JP7130762B2 - Wave power generation system and its control method - Google Patents

Wave power generation system and its control method Download PDF

Info

Publication number
JP7130762B2
JP7130762B2 JP2020547102A JP2020547102A JP7130762B2 JP 7130762 B2 JP7130762 B2 JP 7130762B2 JP 2020547102 A JP2020547102 A JP 2020547102A JP 2020547102 A JP2020547102 A JP 2020547102A JP 7130762 B2 JP7130762 B2 JP 7130762B2
Authority
JP
Japan
Prior art keywords
hydraulic
fluid
power
tension
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020547102A
Other languages
Japanese (ja)
Other versions
JP2021515868A (en
Inventor
ヨン ジュン ソン
Original Assignee
インジン,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インジン,インコーポレイティド filed Critical インジン,インコーポレイティド
Publication of JP2021515868A publication Critical patent/JP2021515868A/en
Application granted granted Critical
Publication of JP7130762B2 publication Critical patent/JP7130762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/1855Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem where the connection between wom and conversion system takes tension and compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/1865Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem where the connection between wom and conversion system takes tension only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/504Kinematic linkage, i.e. transmission of position using flat or V-belts and pulleys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

以下の本発明は、波力発電システム及びそのシステムを制御する方法に関する。 The present invention below relates to a wave power system and a method of controlling the system.

一般に、電気を発生させる発電方法として、水力発電、火力発電、原子力発電などが挙げられるが、このような発電方法は、大規模な発電設備が求められる。それだけでなく、火力発電の場合、発電設備を可動させるために膨大な量の石油又は石炭エネルギーが必須的に供給されなければならないため、石油、石炭資源が枯渇している現時点では多くの困難が予想されており、公害も大きい問題となっている。また、原子力発電の場合、放射能の流出と核廃棄物処理という深刻な問題を抱いている。水力発電の場合に水の落差を使用するため、大規模のダムを建設しなければならないことから、周囲環境に変化を招くだけではなく、水資源の豊かな河川などが前提にならなければ建設されることができないなど、環境的な制約のある問題がある。従って、このような一般的な発電方法によって、安価、安全、かつ環境にやさしい画期的な発電方法が要求されているが、そのうちの1つが波の動きを用いて電力を生産できるという波力発電である。 Generally, hydroelectric power generation, thermal power generation, nuclear power generation, and the like are mentioned as power generation methods for generating electricity, but such power generation methods require large-scale power generation facilities. In addition, in the case of thermal power generation, a huge amount of oil or coal energy must be supplied in order to operate the power generation equipment, so there are many difficulties at present when oil and coal resources are depleted. As expected, pollution is also a major problem. In addition, nuclear power generation poses serious problems of radioactive release and nuclear waste disposal. In the case of hydroelectric power generation, a large-scale dam must be constructed in order to use the difference in water. There are environmental constraints, such as the inability to Therefore, an epoch-making power generation method that is cheap, safe, and environmentally friendly is demanded by such a general power generation method. power generation.

潮満差を用いて電力を生産する潮力発電と、海水のはやい流速を用いて電力を生産する潮流発電、及び波の動きを用いて電力を生産する波力発電が注目されている。特に、波力発電は、絶えずに発生する波の動きを用いて電力を生産する技術であって、持続的にエネルギーを生産することができる。波力発電は、波による海水面の周期的な上下運動と水の粒子の前後運動をエネルギー変換装置を用いて機械的な回転運動又は軸方向運動に変換させた後も電力に変換させる。波力発電方式として、波高の高低によるエネルギーを1次変換する方式により様々に分類し、代表的に、水面に浮かんでいる浮標が波の動きにより上下又は回転運動することで発電機を作動させる可動物体型方式が挙げられる。 Tidal power generation that uses the tidal difference, tidal power generation that uses the high velocity of seawater, and wave power generation that uses the movement of waves are attracting attention. In particular, wave power generation is a technology that uses the motion of waves that are constantly generated to produce electricity, and can produce energy in a sustainable manner. Wave power generation converts the periodic up-and-down motion of sea surface caused by waves and back-and-forth motion of water particles into mechanical rotational motion or axial motion using an energy conversion device, and then converts it into electric power. As a wave power generation method, it is classified into various methods according to the method of primary conversion of energy due to the height of the wave.Typically, the buoy floating on the surface of the water moves up and down or rotates due to the movement of the wave to operate the generator. A movable object type method can be mentioned.

可動物体型の場合、波の動きにより動いている物体、例えば、浮標の動きが伝達され、これを往復または回転運動に変換させてから発電機を介して発電する方式であって、その一例が特許文献1(韓国特許公開第10-2015-00120896号公報)又は特許文献2(日本特許第5260092号号公報)に開示されている。 In the case of the movable object type, the motion of a moving object, such as a buoy, is transmitted by the motion of waves, converted into reciprocating or rotating motion, and then generated by a generator. It is disclosed in Patent Document 1 (Korean Patent Publication No. 10-2015-00120896) or Patent Document 2 (Japanese Patent No. 5260092).

但し、波の特性上、不規則的な運動エネルギーが提供されることから、これを用いて安定的にエネルギーを生産するためには、波エネルギーを伝達する運動伝達部及び伝達された運動エネルギーを発電に用いられる回転運動エネルギーに変換するイコライザーにおいて、電力を効率よく生産できるシステム及び制御方法が求められている。 However, due to the characteristics of waves, irregular kinetic energy is provided. There is a demand for a system and control method that can efficiently produce electric power in an equalizer that converts into rotational kinetic energy used for power generation.

前述した背景技術で説明された内容は、発明者が本発明の導出過程で保持したり習得したものであり、必ず本発明の出願前に一般公衆に公開された公知技術であると認められたものとは言えない。 The content described in the background art described above was held or learned by the inventor during the derivation process of the present invention, and was recognized as a publicly known technology disclosed to the general public prior to the filing of the present invention. It's hard to say.

韓国特許公開第10-2015-00120896号公報Korean Patent Publication No. 10-2015-00120896 特許第5260092号公報Japanese Patent No. 5260092

実施形態によれば、エネルギー変換の効率を向上させ、高い制御自由度を有する波力発電設備の制御システム及び方法を提示することにある。 According to the embodiments, the object is to provide a control system and method for a wave power generation facility that improves the efficiency of energy conversion and has a high degree of control freedom.

実施形態で解決しようとする課題は、以上で言及した課題に制限されることなく、言及されない更なる課題は下記の記載によって当業者に明確に理解されるものである。 The problems to be solved by the embodiments are not limited to the problems mentioned above, and further problems not mentioned will be clearly understood by those skilled in the art from the following description.

上述した解決しようとする課題を達成するための実施形態によれば、波力発電システムは、波に浮遊する可動物体の6自由度運動によって発生する運動エネルギーを伝達する張力伝達部材と、前記張力伝達部材に接続されて油圧を発生させる油圧発生部を含む動力変換部と、前記張力伝達部材に接続されて前記張力伝達部材の張力を保持するイコライザーとを含む。そして、前記動力変換部は、前記張力伝達部材から張力が印加されれば、前記張力によって前記油圧発生部が第1方向に流体を流動させ、前記張力伝達部材から張力が印加されなければ、前記イコライザーによって前記油圧発生部が第2方向に流体を流動させる。 According to an embodiment for achieving the above-described problem to be solved, a wave power generation system includes a tension transmission member that transmits kinetic energy generated by a six-degree-of-freedom motion of a movable object floating in waves; A power converter including a hydraulic pressure generator that is connected to a transmission member and generates hydraulic pressure, and an equalizer that is connected to the tension transmission member and retains the tension of the tension transmission member. In the power conversion unit, when tension is applied from the tension transmission member, the hydraulic pressure generation unit causes the fluid to flow in the first direction due to the tension, and when tension is not applied from the tension transmission member, the An equalizer causes the hydraulic pressure generator to flow fluid in a second direction.

