JP7128724B2 - Wave height calculation method - Google Patents

Wave height calculation method Download PDF

Info

Publication number
JP7128724B2
JP7128724B2 JP2018213596A JP2018213596A JP7128724B2 JP 7128724 B2 JP7128724 B2 JP 7128724B2 JP 2018213596 A JP2018213596 A JP 2018213596A JP 2018213596 A JP2018213596 A JP 2018213596A JP 7128724 B2 JP7128724 B2 JP 7128724B2
Authority
JP
Japan
Prior art keywords
frequency spectrum
acceleration
wave height
water level
calculation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018213596A
Other languages
Japanese (ja)
Other versions
JP2020079762A (en
Inventor
毅 琴浦
シバランジャニ ジャヤプラサッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2018213596A priority Critical patent/JP7128724B2/en
Publication of JP2020079762A publication Critical patent/JP2020079762A/en
Application granted granted Critical
Publication of JP7128724B2 publication Critical patent/JP7128724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

本発明は、主に海上工事等の施工現場における波高を算出する波高算出方法に関する。 The present invention mainly relates to a wave height calculation method for calculating wave height at a construction site such as marine construction.

港湾内等で作業を行う現場においては、安全性の観点から実際の波高を把握する必要があり、作業海域に波高計を設置している。 At work sites such as harbors, it is necessary to grasp the actual wave height from the viewpoint of safety, and wave height gauges are installed in the work area.

従来、波高計としては、海底設置式、空中放射式、ブイ式の波高計等が知られている。 Conventionally, as wave gauges, there are seafloor type, air radiation type, buoy type wave gauges, and the like.

しかしながら、海底設置式の波高計は、海底に設置した超音波センサや水圧センサ等の計測器を用いて水面変動を捉えるものであり、潜水士によって計測器を海底に設置する必要があるため設置作業が容易でなく、特に水深50m以上の大水深域においては設置が困難であるという問題があった。 However, seafloor-mounted wave gauges capture changes in the water surface using measuring instruments such as ultrasonic sensors and water pressure sensors installed on the seafloor. There was a problem that the work was not easy, and installation was difficult especially in a deep water area of 50 m or more.

また、この海底設置式波高計では、リアルタイムにデータを取得する場合、水中では無線によるデータ伝達が困難なため、海底の計測器と海上の中継用ブイや作業船上の装置とがケーブルで接続されている必要があるという問題があった。 In order to acquire real-time data from this seafloor-mounted wave height gauge, since it is difficult to transmit data wirelessly underwater, the seafloor measuring instrument is connected with a relay buoy on the sea or equipment on a work boat with a cable. There was a problem that it was necessary to

空中放射式波高計は、海上構造物等に設置した装置より海面に向かって垂直方向に超音波を放射し、その反射から水面変動を捉えるものであり、この方式の波高計を作業船に用いる場合、作業船の揺動によって超音波の放射角度及び超音波を送受信する装置の位置が変動するため、その変動を考慮して計測値を補正する必要が生じ、その算出が複雑であるという問題があった。 An airborne wave height gauge emits ultrasonic waves vertically toward the sea surface from a device installed on an offshore structure, etc., and detects changes in the water surface from its reflection. In this case, the angle of emission of the ultrasonic waves and the position of the device that transmits and receives the ultrasonic waves fluctuate due to the rocking of the work boat, so it is necessary to correct the measured values in consideration of the fluctuations, and the calculation is complicated. was there.

これに対し、ブイ式波高計は、計測器を内蔵したブイを海面に浮かべ、水面変動に追随するブイの上下方向変位を計測するものであり、装置が簡便であるとともに、計測が比較的容易であり、軽量なブイであれば人力による設置が可能になっている。 On the other hand, the buoy-type wave height meter floats a buoy with a built-in measuring instrument on the sea surface and measures the vertical displacement of the buoy following changes in the water surface. , and light buoys can be installed manually.

ブイ式波高計には、水面変動に追随するブイの上下方向加速度を加速度センサで計測し、その加速度を時間で2回積分することにより水面の上下方向変位を算出するようにしたものが主に用いられている(例えば、特許文献1を参照)。 Buoy-type wave gauges mainly measure the vertical acceleration of a buoy that follows changes in the water surface using an acceleration sensor, and integrate the acceleration twice over time to calculate the vertical displacement of the water surface. used (see, for example, Patent Document 1).

