JP7126979B2 - Method for treating waste liquid containing cesium and/or strontium - Google Patents

Method for treating waste liquid containing cesium and/or strontium Download PDF

Info

Publication number
JP7126979B2
JP7126979B2 JP2019062460A JP2019062460A JP7126979B2 JP 7126979 B2 JP7126979 B2 JP 7126979B2 JP 2019062460 A JP2019062460 A JP 2019062460A JP 2019062460 A JP2019062460 A JP 2019062460A JP 7126979 B2 JP7126979 B2 JP 7126979B2
Authority
JP
Japan
Prior art keywords
silicotitanate
strontium
based adsorbent
waste liquid
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019062460A
Other languages
Japanese (ja)
Other versions
JP2019191163A (en
Inventor
貴志 佐久間
誠 小松
丈志 出水
茂 平野
要樹 清水
敬助 徳永
悠輝 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tosoh Corp
Original Assignee
Ebara Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tosoh Corp filed Critical Ebara Corp
Publication of JP2019191163A publication Critical patent/JP2019191163A/en
Application granted granted Critical
Publication of JP7126979B2 publication Critical patent/JP7126979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、セシウム及び/又はストロンチウムを有する廃液の処理方法に関し、特に放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法、特に原子力発電プラント内で発生する海水などの夾雑イオンを含む廃液中に含まれる放射性セシウムと放射性ストロンチウムの両方の元素を除去することができる廃液の処理方法に関する。 TECHNICAL FIELD The present invention relates to a method for treating waste liquid containing cesium and/or strontium, and particularly to a method for treating radioactive waste liquid containing radioactive cesium and radioactive strontium, particularly in waste liquid containing contaminant ions such as seawater generated in a nuclear power plant. The present invention relates to a waste liquid treatment method capable of removing both radioactive cesium and radioactive strontium elements.

2011年3月11日の東日本大震災により福島第一原子力発電所で発生した事故により、放射性物質を含む放射性廃液が大量に発生している。この放射性廃液には、原子炉圧力容器や格納容器、使用済み燃料プールに注水される冷却水に起因して発生する汚染水や、トレンチ内に滞留しているトレンチ水、原子炉建屋周辺のサブドレンと呼ばれる井戸より汲み上げられるサブドレン水、地下水、海水などがある(以下「放射性廃液」と称す。)。これらの放射性廃液は、サリー(SARRY, Simplified Active Water Retrieve and Recovery
System(単純型汚染水処理システム)セシウム除去装置)やアルプス(ALPS, 多核種除去装置)などと呼ばれる処理設備にて放射性物質が除去され、処理された水はタンクに回収されている。
Due to the accident that occurred at the Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake on March 11, 2011, a large amount of radioactive liquid waste containing radioactive materials has been generated. This radioactive liquid waste includes contaminated water generated by cooling water injected into the reactor pressure vessel, containment vessel, and spent fuel pool, trench water remaining in trenches, and subdrains around the reactor building. There are sub-drain water, groundwater, seawater, etc. pumped up from wells called "radioactive liquid waste". These radioactive waste liquids are called SARRY (Simplified Active Water Retrieve and Recovery
Radioactive substances are removed by treatment facilities called System (simple contaminated water treatment system) cesium removal device) and Alps (ALPS, multi-nuclide removal device), and the treated water is collected in tanks.