一側面によると、前記動力変換部は、前記油圧発生部と、電力を生産するための電力生産部に接続される油圧駆動部と、前記油圧発生部に流体を流動させる第1油圧回路と、前記油圧駆動部に流体を流動させる第2油圧回路と、前記第1油圧回路と前記第2油圧回路との間に備えられ、前記流体の方向を切り替える整流回路と、を含む。前記整流回路は、前記第1油圧回路から第1方向に流体が流動するときと反対方向である第2方向に流体が流動するとき、前記流体の流れ方向を切り替えて前記第2油圧回路で同じ方向に流体を流動させることができる。例えば、前記整流回路は、ブリッジ形態に配置される複数の分岐流路を含み、前記複数の分岐流路上にそれぞれチェック弁が備えられることができる。また、前記整流回路で互いに対向するように分岐流路上のチェック弁は互いに同じ方向に配置され、互いに隣接する分岐流路上のチェック弁は互いに反対方向に配置されることができる。 According to one aspect, the power conversion unit includes the hydraulic pressure generating unit, a hydraulic driving unit connected to the power generating unit for producing electric power, a first hydraulic circuit for flowing fluid to the hydraulic pressure generating unit; a second hydraulic circuit for causing fluid to flow to the hydraulic drive; and a rectifying circuit provided between the first hydraulic circuit and the second hydraulic circuit for switching the direction of the fluid. The rectifying circuit switches the flow direction of the fluid when the fluid flows in the second direction, which is opposite to the direction when the fluid flows in the first direction from the first hydraulic circuit, and performs the same flow in the second hydraulic circuit. A fluid can flow in a direction. For example, the rectifying circuit may include a plurality of branch channels arranged in a bridge configuration, and check valves may be provided on the plurality of branch channels, respectively. Also, the check valves on the branch channels may be arranged in the same direction so as to face each other in the rectifying circuit, and the check valves on adjacent branch channels may be arranged in opposite directions.

一側面によると、前記油圧発生部と前記油圧駆動部はそれぞれ油圧モータであってもよい。 According to one aspect, the hydraulic pressure generator and the hydraulic driver may each be a hydraulic motor.

一側面によると、前記第2油圧回路は、前記油圧駆動部の前後に高圧側のアキュムレータと低圧側のアキュムレータが備えられることができる。前記第2油圧回路は複数のチェック弁が備えられ、前記チェック弁は、前記油圧駆動部の前後に備えられることができる。 According to one aspect, the second hydraulic circuit may be provided with a high pressure side accumulator and a low pressure side accumulator before and after the hydraulic drive. A plurality of check valves may be provided in the second hydraulic circuit, and the check valves may be provided before and after the hydraulic drive unit.

一側面によると、前記イコライザーは、油圧モータ、油圧ポンプ、油圧シリンダ、電動モータ、ガススプリング、機械ばねのいずれか1つを含むことができる。 According to one aspect, the equalizer can include any one of a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, and a mechanical spring.

一側面によると、前記張力伝達部材は、前記可動物体の3ヶ所以上の位置に接続されて複数備えられることができる。 According to one aspect, a plurality of the tension transmission members may be connected to three or more positions of the movable object.

一側面によると、前記複数の張力伝達部材が結合される変換体が備えられ、前記動力変換部は前記変換体の一方に備えられ、前記イコライザーは前記変換体の他方に備えられることができる。前記複数の張力伝達部材にそれぞれイコライザーが備えられたり、前記複数の張力伝達部材が1つのイコライザーと接続されることができる。 According to one aspect, a conversion body may be provided to which the plurality of tension transmission members are coupled, the power conversion section may be provided on one side of the conversion body, and the equalizer may be provided on the other side of the conversion body. An equalizer may be provided for each of the plurality of tension transmission members, or the plurality of tension transmission members may be connected to one equalizer.

一側面によると、前記変換体の回転速度を増速させる増速機を含み、前記増速機は、前記変換体と前記動力変換部との間に備えられることができる。ここで、前記増速機は、あらかじめ設定された基準よりも低いギア比で形成されることができる。 According to one aspect, the speed increaser may be included to increase the rotational speed of the converter, and the speed increaser may be provided between the converter and the power converter. Here, the gearbox can be formed with a gear ratio lower than a preset standard.

一方、前述した解決しようとする課題を達成するための実施形態によると、波力発電システムは、波に浮遊するがら波のより動く可動物体と、前記可動物体の6自由度運動が可能なように前記可動物体の少なくとも3ヶ所以上の位置に接続され、前記可動物体の運動エネルギーを一方向に伝達する複数の張力伝達部材を含む運動伝達部と、前記複数の張力伝達部材が接続される変換体と、前記変換体の一側に備えられるイコライザーと、前記変換体の他側に備えられ油圧を発生させる動力変換部と、前記動力変換部に接続されて電力を生産する電力生産部とを含み、前記張力伝達部材が引っ張られれば、前記イコライザーにエネルギーが格納され、前記動力変換部が第1方向に流体を流動させることで前記電力生産部で電力が生産され、前記張力伝達部材が引っ張られなければ、前記イコライザーに格納されたエネルギーによって前記動力変換部が第2方向に流体を流動させることで前記電力生産部で電力が生産される。 On the other hand, according to the embodiment for achieving the above-described problem to be solved, the wave power generation system includes a movable object that floats on the waves and moves more in the waves, and a movable object that is capable of six degrees of freedom motion. a motion transmission unit including a plurality of tension transmission members connected to at least three positions of the movable object and transmitting kinetic energy of the movable object in one direction; and a conversion in which the plurality of tension transmission members are connected to an equalizer provided on one side of the conversion body; a power conversion section provided on the other side of the conversion body for generating hydraulic pressure; and an electric power production section connected to the power conversion section to produce electric power. When the tension transmission member is pulled, energy is stored in the equalizer, the power conversion unit causes the fluid to flow in the first direction to produce electric power in the power generation unit, and the tension transmission member is pulled. If not, the energy stored in the equalizer causes the power converter to cause the fluid to flow in the second direction, thereby producing power in the power generator.

一側面によると、前記動力変換部は、前記張力伝達部材に接続されて油圧を発生させる油圧発生部と、前記電力生産部に接続される油圧駆動部と、前記油圧発生部に流体を流動させる第1油圧回路と、前記油圧駆動部に流体を流動させる第2油圧回路と、前記第1油圧回路と前記第2油圧回路との間に備えられ、前記流体の方向を切り替える整流回路とを含むことができる。前記整流回路は、前記第1油圧回路から第1方向に流体が流動するときと反対方向である第2方向に流体が流動するとき、前記流体の流れ方向を切り替えて前記第2油圧回路で同じ方向に流体を流動させることができる。 According to one aspect, the power conversion unit includes a hydraulic pressure generation unit connected to the tension transmission member to generate hydraulic pressure, a hydraulic drive unit connected to the power generation unit, and a fluid flow to the hydraulic pressure generation unit. a first hydraulic circuit, a second hydraulic circuit that causes fluid to flow to the hydraulic drive unit, and a rectifier circuit that is provided between the first hydraulic circuit and the second hydraulic circuit and switches the direction of the fluid. be able to. The rectifying circuit switches the flow direction of the fluid when the fluid flows in the second direction, which is opposite to the direction when the fluid flows in the first direction from the first hydraulic circuit, and performs the same flow in the second hydraulic circuit. A fluid can flow in a direction.

一側面によると、前記第2油圧回路は、前記油圧駆動部の前後に高圧側のアキュムレータと低圧側のアキュムレータが備えられることができる。 According to one aspect, the second hydraulic circuit may be provided with a high pressure side accumulator and a low pressure side accumulator before and after the hydraulic drive.

一側面によると、前記イコライザーは、油圧モータ、油圧ポンプ、油圧シリンダ、電動モータ、ガススプリング、機械ばねのいずれか1つを含むことができる。 According to one aspect, the equalizer can include any one of a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, and a mechanical spring.

一方、前述した解決しようとする課題を達成するための実施形態によると、波力発電システムの制御方法は、波に浮遊する可動物体の6自由度運動によって張力伝達部材を介して張力が印加されれば、動力変換部が流体を第1方向に流動させ、前記動力変換部の整流回路が前記第1方向に流動される流体を油圧駆動部に流動させ、前記張力伝達部材で張力が加えられなければ、イコライザーによって前記動力変換部が流体を第2方向に流動させ、前記整流回路が前記第2方向に流動される流体の方向を切り替えて前記油圧駆動部に流動させ、前記油圧駆動部に接続された電力生産部で電力が生産される。 On the other hand, according to the embodiment for achieving the above-mentioned problem to be solved, a control method for a wave power generation system is provided in which tension is applied via a tension transmission member by the six-degree-of-freedom motion of a movable object floating in waves. Then, the power conversion unit causes the fluid to flow in the first direction, the rectifying circuit of the power conversion unit causes the fluid flowing in the first direction to flow to the hydraulic drive unit, and the tension transmission member applies tension. If not, the power conversion unit causes the fluid to flow in the second direction by the equalizer, the rectifier circuit switches the direction of the fluid flowing in the second direction to flow to the hydraulic drive unit, and the fluid to the hydraulic drive unit. Electric power is produced in the connected power production unit.