尚、波浪観測をする場合、通常は、3秒以上の波浪を対象とし、データ取得を周期0.5秒(周波数2Hz)以下とすることが多く、時系列に沿った水位を取得した後、ゼロアップクロス法等を用いて個々の波高を算出する。 In addition, when observing waves, waves of 3 seconds or more are usually targeted, and the period of data acquisition is often less than 0.5 seconds (frequency of 2 Hz). Individual wave heights are calculated using the zero up-cross method or the like.

例えば、周期が平均6秒の波であれば、10分間計測すると100波程度観測されることになり、その波高の上位1/3の平均波高が有義波高、それに該当する平均周期が有義波周期として取り扱われている。 For example, if a wave has an average period of 6 seconds, about 100 waves will be observed when measuring for 10 minutes. treated as a wave period.

特開平8-278130号公報JP-A-8-278130

しかしながら、上述の如き従来のブイ式波高計では、計測される加速度の計測データにノイズが含まれると、その影響を除去する必要が生じる等、加速度を時間で二回積分することによって正確に水面の上下方向変位、即ち、波高に変換することが困難であるという問題があった。 However, in the conventional buoy-type wave height meter as described above, if noise is included in the measurement data of the measured acceleration, it is necessary to remove the influence of noise. There is a problem that it is difficult to convert the displacement in the vertical direction, that is, the wave height.

そこで、本発明は、このような従来の問題に鑑み、ブイ等の浮体を用いて簡便且つ正確に波高を算出することができる波高算出方法の提供を目的としてなされたものである。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a wave height calculation method capable of simply and accurately calculating wave height using a floating body such as a buoy.

上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、水上に浮かべた浮体の加速度を計測して波高を算出する波高算出方法において、前記加速度の計測結果に基づいて加速度成分周波数スペクトルを算出し、水位に対応する周波数スペクトル、速度に対応する周波数スペクトル及び加速度に対応する周波数スペクトルの比を用いて前記加速度成分周波数スペクトルを水位成分周波数スペクトルに換算し、該水位成分周波数スペクトルを所定の周波数範囲で積分して周波数スペクトル密度のゼロ次モーメントを求め、該周波数スペクトル密度のゼロ次モーメントより波高を算出することにある。 The feature of the invention according to claim 1 for solving the conventional problems as described above is a wave height calculation method for calculating the wave height by measuring the acceleration of a floating body floating on the water, based on the measurement result of the acceleration Calculate the acceleration component frequency spectrum, convert the acceleration component frequency spectrum to the water level component frequency spectrum using the ratio of the frequency spectrum corresponding to the water level, the frequency spectrum corresponding to the velocity, and the frequency spectrum corresponding to the acceleration, and the water level component The object is to obtain the zero-order moment of the frequency spectrum density by integrating the frequency spectrum in a predetermined frequency range, and to calculate the wave height from the zero-order moment of the frequency spectrum density.

請求項2に記載の発明の特徴は、請求項1の構成に加え、前記所定の周波数範囲は、0.1~0.3Hzであることにある。 A feature of the invention according to claim 2 is that, in addition to the configuration of claim 1, the predetermined frequency range is 0.1 to 0.3 Hz.

請求項3に記載の発明の特徴は、請求項1又は2の構成に加え、周波数範囲が0.1~0.3Hzである前記水位成分周波数スペクトルのマイナス1次モーメントとゼロ次モーメントとにより周期を算出することにある。 The feature of the invention according to claim 3 is that, in addition to the configuration of claim 1 or 2, the frequency range is 0.1 to 0.3 Hz. is to be calculated.

請求項4に記載の発明の特徴は、請求項1~3の何れか一の構成に加え、前記浮体は、前記加速度の計測データを外部へ送信する送信手段を備えることにある。 A feature of the invention according to claim 4 is that, in addition to the configuration according to any one of claims 1 to 3, the floating body has transmission means for transmitting measurement data of the acceleration to the outside.