放射性物質のうち、放射性セシウムを選択的に吸着除去することができる物質として、紺青等のフェロシアン化合物や、ゼオライトの一種であるモルデナイト、アルミノケイ酸塩、チタンケイ酸塩(CST)などがある。たとえばサリーでは、放射性セシウムを除去するために、アルミノケイ酸塩であるUOP社製のIE96とCSTであるUOP社製のIE911が使用されている。放射性ストロンチウムを選択的に吸着除去することができる物質として、天然ゼオライトや合成A型及びX型ゼオライト、チタン酸塩、CSTなどがある。たとえばアルプスでは、放射性ストロンチウムを除去するためにチタン酸塩である吸着剤が使用されている。 Among radioactive substances, substances that can selectively adsorb and remove radioactive cesium include ferrocyanic compounds such as Prussian blue, mordenite, aluminosilicate, and titanium silicate (CST), which are a type of zeolite. For example, Surrey uses UOP IE96, an aluminosilicate, and UOP IE911, a CST, to remove radioactive cesium. Substances capable of selectively adsorbing and removing radioactive strontium include natural zeolites, synthetic A-type and X-type zeolites, titanates, CST, and the like. For example, in the Alps, titanate adsorbents are used to remove radioactive strontium.

また、セシウムを吸着できる吸着剤としてシリコチタネートを使用することが提案されている。たとえば、WO2016/010142 A1(特許文献1)には、セシウムとストロンチウムに対して吸着性能を有する、シチナカイト構造を有するシリコチタネートを含み、X線回折角2θ=8.8±0.5°、2θ=10.0±0.5°及び2θ=29.6±0.5°からなる群の2以上に回折ピークを有するシリコチタネート組成物が開示されている。しかし、特許文献1には、2θ=21.8±0.5°に回折ピークを有する結晶性物質を含むシリコチタネート組成物は開示されていない。 It has also been proposed to use silicotitanate as an adsorbent capable of adsorbing cesium. For example, WO2016/010142 A1 (Patent Document 1) contains silicotitanate having a cytinakite structure, which has adsorption performance for cesium and strontium, and X-ray diffraction angle 2θ = 8.8 ± 0.5 °, 2θ =10.0±0.5° and 2θ=29.6±0.5°. However, Patent Document 1 does not disclose a silicotitanate composition containing a crystalline material having a diffraction peak at 2θ=21.8±0.5°.

WO2017/141931 A1(特許文献2)には、ATi(SiO)・nHO(式中、AはNa及びKから選ばれる1種又は2種のアルカリ元素を示す。nは1以上2以下の数を示す)で表される結晶性シリコチタネートに第5族元素Mとしてニオブ(Nb)を含み、2θ=11°以上12°以下のメーンピークの半値幅が0.320°以下で、且つ2θ=29°以上30°以下の範囲にピークが観察されないセシウム又は/及びストロンチウム吸着剤が開示されている。しかし、特許文献2に開示されている吸着剤は、2θ=29°以上30°以下の範囲にピークが観察されないことを特徴としており、また、特許文献2に挙げられている複数のX線回折パターンの全てにおいて2θ=21.8±0.5°に回折ピークがない。 WO2017/141931 A1 (Patent Document 2) describes A 2 Ti 2 O 3 (SiO 4 ).nH 2 O (wherein A represents one or two alkali elements selected from Na and K. n represents a number of 1 or more and 2 or less) contains niobium (Nb) as a Group 5 element M, and the half width of the main peak at 2θ = 11 ° or more and 12 ° or less is 0.320 ° or less and no peaks are observed in the range of 2θ=29° or more and 30° or less. However, the adsorbent disclosed in Patent Document 2 is characterized in that no peak is observed in the range of 2θ = 29 ° or more and 30 ° or less. There is no diffraction peak at 2θ=21.8±0.5° in all of the patterns.

以上の特許文献1及び2に開示されている吸着剤のストロンチウム吸着性能は十分とは言えないものであった。 The strontium adsorption performance of the adsorbents disclosed in Patent Documents 1 and 2 is not sufficient.

WO2016/010142 A1WO2016/010142 A1 WO2017/141931 A1WO2017/141931 A1

本発明の目的は、従来のセシウム(Cs)及び/又はストロンチウム(Sr)吸着剤よりも高い吸着性能、特に高いストロンチウム吸着性能を有する新規なシリコチタネート系吸着剤を用いるセシウム及び/又はストロンチウムを含む廃液の処理方法を提供することにある。 The object of the present invention includes cesium and/or strontium using a novel silicotitanate-based adsorbent with higher adsorption performance than conventional cesium (Cs) and/or strontium (Sr) adsorbents, particularly high strontium adsorption performance. An object of the present invention is to provide a method for treating waste liquid.