以上で説明したように、実施形態によれば、油圧発生部を用いて動力伝達部材から伝達されるエネルギーを油圧に変換して電力を生産することができ、動力変換部の大きさを小さく実現することができる。 As described above, according to the embodiment, the energy transmitted from the power transmission member can be converted into hydraulic pressure using the hydraulic pressure generating section to produce electric power, and the size of the power converting section can be reduced. can do.

また、アキュムレータでエネルギーを吸収し、吸収されたエネルギーを用いて電力生産部を作動させるため、平滑効果によって電力生産部で発電される電気の品質を一定に保持させることができる。 In addition, since energy is absorbed by the accumulator and the absorbed energy is used to operate the power production section, the quality of the electricity generated by the power production section can be kept constant due to the smoothing effect.

また、整流回路がワンウェイクラッチの役割を代替することができる。 Also, the rectifier circuit can replace the role of the one-way clutch.

一実施形態に係る波力発電システム及びその制御方法の効果は、以上記載したものなどに限定されず、言及されていない他の効果は、下記の記載によって当業者に明確に理解できるものである。 The effects of the wave power generation system and the control method thereof according to one embodiment are not limited to those described above, and other effects not mentioned can be clearly understood by those skilled in the art from the following description. .

本明細書に添付される次の図面は、本発明の好ましい一実施形態を例示するものであって、発明の詳細な説明と共に本発明の技術的な思想をより理解させる役割を果たすものであるため、本発明は、図面に記載されている事項だけに限定されて解釈されることはない。 The following drawings attached to this specification illustrate a preferred embodiment of the present invention, and serve to make the technical idea of the present invention more comprehensible together with the detailed description of the invention. Therefore, the present invention should not be construed as being limited only to the matters described in the drawings.

図1は、一実施形態に係る波力発電システムの概念図である。FIG. 1 is a conceptual diagram of a wave power generation system according to one embodiment. 図2は、図1に示す波力発電システムの構成及び動作を説明するためのブロック図である。FIG. 2 is a block diagram for explaining the configuration and operation of the wave power generation system shown in FIG. 図3は、図1に示す波力発電システムの構成及び動作を説明するためのブロック図である。FIG. 3 is a block diagram for explaining the configuration and operation of the wave power generation system shown in FIG.

以下、実施形態を例示的な図を参照して詳説する。各図面の構成要素に参照符号を付加することにおいて、同じ構成要素については、たとえ他の図面上に表示されていても、可能な限り同じ符号を有するようにしたことに留意しなければならない。また、実施形態の説明にあたり、関連する公知構成又は機能の具体的な説明が実施形態についての理解を妨げると判断される場合には、その詳細な説明は省略する。 Embodiments are described in detail below with reference to exemplary figures. In adding reference numerals to elements in each drawing, it should be noted that as much as possible the same elements have the same reference numerals, even if they appear on other drawings. In addition, in describing the embodiments, if it is determined that a specific description of related known configurations or functions hinders the understanding of the embodiments, detailed description thereof will be omitted.

また、実施形態の構成要素を説明することにおいて、第1、第2、A、B、(a)、(b)などの用語を使用することができる。これらの用語は、その構成要素を他の構成要素と区別するためのものにすぎず、その用語によって当該の構成要素の本質や順序などが限定されることはない。いずれかの構成要素が他の構成要素に「連結」、「結合」、又は「接続」されていると言及されたときには、その他の構成要素に直接的に連結されているか又は接続されているが、各構成要素との間にさらなる構成要素が「連結」、「結合」、又は「接続」され得るものと理解されなければならない。 Also, terms such as first, second, A, B, (a), and (b) may be used in describing the components of the embodiments. These terms are only used to distinguish the component from other components, and the terms do not limit the nature, order, etc. of the component. When any component is referred to as being “linked”, “coupled” or “connected” to another component, it is directly linked or connected to the other component. , may be “coupled”, “coupled” or “connected” between each component.

以下、図1ないし図3を参照して、実施形態に係る波力発電システム10について説明する。参考として、図1は、一実施形態に係る波力発電システム10の模式図であり、図2~図3は、図1に示す波力発電システム10の構成と動作を説明するためのブロック図である。 Hereinafter, a wave power generation system 10 according to an embodiment will be described with reference to FIGS. 1 to 3. FIG. For reference, FIG. 1 is a schematic diagram of a wave power generation system 10 according to one embodiment, and FIGS. 2 and 3 are block diagrams for explaining the configuration and operation of the wave power generation system 10 shown in FIG. is.

図面を参照すると、波力発電システム10は、可動物体110、運動伝達部120、変換体130、イコライザー140、及び電力生産部160を含んで構成される。 Referring to the drawing, the wave power generation system 10 includes a movable object 110 , a motion transmission section 120 , a conversion body 130 , an equalizer 140 and an electric power generation section 160 .

可動物体110は、波の上に浮遊しながら波の動きにより6自由度で運動する。具体的に、可動物体110は、波の動きに応じてx、y、z軸に沿って変移運動(heave、surge、sway)したり、ヨー(yaw)、ピッチ(pitch)、ロール(roll)の回転運動することで、合わせて6自由度(6 Degree of Freedom)運動することになる。 The movable object 110 moves with six degrees of freedom due to the motion of the waves while floating on the waves. Specifically, the movable object 110 may heave, surge, or sway along the x, y, and z axes, or may perform yaw, pitch, or roll motions along the x, y, and z axes according to the motion of the waves. 6 degrees of freedom (6 Degrees of Freedom).

例えば、可動物体110は、波に浮遊しながら波の動きにより動くように形成され、ブイ又は浮標である。可動物体110は、波に浮遊可能に形成された本体部111と運動伝達部120とが結合する結合部112を含んで構成される。 For example, the movable object 110 is a buoy or buoy configured to float on waves and move with the movement of the waves. The movable object 110 includes a coupling portion 112 that couples a body portion 111 that can float on waves and a motion transmission portion 120 .

可動物体110の本体部111は様々な形状に形成されるが、例えば、円盤型やチューブ型であってもよく、円柱、多角柱、ドーム形状、円盤状などの様々な形態を有することができる。本体部111は、それぞれの形、形状、材質、機能、特性、効果、結合関係によって円盤状に構成されるが、これらに限定されることなく、様々な形に構成されてもよい。また、本体部111は、その材質が波に浮遊できる材質であればよく、これに限定されることはない。 The body part 111 of the movable object 110 is formed in various shapes, and may be, for example, a disk shape or a tube shape, and may have various shapes such as a cylinder, a polygonal prism, a dome shape, and a disk shape. . The main body part 111 is configured in a disc shape depending on each shape, shape, material, function, characteristic, effect, and coupling relationship, but is not limited to these and may be configured in various shapes. Moreover, the material of the body part 111 may be any material that can float on waves, and is not limited to this.

結合部112は、本体部111に運動伝達部120が結合されるように形成し、一例として、360度の運動角度を有するボールジョイントの形態を有してもよい。結合部112は、可動物体110が波の動きに応じて、多方向に一定の範囲内で自由に動くことができるように結合し、可動物体110の6自由度運動を伝達できるように本体部111の少なくとも互いに異なる3ヶ所以上に結合されている。但し、これは一例示に過ぎず、結合部112は、運動伝達部120が可動物体110に結合して制限された範囲内で可動物体110が自由に動くことを可能にする様々な方式の結合が可能である。また、結合部112の位置は図面により限定さることなく、本体部111の様々な位置で可動物体110が一定範囲から離脱することを防止すると共に、その一定範囲内で自由に流動できる位置であれば、多様に変更され得る。 The coupling part 112 is formed to couple the motion transmitting part 120 to the main body part 111, and may have the form of a ball joint having a motion angle of 360 degrees, for example. The coupling part 112 couples the movable object 110 so that it can move freely within a certain range in multiple directions according to the movement of waves, and has a main body part so as to transmit the motion of the movable object 110 with six degrees of freedom. 111 are coupled to at least three different locations. However, this is only an example, and the coupling part 112 can be coupled in various ways to allow the motion transmission part 120 to couple with the movable object 110 to allow the movable object 110 to move freely within a limited range. is possible. In addition, the position of the coupling part 112 is not limited by the drawings, and any position that prevents the movable object 110 from leaving a certain range at various positions on the main body 111 and allows the movable object 110 to move freely within the certain range. can be varied in many ways.

