV to the valve opening pressure of the fail valve FV.

なお、弁体2は、弁座部材1の弁収容筒1b内に挿入されると、弁収容筒1b内であって透孔1eより先端側に空間Kを形成する。この空間Kは、弁体2に設けた連通路2eおよびオリフィス2fを介して弁体2外に連通されている。これにより、弁体2が弁座部材1に対して図3中左右方向である軸方向に移動する際、上記空間Kがダッシュポットとして機能して、弁体2の急峻な変位を抑制するとともに、弁体2の振動的な動きを抑制できる。 When the valve body 2 is inserted into the valve housing cylinder 1b of the valve seat member 1, the valve body 2 forms a space K inside the valve housing cylinder 1b on the distal end side of the through hole 1e. This space K communicates with the outside of the valve body 2 via a communicating passage 2e and an orifice 2f provided in the valve body 2. As shown in FIG. As a result, when the valve body 2 moves in the axial direction, i.e., the left-right direction in FIG. , the vibrational movement of the valve body 2 can be suppressed.

さらに、弁体2におけるばね受部2dと弁座部材1のフランジ1cとの間には、弁体2を弁座部材1に対して軸方向に離間させる方向へ付勢するばね3が介装されている。ばね3は、本実施の形態では、円錐コイルばねとされており、大径側の端部3aの外周が外筒部1dの内周に嵌合し、小径側の端部3bの内周が弁体2の大径部2bの外周に嵌合して、弁座部材1および弁体2に対して径方向で位置決めされている。 Further, a spring 3 is interposed between the spring receiving portion 2d of the valve body 2 and the flange 1c of the valve seat member 1 to urge the valve body 2 in the axial direction away from the valve seat member 1. It is In this embodiment, the spring 3 is a conical coil spring. It is fitted to the outer periphery of the large-diameter portion 2b of the valve body 2 and is positioned with respect to the valve seat member 1 and the valve body 2 in the radial direction.

ばね3は、環状であって弁座部材1と弁体2との間に介装されており、弁座部材1と弁体2との間の空間を弁座1aに面する弁座側の空間A1と弁座1aに面していない反弁座側の空間A2とに仕切っている。作動油の流れで説明すると、ばね3によって弁座1aに面する上流側の空間A1と空間A1に対して下流側の空間A2とが仕切られており、圧力制御弁PVを通過した作動油は、ロッド側室103からリザーバ107へ向かう際に、空間A1、空間A2の順に通過して流れる。 The spring 3 is annular and is interposed between the valve seat member 1 and the valve body 2, and the space between the valve seat member 1 and the valve body 2 is formed on the valve seat side facing the valve seat 1a. It is partitioned into a space A1 and a space A2 on the side opposite to the valve seat 1a not facing the valve seat 1a. In terms of the flow of hydraulic fluid, a spring 3 separates a space A1 on the upstream side facing the valve seat 1a from a space A2 on the downstream side of the space A1. , from the rod-side chamber 103 to the reservoir 107, it passes through the space A1 and the space A2 in this order.

これに対して、弁座部材1に設けられた通路Pは、フランジ1cから外筒部1dの端部にかけて設けられていて、ばね3の大径側の端部3aより内周側から開口して端部3aの外周側へ通じている。よって、通路Pは、ばね3の一端である端部3aから他端である端部3bの間を介さずに上流側の弁座側の空間A1と下流側の反弁座側の空間A2とを連通している。したがって、圧力制御弁PVを通過して弁座側の空間A1から反弁座側の空間A2へ移動する作動油は、ばね3の線材間の狭い隙間を通過する以外にもばね3の線材間の隙間を迂回する通路Pをも通過できる。このように、通路Pを設ければ、ばね3の線材間の隙間を通過する作動油の流量を減らせるので、ばね3の線材間の隙間を通過する際の圧力損失と流体力を低減できる。なお、通路Pの流路面積をばね3の線材間の螺旋状の隙間の全流路面積よりも大きくすると抵抗の少ない通路Pを優先的に通過するので、圧力損失と流体力をより一層効果的に低減できる。本実施の形態では、ばね3を円錐コイルばねとしているが、円筒コイルばねとされてもよいし、ダイヤフラムスプリング等の溝付の皿ばねとされてもよい。また、通路Pの設置数は、十分な大きさの流路面積が確保されていればいくつでもよい。 On the other hand, the passage P provided in the valve seat member 1 extends from the flange 1c to the end of the outer cylindrical portion 1d, and opens from the inner peripheral side of the large diameter side end 3a of the spring 3. It leads to the outer peripheral side of the end portion 3a. Therefore, the passage P is formed into a space A1 on the upstream side of the valve seat and a space A2 on the downstream side opposite to the valve seat without passing between the end 3a which is one end of the spring 3 and the end 3b which is the other end of the spring 3. are communicating. Therefore, the hydraulic oil that passes through the pressure control valve PV and moves from the space A1 on the side of the valve seat to the space A2 on the side opposite to the valve seat passes through not only the narrow gap between the wires of the spring 3 but also the space between the wires of the spring 3. It can also pass through the passage P that bypasses the gap between . By providing the passage P in this way, the flow rate of hydraulic oil passing through the gaps between the wires of the spring 3 can be reduced, so the pressure loss and fluid force when passing through the gaps between the wires of the spring 3 can be reduced. . If the passage area of the passage P is made larger than the total passage area of the helical gap between the wires of the spring 3, the passage P with less resistance is preferentially passed through, so that the pressure loss and the fluid force are more effective. can be reduced significantly. In this embodiment, the spring 3 is a conical coil spring, but it may be a cylindrical coil spring or a disc spring with grooves such as a diaphragm spring. Any number of passages P may be provided as long as a sufficiently large flow passage area is secured.