本発明によれば、新規なシリコチタネート系吸着剤を用いるセシウム及び/又はストロンチウムを含有する廃液の処理方法が提供される。具体的態様は、以下のとおりである。[1]シチナカイト構造を有するシリコチタネートと、粉末X線回折によるX線回折角2θ=8.7±0.5°、2θ=10.0±0.5°、2θ=27.8±0.5°又は2θ=29.4±0.5°の少なくとも1つに回折ピークを有し、かつX線回折角2θ=21.8±0.5°に回折ピークを有する結晶性物質と、1.0重量%以上12.0重量%以下のNaOと、を含み、Na/Tiモル比が0.1以上1.0以下であるシリコチタネート系吸着剤に、セシウム又はストロンチウムを含有する廃液を接触させる、セシウム及び/又はストロンチウムを含有する廃液の処理方法。
[2]前記シリコチタネート系吸着剤は、80m/g以上のBET表面積を有することを特徴とする前記[1]に記載の廃液の処理方法。
[3]前記シリコチタネート系吸着剤を10cm以上300cm以下の層高で充填した吸着塔に、セシウム又はストロンチウムを含有する廃液を通水線流速(LV)1m/h以上40m/h以下、空間速度(SV)200h-1以下で通水して、当該シリコチタネート系吸着剤にセシウム及び/又はストロンチウムを吸着させることを含む、前記[1]又は[2]に記載の廃液の処理方法。
[4]前記廃液が、Naイオン、Caイオン及び/又はMgイオンをさらに含む廃液である、前記[1]~[3]のいずれか1に記載の廃液の処理方法。
According to the present invention, a method for treating waste liquid containing cesium and/or strontium using a novel silicotitanate-based adsorbent is provided. Specific aspects are as follows. [1] Silicotitanate having a cytinakite structure and powder X-ray diffraction X-ray diffraction angles 2θ=8.7±0.5°, 2θ=10.0±0.5°, 2θ=27.8±0. a crystalline substance having at least one diffraction peak at 5° or 2θ = 29.4 ± 0.5° and a diffraction peak at an X-ray diffraction angle 2θ = 21.8 ± 0.5°; 0% by weight or more and 12.0% by weight or less of Na 2 O, and a waste liquid containing cesium or strontium in a silicotitanate-based adsorbent having a Na/Ti molar ratio of 0.1 or more and 1.0 or less A method for treating a waste liquid containing cesium and/or strontium.
[2] The waste liquid treatment method according to [1] above, wherein the silicotitanate-based adsorbent has a BET surface area of 80 m 2 /g or more.
[3] In an adsorption tower filled with the silicotitanate-based adsorbent at a layer height of 10 cm or more and 300 cm or less, a waste liquid containing cesium or strontium has a linear flow velocity (LV) of 1 m / h or more and 40 m / h or less, and a space velocity (SV) The method for treating a waste liquid according to the above [1] or [2], comprising passing water at 200 h −1 or less to adsorb cesium and/or strontium on the silicotitanate-based adsorbent.
[4] The waste liquid treatment method according to any one of the above [1] to [3], wherein the waste liquid further contains Na ions, Ca ions and/or Mg ions.

