JP7131803B2 - Preventive or therapeutic agent for diseases caused by Gb3 accumulation - Google Patents

Preventive or therapeutic agent for diseases caused by Gb3 accumulation Download PDF

Info

Publication number
JP7131803B2
JP7131803B2 JP2018093883A JP2018093883A JP7131803B2 JP 7131803 B2 JP7131803 B2 JP 7131803B2 JP 2018093883 A JP2018093883 A JP 2018093883A JP 2018093883 A JP2018093883 A JP 2018093883A JP 7131803 B2 JP7131803 B2 JP 7131803B2
Authority
JP
Japan
Prior art keywords
accumulation
reference example
therapeutic agent
fabry disease
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018093883A
Other languages
Japanese (ja)
Other versions
JP2019199413A (en
Inventor
通雄 朝日
紀一郎 友田
啓文 森原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Educational Foundation of Osaka Medical and Pharmaceutical University
Original Assignee
Educational Foundation of Osaka Medical and Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Educational Foundation of Osaka Medical and Pharmaceutical University filed Critical Educational Foundation of Osaka Medical and Pharmaceutical University
Priority to JP2018093883A priority Critical patent/JP7131803B2/en
Publication of JP2019199413A publication Critical patent/JP2019199413A/en
Application granted granted Critical
Publication of JP7131803B2 publication Critical patent/JP7131803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、Gb3蓄積起因性疾患の予防又は治療剤等に関する。 TECHNICAL FIELD The present invention relates to preventive or therapeutic agents for diseases caused by Gb3 accumulation.

グロボトリアオシルセラミド(Gb3)の体内における蓄積により、各種疾患が発症することが知られている。例えば、ファブリー病は、Gb3を分解する酵素(α-ガラクトシダーゼ(GLA))の遺伝子欠損や活性の低下によりGb3が体内に蓄積することにより引き起こされる、心機能障害、腎機能障害等の種々の異常を伴う疾患である。また、GLA遺伝子変異がなくとも血中Gb3濃度が上昇する場合があること、及び該上昇と心臓病とが関連することが報告されている。 Accumulation of globotriaosylceramide (Gb3) in the body is known to cause various diseases. For example, Fabry disease is caused by the accumulation of Gb3 in the body due to genetic deficiency or reduced activity of the enzyme that degrades Gb3 (α-galactosidase (GLA)), resulting in various abnormalities such as cardiac and renal dysfunction. is a disease with In addition, it has been reported that blood Gb3 concentration may be elevated even without GLA gene mutation, and that the elevation is associated with heart disease.

ファブリー病の治療薬としては、ファブリザイム等のGLA組み換えタンパク質が知られている。しかし、これは組み換えタンパク質であるが故に、1)高価である点、2)連続投与により抗GLA抗体が出現し治療効果が低下する点、及び3)病態が進行した患者に対して治療効果が低い点、等の問題点が指摘されている。 As therapeutic agents for Fabry disease, GLA recombinant proteins such as Fabrizyme are known. However, because it is a recombinant protein, it is 1) expensive, 2) anti-GLA antibodies appear with continuous administration, reducing the therapeutic effect, and 3) the therapeutic effect is limited in patients with advanced disease. Problems such as a low point have been pointed out.

クロロキンやその誘導体(ヒドロキシクロロキン等)は、マラリアや全身性エリテマトーデスの治療効果を有することが知られている(特許文献1)。しかし、これらがファブリー病等のGb3蓄積起因性疾患の治療効果を有することは、知られていない。 Chloroquine and its derivatives (such as hydroxychloroquine) are known to have a therapeutic effect on malaria and systemic lupus erythematosus (Patent Document 1). However, it is not known that they have a therapeutic effect on Gb3 accumulation-induced diseases such as Fabry disease.

特表2009-504743号公報Japanese Patent Publication No. 2009-504743

本発明は、低分子化合物を有効成分とする、Gb3蓄積起因性疾患の予防又は治療剤を提供することを課題とする。 An object of the present invention is to provide a prophylactic or therapeutic agent for Gb3 accumulation-induced diseases, which contains a low-molecular-weight compound as an active ingredient.

本発明者は上記課題に鑑みて鋭意研究を進めた結果、クロロキン及びクロロキン誘導体がGb3蓄積起因性疾患の予防又は治療に有効であることを見出した。この知見に基づいてさらに研究を進めた結果、本発明を完成させた。 As a result of intensive research in view of the above problems, the present inventors have found that chloroquine and chloroquine derivatives are effective in preventing or treating diseases caused by Gb3 accumulation. As a result of further research based on this knowledge, the present invention was completed.

即ち、本発明は、下記の態様を包含する:
項1. クロロキン及びクロロキン誘導体からなる群より選択される少なくとも1種を含有する、Gb3蓄積起因性疾患の予防又は治療剤.
項2. 前記クロロキン誘導体がヒドロキシクロロキンである、項1に記載の予防又は治療剤.
項3. 前記Gb3蓄積起因性疾患が、ファブリー病、及び心臓病からなる群より選択される少なくとも1種の疾患である、項1又は2に記載の予防又は治療剤.
項4. 前記Gb3蓄積起因性疾患が、ファブリー病である、項1~3のいずれかに記載の予防又は治療剤.
項5. 前記Gb3蓄積起因性疾患が心臓拍動異常を伴う疾患である、項1~4のいずれかに記載の予防又は治療剤.
That is, the present invention includes the following aspects:
Section 1. A prophylactic or therapeutic agent for diseases caused by Gb3 accumulation, containing at least one selected from the group consisting of chloroquine and chloroquine derivatives.
Section 2. Item 2. The preventive or therapeutic agent according to Item 1, wherein the chloroquine derivative is hydroxychloroquine.
Item 3. Item 3. The preventive or therapeutic agent according to Item 1 or 2, wherein the Gb3 accumulation-induced disease is at least one disease selected from the group consisting of Fabry disease and heart disease.
Section 4. Item 4. The preventive or therapeutic agent according to any one of Items 1 to 3, wherein the Gb3 accumulation-induced disease is Fabry disease.
Item 5. Item 5. The preventive or therapeutic agent according to any one of Items 1 to 4, wherein the Gb3 accumulation-induced disease is a disease accompanied by abnormal cardiac rhythm.