また、バルブハウジング12の図1中右端には、キャップ20が嵌合されている。キャップ20は、環状であって、バルブハウジング12の大径筒部12bの外周に嵌合するソケット20aと、弁座部材1の外筒部1dの端部に嵌合する嵌合部20bと、ソケット20aを貫く貫通孔20cと、図3中右端の内周に突出する環状弁座20dと、図3中右端に設けられて内周から外周に通じる切欠溝20eとを備えて構成されている。 A cap 20 is fitted to the right end of the valve housing 12 in FIG. The cap 20 has an annular shape, and includes a socket 20a fitted to the outer periphery of the large-diameter tubular portion 12b of the valve housing 12, a fitting portion 20b fitted to the end of the outer tubular portion 1d of the valve seat member 1, It comprises a through hole 20c penetrating the socket 20a, an annular valve seat 20d protruding to the inner circumference at the right end in FIG. 3, and a notch groove 20e provided at the right end in FIG. .

そして、キャップ20のソケット20aをバルブハウジング12に嵌合するとともに嵌合部20bを弁座部材1の外筒部1dに嵌合すると、弁座部材1は、キャップ20およびバルブハウジング12に対して径方向に位置決めされるとともにキャップ20とバルブハウジング12によって挟み込まれてフェール弁弁体21とともに両者に固定される。 When the socket 20a of the cap 20 is fitted to the valve housing 12 and the fitting portion 20b is fitted to the outer cylindrical portion 1d of the valve seat member 1, the valve seat member 1 is placed against the cap 20 and the valve housing 12. It is positioned in the radial direction, sandwiched between the cap 20 and the valve housing 12 and fixed to both together with the fail valve body 21 .

キャップ20の環状弁座20dには、弁体2のばね受部2dが離着座するようになっており、弁体2が弁座部材1に対して軸方向へ最大限に離間するとばね受部2dが環状弁座20dに着座し、それ以外ではばね受部2dは環状弁座20dから離間する。 A spring receiving portion 2d of the valve body 2 is seated on and away from the annular valve seat 20d of the cap 20, and when the valve body 2 is separated from the valve seat member 1 to the maximum extent in the axial direction, the spring receiving portion is closed. 2d is seated on the annular valve seat 20d, otherwise the spring seat 2d is spaced from the annular valve seat 20d.

キャップ20のバルブハウジング12への装着によって、キャップ20内に圧力制御弁PVが収容される空間が仕切られるが、弁体2が環状弁座20dに着座すると、弁体2と環状弁座20dとの間を介しての前記空間とリザーバ107との連通が断たれる一方、弁体2が環状弁座20dから離座した状態では、前記空間とリザーバ107とが切欠溝20eによって連通される。 When the cap 20 is attached to the valve housing 12, the space in which the pressure control valve PV is accommodated is partitioned. While the communication between the space and the reservoir 107 is cut off through the gap, the space and the reservoir 107 are communicated with each other by the notch groove 20e when the valve element 2 is separated from the annular valve seat 20d.