また、結合部112は、本体部111の下部に垂直方向に形成された隔壁形態を有する。このような結合部112は、可動物体110が波の動きにより積極的に連動するよう、水平面と垂直に形成され、結合部112に波の力が垂直に作用することで、波の動きによって可動物体110を効率よく動かせることができる。しかし、これは一実施形態に過ぎず、結合部112は、可動物体110が全ての方向に波の力を受けることができ、波の動き又はエネルギーが可動物体110の動きに効率よく伝達されるよう構成できる。 In addition, the coupling part 112 has a partition wall shape formed in the lower part of the body part 111 in a vertical direction. The coupling part 112 is formed perpendicular to the horizontal plane so that the movable object 110 is actively interlocked with the movement of the waves, and the coupling part 112 is movable by the movement of the waves as the force of the wave acts vertically on the coupling part 112 . Object 110 can be efficiently moved. However, this is only one embodiment, coupling 112 allows movable object 110 to receive wave forces in all directions, and wave motion or energy is efficiently transferred to the motion of movable object 110. can be configured as

運動伝達部120は、可動物体110に結合して可動物体110の動きを伝達するための張力伝達部材121と、張力伝達部材121を海底などに固定させる固定部材122を含む。 The motion transmission unit 120 includes a tension transmission member 121 coupled to the movable object 110 to transmit the movement of the movable object 110, and a fixing member 122 for fixing the tension transmission member 121 to the bottom of the sea.

張力伝達部材121は、可動物体110の波による多方向の動きを線形の往復運動に変換して変換体130に張力を印加する。 The tension transmission member 121 converts the wave motion of the movable object 110 in multiple directions into linear reciprocating motion and applies tension to the conversion body 130 .

一例として、張力伝達部材121は所定のワイヤ形態を有し、一端が可動物体110に結合し、他端が変換体130に接続される。また、張力伝達部材121は、ワイヤの他にも、ロープ、チェーン、スプロケット、ベルトなどであってもよい。その他にも、張力伝達部材121は、可動物体110と変換体130を接続して可動物体110の運動エネルギーを伝達することのできる様々な手段が使用されてもよい。 As an example, the tension transmission member 121 has a predetermined wire form, one end of which is coupled to the movable object 110 and the other end of which is connected to the conversion body 130 . Moreover, the tension transmission member 121 may be a rope, a chain, a sprocket, a belt, or the like, in addition to the wire. In addition, various means that can connect the movable object 110 and the conversion body 130 to transmit the kinetic energy of the movable object 110 may be used as the tension transmission member 121 .

このような張力伝達部材121は、可動物体110の6自由度運動に連動して、張力伝達部材121が可動物体110のあらゆる動きに反応して伝達することができることから、効率よく可動物体110の多方向運動を動力変換部150に伝達することができる。また、張力伝達部材121は、可動物体110の3ヶ所以上の位置で接続され、可動物体110が一定の範囲から離脱することを防止すると共に、一定の範囲内で可動物体110が自由に流動されるようにし、可動物体110の運動エネルギーを効率的に伝達する役割を果たす。 Such a tension transmission member 121 is interlocked with the movement of the movable object 110 with 6 degrees of freedom, and since the tension transmission member 121 can respond to and transmit any movement of the movable object 110, the movement of the movable object 110 can be performed efficiently. Multidirectional motion can be transmitted to the power converter 150 . In addition, the tension transmission member 121 is connected to the movable object 110 at three or more positions to prevent the movable object 110 from leaving a certain range and to allow the movable object 110 to freely flow within the certain range. and serves to efficiently transmit the kinetic energy of the movable object 110 .

詳細に、張力伝達部材121は、可動物体110が波によって多方向の力で海面を浮遊しながら、いずれか一方向に可動物体110が力を受けると、当該の力を受ける部分の一方の張力伝達部材121が引っ張られながら、当該の張力伝達部材121によって変換体130に張力が伝達される。そして、可動物体110に他の方向の力が加えられれば、再度可動物体110から力を受ける部分の張力伝達部材121が引っ張られながら、当該の張力伝達部材121で作用する張力により変換体130に張力が伝達される。そして、このように可動物体110に波の力が多方向に持続的に発生することによる可動物体110が多方向に動きながら、可動物体110の複数のカ所に接続されている複数の張力伝達部材121が往復線形運動することになる。そして、複数の張力伝達部材121の往復線形運動によって変換体130に張力を印加されれば、可動物体110の運動エネルギーが張力の形態に変換体130に伝達される。 Specifically, when the movable object 110 receives a force in one direction while the movable object 110 is floating on the surface of the sea due to multi-directional forces caused by waves, the tension transmission member 121 causes tension in one of the portions receiving the force. While the transmission member 121 is being pulled, tension is transmitted to the conversion body 130 by the tension transmission member 121 concerned. Then, when a force in another direction is applied to the movable object 110, the tension transmission member 121 in the portion that receives the force from the movable object 110 is pulled again, and the tension acting on the tension transmission member 121 causes the conversion body 130 to move. tension is transmitted. In addition, as the movable object 110 moves in multiple directions due to the wave force continuously generated in the movable object 110 in this way, a plurality of tension transmission members are connected to the movable object 110 at a plurality of points. 121 will reciprocate linearly. When tension is applied to the conversion body 130 by the reciprocating linear motion of the plurality of tension transmission members 121, the kinetic energy of the movable object 110 is transmitted to the conversion body 130 in the form of tension.

固定部材122は、海底や他の所に設けられて張力伝達部材121を固定させると共に、張力伝達部材121の方向を変える役割をする。即ち、張力伝達部材121は、固定部材122を中心軸にして一定の範囲内で動く。また、固定部材122は、1つの張力伝達部材121の長手方向に沿って少なくとも1ヶ所以上、複数の位置に備えられる。また、固定部材122は、張力伝達部材121の方向を変えるための位置に設けられ、張力伝達部材121の方向を変えることで力の伝達方向を変える。例えば、固定部材122は、複数のローラ又は滑車を含む。 The fixing member 122 is installed at the bottom of the sea or other places to fix the tension transmission member 121 and change the direction of the tension transmission member 121 . That is, the tension transmission member 121 moves within a certain range with the fixing member 122 as the central axis. In addition, the fixing member 122 is provided at at least one or more positions along the longitudinal direction of one tension transmission member 121 . Further, the fixing member 122 is provided at a position for changing the direction of the tension transmission member 121, and by changing the direction of the tension transmission member 121, the force transmission direction is changed. For example, stationary member 122 includes a plurality of rollers or pulleys.

変換体130は、複数の張力伝達部材121が接続され、張力伝達部材121の往復線形運動を一方向の回転運動に変換する回転軸又はドラムなどの形態を有する。また、変換体130は、張力伝達部材121の往復線形運動を一方向の回転運動に変換できるようにワンウェークラッチ(one way clutch)が含まれる。但し、これは一例にすぎず、変換体130は、張力伝達部材121の動きを往復回転運動又は往復直線運動に変換可能であれば、実質的に様々な手段が使用されてもよい。 The conversion body 130 is connected to a plurality of tension transmission members 121 and has a shape such as a rotary shaft or a drum that converts reciprocating linear motion of the tension transmission members 121 into unidirectional rotary motion. In addition, the conversion body 130 includes a one way clutch so as to convert the reciprocating linear motion of the tension transmission member 121 into unidirectional rotary motion. However, this is only an example, and substantially various means may be used as long as the conversion body 130 can convert the motion of the tension transmission member 121 into reciprocating rotary motion or reciprocating linear motion.

変換体130の一側にはイコライザー140が接続され、他側には動力変換部150と電力生産部160が接続されている。変換体130と動力変換部150との間には、変換体130の低速回転を高速回転に増速させる増速機131が備えられる。増速機131は、変換体130の低速回転を所定の高速回転に増速させることができるように低いギア比で形成される。 An equalizer 140 is connected to one side of the converter 130, and a power converter 150 and an electric power generator 160 are connected to the other side. A speed increaser 131 is provided between the conversion body 130 and the power conversion section 150 to speed up the low speed rotation of the conversion body 130 to a high speed rotation. The speed increaser 131 is formed with a low gear ratio so that the low speed rotation of the conversion body 130 can be increased to a predetermined high speed rotation.

ここで、図示していないが、変換体130とイコライザー140との間にも増速機(図示せず)が備えられてもよい。 Here, although not shown, a speed increaser (not shown) may be provided between the converter 130 and the equalizer 140 as well.