本発明によれば、低分子化合物を有効成分とする、Gb3蓄積起因性疾患の予防又は治療剤を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a prophylactic or therapeutic agent for diseases caused by Gb3 accumulation, containing a low-molecular-weight compound as an active ingredient.

(a)ファブリー病モデル心筋細胞の免疫染色(実施例1)の結果を示す。LAMP1はリソソームマーカー(LAMP1)の染色画像を示し、mTORはmTORの染色画像を示し、Mergeは両画像を重ねた画像を示す。-DOX/+DOXはファブリー病モデルiPSC(参考例2)をDOX存在下(+DOX)又は非存在下(-DOX)で培養し、心筋分化(参考例3)させて得られた心筋細胞を用いた場合を示し、HCQはヒドロキシクロロキンを培地に添加した場合を示す。(b)ファブリー病モデル心筋細胞の拍動評価(参考例4、実施例1)の結果を示す。縦軸は、弛緩持続時間(Relaxation Duration)を示す。横軸中、-D/+Dはファブリー病モデルiPSC(参考例2)をDOX存在下(+D)又は非存在下(-D)で培養し、心筋分化(参考例3)させて得られた心筋細胞を用いた場合を示し、HCQはヒドロキシクロロキンを培地に添加した場合を示し、Fzはファブリザイムを培地に添加した場合を示し、Mockは薬剤を添加しなかった場合を示す。(c)ファブリー病モデル心筋細胞の細胞面積測定(参考例4、実施例1)の結果を示す。縦軸は、細胞面積を示す。横軸中、-D/+Dはファブリー病モデルiPSC(参考例2)をDOX存在下(+D)又は非存在下(-D)で培養し、心筋分化(参考例3)させて得られた心筋細胞を用いた場合を示し、HCQはヒドロキシクロロキンを培地に添加した場合を示し、Mockは薬剤を添加しなかった場合を示す。(d)ファブリー病患者由来心筋細胞の拍動評価(実施例1)の結果を示す。縦軸は、弛緩持続時間(Relaxation Duration)を示す。横軸中、HCQはヒドロキシクロロキンを培地に添加した場合(数値は培地中濃度(単位μM))を示し、Fzはファブリザイムを培地に添加した場合を示し、Mockは薬剤を添加しなかった場合を示す。(a) shows the results of immunostaining of Fabry disease model cardiomyocytes (Example 1). LAMP1 shows the staining image of the lysosomal marker (LAMP1), mTOR shows the staining image of mTOR, and Merge shows the superimposed image of both images. -DOX/+DOX used cardiomyocytes obtained by culturing Fabry disease model iPSCs (Reference Example 2) in the presence (+DOX) or in the absence (-DOX) of DOX, followed by cardiomyocyte differentiation (Reference Example 3). HCQ indicates the case where hydroxychloroquine was added to the medium. (b) Shows the results of pulsation evaluation of Fabry disease model cardiomyocytes (Reference Example 4, Example 1). The vertical axis indicates the relaxation duration. In the horizontal axis, -D/+D are myocardium obtained by culturing Fabry disease model iPSCs (Reference Example 2) in the presence (+D) or in the absence of DOX (-D), followed by myocardial differentiation (Reference Example 3). HCQ indicates the case where hydroxychloroquine was added to the medium, Fz indicates the case when Fabrizyme was added to the medium, and Mock indicates the case when no drug was added. (c) shows the results of cell area measurement of Fabry disease model cardiomyocytes (Reference Example 4, Example 1). The vertical axis indicates cell area. In the horizontal axis, -D/+D are myocardium obtained by culturing Fabry disease model iPSCs (Reference Example 2) in the presence (+D) or in the absence of DOX (-D), followed by myocardial differentiation (Reference Example 3). Cells are used, HCQ indicates the case where hydroxychloroquine was added to the medium, and Mock indicates the case where no drug was added. (d) shows the results of pulsation evaluation of Fabry disease patient-derived cardiomyocytes (Example 1). The vertical axis indicates the relaxation duration. In the horizontal axis, HCQ indicates the case when hydroxychloroquine was added to the medium (values are concentrations in the medium (unit: μM)), Fz indicates the case when Fabrizyme was added to the medium, and Mock indicates the case when no drug was added. indicates

本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 As used herein, the expressions "contain" and "include" include the concepts "contain", "include", "consist essentially of" and "consist only of".

本発明は、その一態様において、クロロキン及びクロロキン誘導体からなる群より選択される少なくとも1種(本明細書において、「本発明の有効成分」と示すこともある。)を含有する、Gb3蓄積起因性疾患の予防又は治療剤(本明細書において、「本発明の薬剤」と示すこともある。)に関する。以下、これについて説明する。 In one aspect of the present invention, a Gb3 accumulation-causing The present invention relates to a prophylactic or therapeutic agent for sexually transmitted diseases (in this specification, it may be referred to as “the agent of the present invention”). This will be explained below.

1.有効成分
クロロキンは、下記式で表される化合物である。
1. The active ingredient chloroquine is a compound represented by the following formula.

Figure 0007131803000001
Figure 0007131803000001

クロロキン誘導体としては、特に制限されず、公知のものを採用することができる。クロロキン誘導体の中でも、好ましくはクロロキンのジアルキル(ジエチル)アミノ基におけるアルキル基が同一又は異なって炭素数1~4のアルキル基である誘導体(誘導体1)、クロロキン及び誘導体1のジアルキルアミノ基における1つ又は2つのアルキル基がヒドロキシ基で置換されてなる誘導体(誘導体2)が挙げられ、より好ましくは誘導体2が挙げられ、さらに好ましくはヒドロキシクロロキン: The chloroquine derivative is not particularly limited, and known derivatives can be employed. Among chloroquine derivatives, preferably a derivative (derivative 1) in which the alkyl group in the dialkyl(diethyl)amino group of chloroquine is the same or different and is an alkyl group having 1 to 4 carbon atoms, one of the dialkylamino groups of chloroquine and derivative 1 or derivatives in which two alkyl groups are substituted with hydroxy groups (derivative 2), more preferably derivative 2, and still more preferably hydroxychloroquine:

Figure 0007131803000002
Figure 0007131803000002

が挙げられる。 is mentioned.