前述したところを整理すると、可変減衰弁DVは、ロッド側室103とリザーバ107とをポート10aにて連通し、このポート10aを主弁体11で開閉する。また、このポート10aを通るルートとは別に、バルブディスク10の中空部10e、バルブハウジング12内、弁座部材1に設けた透孔1e、弁座部材1内、弁体2に設けた凹部2c、空間A1、通路P、空間A2、および切欠溝20eを介して、ロッド側室103とリザーバ107とが連通され、これらでパイロット通路PPを形成している。このパイロット通路PPは、バルブハウジング12に設けた圧力導入孔12dを通じて背圧室BPに連通されており、ポート10aの上流の圧力がパイロット通路PPの途中に設けたオリフィス10fによって減圧されて背圧室BPに導入される。さらに、パイロット通路PPは、圧力制御弁PVによって開閉され、圧力制御弁PVの開弁圧の調節によって背圧室BP内の圧力を制御できる。圧力制御弁PVは、開弁圧の調節のために弁体2に推力を与えるアクチュエータとしてソレノイドSolを備えている。また、ソレノイドSolが推力を弁体2に与えない状態では、弁体2がばね3によって弁座部材1から最大限離間して圧力制御弁PVが閉弁するが、パイロット通路PPの圧力制御弁PVの上流がフェール通路12iに通じているので、パイロット通路PP内の圧力が高まりフェール弁FVの開弁圧に達すると、フェール弁FVが開弁してロッド側室103をリザーバ107に連通する。なお、アクチュエータは、ソレノイドSolに限られず、たとえば、リニアモータやエアシリンダ等といった弁体2にばね3の付勢力に抗する推力を与えて圧力制御弁PVの開弁圧を調節可能なものであればよい。 In summary, the variable damping valve DV communicates the rod-side chamber 103 and the reservoir 107 through the port 10a, and the main valve body 11 opens and closes the port 10a. In addition to the route passing through the port 10a, the hollow portion 10e of the valve disc 10, the inside of the valve housing 12, the through hole 1e provided in the valve seat member 1, the inside of the valve seat member 1, the recessed portion 2c provided in the valve body 2. , the space A1, the passage P, the space A2, and the notched groove 20e, the rod-side chamber 103 and the reservoir 107 are communicated with each other to form a pilot passage PP. This pilot passage PP communicates with the back pressure chamber BP through a pressure introduction hole 12d provided in the valve housing 12, and the pressure upstream of the port 10a is reduced by an orifice 10f provided in the middle of the pilot passage PP. introduced into the chamber BP. Further, the pilot passage PP is opened and closed by the pressure control valve PV, and the pressure in the back pressure chamber BP can be controlled by adjusting the opening pressure of the pressure control valve PV. The pressure control valve PV includes a solenoid Sol as an actuator that applies thrust to the valve body 2 for adjusting the valve opening pressure. When the solenoid Sol does not apply thrust to the valve body 2, the valve body 2 is separated from the valve seat member 1 by the spring 3 to the maximum extent, and the pressure control valve PV is closed. Since the upstream of PV communicates with the fail passage 12 i , when the pressure in the pilot passage PP rises and reaches the opening pressure of the fail valve FV, the fail valve FV opens to communicate the rod side chamber 103 with the reservoir 107 . The actuator is not limited to the solenoid Sol, but may be, for example, a linear motor, an air cylinder, or the like, which can adjust the opening pressure of the pressure control valve PV by applying a thrust force to the valve body 2 against the biasing force of the spring 3. I wish I had.

つづいて、ソレノイドSolは、外筒108に設けた開口に取り付けたスリーブ108aの外周に螺着される有底筒状のケース35内に収容されており、巻線38が巻回されるとともにケース35の底部に固定される環状のソレノイドボビン39と、有底筒状であってソレノイドボビン39の内周に嵌合される第一固定鉄心40と、ソレノイドボビン39の内周に嵌合される筒状の第二固定鉄心41と、同じくソレノイドボビン39の内周に嵌合されるとともに第一固定鉄心40と第二固定鉄心41との間に空隙を形成するために介装される非磁性体のフィラーリング42と、第一固定鉄心40の内周側に配置される筒状の可動鉄心43と、可動鉄心43の内周に固定されるシャフト44とを備えて構成されている。 The solenoid Sol is housed in a cylindrical case 35 with a bottom screwed onto the outer periphery of a sleeve 108a attached to an opening provided in an outer cylinder 108. an annular solenoid bobbin 39 fixed to the bottom of the solenoid bobbin 35; A cylindrical second stationary core 41 and a non-magnetic non-magnetic material that is similarly fitted to the inner circumference of the solenoid bobbin 39 and is interposed to form a gap between the first stationary core 40 and the second stationary core 41 . It comprises a body filler ring 42 , a cylindrical movable core 43 arranged on the inner peripheral side of the first fixed core 40 , and a shaft 44 fixed to the inner periphery of the movable core 43 .

ケース35は、筒部35aと筒部35aの開口端を加締めて固定される底部35bとを備えて構成されており、筒部35aの開口端を加締める際に、底部35bとともに筒部35aの内周にボビンホルダ36が固定される。ボビンホルダ36は、ソレノイドボビン39を保持しており、ソレノイドボビン39は、ケース35にボビンホルダ36を介して取り付けられている。 The case 35 includes a cylindrical portion 35a and a bottom portion 35b that is fixed by crimping the open end of the cylindrical portion 35a. A bobbin holder 36 is fixed to the inner circumference of the. The bobbin holder 36 holds a solenoid bobbin 39 , and the solenoid bobbin 39 is attached to the case 35 via the bobbin holder 36 .

そして、ケース35をスリーブ108aに螺着すると、ケース35とスリーブ108aとの間に第二固定鉄心41の外周に設けたフランジ41aが挟持され、第二固定鉄心41によって、フィラーリング42および第一固定鉄心40がケース35内で固定される。 When the case 35 is screwed to the sleeve 108a, the flange 41a provided on the outer periphery of the second fixed core 41 is sandwiched between the case 35 and the sleeve 108a, and the second fixed core 41 clamps the filler ring 42 and the first A stationary core 40 is fixed within the case 35 .