本発明の処理方法において用いるシリコチタネート系吸着剤は、Naイオン、Caイオン、Mgイオンなどの海水成分共存下でもSr吸着量及びCsの吸着量が大きく、特に選択的にSrを吸着することができるため、セシウム及び/又はストロンチウムを含有する廃液、特に海水成分を含む廃液から、セシウム及び/又はストロンチウムを選択的に吸着して除去することができる。 The silicotitanate-based adsorbent used in the treatment method of the present invention has a large Sr adsorption amount and a large Cs adsorption amount even in the presence of seawater components such as Na ions, Ca ions, and Mg ions, and can particularly selectively adsorb Sr. Therefore, cesium and/or strontium can be selectively adsorbed and removed from a cesium- and/or strontium-containing waste liquid, particularly a seawater component-containing waste liquid.

製造例1で製造したシリコチタネート系吸着剤の粉末X線回折図である。1 is a powder X-ray diffraction pattern of a silicotitanate-based adsorbent produced in Production Example 1. FIG. 製造例2で製造したシリコチタネート系吸着剤の粉末X線回折図である。3 is a powder X-ray diffraction pattern of the silicotitanate-based adsorbent produced in Production Example 2. FIG. 製造例3で製造したシリコチタネート系吸着剤の粉末X線回折図である。2 is a powder X-ray diffraction pattern of the silicotitanate-based adsorbent produced in Production Example 3. FIG. 製造例4で製造したシリコチタネート系吸着剤の粉末X線回折図である。2 is a powder X-ray diffraction pattern of the silicotitanate-based adsorbent produced in Production Example 4. FIG. 製造例5で製造したシリコチタネート系吸着剤の粉末X線回折図である。2 is a powder X-ray diffraction pattern of the silicotitanate-based adsorbent produced in Production Example 5. FIG. 製造比較例1で製造したシリコチタネート成形体の粉末X線回折図である。1 is a powder X-ray diffraction pattern of a silicotitanate compact produced in Comparative Production Example 1. FIG. 実施例1によるセシウム吸着挙動を示すグラフである。4 is a graph showing cesium adsorption behavior according to Example 1. FIG. 実施例1によるストロンチウム吸着挙動を示すグラフである。4 is a graph showing strontium adsorption behavior according to Example 1. FIG. 実施例2によるセシウム吸着挙動を示すグラフである。4 is a graph showing cesium adsorption behavior according to Example 2. FIG. 実施例2によるストロンチウム吸着挙動を示すグラフである。4 is a graph showing strontium adsorption behavior according to Example 2. FIG. 実施例3によるセシウム吸着挙動を示すグラフである。4 is a graph showing cesium adsorption behavior according to Example 3. FIG. 実施例3によるストロンチウム吸着挙動を示すグラフである。4 is a graph showing strontium adsorption behavior according to Example 3. FIG.

本発明によれば、シチナカイト構造を有するシリコチタネートと、粉末X線回折によるX線回折角2θ=8.7±0.5°、2θ=10.0±0.5°、2θ=27.8±0.5°又は2θ=29.4±0.5°の少なくとも1つに回折ピークを有し、かつX線回折角2θ=21.8±0.5°に回折ピークを有する結晶性物質と、1.0重量%以上12.0重量%以下のNaOと、を含み、Na/Tiモル比が0.1以上1.0以下であるシリコチタネート系吸着剤に、セシウム又はストロンチウムを含有する廃液を接触させる、セシウム及び/又はストロンチウムを含有する廃液の処理方法が提供される。 According to the present invention, silicotitanate having a cytinakite structure and powder X-ray diffraction X-ray diffraction angles 2θ = 8.7 ± 0.5°, 2θ = 10.0 ± 0.5°, 2θ = 27.8 A crystalline substance having a diffraction peak at at least one of ±0.5° or 2θ=29.4±0.5° and having a diffraction peak at an X-ray diffraction angle of 2θ=21.8±0.5° Cesium or strontium is added to a silicotitanate-based adsorbent containing 1.0% by weight or more and 12.0% by weight or less of Na 2 O and having a Na/Ti molar ratio of 0.1 or more and 1.0 or less. A method for treating cesium- and/or strontium-containing effluents is provided that contacts the containing effluents.