本発明の有効成分としては、好ましくはクロロキン、ヒドロキシクロロキン等が挙げられ、より好ましくはヒドロキシクロロキンが挙げられる。 The active ingredient of the present invention preferably includes chloroquine, hydroxychloroquine and the like, and more preferably includes hydroxychloroquine.

本発明の有効成分には塩の形態も包含される。塩は、薬学的に許容される塩である限り特に限定されず、酸性塩、塩基性塩のいずれも採用することができる。例えば酸性塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩; 酢酸塩、プロピオン酸塩、酒石酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、クエン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩; アスパラギン酸塩、グルタミン酸塩等のアミノ酸塩等が挙げられる。また、塩基性塩の例として、ナトリウム塩、カリウム塩等のアルカリ金属塩; カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等が挙げられる。塩としては、酸性塩が好ましく、無機酸塩がより好ましく、硫酸塩、リン酸塩、塩酸塩等がさらに好ましい。 Salt forms are also included in the active ingredients of the present invention. Salts are not particularly limited as long as they are pharmaceutically acceptable salts, and both acid salts and basic salts can be employed. Examples of acid salts include mineral salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate; acetate, propionate, tartrate, fumarate, maleate, apple organic acid salts such as acid salts, citrates, methanesulfonates, and paratoluenesulfonates; and amino acid salts such as aspartates and glutamates. Examples of basic salts include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts; As the salt, acid salts are preferred, inorganic acid salts are more preferred, and sulfates, phosphates, hydrochlorides and the like are more preferred.

本発明の有効成分には溶媒和物の形態も包含される。溶媒は、薬学的に許容されるものであれば特に限定されず、例えば水、エタノール、グリセロール、酢酸等が挙げられる。 The active ingredients of the present invention also include solvate forms. The solvent is not particularly limited as long as it is pharmaceutically acceptable, and examples thereof include water, ethanol, glycerol, acetic acid and the like.

本発明の有効成分は、1種段毒であってもよいし、2種以上の組み合わせであってもよい。 The active ingredient of the present invention may be one class of poisons or a combination of two or more.

2.用途
本発明の有効成分は、Gb3蓄積起因性疾患の予防又は治療剤として有効である。
2. Use The active ingredient of the present invention is effective as a prophylactic or therapeutic agent for diseases caused by Gb3 accumulation.

Gb3蓄積起因性疾患としては、例えばGLA遺伝子変異によりGb3が蓄積することに起因するファブリー病(好ましくは心疾患を伴うファブリー病)が挙げられる。また、GLA遺伝子変異がなくとも血中Gb3濃度が上昇する場合があること、及び該上昇と心臓病とが関連することが報告されているところ、Gb3蓄積起因性疾患にはこのような心臓病も包含される。Gb3蓄積起因性疾患は、心臓拍動異常を伴う疾患であることが好ましい。 Diseases caused by Gb3 accumulation include, for example, Fabry disease (preferably Fabry disease associated with heart disease) caused by accumulation of Gb3 due to GLA gene mutation. In addition, it has been reported that blood Gb3 concentration may increase even without GLA gene mutation, and that the increase is associated with heart disease. is also included. The Gb3 accumulation-induced disease is preferably a disease associated with cardiac rhythm abnormalities.

本発明の薬剤は、本発明の有効成分を含有する限りにおいて特に制限されず、本発明の有効成分のみからなるものであってもよいし、必要に応じてさらに他の成分を含むものであってもよい。他の成分としては、薬学的に許容される成分であれば特に限定されるものではない。他の成分としては、薬理作用を有する成分のほか、添加剤も含まれる。添加剤としては、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、キレート剤等が挙げられる。 The drug of the present invention is not particularly limited as long as it contains the active ingredient of the present invention, and may consist of only the active ingredient of the present invention, or may further contain other ingredients as necessary. may Other ingredients are not particularly limited as long as they are pharmaceutically acceptable ingredients. Other components include additives as well as components having pharmacological action. Examples of additives include bases, carriers, solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, binders, disintegrants, lubricants, thickeners, humectants, colorants, perfumes, A chelating agent and the like are included.

本発明の薬剤の適用対象は特に限定されないが、哺乳動物では、例えば、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ、ブタ、ウマ、ウシ、ヒツジ、ヤギ、シカ等が挙げられる。 Subjects to which the drug of the present invention is applied are not particularly limited, but examples of mammals include humans, monkeys, mice, rats, dogs, cats, rabbits, pigs, horses, cows, sheep, goats, and deer.

本発明の薬剤は、任意の剤形、例えば錠剤(口腔内側崩壊錠、咀嚼可能錠、発泡錠、トローチ剤、ゼリー状ドロップ剤などを含む)、丸剤、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、ドライシロップ剤、液剤(ドリンク剤、懸濁剤、シロップ剤を含む)、ゼリー剤などの経口製剤形態や、注射用製剤(例えば、点滴注射剤(例えば点滴静注用製剤等)、静脈注射剤、筋肉注射剤、皮下注射剤、皮内注射剤)、外用剤(例えば、軟膏剤、パップ剤、ローション剤)、坐剤吸入剤、眼剤、眼軟膏剤、点鼻剤、点耳剤、リポソーム剤等の非経口製剤形態を採ることができる。 The agent of the present invention can be in any dosage form, such as tablets (including orally disintegrating tablets, chewable tablets, effervescent tablets, lozenges, jelly drops, etc.), pills, granules, fine granules, powders, Oral dosage forms such as hard capsules, soft capsules, dry syrups, liquids (including drinks, suspensions, and syrups), jelly, and injection preparations (e.g., drip injections (e.g., intravenous drip preparations, etc.), intravenous injections, intramuscular injections, subcutaneous injections, intradermal injections), external preparations (e.g., ointments, poultices, lotions), suppository inhalants, eye preparations, eye ointments, drops Parenteral formulations such as nose drops, ear drops, and liposomes can be used.