本発明に係る波高算出方法は、請求項1に記載の構成を具備することによって、設置水域の水深に依存せず、簡便な加速度センサを用いて波高を算出することができ、装置の小型化を図ることができる。また、この算出方法では、浮体の加速度を計測する際にノイズが発生した場合であっても、ノイズに影響されずに波高を算出することができる。 The wave height calculation method according to the present invention can calculate the wave height using a simple acceleration sensor without depending on the water depth of the installation water area by having the configuration described in claim 1, and the device can be miniaturized. can be achieved. Moreover, in this calculation method, even if noise occurs when measuring the acceleration of the floating body, the wave height can be calculated without being affected by the noise.

また、本発明において、請求項2に記載の構成を具備することによって、スパイクノイズの影響を排除することができる。 Moreover, in the present invention, by providing the configuration according to claim 2, the influence of spike noise can be eliminated.

さらに、本発明において、請求項3に記載の構成を具備することによって、波高と併せて周期を算出することができる。 Furthermore, in the present invention, by providing the configuration according to claim 3, it is possible to calculate the period together with the wave height.

さらにまた、本発明において、請求項4に記載の構成を具備することによって、加速度の計測データを随時外部のコンピュータ機器等に送信することができ、リアルタイムに波高を算出することができる。 Furthermore, in the present invention, by providing the configuration according to claim 4, the measurement data of acceleration can be transmitted to an external computer device or the like at any time, and the wave height can be calculated in real time.

本発明に係る波高算出方法に使用する装置の概略を示す側面図である。It is a side view which shows the outline of the apparatus used for the wave-height calculation method which concerns on this invention. 図1中の浮体を示す断面図である。FIG. 2 is a cross-sectional view showing a floating body in FIG. 1; 水位、速度及び加速度に対応する周波数スペクトルと周波数との関係を示すグラフである。4 is a graph showing the relationship between frequency spectrum and frequency corresponding to water level, velocity and acceleration; 水位/速度比、速度/加速度比と周波数との関係を示すグラフである。It is a graph which shows the relationship between water level / speed ratio, speed / acceleration ratio, and frequency.

次に、本発明に係る波高算出方法の実施態様を図1~図4に示した実施例に基づいて説明する。図1は、本発明に使用する波高計測装置の一例を示す概略図である。 Next, embodiments of the wave height calculation method according to the present invention will be described based on the embodiments shown in FIGS. 1 to 4. FIG. FIG. 1 is a schematic diagram showing an example of a wave height measuring device used in the present invention.

この波高計測装置は、水面に浮かべたブイ等の浮体1と、浮体1に内蔵された加速度センサ2とを備え、波浪等による水位変動に伴って上下動する浮体1の加速度を計測できるようになっている。 This wave height measuring device comprises a floating body 1 such as a buoy floating on the water surface and an acceleration sensor 2 built in the floating body 1, so that the acceleration of the floating body 1 that moves up and down due to fluctuations in water level caused by waves or the like can be measured. It's becoming

尚、図中符号3は、浮体1を水底4に係留するための係留索、符号5は作業船、符号6はコンピュータ機器等からなる演算装置である。 In the figure, reference numeral 3 denotes a mooring rope for mooring the floating body 1 to the bottom of the water 4, reference numeral 5 denotes a work boat, and reference numeral 6 denotes a computing device such as a computer.

また、浮体1は、計測データを浮体1の外部に送信する送信手段7を備え、作業船5や地上等の外部(本実施例では、作業船5)に設置されたコンピュータ機器等からなる演算装置6に随時計測データが送信され、演算装置6によって計測データからリアルタイムに波高を算出する。 In addition, the floating body 1 is provided with a transmission means 7 for transmitting the measurement data to the outside of the floating body 1, and a computing device such as a computer device installed outside the work ship 5 or on the ground (in this embodiment, the work ship 5). Measurement data is transmitted to the device 6 at any time, and the wave height is calculated in real time from the measurement data by the computing device 6 .

尚、浮体1には、加速度センサ2、送信手段7に電力を供給するバッテリー等の電源8が備えられている。 The floating body 1 is provided with a power source 8 such as a battery for supplying power to the acceleration sensor 2 and the transmission means 7 .

次に、上述の装置を使用した具体的な波高算出方法を以下に説明する。 Next, a specific wave height calculation method using the above device will be described below.