一方、張力伝達部材121は、ワイヤの形態を有しているため、可動物体110で引っ張られなければ、張力伝達部材121が変換体130に張力を加えることはできない。即ち、可動物体110の動きにより、一方向に動けば、張力伝達部材121が引っ張られながら変換体130に張力が加えられ、反対方向に動けば、張力伝達部材121に弛緩して変換体130に力が加えられない。本実施形態では、張力伝達部材121で張力が加えられない場合、イコライザー140によって変換体130の張力を保持して電力生産部160で電力を生産可能にする。 On the other hand, since the tension transmission member 121 has the form of a wire, the tension transmission member 121 cannot apply tension to the conversion body 130 unless it is pulled by the movable object 110 . That is, when the movable object 110 moves in one direction, tension is applied to the conversion body 130 while the tension transmission member 121 is pulled. power cannot be applied. In this embodiment, when the tension transmission member 121 does not apply tension, the equalizer 140 maintains the tension of the conversion body 130 so that the power production unit 160 can produce power.

イコライザー140は、変換体130の一側に備えられ、例えば、イコライザー140は、油圧モータ、油圧ポンプ、油圧シリンダ、電動モータ、ガススプリング、機械ばね、フライホイールのいずれか1つであってもよい。 The equalizer 140 is provided on one side of the conversion body 130. For example, the equalizer 140 may be any one of a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, a mechanical spring, and a flywheel. .

詳細に、イコライザー140は、張力伝達部材121で印加される張力を所定のエネルギーとして格納する。そして、張力伝達部材121で張力が印加されなければ、イコライザー140に格納されているエネルギーが変換体130を介して張力伝達部材121の張力を保持することになる。例えば、イコライザー140が油圧モータ、油圧ポンプ、油圧シリンダであれば油圧の形態に格納され、電動モータであればモータの回転エネルギーに格納され、ガススプリングや機械ばねであれば弾性エネルギーの形態に格納され、フライホイールであれば慣性エネルギーに格納されてもよい。但し、これは一例に過ぎず、イコライザー140の形態は実質的に多様に変更されてもよい。 Specifically, the equalizer 140 stores the tension applied by the tension transmission member 121 as predetermined energy. If no tension is applied to the tension transmission member 121 , the energy stored in the equalizer 140 maintains the tension of the tension transmission member 121 through the conversion body 130 . For example, if the equalizer 140 is a hydraulic motor, a hydraulic pump, or a hydraulic cylinder, it is stored in the form of hydraulic pressure, if it is an electric motor, it is stored in the rotational energy of the motor, and if it is a gas spring or a mechanical spring, it is stored in the form of elastic energy. and may be stored in the inertial energy if it is a flywheel. However, this is only an example, and the form of the equalizer 140 may be substantially changed in various ways.

動力変換部150は、油圧を発生させる油圧発生部151と電力生産部160に接続される油圧駆動部152及び流体の方向を転換させる整流回路530を含む。そして、油圧発生部151に流体を流動させる第1油圧回路510と、油圧駆動部152に流体を流動させる第2油圧回路520を含んでいる。 The power converter 150 includes a hydraulic generator 151 that generates hydraulic pressure, a hydraulic driver 152 that is connected to the power generator 160, and a rectifier circuit 530 that changes the direction of the fluid. It includes a first hydraulic circuit 510 that causes fluid to flow to the hydraulic pressure generator 151 and a second hydraulic circuit 520 that causes fluid to flow to the hydraulic drive unit 152 .

油圧発生部151は、張力伝達部材121から印加される張力によって油圧を発生させる。例えば、油圧発生部151は油圧モータであってもよい。 The hydraulic pressure generator 151 generates hydraulic pressure by tension applied from the tension transmission member 121 . For example, the hydraulic pressure generator 151 may be a hydraulic motor.

油圧発生部151は、張力伝達部材121から張力が印加されれば(図2に示す矢印A)、流体を第1方向に流体を流動させ、イコライザー140から張力が印加されれば(図3に示す矢印B)、流体を第1方向と反対方向である第2方向に流体を流動させる。 The hydraulic pressure generator 151 causes the fluid to flow in the first direction when tension is applied from the tension transmission member 121 (arrow A shown in FIG. 2), and when tension is applied from the equalizer 140 (see FIG. 3). arrow B), causing the fluid to flow in a second direction opposite to the first direction.

油圧駆動部152は、電力生産部160が接続され、第2油圧回路520に沿って流体が流動することにより、油圧駆動部152が電力生産部160を作動させる。 The hydraulic drive unit 152 is connected to the power production unit 160 , and the fluid flows along the second hydraulic circuit 520 so that the hydraulic drive unit 152 operates the power production unit 160 .

第2油圧回路520では、一方向にのみ流体が流動し、複数のチェック弁521,522が備えられている。例えば、第2油圧回路520でチェック弁521,522は、油圧駆動部152の前後に備えられてもよい。 In the second hydraulic circuit 520, fluid flows only in one direction, and a plurality of check valves 521 and 522 are provided. For example, the check valves 521 and 522 may be provided before and after the hydraulic drive section 152 in the second hydraulic circuit 520 .

また、第2油圧回路520で油圧駆動部152の前後には、高圧側のアキュムレータ523と低圧側のアキュムレータ524が備えられる。高圧側のアキュムレータ523と低圧側のアキュムレータ524を備えることで、第2油圧回路520で流体が流動すれば、高圧側のアキュムレータ523に流体の圧力と体積形態にエネルギーが格納され、格納されたエネルギーが低圧側のアキュムレータ524に移動しながら油圧駆動部152を作動させるため、平滑効果を取得することができる。そのため、電力生産部160で発電する電力の品質が一定であり、電力生産部160の発電機の性能を最適化することができる。 A high-pressure side accumulator 523 and a low-pressure side accumulator 524 are provided before and after the hydraulic driving portion 152 in the second hydraulic circuit 520 . Since the high-pressure side accumulator 523 and the low-pressure side accumulator 524 are provided, when the fluid flows in the second hydraulic circuit 520, energy is stored in the pressure and volume form of the fluid in the high-pressure side accumulator 523, and the stored energy is stored. operates the hydraulic drive 152 while moving to the accumulator 524 on the low pressure side, a smoothing effect can be obtained. Therefore, the quality of the power generated by the power production unit 160 is constant, and the performance of the power generator of the power production unit 160 can be optimized.

整流回路530は、第1油圧回路510と第2油圧回路520との間で流体の流れ方向を切り替えるようブリッジ形態に備えられる。整流回路530は、第1油圧回路510で流体が第1方向と第2方向に流動するとしても、第2油圧回路520では一方向に流体を流動させるワンウェークラッチの役割を果たす。 A rectifying circuit 530 is provided in the form of a bridge to switch the direction of fluid flow between the first hydraulic circuit 510 and the second hydraulic circuit 520 . The rectifying circuit 530 functions as a one-way clutch that allows the fluid to flow in one direction in the second hydraulic circuit 520 even though the fluid flows in the first and second directions in the first hydraulic circuit 510 .

整流回路530は、第1油圧回路510に接続される2つの分岐流路と第2油圧回路520に接続される2つの分岐流路が四角の形状に形成され、各分岐流路上にそれぞれチェック弁531,532,533,534が備えられている。また、整流回路530は、向かい合って分岐流路上のチェック弁531,532,533,534が互いに同じ方向に配置され、互いに隣接する分岐流路上のチェック弁531,532,533,534が互いに反対方向に配置されている。このように整流回路530は、チェック弁531,532,533,534を配置することで、図2及び図3に示すように流体の流れ方向を切り替えることができる。 The rectifying circuit 530 has two branched flow paths connected to the first hydraulic circuit 510 and two branched flow paths connected to the second hydraulic circuit 520 formed in a square shape, and a check valve is provided on each branched flow path. 531, 532, 533, 534 are provided. In the rectifying circuit 530, the check valves 531, 532, 533, 534 on the branch flow paths are arranged in the same direction, and the check valves 531, 532, 533, 534 on the branch flow paths adjacent to each other are arranged in opposite directions. are placed in By arranging the check valves 531, 532, 533, and 534 in this manner, the rectifying circuit 530 can switch the flow direction of the fluid as shown in FIGS.

電力生産部160は、油圧駆動部152によって駆動されて電力を生産する。 The power production unit 160 is driven by the hydraulic drive unit 152 to produce power.

一方、本実施形態では、1つの可動物体110に複数の張力伝達部材121が接続され、複数の張力伝達部材121に1つのイコライザー140と1つの動力変換部150及び電力生産部160が接続される構成を例示している。但し、これは一例にすぎず、複数の張力伝達部材121にそれぞれイコライザー140と動力変換部150及び電力生産部160を個別的に設置することも可能である。 On the other hand, in this embodiment, a plurality of tension transmission members 121 are connected to one movable object 110, and one equalizer 140, one power conversion unit 150, and an electric power generation unit 160 are connected to the plurality of tension transmission members 121. The configuration is illustrated. However, this is only an example, and the equalizer 140, the power conversion unit 150, and the power generation unit 160 can be individually installed in each of the plurality of tension transmission members 121. FIG.