可動鉄心43は、筒状であって、内周には可動鉄心43の両端から図1中左右に伸びるシャフト44が装着されている。このシャフト44は、第一固定鉄心40の底部に設けられた環状のブッシュ45と、第二固定鉄心41の内周に嵌合される環状のガイド46の内周に保持された環状のブッシュ47によって軸方向移動可能に保持されており、これらブッシュ45,47によってシャフト44の軸方向の移動が案内されている。 The movable iron core 43 has a tubular shape, and a shaft 44 extending from both ends of the movable iron core 43 to the left and right in FIG. The shaft 44 includes an annular bush 45 provided at the bottom of the first fixed core 40 and an annular bush 47 held on the inner periphery of an annular guide 46 fitted to the inner periphery of the second fixed core 41. , and these bushes 45 and 47 guide the axial movement of the shaft 44 .

また、第二固定鉄心41を上記のようにケース35に固定すると、第二固定鉄心41の内周に嵌合されたガイド46がキャップ20に当接し、キャップ20、弁座部材1、フェール弁弁体21、バルブハウジング12およびバルブディスク10が緩衝器Dに固定される。 Further, when the second fixed core 41 is fixed to the case 35 as described above, the guide 46 fitted to the inner circumference of the second fixed core 41 contacts the cap 20, and the cap 20, the valve seat member 1, the fail valve A valve body 21 , a valve housing 12 and a valve disc 10 are fixed to the damper D.

シャフト44の図1中左端は、弁体2の図1中右端に嵌合された孔空きディスク32に当接しており、弁体2を介してばね3の付勢力がシャフト44にも作用し、ばね3は、弁体2を付勢するだけでなく、ソレノイドSolの一部品としてシャフト44を付勢する役割をも果たしている。 The left end of the shaft 44 in FIG. 1 is in contact with the perforated disc 32 fitted to the right end of the valve body 2 in FIG. , the spring 3 not only biases the valve body 2, but also serves to bias the shaft 44 as a part of the solenoid Sol.

なお、第二固定鉄心41は、スリーブ108aの内周に嵌合する筒状のスリーブ41bを備えており、これにより、ソレノイドSolを構成する各部材がスリーブ108aに対して径方向に位置決めされている。なお、キャップ20の外周には切欠(符示せず)が設けられており、弁体2とソレノイドSolとの間の空隙は、この切欠と切欠溝20eを通じてリザーバ107に連通されるので、弁体2の移動を妨げる恐れはない。 The second fixed iron core 41 has a cylindrical sleeve 41b fitted to the inner circumference of the sleeve 108a, whereby each member constituting the solenoid Sol is radially positioned with respect to the sleeve 108a. there is A notch (not shown) is provided on the outer periphery of the cap 20, and the gap between the valve body 2 and the solenoid Sol communicates with the reservoir 107 through this notch and the notch groove 20e. There is no danger of interfering with the movement of 2.

なお、ガイド46には、軸方向に貫く孔46aが設けられており、ガイド46の図1中左側と右側とで圧力差が生じないようになっており、また、可動鉄心43にも軸方向に貫く孔43aが設けられており、可動鉄心43の図1中左側と右側とで圧力差が生じて可動鉄心43の円滑な移動を妨げることが無いよう配慮されている。 The guide 46 is provided with a hole 46a penetrating in the axial direction, so that no pressure difference occurs between the left side and the right side of the guide 46 in FIG. A hole 43a penetrating through the movable core 43 is provided so that smooth movement of the movable core 43 is not hindered due to a pressure difference between the left side and the right side of the movable core 43 in FIG.

上述したところから、このソレノイドSolにあっては、磁路が第一固定鉄心40、可動鉄心43および第二固定鉄心41を通過するように形成されており、巻線38が励磁されると、第一固定鉄心40寄りに配置される可動鉄心43が第二固定鉄心41側に吸引され、可動鉄心43には図1中左側へ向かう推力が作用するようになっている。 As described above, in this solenoid Sol, the magnetic path is formed to pass through the first fixed core 40, the movable core 43 and the second fixed core 41, and when the winding 38 is excited, The movable iron core 43 arranged near the first fixed iron core 40 is attracted to the second fixed iron core 41 side, and a thrust toward the left side in FIG. 1 acts on the movable iron core 43 .

そして、この可動鉄心43に一体となって移動するシャフト44は、図1に示すように、弁体2に当接しており、ソレノイドSolの推力が弁体2に伝わるようになっている。 As shown in FIG. 1, the shaft 44 that moves integrally with the movable iron core 43 is in contact with the valve body 2 so that the thrust of the solenoid Sol is transmitted to the valve body 2 .

ソレノイドSolは、励磁時において吸引される可動鉄心43を介して弁体2に図1中左側へ向かう方向の推力を与えて弁体2を弁座1aに着座させつつ、供給される電流量に応じて圧力制御弁PVの開弁圧を調節する。具体的には、ソレノイドSolの巻線38への通電量を調節すると、弁体2へ与える推力を調節でき、圧力制御弁PVの開弁圧を制御できる。 1 to the valve body 2 via the movable iron core 43 which is attracted when the solenoid Sol is excited to seat the valve body 2 on the valve seat 1a. Accordingly, the valve opening pressure of the pressure control valve PV is adjusted. Specifically, by adjusting the energization amount of the winding 38 of the solenoid Sol, the thrust applied to the valve body 2 can be adjusted, and the opening pressure of the pressure control valve PV can be controlled.