先ず、浮体1を所定の水域に浮かべ、浮体1の上下移動に伴う加速度の計測を開始すると、計測結果が送信手段7によってコンピュータ機器等の演算装置6に随時送信される。 First, when the floating body 1 is floated in a predetermined water area and the measurement of the acceleration accompanying the vertical movement of the floating body 1 is started, the measurement result is transmitted by the transmission means 7 to the computing device 6 such as a computer device at any time.

演算装置6は、先ず、随時送信される時系列に沿った浮体1の加速度データに基づいて加速度成分周波数スペクトルA(f)を算出する。 The computing device 6 first calculates the acceleration component frequency spectrum A(f) based on the time-series acceleration data of the floating body 1 that are transmitted as needed.

次に、演算装置6は、水位に対応する周波数スペクトル、速度に対応する周波数スペクトル及び加速度に対応する周波数スペクトルの比を用いて加速度成分周波数スペクトルA(f)を水位成分周波数スペクトルE(f)に換算する。 Next, the arithmetic unit 6 converts the acceleration component frequency spectrum A(f) into the water level component frequency spectrum E(f) using the ratio of the frequency spectrum corresponding to the water level, the frequency spectrum corresponding to the velocity, and the frequency spectrum corresponding to the acceleration. Convert to

一般に、超音波波高計等の精度の高い水位計測が可能な波高計を用いて計測した水位は、時間で1回微分すると速度が求められ、更に速度を時間で1回微分すると加速度が求められる。 In general, the water level measured using a wave gauge that can measure water level with high accuracy, such as an ultrasonic wave gauge, is differentiated once with respect to time to obtain the velocity, and further differentiated once with respect to time to obtain the acceleration. .

そこで、水位、速度及び加速度の時系列に対応する周波数スペクトルと周波数との関係を求めると、図3に示すような関係となる。 Therefore, when the relationship between the frequency spectrum and the frequency corresponding to the time series of the water level, velocity and acceleration is obtained, the relationship shown in FIG. 3 is obtained.

また、この結果に基づいて、水位に対応する周波数スペクトル/速度に対応する周波数スペクトル(以下、水位/速度比という)、速度に対応する周波数スペクトル/加速度に対応する周波数スペクトル(以下、速度/加速度比という)を求めると、図4に示すような関係を示す。 Also, based on this result, frequency spectrum corresponding to water level/frequency spectrum corresponding to speed (hereinafter referred to as water level/speed ratio), frequency spectrum corresponding to speed/frequency spectrum corresponding to acceleration (hereinafter speed/acceleration (referred to as a ratio) yields the relationship shown in FIG.

図4に示すように、水位/速度比は、周波数0.159Hz付近で1となり、0.159Hzよりも大きい周波数の範囲では、1を上回り、0.159Hzよりも小さい周波数の範囲では、1を上回る。 As shown in FIG. 4, the water level/velocity ratio is 1 near the frequency of 0.159 Hz, exceeds 1 in the range of frequencies greater than 0.159 Hz, and exceeds 1 in the range of frequencies less than 0.159 Hz. Exceed.

一方、速度/加速度比においても、周波数0.159Hz付近で1となり、0.159Hzよりも大きい周波数の範囲では、1を上回り、0.159Hzよりも小さい周波数の範囲では、1を上回る。 On the other hand, the velocity/acceleration ratio also becomes 1 near the frequency of 0.159 Hz, exceeds 1 in the range of frequencies higher than 0.159 Hz, and exceeds 1 in the range of frequencies lower than 0.159 Hz.

そして、水位/速度比及び速度/加速度比は、周波数fが0.1~0.3Hzの範囲において、図4に示す近似線0.0286f-1.961上にほぼ載り、両者は略一致する。即ち、加速度成分周波数スペクトルA(f)と水位成分周波数スペクトルE(f)とは、周波数fが0.1~0・3Hzの範囲において比例関係にある。 The water level/velocity ratio and the velocity/acceleration ratio are approximately on the approximation line 0.0286f -1.961 shown in FIG. . That is, the acceleration component frequency spectrum A(f) and the water level component frequency spectrum E(f) are in a proportional relationship within the frequency f range of 0.1 to 0.3 Hz.