シチナカイト構造を有するシリコチタネートとは、American Mineralogist Crystal Structure Database(http://ruff.geo.arizona.edu./AMS/amcsd.php、検索日:2017年12月12日)に収録されているsitinakiteに記載された特定の粉末X線回折ピークを有する結晶性シリコチタネートである。このデータベースによれば、シチナカイト構造を有するシリコチタネートの特定ピークのX線回折角2θは、11.23°、27.52°、14.82°、26.37°とされている。 Silicotitanate having a sitinakite structure is sitinakite recorded in the American Mineralogist Crystal Structure Database (http://ruff.geo.arizona.edu./AMS/amcsd.php, search date: December 12, 2017). It is a crystalline silicotitanate having specific powder X-ray diffraction peaks described in . According to this database, X-ray diffraction angles 2θ of specific peaks of silicotitanate having a cytinakite structure are 11.23°, 27.52°, 14.82°, and 26.37°.

本発明で用いるシリコチタネート系吸着剤は、シチナカイト構造を有するシリコチタネートに加えて、粉末X線回折によるX線回折角2θ=8.7±0.5°、2θ=10.0±0.5°、2θ=27.8±0.5°又は2θ=29.4±0.5°の少なくとも1つに回折ピークを有し、かつX線回折角2θ=21.8±0.5°に回折ピークを有する結晶性物質を含む。 The silicotitanate-based adsorbent used in the present invention is, in addition to silicotitanate having a sitinakite structure, X-ray diffraction angle 2θ = 8.7 ± 0.5 °, 2θ = 10.0 ± 0.5 by powder X-ray diffraction °, 2θ=27.8±0.5° or 2θ=29.4±0.5°, and has a diffraction peak at an X-ray diffraction angle of 2θ=21.8±0.5° Contains crystalline material with diffraction peaks.

さらに、本発明で用いるシリコチタネート系吸着剤は、1.0重量%以上12.0重量%以下、好ましくは3.0重量%以上12.0重量%以下、より好ましくは5.0重量%以上12.0重量%以下のNaOを含む。また、Na/Tiモル比が0.1以上1.0以下、好ましくは0.3以上1.0以下、より好ましくは0.5以上1.0以下であることが望ましい。上記量及びTiに対するモル比となるようにNaOを含むことにより、海水中に含まれるカルシウム(Ca)、マグネシウム(Mg)の水酸化物化、炭酸塩化を抑制してSrの吸着選択性が向上したと考えられる。 Furthermore, the silicotitanate-based adsorbent used in the present invention is 1.0% by weight or more and 12.0% by weight or less, preferably 3.0% by weight or more and 12.0% by weight or less, more preferably 5.0% by weight or more. Contains 12.0% by weight or less of Na 2 O. Also, the Na/Ti molar ratio is preferably 0.1 to 1.0, preferably 0.3 to 1.0, and more preferably 0.5 to 1.0. By including Na 2 O in the above amount and in a molar ratio to Ti, the hydroxide and carbonation of calcium (Ca) and magnesium (Mg) contained in seawater are suppressed, and the adsorption selectivity of Sr is improved. Considered to have improved.

また、本発明で用いるシリコチタネート系吸着剤は、80m/g以上、好ましくは82m/g以上のBET表面積を有することが望ましい。
本発明で用いるシリコチタネート系吸着剤は、シチナカイト構造を有するシリコチタネートに加えて、上記結晶性物質及び所定量のNaOを含むことにより、ストロンチウムの吸着性能をさらに向上させたものである。
Moreover, the silicotitanate-based adsorbent used in the present invention desirably has a BET surface area of 80 m 2 /g or more, preferably 82 m 2 /g or more.
The silicotitanate-based adsorbent used in the present invention further improves the strontium adsorption performance by containing the above crystalline substance and a predetermined amount of Na 2 O in addition to the silicotitanate having a cytinakite structure.