本発明の薬剤の投与経路としては、所望の効果が得られる限り特に制限されず、経口投与、経管栄養、注腸投与等の経腸投与、経静脈投与、経動脈投与、筋肉内投与、心臓内投与、皮下投与、皮内投与、腹腔内投与等の非経口投与等が挙げられる。 The route of administration of the agent of the present invention is not particularly limited as long as the desired effect is obtained, and includes oral administration, enteral administration such as tube feeding and enema administration, intravenous administration, transarterial administration, intramuscular administration, Examples include parenteral administration such as intracardiac administration, subcutaneous administration, intradermal administration, and intraperitoneal administration.

本発明の薬剤中の有効成分の含有量は、使用態様、適用対象、適用対象の状態等に左右されるものであり、限定はされないが、例えば0.0001~100重量%、好ましくは0.001~50重量%とすることができる。 The content of the active ingredient in the drug of the present invention depends on the mode of use, the target of application, the condition of the target of application, etc., and is not limited, but is for example 0.0001 to 100% by weight, preferably 0.001 to 50% by weight. %.

本発明の薬剤を動物に投与する場合の投与量は、薬効を発現する有効量であれば特に限定されず、通常は、有効成分の重量として、一般に経口投与の場合には一日あたり0.1~1000 mg/kg体重、好ましくは一日あたり0.5~500 mg/kg体重であり、非経口投与の場合には一日あたり0.01~100 mg/kg体重、好ましくは0.05~50 mg/kg体重である。上記投与量は、年齢、病態、症状により適宜増減することもできる。 When the drug of the present invention is administered to animals, the dosage is not particularly limited as long as it is an effective amount that exhibits efficacy. 1000 mg/kg body weight, preferably 0.5-500 mg/kg body weight per day, and 0.01-100 mg/kg body weight per day, preferably 0.05-50 mg/kg body weight for parenteral administration . The above dosage can be adjusted appropriately according to age, condition and symptoms.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited by these examples.

参考例1.AFD患者からのiPSCの作製
ファブリー病(Anderson-Fabry Disease:AFD)患者から採取された血液中の細胞を、造血サイトカイン(10 ng / ml IL-3(R&Dシステム)、100 ng / ml IL-6(R&Dシステム)、300 ng / ml SCF(R&Dシステム)、300ng / ml TPO(R&Dシステム)、300ng / mlのFlt3L(308-FK、R&D))を含有する培地StemSpan ACF(Stem Cell Technologies)で1週間培養することにより、選別し、増殖させた。続いて、培養した細胞を、フィーダーフリーの条件で、エピソームベクターを用いてiPS細胞(iPSC)に再プログラミングした。具体的には、Epstein-Barr nuclear antigen 1(EBNA1)およびヒトOCT4、SOX2、KLF4、LIN28、L-MYCおよびp53に対するshRNAをコードする4つのpCXLEエピソーム非組込みプラスミドを、50万個の細胞にヌクレオフェクトした(ヒトCD34細胞Nucleofectorキット、プログラムU-08、Lonza)。ヌクレオフェクトされた細胞を、iMatrix-511 silk(1ウェル1.5ml培地あたり5μl)(Nippi、Tokyo、Japan)で被覆した6ウェルプレートのウェル上に播種した。この際、培地として、Y-27632(10μM)(WAKO Pure Chemical Industries)を含有する造血培地を使用した。ヌクレオフェクションの後、1.5mlのStemFit AK02N(味の素)を2日おきに培養物に2回加えた。その後、iPSCコロニーが出現するまで、すべての培地に新鮮なStemFit AK02Nを1日おきに補充した。安定した細胞株を樹立するために、10個のコロニーを採取し、解析前に10継代以上培養した。患者特異的iPSCにおけるGLA変異は、変異を含むゲノム領域のPCRによる増幅、続いてサンガー配列決定によって確認した。
Reference example 1. Generation of iPSCs from AFD patients Hematopoietic cytokines (10 ng/ml IL-3 (R&D System), 100 ng/ml IL-6 (R&D Systems), 300 ng/ml SCF (R&D Systems), 300 ng/ml TPO (R&D Systems), 300 ng/ml Flt3L (308-FK, R&D)) in medium StemSpan ACF (Stem Cell Technologies) Selected and propagated by culturing for a week. The cultured cells were then reprogrammed into iPS cells (iPSCs) using episomal vectors under feeder-free conditions. Specifically, four pCXLE episomal non-integrating plasmids encoding Epstein-Barr nuclear antigen 1 (EBNA1) and shRNAs against human OCT4, SOX2, KLF4, LIN28, L-MYC and p53 were transfected into 500,000 cells. cells (Human CD34 Cell Nucleofector Kit, Program U-08, Lonza). Nucleofected cells were seeded onto wells of 6-well plates coated with iMatrix-511 silk (5 μl per well of 1.5 ml medium) (Nippi, Tokyo, Japan). At this time, a hematopoietic medium containing Y-27632 (10 μM) (WAKO Pure Chemical Industries) was used as the medium. After nucleofection, 1.5 ml of StemFit AK02N (Ajinomoto) was added twice to the culture every 2 days. All media were then supplemented with fresh StemFit AK02N every other day until iPSC colonies appeared. To establish stable cell lines, 10 colonies were picked and cultured for over 10 passages before analysis. GLA mutations in patient-specific iPSCs were confirmed by PCR amplification of the genomic region containing the mutation, followed by Sanger sequencing.