よって、この関係性を用いることによって、計測された浮体1の加速度の計測結果から加速度成分周波数スペクトルA(f)を求め、その加速度成分周波数スペクトルA(f)から水位成分周波数スペクトルE(f)に換算することができる。 Therefore, by using this relationship, the acceleration component frequency spectrum A(f) is obtained from the measured acceleration of the floating body 1, and the water level component frequency spectrum E(f) is obtained from the acceleration component frequency spectrum A(f). can be converted to

演算装置6は、水位成分周波数スペクトルE(f)が求められたら、以下の式を用いて、水位成分周波数スペクトルE(f)を所定の周波数範囲で積分することによって、周波数スペクトル密度のゼロ次モーメント(総エネルギー)mを求める。 When the water level component frequency spectrum E(f) is obtained, the arithmetic device 6 integrates the water level component frequency spectrum E(f) in a predetermined frequency range using the following formula to obtain the zero-order frequency spectrum density Find the moment (total energy) m 0 .

式1formula 1

Figure 0007128724000001
Figure 0007128724000001

その際、海上工事において問題となるのは、0.1Hz(周期10秒)~0.3Hz(周期3.33秒)程度の波であるので、式1における積分の周波数範囲を0.1~0.3Hzに限定する。 At that time, the problem in offshore construction is waves with a frequency of about 0.1 Hz (period of 10 seconds) to 0.3 Hz (period of 3.33 seconds). Limited to 0.3 Hz.

この周波数の範囲では、浮体1の加速度の計測中にノイズが発生した場合であっても、スパイクノイズであれば2Hz程度のエネルギーとなって、エネルギーの集計範囲外となるので、ノイズの影響を無視し得る。 In this frequency range, even if noise occurs during measurement of the acceleration of the floating body 1, if it is spike noise, the energy is about 2 Hz, which is outside the range of energy aggregation. can be ignored.

そして、演算装置6は、周波数スペクトル密度のゼロ次モーメント(総エネルギー)mが求められれば、次式によって周波数スペクトル密度のゼロ次モーメントmから波高Hを算出する。 Then, when the zero -order moment (total energy) m0 of the frequency spectral density is obtained, the arithmetic device 6 calculates the wave height H from the zero -order moment m0 of the frequency spectral density by the following equation.

式2formula 2

Figure 0007128724000002
Figure 0007128724000002

また、演算装置6は、次式によって水位成分周波数スペクトルのマイナス一次モーメントm-1を水位成分周波数スペクトルのゼロ次モーメントmで除して周期Tを算出する。 Further, the computing device 6 calculates the period T by dividing the negative first-order moment m −1 of the water level component frequency spectrum by the zero-order moment m 0 of the water level component frequency spectrum according to the following equation.

式3Formula 3

Figure 0007128724000003
Figure 0007128724000003

このように構成された波高算出方法は、浮体1の加速度の計測データから従来の時間による2回積分を用いず、上述の各工程を経て加速度成分周波数スペクトルA(f)を水位成分周波数スペクトルE(f)に換算し、水位成分周波数スペクトルE(f)を所定の周波数範囲(0.1≦f≦0.3)で積分して周波数スペクトル密度のゼロ次モーメントmを求めるので、加速度計測時にノイズが発生しても、そのノイズの影響を無視して、波高Hを算出することができる。 The wave height calculation method configured in this way does not use the conventional double integration by time from the measurement data of the acceleration of the floating body 1, but converts the acceleration component frequency spectrum A(f) into the water level component frequency spectrum E (f), and integrate the water level component frequency spectrum E(f) in a predetermined frequency range (0.1 ≤ f ≤ 0.3) to obtain the zero -order moment m0 of the frequency spectrum density, so acceleration measurement Even if noise occurs at times, the wave height H can be calculated ignoring the influence of the noise.

よって、計測に使用する加速度センサ2は、簡易なものでよく、その分、装置費用の低減を図ることができるとともに、装置の小型化を図ることができる。 Therefore, the acceleration sensor 2 used for measurement can be simple, and the device cost can be reduced accordingly, and the size of the device can be reduced.