本発明で用いるシリコチタネート系吸着剤は、さらにニオブ、タンタル、バナジウム、アンチモン、マンガン、銅、及び、鉄からなる群より選ばれる少なくとも1種のドープ金属を含有するものであってもよい。ドープ金属は、特にニオブ(Nb)が好ましい。ドープ金属/Tiモル比は、0.01以上1.5以下が好ましく、0.3以上1.5以下がより好ましく、0.5以上1.0以下がさらに好ましい。 The silicotitanate-based adsorbent used in the present invention may further contain at least one dope metal selected from the group consisting of niobium, tantalum, vanadium, antimony, manganese, copper and iron. Niobium (Nb) is particularly preferred as the doping metal. The dope metal/Ti molar ratio is preferably from 0.01 to 1.5, more preferably from 0.3 to 1.5, and even more preferably from 0.5 to 1.0.

本発明で用いるシリコチタネート系吸着剤は、0.1mm以上2.0mm以下の長径を有する球状、略球状、楕円状、円柱状、多面体状及び不定形からなる群の少なくとも一種の形状を有する成形体であることが好ましい。成形体の場合には、粘土、シリカゾル、アルミナゾル、及び、ジルコニアゾルからなる群の少なくとも1種の無機バインダー及び/
又はカルボキシメチルセルロースなどの有機バインダーを含むことが好ましい。
The silicotitanate-based adsorbent used in the present invention has at least one shape selected from the group consisting of spherical, approximately spherical, elliptical, cylindrical, polyhedral, and amorphous having a major diameter of 0.1 mm or more and 2.0 mm or less. A body is preferred. In the case of shaped bodies, at least one inorganic binder selected from the group consisting of clay, silica sol, alumina sol, and zirconia sol and/or
Alternatively, it preferably contains an organic binder such as carboxymethyl cellulose.

本発明の処理方法において、前記シリコチタネート系吸着剤を10cm以上300cm以下の層高、好ましくは20cm以上250cm以下、より好ましくは50cm以上200cm以下の層高となるように吸着塔に充填する。層高10cm未満では、吸着剤を吸着塔に充填する際に吸着剤層を均一に充填することができず、通水時のショートパスを引き起こし、結果として処理水質が悪化する。層高が高い程、適切な通水差圧が実現でき、処理水質が安定化し、処理水の総量も多くなるため好ましいが、通水差圧を考慮して実用性の観点から層高300cm以下が好ましい。 In the treatment method of the present invention, the silicotitanate-based adsorbent is packed in an adsorption tower to a layer height of 10 cm to 300 cm, preferably 20 cm to 250 cm, more preferably 50 cm to 200 cm. If the bed height is less than 10 cm, the adsorbent layer cannot be filled uniformly when the adsorbent is packed into the adsorption tower, causing short-pass during water flow, resulting in deterioration of treated water quality. The higher the layer height, the more suitable the water flow differential pressure can be realized, the more stable the quality of the treated water, and the greater the total amount of treated water. is preferred.