また、ソレノイドSolは、非励磁時においては推力を弁体2に与えないので、弁体2がばね3に押されて弁座1aから離座して弁座部材1から最大限遠ざかり、圧力制御弁PVを閉弁させる。 In addition, since the solenoid Sol does not apply thrust to the valve body 2 when not energized, the valve body 2 is pushed by the spring 3 to separate from the valve seat 1a and move away from the valve seat member 1 as much as possible to control the pressure. Close the valve PV.

圧力制御弁PVは、前述のように構成されて可変減衰弁DVに組み込まれ、アクチュエータとしてのソレノイドSolの推力の調整で緩衝器Dが発生する減衰力を変更する。 The pressure control valve PV is constructed as described above and incorporated in the variable damping valve DV, and changes the damping force generated by the shock absorber D by adjusting the thrust of the solenoid Sol as an actuator.

詳細には、緩衝器Dが伸縮してロッド側室103から作動油が可変減衰弁DVを経てリザーバ107へ排出されると、圧力制御弁PVが正常動作する場合には、ポート10aおよびパイロット通路PPの上流の圧力が高まり、ソレノイドSolに電流を供給して、圧力制御弁PVの開弁圧を調節すると、パイロット通路PPにおけるオリフィス10fと圧力制御弁PVとの間の圧力が背圧室BPに導かれる。 Specifically, when the shock absorber D expands and contracts and hydraulic oil is discharged from the rod-side chamber 103 through the variable damping valve DV to the reservoir 107, when the pressure control valve PV operates normally, the port 10a and the pilot passage PP , the pressure between the orifice 10f in the pilot passage PP and the pressure control valve PV increases in the back pressure chamber BP. be guided.

背圧室BPの内部圧力は圧力制御弁PVの開弁圧に等しくなるように制御され、当該開弁圧はソレノイドSolで調節される。よって、圧力制御弁PVは、主弁体11の背面に作用する圧力を調節でき、ひいては、主弁体11がポート10aを開放する開弁圧を制御できる。 The internal pressure of the back pressure chamber BP is controlled to be equal to the valve opening pressure of the pressure control valve PV, and the valve opening pressure is adjusted by a solenoid Sol. Therefore, the pressure control valve PV can adjust the pressure acting on the back surface of the main valve body 11, and in turn can control the valve opening pressure at which the main valve body 11 opens the port 10a.

そして、本発明の圧力制御弁PVは、弁座1aと、弁座1aに離着座する弁体2と、弁体2を弁座1aから離間させる方向へ付勢するばね3と、弁体2を弁座1aへ接近させる方向へ推力を付与可能なソレノイド(アクチュエータ)Solと、ばね3で仕切られる弁座側の空間A1をばね3の一端から他端までの間を介さずに空間(下流)A2に連通する通路Pとを備えている。 The pressure control valve PV of the present invention includes a valve seat 1a, a valve body 2 that is seated on and away from the valve seat 1a, a spring 3 that biases the valve body 2 in a direction to separate it from the valve seat 1a, and a valve body 2. A space A1 on the side of the valve seat partitioned by a solenoid (actuator) Sol capable of applying a thrust in a direction to approach the valve seat 1a, and a space (downstream ) and a passage P communicating with A2.

このように圧力制御弁PVが構成されると、圧力制御弁PVを通過して弁座側の空間A1から空間(下流)A2へ移動する作動油は、ばね3の線材間の狭い隙間を通過する以外にもばね3の線材間の隙間を迂回する通路Pをも通過できる。 When the pressure control valve PV is configured in this way, the hydraulic oil that passes through the pressure control valve PV and moves from the valve seat side space A1 to the space (downstream) A2 passes through the narrow gap between the wires of the spring 3. Besides, it can also pass through the passage P bypassing the gap between the wires of the spring 3.

本発明の圧力制御弁PVによれば、通路Pを設けてばね3の一端から他端の間の狭い隙間を通過する作動油の流量を減らせるので、ばね3の一端から他端までの間の隙間を通過する際の圧力損失と流体力を低減できる。 According to the pressure control valve PV of the present invention, the passage P is provided to reduce the flow rate of hydraulic oil passing through a narrow gap between one end and the other end of the spring 3. It can reduce pressure loss and fluid force when passing through the gap.

よって、本発明の圧力制御弁PVによれば、ばね3の一端から他端までの間の隙間を通過する際の圧力損失と流体力を低減できるので、意図しない圧力損失によって狙い通りの圧力制御が難しくなったり、ばね3が振動して圧力変動を来したりする問題が解消され、安定した圧力制御が可能となる。 Therefore, according to the pressure control valve PV of the present invention, pressure loss and fluid force when passing through the gap between one end and the other end of the spring 3 can be reduced. It is possible to solve the problem that the pressure becomes difficult and that the spring 3 vibrates to cause pressure fluctuations, and stable pressure control becomes possible.