また、加速度センサ2は、ブイ等の浮体1に内蔵するので、海底設置式波高計等のように計測水域の水深に依存することがなく、容易にその水域の波高を得ることができる。 In addition, since the acceleration sensor 2 is built into the floating body 1 such as a buoy, the wave height of the water area can be easily obtained without depending on the water depth of the water area to be measured unlike a seabed-mounted wave height meter.

さらには、浮体1に送信手段7を備え、作業船5や地上に設置された外部のコンピュータ機器等からなる演算装置6に随時加速度の計測データを送信することによって、簡易的でリアルタイムに波高を得ることができる観測システムを構築することができる。 Furthermore, the floating body 1 is provided with a transmission means 7, and by transmitting measurement data of acceleration at any time to a work boat 5 or an arithmetic device 6 composed of an external computer device installed on the ground, wave height can be simply and in real time. It is possible to construct an observation system that can obtain

尚、上述の実施例では、周期を式3に基づいて算出する例について説明したが、その他の手法を用いて算出するようにしてもよい。 In the above-described embodiment, an example of calculating the period based on Equation 3 has been described, but the period may be calculated using other methods.

また、上述の実施例では、浮体1を水底に係留させた例について説明したが、浮体1は、作業船6に係留させてもよく、係留せずに所定の水域に浮遊させておいてもよい。 Further, in the above-described embodiment, an example in which the floating body 1 is moored to the bottom of the water has been described. good.

さらに、上述の実施例では、ブイ等の浮体1に送信手段7を備えた例について説明したが、浮体1内部に演算装置6及びその算出結果を保存する記憶装置を備えてもよい。 Furthermore, in the above-described embodiment, an example in which the floating body 1 such as a buoy is provided with the transmitting means 7 has been described.

1 浮体
2 加速度センサ
3 係留索
4 水底
5 作業船
6 演算装置
7 送信手段
8 電源
1 Floating body 2 Acceleration sensor 3 Mooring rope 4 Bottom of water 5 Work boat 6 Computing device 7 Transmitting means 8 Power supply

Claims (4)

水上に浮かべた浮体の加速度を計測して波高を算出する波高算出方法において、
前記加速度の計測結果に基づいて加速度成分周波数スペクトルを算出し、水位に対応する周波数スペクトル、速度に対応する周波数スペクトル及び加速度に対応する周波数スペクトルの比を用いて前記加速度成分周波数スペクトルを水位成分周波数スペクトルに換算し、該水位成分周波数スペクトルを所定の周波数範囲で積分して周波数スペクトル密度のゼロ次モーメントを求め、該周波数スペクトル密度のゼロ次モーメントより波高を算出することを特徴とする波高算出方法。
In the wave height calculation method for calculating the wave height by measuring the acceleration of a floating body floating on the water,
An acceleration component frequency spectrum is calculated based on the measurement result of the acceleration, and the acceleration component frequency spectrum is converted to the water level component frequency using the ratio of the frequency spectrum corresponding to the water level, the frequency spectrum corresponding to the velocity, and the frequency spectrum corresponding to the acceleration. A wave height calculation method characterized by converting into a spectrum, integrating the water level component frequency spectrum in a predetermined frequency range to obtain a zero-order moment of the frequency spectrum density, and calculating a wave height from the zero-order moment of the frequency spectrum density. .
前記所定の周波数範囲は、0.1~0.3Hzである請求項1に記載の波高算出方法。 The wave height calculation method according to claim 1, wherein the predetermined frequency range is 0.1 to 0.3 Hz. 周波数範囲が0.1~0.3Hzである前記水位成分周波数スペクトルのマイナス1次モーメントとゼロ次モーメントとにより周期を算出する請求項1又は2に記載の波高算出方法。 The wave height calculation method according to claim 1 or 2, wherein the period is calculated from the minus first moment and the zeroth moment of the water level component frequency spectrum whose frequency range is 0.1 to 0.3 Hz. 前記浮体は、前記加速度の計測データを外部へ送信する送信手段を備える請求項1~3の何れか一に記載の波高算出方法。 The wave height calculation method according to any one of claims 1 to 3, wherein the floating body comprises transmission means for transmitting measurement data of the acceleration to the outside.
JP2018213596A 2018-11-14 2018-11-14 Wave height calculation method Active JP7128724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018213596A JP7128724B2 (en) 2018-11-14 2018-11-14 Wave height calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213596A JP7128724B2 (en) 2018-11-14 2018-11-14 Wave height calculation method