参考例2.ファブリー病モデルiPSCの作製
ヒト iPSCに対して CRISPR interference (CRISPRi) というゲノム編集システムを用いた。このシステムは、ヌクレアーゼ活性を欠損させた dead Cas9 (dCas9) と、転写抑制ドメインである KRAB の融合タンパク質を、標的遺伝子の転写開始領域へ誘導を行う single guided RNA (gRNA) を用いて標的遺伝子上に局在させ、標的遺伝子の転写発現を特異的に抑制するシステムである。この dCas9-KRAB をドキシサイクリン(DOX)依存的に発現抑制できるヒト iPSC株(CRIPSRi iPSC系統)を用いて、そこへGLA遺伝子を標的としたgRNAを導入し、DOX 添加依存的にGLA遺伝子の発現を抑制することができる細胞を作製した。具体的には以下のようにして行った。
Reference example 2. Generation of Fabry disease model iPSCs A genome editing system called CRISPR interference (CRISPRi) was used for human iPSCs. In this system, a fusion protein of dead Cas9 (dCas9) with deficient nuclease activity and KRAB, a transcriptional repression domain, is injected onto the target gene using a single guided RNA (gRNA) that guides it to the transcription initiation region of the target gene. It is a system that localizes to the target gene and specifically suppresses the transcriptional expression of the target gene. Using a human iPSC strain (CRIPSRi iPSC strain) that can suppress the expression of dCas9-KRAB in a doxycycline (DOX)-dependent manner, gRNA targeting the GLA gene was introduced into the strain, and the expression of the GLA gene was suppressed in a DOX-dependent manner. Cells were generated that could be suppressed. Specifically, it was carried out as follows.

<参考例2-1.ヒトiPSC培養>
iPSCは、iMatrix-511 silk(Nippi、Tokyo、Japan)でコーティングしたプレート上のStemFit AK02N(味の素)培地で維持し、Accutase(Innovative Cell Technologies)を使用して5~7日ごとに継代した。各継代後24時間は、ROCK阻害剤Y-27632(10μM)(和光純薬工業)を培地に添加した。
<Reference example 2-1. Human iPSC culture>
iPSCs were maintained in StemFit AK02N (Ajinomoto) medium on iMatrix-511 silk (Nippi, Tokyo, Japan) coated plates and passaged every 5-7 days using Accutase (Innovative Cell Technologies). Twenty-four hours after each passage, the ROCK inhibitor Y-27632 (10 μM) (Wako Pure Chemical Industries) was added to the medium.

<参考例2-2.gRNAの設計とgRNA発現ベクターへのクローニング>
GLA遺伝子の転写開始部位(TSS)の上流200bp付近を、sgRNAの設計領域とした。 TSSの位置は、UCSCゲノムブラウザ(https://genome.ucsc.edu)を用いて決定した。 gRNAオリゴは、CRISPRデザインウェブサイト(http://crispr.mit.edu)を用いて設計し、アニーリングし、gRNA発現ベクターpB-U6-CNKBにクローニングした。
<Reference example 2-2. Design of gRNA and cloning into gRNA expression vector>
The sgRNA was designed around 200 bp upstream of the transcription start site (TSS) of the GLA gene. TSS locations were determined using the UCSC genome browser (https://genome.ucsc.edu). gRNA oligos were designed using the CRISPR design website (http://crispr.mit.edu), annealed and cloned into the gRNA expression vector pB-U6-CNKB.

<参考例2-3.gRNAヌクレオフェクションおよびstable CRISPRiクローンの選択>
sgRNA発現ベクターを、正常な核型を有し、インビトロおよび奇形腫において3つの胚葉に分化する、よく特徴付けられたCRIPSRi iPSC系統にトランスフェクションし、続いてトランスフェクトされたiPSCをDOXで処理した。 DOX処理の開始から5~6日後、RNAを細胞から回収し、RT-qPCRによりGLA発現を調べた。得られた発現量に基づいて、GLAをDOX依存的に効率的に発現抑制することができる細胞株(GLA CRISPRi iPSC系統)を樹立した。
<Reference example 2-3. gRNA Nucleofection and Selection of Stable CRISPRi Clones>
sgRNA expression vectors were transfected into well-characterized CRIPSRi iPSC lines that have a normal karyotype and differentiate into three germ layers in vitro and in teratomas, followed by treatment of transfected iPSCs with DOX. . Five to six days after initiation of DOX treatment, RNA was harvested from cells and examined for GLA expression by RT-qPCR. Based on the obtained expression level, we established a cell line (GLA CRISPRi iPSC line) that can efficiently suppress the expression of GLA in a DOX-dependent manner.

参考例3.iPSCからの心筋分化と心筋純化精製
Y-27632とiMatrix-511 silk を含んだStemFit AK02Nを、12wellプレートに1wellあたり1mlまき、そこに4万から12万個の細胞数でiPSCを播種した。その後、3-4日間培養し、70-80%の細胞密度になるまで培養を行った。その後、6-12μM のCHIR99021で24時間処置し、心筋分化を開始させた。CHIR99021で処置後、48時間で5μMのIWP2で2日間処置を行った。基礎培地としては、分化6日目まではRPMI1640培地にインシュリンを含まないものを用い、それ以降の15日まではインシュリンを含んだRPMI1640培地を用いた。分化15日目で、心筋へ分化した細胞を0.25%のトリプシンではがした。10%FBSと4.5g/Lのグルコースを含んだDMEM培地で細胞懸濁を行った後、この培地で3日間培養した。iPSCから分化させた心筋は、乳酸培地を用いて、純化精製を行った。グルコースフリーDMEM培地に、4mMの乳酸とGlutamax、非必須アミノ酸を加え、乳酸培地とした。培地は、1日おきに5日間交換を行い、心筋の純化精製を行った。
Reference example 3. Myocardial differentiation from iPSCs and myocardial purification purification
1 ml of StemFit AK02N containing Y-27632 and iMatrix-511 silk was seeded in a 12-well plate, and iPSCs were seeded there at 40,000 to 120,000 cells. After that, it was cultured for 3-4 days until the cell density reached 70-80%. Subsequently, cells were treated with 6-12 μM CHIR99021 for 24 hours to initiate myocardial differentiation. Treatment with CHIR99021 was followed 48 hours by treatment with 5 μM IWP2 for 2 days. As the basal medium, RPMI1640 medium without insulin was used until day 6 of differentiation, and RPMI1640 medium containing insulin was used until day 15 thereafter. On day 15 of differentiation, the cells that had differentiated into myocardium were detached with 0.25% trypsin. After cells were suspended in DMEM medium containing 10% FBS and 4.5 g/L glucose, the cells were cultured in this medium for 3 days. Myocardium differentiated from iPSCs was purified using lactic acid medium. A lactic acid medium was prepared by adding 4 mM lactic acid, Glutamax, and non-essential amino acids to a glucose-free DMEM medium. The medium was exchanged every other day for 5 days to purify the myocardium.