前記シリコチタネート系吸着剤を充填した吸着塔に対して、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液を通水線流速(LV)1m/h以上40m/h以下、好ましくは5m/h以上30m/h以下、より好ましくは10m/h以上20m/h以下、空間速度(SV)200h-1以下、好ましくは100h-1以下、より好ましくは50h-1以下、好ましくは5h-1以上、より好ましくは10h-1以上で通水する。通水差圧を考慮すると通水線流速は40m/h以下、処理水量を考慮すると1m/h以上が好ましい。空間速度(SV)は一般的な廃液処理で用いられる20h-1以下、特に10h-1程度でも吸着効果を得ることができるが、通常の吸着材を用いる廃液処理では20h-1を越える大きな空間速度(SV)では安定した処理水質を実現できず、除去効果を得ることができない。本発明においては、吸着塔を大型化せずに通水線流速及び空間速度を大きくすることができる。通水線流速とは、吸着塔に通水する水量(m/h)を吸着塔の断面積(m)で除した値である。空間速度とは、吸着塔に通水する水量(m/h)を吸着塔に充填した吸着材の体積(m)で除した値である。 For the adsorption tower filled with the silicotitanate-based adsorbent, the linear flow velocity (LV) of the radioactive waste liquid containing radioactive cesium and radioactive strontium is 1 m/h or more and 40 m/h or less, preferably 5 m/h or more and 30 m/h. h or less, more preferably 10 m/h or more and 20 m/h or less, space velocity (SV) 200 h −1 or less, preferably 100 h −1 or less, more preferably 50 h −1 or less, preferably 5 h −1 or more, more preferably Water passes at 10h -1 or more. Considering the water flow differential pressure, the water flow line velocity is preferably 40 m/h or less, and considering the amount of treated water, it is preferably 1 m/h or more. Spatial velocity (SV) is 20 h -1 or less, especially about 10 h -1 , which is used in general waste liquid treatment, but it is possible to obtain an adsorption effect . The speed (SV) cannot achieve stable treated water quality, and the removal effect cannot be obtained. In the present invention, the flow line velocity and space velocity can be increased without increasing the size of the adsorption tower. The water flow velocity is a value obtained by dividing the amount of water (m 3 /h) flowing through the adsorption tower by the cross-sectional area (m 2 ) of the adsorption tower. The space velocity is a value obtained by dividing the amount of water (m 3 /h) flowing through the adsorption tower by the volume (m 3 ) of the adsorbent packed in the adsorption tower.

以下、実施例により本発明をさらに具体的に説明する。しかしながら、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these.

<粉末X線回折測定>
一般的なX線回折装置(商品名:UltimaIV、RIGAKU社製)を使用して試料のX線回折パターンを測定した。測定条件は以下のとおりとした。
線源: CuKα線(λ=1.5405Å)
スキャン条件: 毎秒0.1°
発散スリット: 1.00deg
散乱スリット: 1.00deg
受光スリット: 0.30mm
測定範囲: 2θ=5.0°~60.0°
<Powder X-ray diffraction measurement>
The X-ray diffraction pattern of the sample was measured using a general X-ray diffractometer (trade name: Ultima IV, manufactured by RIGAKU). The measurement conditions were as follows.
Radiation source: CuKα rays (λ = 1.5405 Å)
Scan condition: 0.1° per second
Divergence slit: 1.00deg
Scattering slit: 1.00deg
Receiving slit: 0.30mm
Measurement range: 2θ = 5.0° to 60.0°

得られたX線回折パターンと、上記データベースに記載されたシチナカイト構造のシリコチタネートの特定回折ピーク(以下、「特定回折ピーク」という。)とを比較することで、シチナカイト構造の同定を行った。 By comparing the obtained X-ray diffraction pattern with a specific diffraction peak (hereinafter referred to as "specific diffraction peak") of the silicotitanate having the sitinakite structure described in the database, the sitinakite structure was identified.

<シリコチタネート系吸着剤の組成分析、及びCs、Sr濃度の分析>
シリコチタネート系吸着剤の組成分析、及びCs、Sr濃度の分析は一般的なICP法により測定した。測定には、一般的なICP-AES(装置名:OPTIMA7300DV、PERKINELMER社製)を使用した。
<Composition analysis of silicotitanate-based adsorbent, and analysis of Cs and Sr concentrations>
The composition analysis of the silicotitanate-based adsorbent and the analysis of Cs and Sr concentrations were measured by a general ICP method. A general ICP-AES (apparatus name: OPTIMA7300DV, manufactured by PERKINELMER) was used for the measurement.