Publications (2)

Publication Number Publication Date
JP2020079762A JP2020079762A (en) 2020-05-28
JP7128724B2 true JP7128724B2 (en) 2022-08-31

Family

ID=70801882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213596A Active JP7128724B2 (en) 2018-11-14 2018-11-14 Wave height calculation method

Country Status (1)

Country Link
JP (1) JP7128724B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487126B2 (en) 2021-02-17 2024-05-20 五洋建設株式会社 Method for constructing a learning model, method for estimating wave amplitude, method for estimating time-dependent change in vertical position of water surface, device for estimating wave amplitude, and program
CN117436317B (en) * 2023-12-20 2024-03-29 浙江远算科技有限公司 Wave current load simulation calculation method, system and equipment based on offshore wind power pile foundation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171146A (en) 2005-11-24 2007-07-05 Kenwood Corp Wave height measuring instrument
JP2016118432A (en) 2014-12-19 2016-06-30 古野電気株式会社 Wave height calculation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2911840B2 (en) * 1996-11-19 1999-06-23 株式会社カイジョー Buoy-type wave height meter
JP3455167B2 (en) * 2000-06-29 2003-10-14 川崎重工業株式会社 Wave information measurement method and device using large floating body
JP6867666B2 (en) * 2015-07-10 2021-05-12 国立研究開発法人 海上・港湾・航空技術研究所 Floating body with wave measuring device and wave measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171146A (en) 2005-11-24 2007-07-05 Kenwood Corp Wave height measuring instrument
JP2016118432A (en) 2014-12-19 2016-06-30 古野電気株式会社 Wave height calculation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
野中浩一ほか,波浪推算に基づく波高・周期の推定値に及ぼすスペクトル幅の影響,土木学会論文集B3(海洋開発),2016年,Vol.2, No.2,p. I_253-I_258

Also Published As

Publication number Publication date
JP2020079762A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US8195395B2 (en) System for monitoring, determining, and reporting directional spectra of ocean surface waves in near real-time from a moored buoy
US3810081A (en) Submerged chain angle measurement
US8971150B2 (en) Method for measuring sea waves by means of ultrasonic waves, as well as sea wave measuring system
JP7128724B2 (en) Wave height calculation method
RU2419574C1 (en) Towed submarine apparatus
US10625824B2 (en) Method and system for determining displacement of an anchor
KR101726500B1 (en) Apparatus and method for vessel monitoring
CN114455004A (en) Wave buoy combined with pressure acceleration sensor and precision improvement method
US4000646A (en) Wave height measuring device
CN110087985A (en) The close control of towboat
JP2015112928A (en) Diver information acquisition method, and diver information acquisition system
US3910111A (en) Wave height measuring device
JP7455055B2 (en) Wave amplitude estimation method, amplitude estimation device, and program
Chang et al. Preliminary test of Tide-independent Bathymetric measurement Based on GPS
JP2019035672A (en) Buoy-type tidal flow measurement device and tidal flow measurement method
CN113654529A (en) Intelligent monitoring device for tidal water level monitoring and working method thereof
Maimun et al. Seakeeping analysis of a fishing vessel operating in Malaysian water
RU53454U1 (en) UNDERWATER MEASUREMENT OF DEPTH OF A RESERVOIR AND AVERAGE VERTICAL VELOCITY OF SPEED OF SOUND IN WATER
RU2284944C2 (en) Device for measurement of draft of watercraft under swell conditions
KR200426753Y1 (en) System for measuring wave meter on board
NL2031435B1 (en) Tide level forecasting device and working method thereof
RU127188U1 (en) SYSTEM FOR MEASURING THE DEPTH OF THERMOCLINE FROM A DRIFTING VESSEL
JP2018004529A (en) Buoy type wave height measurement device
CN214621165U (en) Under-ice wave, tide and flow data acquisition device
KR102051731B1 (en) Structural installation monitoring system and its method for deep sea URF operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210924

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220819

R150 Certificate of patent or registration of utility model

Ref document number: 7128724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150