参考例4.ファブリー病モデル心筋細胞の評価
ファブリー病モデルiPSC(参考例2)をDOX存在下で培養し、心筋分化(参考例3)させて得られたファブリー病モデル心筋細胞について、心筋細胞の拍動検出と動きの定量化を行った。具体的には、以下のようにして行った。
Reference example 4. Evaluation of Fabry disease model cardiomyocytes Fabry disease model iPSCs (Reference example 2) were cultured in the presence of DOX and myocardial differentiation (Reference example 3) was performed to obtain Fabry disease model cardiomyocytes. Quantification of movement was performed. Specifically, it was carried out as follows.

心筋の拍動は、Sony SI8000というビデオ顕微鏡を用いて測定を行った。ヒトiPSC由来心筋拍動のビデオイメージは、150fpsのフレーム率で、2048x2048 ピクセルの解像度で、10倍のレンズを用いて10秒間撮影した。Sony SI8000 解析ソフトでは、10秒間にとらえられた全ての心筋収縮運動から得られたベクトルを解析後、単位時間でのベクトル長の平均を時間-動き速度の図に変換することによって、機能的パラメーター(収縮速度、弛緩速度、収縮持続時間、弛緩持続時間、収縮距離、弛緩距離、収縮弛緩持続時間)を解析した。 Myocardial beating was measured using a Sony SI8000 video microscope. Video images of human iPSC-derived myocardial beats were captured at a frame rate of 150 fps, with a resolution of 2048x2048 pixels and a 10x lens for 10 seconds. The Sony SI8000 analysis software analyzes the vectors obtained from all myocardial contraction movements captured in 10 seconds, and then converts the average vector length per unit time into a time-motion velocity plot to obtain functional parameters. (Contraction speed, relaxation speed, contraction duration, relaxation duration, contraction distance, relaxation distance, contraction-relaxation duration) were analyzed.

その結果、DOX 誘導性にGLA の発現を抑制することによりGb3が蓄積した心筋細胞(ファブリー病モデル心筋細胞)において、心筋細胞の収縮・弛緩において異常が見られることが確認された(図1b)。 As a result, it was confirmed that cardiomyocytes with accumulated Gb3 (Fabry disease model cardiomyocytes) due to DOX-induced suppression of GLA expression exhibited abnormalities in cardiomyocyte contraction and relaxation (Fig. 1b). .

さらに得られた細胞を心筋特異的に発現するアクチニンに対する抗体を用いて蛍光染色した後、蛍光顕微鏡を用いて観察した。プレート上には複数の心筋細胞が集まって塊となっているところと、塊から解離して単独で存在する心筋細胞が存在した。画像解析ソフト、イメージJにより単独で存在する心筋細胞の細胞面積を解析した。その結果、GLA発現抑制により心筋の面積が拡大することを明らかにした(図1c)。 Furthermore, the obtained cells were fluorescently stained using an antibody against actinin that is specifically expressed in myocardium, and then observed using a fluorescence microscope. On the plate, a plurality of myocardial cells were aggregated to form clumps, and some myocardial cells were dissociated from the clumps and existed alone. The cell area of singly present cardiomyocytes was analyzed using image analysis software Image J. As a result, it was revealed that the myocardial area was expanded by suppressing GLA expression (Fig. 1c).

実施例1.Gb3蓄積起因性の異常の治療作用の評価
心筋細胞におけるGb3蓄積起因性の異常に対して、ヒドロキシクロロキンが与える影響を調べた。具体的には以下のようにして行った。
Example 1. Evaluation of therapeutic effect on Gb3 accumulation-induced abnormalities The effect of hydroxychloroquine on Gb3 accumulation-induced abnormalities in cardiomyocytes was investigated. Specifically, it was carried out as follows.

<実施例1-1.免疫染色>
ファブリー病モデルiPSC(参考例2)をDOX存在下又は非存在下で培養し、心筋分化(参考例3)させて得られた心筋細胞の培地にヒドロキシクロロキンを添加(培地中濃度:0.3 μM)して4から5日間経過後に、リソソームマーカー(LAMP1)及びmTORを免疫染色した。具体的には次のようにして行った。心筋細胞を冷4%パラホルムアルデヒドで10分間固定し、リン酸緩衝食塩水(PBS)中の0.1%Triton X-100で10分間透過処理し、PBS中の2.5%スキムミルクで、室温で30分間ブロッキングした。細胞を、抗LAMP1抗体及び抗mTOR抗体と反応させた。PBSで2回洗浄した後、細胞をPBS中2.5%スキムミルクと共に短時間インキュベートした。次に、二次抗体で細胞を染色した。
<Example 1-1. Immunostaining>
Fabry disease model iPSCs (Reference Example 2) were cultured in the presence or absence of DOX, and cardiomyocytes were differentiated (Reference Example 3). Hydroxychloroquine was added to the culture medium (concentration in the medium: 0.3 μM). After 4 to 5 days, the lysosomal marker (LAMP1) and mTOR were immunostained. Specifically, it was carried out as follows. Cardiomyocytes were fixed with cold 4% paraformaldehyde for 10 minutes, permeabilized with 0.1% Triton X-100 in phosphate-buffered saline (PBS) for 10 minutes, and blocked with 2.5% skimmed milk in PBS for 30 minutes at room temperature. did. Cells were reacted with anti-LAMP1 and anti-mTOR antibodies. After washing twice with PBS, cells were briefly incubated with 2.5% skimmed milk in PBS. Cells were then stained with a secondary antibody.