また、通路Pの流路面積をばね3の一端から他端までの間の隙間の全流路面積よりも大きくすると、作動油はより抵抗の少ない通路Pを優先的に通過するので、ばね3の一端から他端までの隙間を作動油が通過することによる圧力損失と流体力を極小さくできるので、より一層効果的に安定した圧力制御が可能となる。 Further, if the flow area of the passage P is made larger than the total flow area of the gap from one end of the spring 3 to the other end, the hydraulic oil preferentially passes through the passage P with less resistance. Since the pressure loss and fluid force due to the hydraulic fluid passing through the gap from one end to the other end of the valve can be minimized, more effective and stable pressure control is possible.

また、通路Pの形成にあたって、図4に示した第一変形例の圧力制御弁PV1のように、弁座1aを有する弁座側部材1Aと、弁座側部材1Aに嵌合してばね3を収容する筒部材としてのキャップ20Aとで弁座部材1を構成して、通路Pを弁座側部材1Aとキャップ20Aの組み合わせ部の双方に設けた凹部50,51で形成してもよい。具体的には、弁座側部材1Aは、有底筒状であって図4中右端外周にフランジ1cを備えた弁収容筒1bと、弁収容筒1bの図4中右端に軸方向へ向けて突出する環状の弁座1aと、フランジ1cの外周に設けられた段部で形成されるキャップ20Aが嵌合される組み合わせ部1A1と、フランジ1cの組み合わせ部1A1の外周からばね3が着座する部位よりも内周側に開口する凹部50とを備えている。また、筒部材としてのキャップ20Aは、ばね3を内方に収容する筒状の嵌合部20bを組み合わせ部として弁座側部材1Aのフランジ1cに設けた組み合わせ部1A1に嵌合させており、嵌合部20bの内周であって図4中左端から軸方向に設けられる凹部51とを備える他は、前述のキャップ20と同様の構成を備えている。 Further, in forming the passage P, a valve seat side member 1A having a valve seat 1a and a spring 3 which is fitted to the valve seat side member 1A, like the pressure control valve PV1 of the first modified example shown in FIG. The valve seat member 1 may be configured with a cap 20A as a cylindrical member that accommodates the valve seat side member 1A and the passage P may be formed by recesses 50 and 51 provided in both the combined portion of the valve seat side member 1A and the cap 20A. Specifically, the valve-seat-side member 1A includes a valve housing cylinder 1b having a bottomed cylindrical shape and having a flange 1c on the outer periphery at the right end in FIG. A spring 3 is seated from the outer periphery of the combined portion 1A1 in which the annular valve seat 1a protruding from the outer periphery of the flange 1c is fitted with a cap 20A formed of a stepped portion provided on the outer periphery of the flange 1c. and a recessed portion 50 that opens to the inner peripheral side of the portion. In addition, the cap 20A as a cylindrical member has a cylindrical fitting portion 20b that accommodates the spring 3 inside and is fitted to a combination portion 1A1 provided on the flange 1c of the valve seat side member 1A as a combination portion. It has the same configuration as the cap 20 described above, except that it has a recessed portion 51 axially provided from the left end in FIG. 4 on the inner periphery of the fitting portion 20b.

そして、弁座側部材1Aの組み合わせ部1A1にキャップ20Aの嵌合部20bを組み合わせると、凹部50と凹部51とが連通されて通路Pが形成される。通路Pは、弁座1aを有する弁座側部材1Aと、弁座側部材1Aに嵌合してばね3を収容する筒部材としてのキャップ20Aとの組み合わせ部(嵌合部20b)に形成されるので、ばね3で仕切られる弁座側の空間A1をばね3の一端から他端までの間を介さずに空間(下流)A2に連通できる。このように、弁座部材1を弁座側部材1Aの組み合わせ部1A1と筒部材としてのキャップ20Aの組み合わせ部としての嵌合部20bとに設けた凹部50,51で通路Pを形成すると、弁座側部材1Aおよび筒部材としてのキャップ20Aを焼結成形によって製造すると通路Pも形成できるので、孔空け加工の必要が無くなり、加工工数が減少して製造コストを低減できる。また、弁座側部材1Aと筒部材としてのキャップ20Aとが組み合わせ部によって組み合わされるので、双方が互いに径方向に位置決めされるとともに、キャップ20Aにおける嵌合部20bの内周でばね3の外周を拘束させてばね3の位置決めも行える。 When the fitting portion 20b of the cap 20A is combined with the combination portion 1A1 of the valve seat side member 1A, the recess 50 and the recess 51 are communicated to form a passage P. The passage P is formed in a combined portion (fitting portion 20b) of a valve seat side member 1A having a valve seat 1a and a cap 20A as a tubular member that fits into the valve seat side member 1A and accommodates the spring 3. Therefore, the space A1 on the side of the valve seat partitioned by the spring 3 can be communicated with the space (downstream) A2 without intervening from one end of the spring 3 to the other end. In this way, when the passage P is formed by the concave portions 50 and 51 provided in the valve seat member 1 between the combination portion 1A1 of the valve seat side member 1A and the fitting portion 20b as a combination portion of the cap 20A as a cylindrical member, the valve If the seat side member 1A and the cap 20A as the cylindrical member are manufactured by sintering, the passage P can also be formed. In addition, since the valve seat side member 1A and the cap 20A as a cylindrical member are combined by the combining portion, both are positioned in the radial direction, and the outer periphery of the spring 3 is supported by the inner periphery of the fitting portion 20b of the cap 20A. Positioning of the spring 3 can also be performed by restraining it.