また、上述した実施形態では、波力発電システム10が沿岸(onshore)方式で設けられていると例示しているが、これは一例にすぎず、海岸方式によって設けられるシステムにおいても本実施形態に係る波力発電システム10を適用することができる。 In addition, in the above-described embodiment, the wave power generation system 10 is exemplified as being provided onshore, but this is only an example, and the system provided by the onshore method can also be applied to this embodiment. Such a wave power generation system 10 can be applied.

以下では、図2~図3を参照して実施形態に係る波力発電システム10における構成と動作について説明する。 The configuration and operation of the wave power generation system 10 according to the embodiment will be described below with reference to FIGS. 2 and 3. FIG.

まず、図2を参照すると、張力伝達部材121の張力が印加され、変換体130が引っ張られれば(図面において矢印Aに表示する)、変換体130の一側面に接続されたイコライザー140に所定のエネルギーが格納され、動力変換部150では第1方向に流体を流動させる。 First, referring to FIG. 2, when tension is applied to the tension transmission member 121 and the conversion body 130 is pulled (indicated by arrow A in the drawing), the equalizer 140 connected to one side of the conversion body 130 has a predetermined Energy is stored and causes the fluid to flow in the first direction in the power conversion unit 150 .

詳細には、張力伝達部材121が引っ張られれば、変換体130の一方向の回転が増速機131を介して一定の速度以上に増速して油圧発生部151に伝達される。 Specifically, when the tension transmission member 121 is pulled, the rotation of the conversion body 130 in one direction is accelerated to a predetermined speed or more through the speed increasing device 131 and transmitted to the hydraulic pressure generator 151 .

油圧発生部151の高圧側で発生した流体は、第1油圧回路510上で矢印Hに沿って第1方向に流動し、整流回路530の第2チェック弁532を介して第2油圧回路520に流動される。 The fluid generated on the high pressure side of the hydraulic pressure generator 151 flows in the first direction along the arrow H on the first hydraulic circuit 510 and flows through the second check valve 532 of the rectifier circuit 530 to the second hydraulic circuit 520. flowed.

第2油圧回路520では、高圧側のアキュムレータ523を経て低圧側のアキュムレータ524に流体が流動することで、油圧駆動部152によって電力生産部160で電力が生産される。 In the second hydraulic circuit 520 , fluid flows through the high-pressure side accumulator 523 to the low-pressure side accumulator 524 , whereby power is produced in the power production section 160 by the hydraulic drive section 152 .

そして、流体は、整流回路530の第4チェック弁534を介して第1油圧回路510上で矢印Lに沿って油圧発生部151の低圧側に流入される。 Then, the fluid flows through the fourth check valve 534 of the rectifying circuit 530 along the arrow L on the first hydraulic circuit 510 to the low pressure side of the hydraulic pressure generator 151 .

ここで、流体が第1方向に流動するときは、整流回路530の第1及び第3チェック弁531,533を介して流体の流れが遮断される。 Here, when the fluid flows in the first direction, the fluid flow is cut off through the first and third check valves 531 and 533 of the rectifier circuit 530 .

次に、図3を参照すると、張力伝達部材121の張力が印加されなければ、イコライザー140に格納されているエネルギーによって変換体130が反対方向に引っ張られる(図面において矢印Bに表示)。 Referring now to FIG. 3, if no tension is applied to the tension transmission member 121, the energy stored in the equalizer 140 will pull the transducer 130 in the opposite direction (indicated by arrow B in the drawing).

この場合、動力変換部150では、第1方向と反対方向である第2方向に流体を流動させる。 In this case, the power converter 150 causes the fluid to flow in the second direction opposite to the first direction.

詳細に、イコライザー140によって変換体130にB方向に力が印加されれば、変換体130の回転移増速機131を介して一定の速度以上に増速されて油圧発生部151に伝達される。 Specifically, when the equalizer 140 applies a force in the B direction to the conversion body 130 , the speed is increased to a predetermined speed or higher through the rotation speed increasing device 131 of the conversion body 130 and transmitted to the hydraulic pressure generator 151 . .

この場合、油圧発生部151の高圧側は図2と反対側となり、流体が第1油圧回路510上で矢印Hに沿って第2方向に流動する。そして、流体は、整流回路530の第3チェック弁533を介して第2油圧回路520に流動される。 In this case, the high-pressure side of the hydraulic pressure generator 151 is the side opposite to that in FIG. 2, and the fluid flows along the arrow H in the first hydraulic circuit 510 in the second direction. The fluid then flows to the second hydraulic circuit 520 via the third check valve 533 of the rectifier circuit 530 .

第2油圧回路520では、高圧側のアキュムレータ523を経て低圧側のアキュムレータ524に流体が流動することで、油圧駆動部152によって電力生産部160で電力が生産される。 In the second hydraulic circuit 520 , fluid flows through the high-pressure side accumulator 523 to the low-pressure side accumulator 524 , whereby power is produced in the power production section 160 by the hydraulic drive section 152 .

そして、低圧側のアキュムレータ524で流動される低圧側の流体は、整流回路530の第1チェック弁531を介して第1油圧回路510上で矢印Lに沿って油圧発生部151の低圧側に流入される。 The low-pressure side fluid flowing in the low-pressure side accumulator 524 flows through the first check valve 531 of the rectifying circuit 530 along the arrow L on the first hydraulic circuit 510 into the low-pressure side of the hydraulic pressure generating section 151. be done.

ここで、流体が第2方向に流動するときは、整流回路530の第2及び第4チェック弁532,534を介して流体の流れが遮断される。 Here, when the fluid flows in the second direction, the fluid flow is cut off through the second and fourth check valves 532 and 534 of the rectifier circuit 530 .

本実施形態によれば、油圧発生部151と油圧駆動部152は油圧モータを使用しているため、油圧発生部151と油圧駆動部152を駆動するための駆動原を省略することで、波力発電システム10の大きさと構成を単純化することができる。また、アキュムレータ523,534で流体の圧力と体積としてエネルギーが格納されてから、油圧駆動部152を作動させるため、平滑発電が行われる。そのため、電力生産部160で生産される電力の品質が一定に管理され、発電機を最適化することができる。 According to this embodiment, since the hydraulic motors are used for the hydraulic pressure generating section 151 and the hydraulic driving section 152, by omitting the driving source for driving the hydraulic pressure generating section 151 and the hydraulic driving section 152, wave power The size and configuration of the power generation system 10 can be simplified. In addition, since the energy is stored in the accumulators 523 and 534 as the pressure and volume of the fluid, the hydraulic drive unit 152 is operated, so smooth power generation is performed. Therefore, the quality of the power produced by the power production unit 160 is constantly managed, and the power generator can be optimized.

また、張力伝達部材121の張力とイコライザー140によって交番的に電力生産部160で電力を生産することができる。 In addition, the tension of the tension transmission member 121 and the equalizer 140 can alternately produce power in the power generator 160 .

上述したように実施形態をたとえ限定された図面によって説明したが、当技術分野で通常の知識を有する者であれば、上記の説明に基づいて様々な技術的な修正及び変形を適用することができる。例えば、説明された技術が説明された方法と異なる順で実行されるし、及び/又は説明されたシステム、構造、装置、回路などの構成要素が説明された方法と異なる形態で結合又は組み合わせられてもよく、他の構成要素又は均等物によって置き換え又は置換されたとしても適切な結果を達成することができる。 Although the embodiments have been described with reference to limited drawings as described above, a person having ordinary skill in the art can apply various technical modifications and variations based on the above description. can. For example, the described techniques may be performed in a different order than in the manner described and/or components such as systems, structures, devices, circuits, etc. described may be combined or combined in a manner different than in the manner described. may be substituted or substituted by other components or equivalents while still achieving suitable results.

したがって、他の具現、他の実施例、及び特許請求の範囲と均等なものなどについても後述する請求範囲の範囲に属する。 Therefore, other implementations, other embodiments, and equivalents of the claims also belong to the scope of the claims described below.