<実施例1-2.ファブリー病モデル心筋細胞の拍動評価>
ファブリー病モデルiPSC(参考例2)をDOX非存在下で培養し心筋分化(参考例3)させて得られた心筋細胞の拍動、及びファブリー病モデルiPSC(参考例2)をDOX存在下で培養し心筋分化させて得られた心筋細胞に対してヒドロキシクロロキン又はファブリザイムを添加(培地中濃度:ヒドロキシクロロキン0.3 μM、ファブリザイム5μg/ml)して4から5日間経過後の拍動を、参考例4と同様にして測定した。
<Example 1-2. Beating evaluation of Fabry disease model cardiomyocytes>
Cardiomyocyte pulsation obtained by culturing Fabry disease model iPSCs (Reference Example 2) in the absence of DOX and causing cardiomyocyte differentiation (Reference Example 3), and Fabry disease model iPSCs (Reference Example 2) in the presence of DOX Add hydroxychloroquine or Fabrizyme (concentration in medium: hydroxychloroquine 0.3 μM, Fabrizyme 5 μg/ml) to cardiomyocytes obtained by culture and myocardial differentiation. It was measured in the same manner as in Reference Example 4.

<実施例1-3.ファブリー病モデル心筋細胞の細胞面積>
ファブリー病モデルiPSC(参考例2)をDOX非存在下で培養し心筋分化(参考例3)させて得られた心筋細胞の細胞面積、及びファブリー病モデルiPSC(参考例2)をDOX存在下で培養し心筋分化させて得られた心筋細胞に対してヒドロキシクロロキンを添加(培地中濃度:ヒドロキシクロロキン0.3 μM)して5日間経過後の心筋の細胞面積を、参考例4と同様にして測定した。
<Example 1-3. Cell area of Fabry disease model cardiomyocytes>
The cell area of cardiomyocytes obtained by culturing Fabry disease model iPSCs (Reference Example 2) in the absence of DOX and causing cardiomyocyte differentiation (Reference Example 3), and Fabry disease model iPSCs (Reference Example 2) in the presence of DOX. Hydroxychloroquine was added (concentration in medium: hydroxychloroquine 0.3 μM) to cardiomyocytes obtained by culture and myocardial differentiation, and the cell area of the myocardium was measured in the same manner as in Reference Example 4 after 5 days. .

<実施例1-4.ファブリー病患者由来心筋細胞の拍動評価>
ファブリー病患者由来iPSC(参考例1)を心筋分化(参考例3)させて得られた心筋細胞に対してヒドロキシクロロキン又はファブリザイムを添加(培地中濃度:ヒドロキシクロロキン 0.1 から1μM、ファブリザイム 5μg/ml)して4から5日間経過後の拍動を、参考例4と同様にして測定した。
<Example 1-4. Beating evaluation of cardiomyocytes derived from patients with Fabry disease>
Hydroxychloroquine or Fabrizyme was added to cardiomyocytes obtained by myocardial differentiation of Fabry disease patient-derived iPSCs (Reference Example 1) (Reference Example 3) (concentration in medium: hydroxychloroquine 0.1 to 1 μM, Fabrizyme 5 μg/ ml) and after 4 to 5 days, the pulsation was measured in the same manner as in Reference Example 4.

<実施例1-5.結果>
免疫染色の結果を図1aに示し、細胞面積測定の結果を図1cに示し、拍動評価の結果を図1b及び図1dに示す。GLA を DOX 誘導性に抑制した心筋細胞では、免疫染色の結果、ライソソームにおける mTOR の局在が減少していたが、ヒドロキシクロロキン処置によって、これらの共局在が増加していた(図1a)。また、ファブリー病モデルiPSC(参考例2)を心筋分化させた場合及びファブリー病患者由来iPSC(参考例1)を心筋分化させた場合のいずれの場合も、拍動異常(Relaxation Durationの増加)が、ヒドロキシクロロキンにより改善した(図1b及び図1d)。この改善の程度は、既存の治療薬であるファブリザイムと同程度であった。さらにGLA発現抑制依存的に心筋は肥大化した。この肥大化はヒドロキシクロロキン処理により抑えられた(図1c)。
<Example 1-5. Results>
The results of immunostaining are shown in FIG. 1a, the results of cell area measurements are shown in FIG. 1c, and the results of pulsatile assessment are shown in FIGS. 1b and 1d. Cardiomyocytes with DOX-induced repression of GLA showed decreased localization of mTOR in lysosomes as a result of immunostaining, whereas hydroxychloroquine treatment increased their colocalization (Fig. 1a). In both cases of myocardial differentiation of Fabry disease model iPSCs (Reference Example 2) and myocardial differentiation of iPSCs derived from Fabry disease patients (Reference Example 1), abnormal beating (increased Relaxation Duration) was observed. , improved by hydroxychloroquine (Figs. 1b and 1d). The degree of improvement was similar to that of Fabrizyme, an existing therapeutic agent. Furthermore, myocardial hypertrophy was dependent on GLA expression suppression. This hypertrophy was suppressed by hydroxychloroquine treatment (Fig. 1c).

Claims (4)

ヒドロキシクロロキンを含有する、Gb3蓄積起因性疾患の予防又は治療剤。 A prophylactic or therapeutic agent for diseases caused by Gb3 accumulation, containing hydroxychloroquine. 前記Gb3蓄積起因性疾患が、ファブリー病、及びGb3蓄積起因性心臓病からなる群より選択される少なくとも1種の疾患である、請求項1に記載の予防又は治療剤。 2. The prophylactic or therapeutic agent according to claim 1, wherein the Gb3 accumulation-induced disease is at least one disease selected from the group consisting of Fabry disease and Gb3 accumulation-induced heart disease. 前記Gb3蓄積起因性疾患が、ファブリー病である、請求項1又は2に記載の予防又は治療剤。 3. The preventive or therapeutic agent according to claim 1 or 2, wherein the Gb3 accumulation-induced disease is Fabry disease. 前記Gb3蓄積起因性疾患がGb3蓄積起因性心臓拍動異常を伴う疾患である、請求項1~3のいずれかに記載の予防又は治療剤。 The prophylactic or therapeutic agent according to any one of claims 1 to 3, wherein the Gb3 accumulation-induced disease is a disease accompanied by Gb3 accumulation-induced cardiac rhythm abnormality.
JP2018093883A 2018-05-15 2018-05-15 Preventive or therapeutic agent for diseases caused by Gb3 accumulation Active JP7131803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018093883A JP7131803B2 (en) 2018-05-15 2018-05-15 Preventive or therapeutic agent for diseases caused by Gb3 accumulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093883A JP7131803B2 (en) 2018-05-15 2018-05-15 Preventive or therapeutic agent for diseases caused by Gb3 accumulation