さらに、通路Pは、前述したところでは、弁座部材1に設けていたが、図5に示した第二変形例における圧力制御弁PV2のように、弁体2に通路Pを設けてもよい。この場合、図5に示すように、弁体2の大径部2bのばね3が当接する箇所より図5中左方から開口して、ばね受部2dのばね3が当接する箇所よりも外周側へ通じるように通路Pを設けると、ばね3の一端から他端までの間の線材間の隙間を迂回して上流である空間A1を下流の空間A2へ連通できる。よって、このように構成された圧力制御弁PV2にあっても、ばね3の一端から他端までの間の隙間を通過する際の圧力損失と流体力を低減できるので、安定した圧力制御が可能となる。 Furthermore, although the passage P is provided in the valve seat member 1 in the above description, the passage P may be provided in the valve body 2 like the pressure control valve PV2 in the second modification shown in FIG. . In this case, as shown in FIG. 5, an opening is opened from the left side in FIG. When the passage P is provided so as to lead to the side, the upstream space A1 can be communicated with the downstream space A2 by detouring the gap between the wires from one end to the other end of the spring 3. Therefore, even with the pressure control valve PV2 configured in this way, the pressure loss and fluid force when passing through the gap between one end and the other end of the spring 3 can be reduced, so stable pressure control is possible. becomes.

また、圧力制御弁PVが適用された可変減衰弁DVにあっては、ソレノイドSolへの供給電流に応じた推力を圧力制御弁PVに与えて背圧室BPの内部圧力を制御して主弁体11における開弁圧を調節する。そのため、パイロット通路PPを流れる流量に依存することなく背圧室BPの内部圧力を狙い通りに調節でき、緩衝器Dのピストン速度が低速域にある場合にもソレノイドSolへの供給電流に対する減衰力変化が線形に近く、制御性が向上する。また、ソレノイドSolへの供給電流に応じた推力を弁体2に与えて主弁体11を付勢する背圧室BPの内部圧力を制御するので、減衰力のばらつきも小さくできる。 In addition, in the variable damping valve DV to which the pressure control valve PV is applied, a thrust corresponding to the current supplied to the solenoid Sol is applied to the pressure control valve PV to control the internal pressure of the back pressure chamber BP, thereby controlling the main valve The valve opening pressure in body 11 is adjusted. Therefore, the internal pressure of the back pressure chamber BP can be adjusted as intended without depending on the flow rate flowing through the pilot passage PP, and even when the piston speed of the shock absorber D is in the low speed range, the damping force against the current supplied to the solenoid Sol Changes are close to linear, improving controllability. Further, since the internal pressure of the back pressure chamber BP, which biases the main valve body 11 by applying a thrust corresponding to the current supplied to the solenoid Sol, to the valve body 2, the variation in the damping force can be reduced.

また、フェール時には、ソレノイドSolへ電流供給が断たれ、圧力制御弁PVがばね3によって押圧されて閉弁し、ロッド側室103内の圧力がフェール弁FVの開弁圧に達するとフェール弁FVが開弁してパイロット通路PPをリザーバ107へ連通する。よって、フェール弁FVが作動油の流れに対して抵抗となって、緩衝器Dはパッシブな緩衝器として機能できる。なお、フェール弁FVの開弁圧の設定によって、緩衝器Dのピストン速度に対するフェール時の減衰特性を予め任意に設定できる。 In the event of a failure, the current supply to the solenoid Sol is cut off, the pressure control valve PV is pressed by the spring 3 and closed, and when the pressure in the rod-side chamber 103 reaches the opening pressure of the fail valve FV, the fail valve FV is opened. The valve is opened to connect the pilot passage PP to the reservoir 107 . Therefore, the fail valve FV acts as resistance to the flow of hydraulic oil, and the damper D can function as a passive damper. By setting the valve opening pressure of the fail valve FV, it is possible to arbitrarily set in advance the damping characteristic at the time of failure with respect to the piston speed of the shock absorber D.

なお、本実施の形態では、圧力制御弁PVを可変減衰弁DVに適用しているが、圧力制御弁PVは油圧回路中で単独で使用可能であり、単独で使用されても本願発明の効果は失われない。 In this embodiment, the pressure control valve PV is applied to the variable damping valve DV. is not lost.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although preferred embodiments of the invention have been described in detail above, modifications, variations, and changes are possible without departing from the scope of the claims.