10:波力発電システム
110:可動物体
111:本体部
112:結合部
120:運動伝達部
121:張力伝達部材
122:固定部材
130:変換体
131、132:増速機
140:イコライザー
150:動力変換部
151:油圧発生部
152:油圧モータ
153:整流回路
510、520:油圧回路
521、522、531、532、533、534:チェック弁
523、524:アキュムレータ
160:電力生産部
10: Wave power generation system 110: Movable object 111: Main unit 112: Coupling unit 120: Motion transmission unit 121: Tension transmission member 122: Fixed member 130: Converting body 131, 132: Gearbox 140: Equalizer 150: Power conversion Part 151: Hydraulic pressure generator 152: Hydraulic motor 153: Rectifier circuit 510, 520: Hydraulic circuit 521, 522, 531, 532, 533, 534: Check valve 523, 524: Accumulator 160: Power production part

Claims (17)

波に浮遊する可動物体の6自由度運動によって発生する運動エネルギーを伝達する張力伝達部材と、
前記張力伝達部材に接続されて油圧を発生させる油圧発生部を含む動力変換部と、
前記張力伝達部材に接続されて前記張力伝達部材の張力を保持するイコライザーと、
を含み、
前記動力変換部は、
前記張力伝達部材から張力が印加されれば、前記張力によって前記油圧発生部が第1方向に流体を流動させ、
前記張力伝達部材から張力が印加されなければ、前記イコライザーによって前記油圧発生部が第2方向に流体を流動させ、かつ、
前記動力変換部は、
前記油圧発生部と、
電力を生産するための電力生産部に接続される油圧駆動部と、
前記油圧発生部に流体を流動させる第1油圧回路と、
前記油圧駆動部に流体を流動させる第2油圧回路と、
前記第1油圧回路と前記第2油圧回路との間に備えられ、前記流体の方向を切り替える整流回路と、
を含む、波力発電システム。
a tension transmission member that transmits the kinetic energy generated by the six-degree-of-freedom motion of the movable object floating on the waves;
a power conversion unit including a hydraulic pressure generation unit connected to the tension transmission member and generating hydraulic pressure;
an equalizer connected to the tension transmission member to hold the tension of the tension transmission member;
including
The power conversion unit is
when tension is applied from the tension transmission member, the hydraulic pressure generator causes the fluid to flow in the first direction due to the tension;
When no tension is applied from the tension transmission member, the equalizer causes the hydraulic pressure generator to flow the fluid in the second direction , and
The power conversion unit is
the hydraulic pressure generator;
a hydraulic drive connected to a power production unit for producing power;
a first hydraulic circuit that causes fluid to flow to the hydraulic pressure generator;
a second hydraulic circuit for flowing fluid to the hydraulic drive;
a rectifier circuit provided between the first hydraulic circuit and the second hydraulic circuit for switching the direction of the fluid;
A wave power system , including
前記整流回路は、前記第1油圧回路から第1方向に流体が流動するときと反対方向である第2方向に流体が流動するとき、前記流体の流れ方向を切り替えて前記第2油圧回路で同じ方向に流体を流動させる、請求項に記載の波力発電システム。 The rectifying circuit switches the flow direction of the fluid when the fluid flows in the second direction, which is opposite to the direction when the fluid flows in the first direction from the first hydraulic circuit, and performs the same flow in the second hydraulic circuit. 2. The wave power system of claim 1 , wherein the fluid flows in a direction. 前記整流回路は、ブリッジ形態に配置される複数の分岐流路を含み、前記複数の分岐流路上にそれぞれチェック弁が備えられ、
前記整流回路で互いに対向するように分岐流路上のチェック弁は互いに同じ方向に配置され、互いに隣接する分岐流路上のチェック弁は互いに反対方向に配置される、請求項に記載の波力発電システム。
the rectifying circuit includes a plurality of branched flow paths arranged in a bridge configuration, and a check valve is provided on each of the plurality of branched flow paths;
3. The wave power generation according to claim 2 , wherein the check valves on the branch flow paths are arranged in the same direction so as to face each other in the rectification circuit, and the check valves on the branch flow paths adjacent to each other are arranged in opposite directions. system.
前記油圧発生部と前記油圧駆動部はそれぞれ油圧モータである、請求項に記載の波力発電システム。 2. A wave power generation system according to claim 1 , wherein said hydraulic generator and said hydraulic drive are each hydraulic motors. 前記第2油圧回路は、前記油圧駆動部の前後に高圧側のアキュムレータと低圧側のアキュムレータが備えられる、請求項に記載の波力発電システム。 2. The wave power generation system according to claim 1 , wherein said second hydraulic circuit comprises a high-pressure side accumulator and a low-pressure side accumulator before and after said hydraulic drive section. 前記第2油圧回路は複数のチェック弁が備えられ、
前記チェック弁は、前記油圧駆動部の前後に備えられる、請求項に記載の波力発電システム。
The second hydraulic circuit is provided with a plurality of check valves,
6. A wave power generation system according to claim 5 , wherein said check valves are provided before and after said hydraulic drive.
前記イコライザーは、油圧モータ、油圧ポンプ、油圧シリンダ、電動モータ、ガススプリング、機械ばねのいずれか1つを含む、請求項1に記載の波力発電システム。 The wave power generation system of claim 1, wherein the equalizer includes any one of a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, and a mechanical spring. 前記張力伝達部材は、前記可動物体の3ヶ所以上の位置に接続されて複数備えられる、請求項1に記載の波力発電システム。 2. The wave power generation system according to claim 1, wherein a plurality of said tension transmission members are connected to three or more positions of said movable object. 前記複数の張力伝達部材が結合される変換体が備えられ、
前記動力変換部は前記変換体の一方に備えられ、前記イコライザーは前記変換体の他方に備えられる、請求項に記載の波力発電システム。
A conversion body to which the plurality of tension transmission members are coupled is provided,
9. A wave power generation system according to claim 8 , wherein said power conversion section is provided on one of said conversion bodies and said equalizer is provided on the other of said conversion bodies.
前記複数の張力伝達部材にそれぞれイコライザーが備えられたり、
前記複数の張力伝達部材が1つのイコライザーと接続される、請求項に記載の波力発電システム。
An equalizer is provided for each of the plurality of tension transmission members,
10. The wave power system of claim 9 , wherein said plurality of tension transmission members are connected with one equalizer.
前記変換体の回転速度を増速させる増速機を含み、
前記増速機は、前記変換体と前記動力変換部との間に備えられる、請求項に記載の波力発電システム。
including a speed increaser for increasing the rotation speed of the conversion body;
10. The wave power generation system according to claim 9 , wherein said gearbox is provided between said converter and said power converter.
前記増速機は、あらかじめ設定された基準よりも低いギア比で形成される、請求項11に記載の波力発電システム。 12. A wave power generation system as claimed in claim 11 , wherein the speed increaser is formed with a gear ratio lower than a preset standard. 波に浮遊しながら、より動く可動物体と、
前記可動物体の6自由度運動が可能なように前記可動物体の少なくとも3ヶ所以上の位置に接続され、前記可動物体の運動エネルギーを一方向に伝達する複数の張力伝達部材を含む運動伝達部と、
前記複数の張力伝達部材が接続される変換体と、
前記変換体の一側に備えられるイコライザーと、
前記変換体の他側に備えられ油圧を発生させる動力変換部と、
前記動力変換部に接続されて電力を生産する電力生産部と、
を含み、
前記張力伝達部材が引っ張られれば、前記イコライザーにエネルギーが格納され、前記動力変換部が第1方向に流体を流動させることで前記電力生産部で電力が生産され、
前記張力伝達部材が引っ張られなければ、前記イコライザーに格納されたエネルギーによって前記動力変換部が第2方向に流体を流動させることで前記電力生産部で電力が生産され
前記動力変換部は、
前記張力伝達部材に接続されて油圧を発生させる油圧発生部と、
前記電力生産部に接続される油圧駆動部と、
前記油圧発生部に流体を流動させる第1油圧回路と、
前記油圧駆動部に流体を流動させる第2油圧回路と、
前記第1油圧回路と前記第2油圧回路との間に備えられ、前記流体の方向を切り替える整流回路と、
を含む、波力発電システム。
A movable object that moves with waves while floating on them ,
a motion transmission unit including a plurality of tension transmission members that are connected to at least three positions of the movable object so that the movable object can move in six degrees of freedom, and that transmit kinetic energy of the movable object in one direction; ,
a conversion body to which the plurality of tension transmission members are connected;
an equalizer provided on one side of the conversion body;
a power conversion unit provided on the other side of the conversion body for generating hydraulic pressure;
a power production unit connected to the power conversion unit to produce power;
including
When the tension transmission member is pulled, energy is stored in the equalizer, and the power conversion unit causes the fluid to flow in the first direction to produce power in the power generation unit;
When the tension transmission member is not pulled, the energy stored in the equalizer causes the power conversion unit to cause the fluid to flow in the second direction to produce electric power in the power production unit ;
The power conversion unit is
a hydraulic pressure generator that is connected to the tension transmission member and generates hydraulic pressure;
a hydraulic drive connected to the power production;
a first hydraulic circuit that causes fluid to flow to the hydraulic pressure generator;
a second hydraulic circuit for flowing fluid to the hydraulic drive;
a rectifier circuit provided between the first hydraulic circuit and the second hydraulic circuit for switching the direction of the fluid;
A wave power system , including
前記整流回路は、前記第1油圧回路から第1方向に流体が流動するときと反対方向である第2方向に流体が流動するとき、前記流体の流れ方向を切り替えて前記第2油圧回路で同じ方向に流体を流動させる、請求項13に記載の波力発電システム。 The rectifying circuit switches the flow direction of the fluid when the fluid flows in the second direction, which is opposite to the direction when the fluid flows in the first direction from the first hydraulic circuit, and performs the same flow in the second hydraulic circuit. 14. The wave power system of claim 13 , wherein the fluid flows in a direction. 前記第2油圧回路は、前記油圧駆動部の前後に高圧側のアキュムレータと低圧側のアキュムレータが備えられる、請求項13に記載の波力発電システム。 14. A wave power generation system according to claim 13 , wherein said second hydraulic circuit comprises a high pressure side accumulator and a low pressure side accumulator before and after said hydraulic drive. 前記イコライザーは、油圧モータ、油圧ポンプ、油圧シリンダ、電動モータ、ガススプリング、機械ばねのいずれか1つを含む、請求項13に記載の波力発電システム。 14. The wave power generation system of claim 13 , wherein the equalizer includes any one of a hydraulic motor, a hydraulic pump, a hydraulic cylinder, an electric motor, a gas spring, and a mechanical spring. 波に浮遊する可動物体の6自由度運動によって張力伝達部材を介して張力が印加されれば、動力変換部が流体を第1方向に流動させ、
前記動力変換部の整流回路が前記第1方向に流動される流体を油圧駆動部に流動させ、
前記張力伝達部材で張力が加えられなければ、イコライザーによって前記動力変換部が流体を第2方向に流動させ、
前記整流回路が前記第2方向に流動される流体の方向を切り替えて前記油圧駆動部に流動させ、
前記油圧駆動部に接続された電力生産部で電力が生産され
前記動力変換部は、
前記油圧発生部と、
電力を生産するための電力生産部に接続される油圧駆動部と、
前記油圧発生部に流体を流動させる第1油圧回路と、
前記油圧駆動部に流体を流動させる第2油圧回路と、
前記第1油圧回路と前記第2油圧回路との間に備えられ、前記流体の方向を切り替える整流回路と、
を含む、波力発電システムの制御方法。
When tension is applied via the tension transmission member due to the movement of the movable object floating on the waves with six degrees of freedom, the power conversion unit causes the fluid to flow in the first direction,
the rectifying circuit of the power conversion unit causes the fluid flowing in the first direction to flow to the hydraulic drive unit;
If no tension is applied by the tension transmission member, the equalizer causes the power conversion unit to cause the fluid to flow in the second direction;
the rectifying circuit switches the direction of the fluid flowing in the second direction to flow to the hydraulic drive unit;
electricity is produced in an electricity production unit connected to the hydraulic drive ;
The power conversion unit is
the hydraulic pressure generator;
a hydraulic drive connected to a power production unit for producing power;
a first hydraulic circuit that causes fluid to flow to the hydraulic pressure generator;
a second hydraulic circuit for flowing fluid to the hydraulic drive;
a rectifier circuit provided between the first hydraulic circuit and the second hydraulic circuit for switching the direction of the fluid;
A method of controlling a wave power system, comprising:
JP2020547102A 2018-03-09 2019-03-08 Wave power generation system and its control method Active JP7130762B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180028033A KR102027553B1 (en) 2018-03-09 2018-03-09 Wave energy generation system and controlling method for the wave energy generation system
KR10-2018-0028033 2018-03-09
PCT/KR2019/002729 WO2019172708A1 (en) 2018-03-09 2019-03-08 Wave power generation system and method for controlling same