Publications (2)

Publication Number Publication Date
JP2019199413A JP2019199413A (en) 2019-11-21
JP7131803B2 true JP7131803B2 (en) 2022-09-06

Family

ID=68611308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093883A Active JP7131803B2 (en) 2018-05-15 2018-05-15 Preventive or therapeutic agent for diseases caused by Gb3 accumulation

Country Status (1)

Country Link
JP (1) JP7131803B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058381A1 (en) 2005-11-18 2007-05-24 Tokyo Metropolitan Organization For Medical Research Novel highly functional enzyme having modified substrate-specificity
WO2009114729A2 (en) 2008-03-14 2009-09-17 Irm Llc Compounds, compositions and methods for treating lysosomal storage diseases and disorders
WO2012147933A1 (en) 2011-04-28 2012-11-01 国立大学法人大阪大学 Pharmaceutical composition for treating lysosomal storage disease
US20130210861A1 (en) 2011-12-09 2013-08-15 Ashutosh M. SHUKLA Methods and compositions for managing cardiovascular disease associated with chronic kidney disease
US20160151347A1 (en) 2013-07-10 2016-06-02 Isis Innovation Ltd Pharmaceutical compounds
WO2017154675A1 (en) 2016-03-11 2017-09-14 国立大学法人大阪大学 Agent for treating fabry disease, analgesic for external use and perspiration accelerator
JP2018509415A (en) 2015-03-12 2018-04-05 マイクレオス ヒューマン ヘルス ビー.ブイ.Micreos Human Health B.V. How to treat bacterial infections

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058381A1 (en) 2005-11-18 2007-05-24 Tokyo Metropolitan Organization For Medical Research Novel highly functional enzyme having modified substrate-specificity
WO2009114729A2 (en) 2008-03-14 2009-09-17 Irm Llc Compounds, compositions and methods for treating lysosomal storage diseases and disorders
WO2012147933A1 (en) 2011-04-28 2012-11-01 国立大学法人大阪大学 Pharmaceutical composition for treating lysosomal storage disease
US20130210861A1 (en) 2011-12-09 2013-08-15 Ashutosh M. SHUKLA Methods and compositions for managing cardiovascular disease associated with chronic kidney disease
US20160151347A1 (en) 2013-07-10 2016-06-02 Isis Innovation Ltd Pharmaceutical compounds
JP2018509415A (en) 2015-03-12 2018-04-05 マイクレオス ヒューマン ヘルス ビー.ブイ.Micreos Human Health B.V. How to treat bacterial infections
WO2017154675A1 (en) 2016-03-11 2017-09-14 国立大学法人大阪大学 Agent for treating fabry disease, analgesic for external use and perspiration accelerator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BMC Nephrology,2017年,Vol.18, Article:157,p.1-7,doi:10.1186/s12882-017-0571-0
大阪医科大学 研究支援センター年報,2018年08月31日,第17号,p.42-47
日本内科学会雑誌,Vol.103, No.2,2014年,p.293-298

Also Published As

Publication number Publication date
JP2019199413A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US10682344B2 (en) Method of treating liver fibrosis
KR100286785B1 (en) Pharmaceutical compositions for reducing tissue loss associated with ischemia in tissues other than the heart, including glycogen phosphorylase inhibitors
JP2021514345A (en) 1,2,4-oxadiazole compounds as inhibitors of the CD47 signaling pathway
CN102548986A (en) Aminopyrrolidinone derivatives and uses thereof
KR20150018846A (en) Heterocycles capable of modulating t-cell responses, and methods of using same
TW202039522A (en) Cyclic pantetheine derivatives and uses thereof
RU2521286C2 (en) Sphingosine-1-phosphate (s1p) receptor modulators and using them for treating muscular tissue inflammation
KR20010034861A (en) HYDROXAMIC acid derivatives as antibacterials
WO2020071519A1 (en) Disease treatment drug based on mesenchymal-stem-cell mobilization
JP7131803B2 (en) Preventive or therapeutic agent for diseases caused by Gb3 accumulation
AU2011334592C1 (en) Methods of treating eye diseases associated with inflammation and vascular proliferation
TW202200537A (en) Novel hydroquinone derivatives
JPWO2014010206A1 (en) Immune tolerance inducer
US20160220677A1 (en) Stable aqueous compositions of prostglandin agonist prodrugs and methods for use thereof
EP3017818B1 (en) Sulfasalazine for use in the treatment of charcot marie tooth disease
US11185548B2 (en) Inhibitors of cytochrome P450 family 7 subfamily B member 1 (CYP7B1) for use in treating diseases
US20130172346A1 (en) Use of kynurenic acid amide derivatives for the treatment of huntington&#39;s disease
EP3323415A1 (en) Treatment of neurodegenerative diseases
JP4646907B2 (en) 2-aminobenzoyl derivatives
WO2020221274A1 (en) Method for treating cough by using diaminopyrimidine compound
US10647677B2 (en) Analogues of hydroxychloroquine (HCQ) without retinal toxicity
US6576654B1 (en) Method for the treatment of cystic fibrosis
US7179820B2 (en) Piperidinyl prostaglandin E analogs
Sinha et al. Plasmid-induced loss of virulence in Vibrio cholerae
JP2006514015A (en) Combinations of diamide derivatives and immunosuppressive agents for inducing immune tolerance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7131803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150