1・・・弁座部材、1A・・・弁座側部材、1a・・・弁座、1A1・・・組み合わせ部、2・・・弁体、3・・・ばね、20A・・・キャップ(筒部材)、20b・・・嵌合部(組み合わせ部)、50,51・・・凹部、A1・・・空間、P・・・通路、PV,PV1,PV2・・・圧力制御弁、Sol・・・ソレノイド(アクチュエータ) DESCRIPTION OF SYMBOLS 1... Valve seat member 1A... Valve seat side member 1a... Valve seat 1A1... Combination part 2... Valve body 3... Spring 20A... Cap ( Cylindrical member), 20b... Fitting portion (combination portion), 50, 51... Concave portion, A1... Space, P... Passage, PV, PV1, PV2... Pressure control valve, Sol.・・Solenoid (Actuator)

Claims (4)

弁座と、
前記弁座に離着座する弁体と、
前記弁体を前記弁座から離間させる方向へ付勢するばねと、
前記弁体を前記弁座へ接近させる方向へ推力を付与可能なアクチュエータと、
前記ばねで仕切られる弁座側の空間を前記ばねの一端から他端までの間を介さずに下流に連通する通路とを備えた
ことを特徴とする圧力制御弁。
a valve seat;
a valve body that sits on and off the valve seat;
a spring that biases the valve body in a direction away from the valve seat;
an actuator capable of applying thrust in a direction to bring the valve body closer to the valve seat;
A pressure control valve, comprising: a passage that connects a space on the side of the valve seat partitioned by the spring to a downstream side without interposing between one end and the other end of the spring.
前記弁座を有する弁座部材を備え、
前記弁座部材に前記通路が設けられている
ことを特徴とする請求項1に記載の圧力制御弁。
A valve seat member having the valve seat,
2. The pressure control valve according to claim 1, wherein the passage is provided in the valve seat member.
前記弁座部材は、前記弁座を有する弁座側部材と、前記弁座側部材に嵌合して前記ばねを内部に収容する筒部材とを有し、
前記通路は、前記弁座側部材と前記筒部材の組み合わせ部に設けた凹部で形成されている
ことを特徴とする請求項2に記載の圧力制御弁。
The valve seat member has a valve seat side member having the valve seat, and a cylindrical member that fits into the valve seat side member and accommodates the spring therein,
3. The pressure control valve according to claim 2, wherein the passage is formed by a concave portion provided in a combined portion of the valve seat side member and the cylindrical member.
前記弁体に前記通路が設けられている
ことを特徴とする請求項1に記載の圧力制御弁。
2. The pressure control valve according to claim 1, wherein the passage is provided in the valve body.
JP2019033679A 2019-02-27 2019-02-27 pressure control valve Active JP7132874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033679A JP7132874B2 (en) 2019-02-27 2019-02-27 pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033679A JP7132874B2 (en) 2019-02-27 2019-02-27 pressure control valve

Publications (2)

Publication Number Publication Date
JP2020139523A JP2020139523A (en) 2020-09-03
JP7132874B2 true JP7132874B2 (en) 2022-09-07

Family

ID=72280051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033679A Active JP7132874B2 (en) 2019-02-27 2019-02-27 pressure control valve

Country Status (1)

Country Link
JP (1) JP7132874B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203099033U (en) 2013-02-06 2013-07-31 王树先 Magnetic valve
JP2014173714A (en) 2013-03-13 2014-09-22 Kayaba Ind Co Ltd Damping valve
JP2017057864A (en) 2015-09-14 2017-03-23 Kyb株式会社 Damping valve and buffer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366837A (en) * 1980-12-09 1983-01-04 Cummins Engine Company, Inc. Early warning bypass valve assembly
JPH02109039U (en) * 1989-02-20 1990-08-30
US5439022A (en) * 1994-02-14 1995-08-08 Summers; Daniel A. Lavage valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203099033U (en) 2013-02-06 2013-07-31 王树先 Magnetic valve
JP2014173714A (en) 2013-03-13 2014-09-22 Kayaba Ind Co Ltd Damping valve
JP2017057864A (en) 2015-09-14 2017-03-23 Kyb株式会社 Damping valve and buffer

Also Published As

Publication number Publication date
JP2020139523A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5952760B2 (en) Damping valve
JP5952762B2 (en) Damping valve
KR101914398B1 (en) Damping valve and damper
KR101754010B1 (en) Solenoid valve
US9810280B2 (en) Damping valve
KR101779307B1 (en) Damping valve
KR101756569B1 (en) Solenoid valve
WO2015050241A1 (en) Hydraulic shock-absorbing device
JP5952761B2 (en) Damping valve
JP2009222136A (en) Damping valve
JP7132874B2 (en) pressure control valve
JP6059548B2 (en) Solenoid valve
JP6059549B2 (en) Solenoid valve
WO2022070642A1 (en) Damping valve and shock absorber
JP7128759B2 (en) pressure control valve
JP5403772B2 (en) Damping valve
JP6514492B2 (en) Damping valve and shock absorber
JP5537697B2 (en) Damping valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R151 Written notification of patent or utility model registration

Ref document number: 7132874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350