Publications (2)

Publication Number Publication Date
JP2021515868A JP2021515868A (en) 2021-06-24
JP7130762B2 true JP7130762B2 (en) 2022-09-05

Family

ID=67845737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020547102A Active JP7130762B2 (en) 2018-03-09 2019-03-08 Wave power generation system and its control method

Country Status (8)

Country Link
US (1) US11339760B2 (en)
EP (1) EP3763935A4 (en)
JP (1) JP7130762B2 (en)
KR (1) KR102027553B1 (en)
CN (1) CN111971474B (en)
AU (1) AU2019232264B2 (en)
CL (1) CL2020002307A1 (en)
WO (1) WO2019172708A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189018A (en) 2005-01-05 2006-07-20 Shozo Nanba Wave energy converting apparatus
WO2017122839A1 (en) 2016-01-13 2017-07-20 성용준 Wave power generation device including wire

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260092A (en) 1975-11-12 1977-05-18 Fujitsu Ltd Target selection system
JP2005127296A (en) * 2003-10-27 2005-05-19 Hiroshi Funai Energy producing device and method for power generation using the same
JP5097267B2 (en) 2007-04-18 2012-12-12 シーベイスト アクチボラグ Wave power unit, buoy, use of wave power unit, and method of generating electrical energy
GB0802291D0 (en) * 2008-02-07 2008-03-12 Pure Marine Gen Ltd Wave energy conversion apparatus
JP5260092B2 (en) 2008-03-10 2013-08-14 株式会社日立製作所 Power conversion device and power generation conversion system
EP2128430A1 (en) * 2008-05-30 2009-12-02 Jeroen Lambertus Maria Bömer High efficiency wave energy convertor
KR101190268B1 (en) * 2010-08-05 2012-10-12 울산대학교 산학협력단 Wave energy generator with variable transmission
KR101049518B1 (en) * 2011-03-22 2011-07-15 이동인 Apparatus for wave power generation
KR101206396B1 (en) * 2011-04-08 2012-11-29 토미지 와타베 Controller of Wave Power Generating Apparatus Using Rotating Pendulum
ES2635423T3 (en) * 2011-06-03 2017-10-03 Ocean Harvesting Technologies Ab Wave power converter
KR20130074001A (en) * 2011-12-26 2013-07-04 이한열 Apparatus for wave power generation
CN104405570A (en) * 2014-10-09 2015-03-11 长沙理工大学 Umbrella-type wave power generation device employing hydro-generator
JP6313476B2 (en) * 2015-01-07 2018-04-18 インジン,インコーポレイティド Wave power generation system
KR101751218B1 (en) 2015-09-04 2017-06-28 주식회사 인진 Power Converting Apparatus for Wave-force Generation
CN105804928B (en) * 2016-05-11 2018-02-06 浙江大学 A kind of hybrid wave wave energy generating set
CN106224157A (en) * 2016-09-19 2016-12-14 华南理工大学 A kind of enclosed type three-dimensional dragline type wave energy storage equipment and TRT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189018A (en) 2005-01-05 2006-07-20 Shozo Nanba Wave energy converting apparatus
WO2017122839A1 (en) 2016-01-13 2017-07-20 성용준 Wave power generation device including wire

Also Published As

Publication number Publication date
EP3763935A1 (en) 2021-01-13
CL2020002307A1 (en) 2021-02-05
US11339760B2 (en) 2022-05-24
AU2019232264B2 (en) 2022-05-19
JP2021515868A (en) 2021-06-24
WO2019172708A1 (en) 2019-09-12
US20200400116A1 (en) 2020-12-24
KR20190106482A (en) 2019-09-18
EP3763935A4 (en) 2021-11-17
AU2019232264A1 (en) 2020-09-17
CN111971474A (en) 2020-11-20
CN111971474B (en) 2022-05-13
KR102027553B1 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
CN111094739B (en) Wave power energy generator
JP7044892B2 (en) Wave power generation system and its control method
KR20160088452A (en) Wave Systems
JP7187567B2 (en) Wave power generation system and its control method
JP7130762B2 (en) Wave power generation system and its control method
CN111194380B (en) Drive assembly
CN101749168A (en) Sea wave-powered ship
KR102301997B1 (en) Wave-power generating apparatus
KR20130000589A (en) Hydroplane type tidal current generator using a resonance
JP2017510505A (en) Wave power buoy and wave power generation system including the same
WO2015152843A1 (en) A wave energy generator
CN104389727A (en) Gravity pendulum type wave energy hydraulic power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220824

R150 Certificate of patent or registration of utility model

Ref document number: 7130762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150