<pH>
内容積70mLのガラス容器に、シリコチタネート系吸着剤0.25gと室温の純水50gを入れる。振とう機(商品名:MIXER N-61、日伸理化製)で回転数調整ダ
イヤル目盛をゼロにセットして10秒間振とうした後に、5分間静置させる。その後、pH電極をガラス容器の下から1cmになる様に設置して、40分後のpHを測定した(商品名:LAQUA F-72S、堀場製作所製)。
<pH>
0.25 g of a silicotitanate-based adsorbent and 50 g of pure water at room temperature are placed in a glass container having an internal volume of 70 mL. Shake for 10 seconds with a shaker (trade name: MIXER N-61, Nisshin Rika Co., Ltd.) with the rotation speed adjustment dial scale set to zero, and then let stand for 5 minutes. After that, a pH electrode was placed so as to be 1 cm from the bottom of the glass container, and the pH was measured after 40 minutes (trade name: LAQUA F-72S, manufactured by HORIBA, Ltd.).

<BET表面積>
シリコチタネート系吸着剤の前処理は、110℃で2時間、真空下で行った。定容法ガス吸着測定装置(商品名:ベルソープミニII、マイクロトラック・ベル社製)により、液体窒素温度(77K)で窒素吸着等温線を測定した。得られた吸着等温線から相対圧力0.1以下の範囲でBET表面積を算出した。
<BET surface area>
The pretreatment of the silicotitanate-based adsorbent was performed at 110° C. for 2 hours under vacuum. A nitrogen adsorption isotherm was measured at liquid nitrogen temperature (77K) using a constant volume gas adsorption measurement device (trade name: Bell Soap Mini II, manufactured by Microtrac Bell). The BET surface area was calculated from the obtained adsorption isotherm in the range of relative pressure of 0.1 or less.

<Sr吸着特性の評価>
ジャケットの付いた内径8mm、長さ25cmのガラス製のカラムの下半分にガラスビーズを高さ約10cmまで充填する。その上にシリコチタネート系吸着剤を4.5mL秤量して充填する。ジャケットには30℃に調整した水を流して温度調整を行った。充填はシリコチタネート系吸着剤(成形体)の粒子間に空気を含まないようにカラム内に純水を入れた状態で充填する。充填後、純水を150mL流通する。被検液は市販のマリンアートSF-1(富田製薬製)を用いて、Cs(1mg/L)、Sr(1.6mg/L)、Na(1992mg/L)、K(64mg/L)、Mg(236mg/L)、Ca(82mg/L)の濃度になるように調製した。なお、マリンアートSF-1にはCsが含まれないため、原子吸光用の標準液(1000mg/L)を用いて、Cs(1mg/L)となるように添加して濃度調整を行った。
被検液を45mL/hrで流通して、ガラスカラムから流出する溶液を分取してSr濃度を分析した。流出液のSr濃度が0.2ppmに到達した時を終点とし、その時までに流すことができた流通液量(L)で吸着特性を評価した。流通液量の多い方が吸着性能は高いことを表す。
<Evaluation of Sr adsorption characteristics>
The lower half of a jacketed glass column of 8 mm inner diameter and 25 cm length is packed with glass beads to a height of about 10 cm. 4.5 mL of silicotitanate-based adsorbent is weighed and filled thereon. Water adjusted to 30° C. was run through the jacket to adjust the temperature. The column is filled with pure water so that air is not included between the particles of the silicotitanate-based adsorbent (molded body). After filling, 150 mL of pure water is circulated. The liquid to be tested is Cs (1 mg/L), Sr (1.6 mg/L), Na (1992 mg/L), K (64 mg/L), It was prepared to have concentrations of Mg (236 mg/L) and Ca (82 mg/L). Since Marine Art SF-1 does not contain Cs, the concentration was adjusted by adding Cs (1 mg/L) using a standard solution for atomic absorption (1000 mg/L).
The test solution was passed through at 45 mL/hr, and the solution flowing out from the glass column was fractionated and analyzed for Sr concentration. The time when the Sr concentration of the effluent reached 0.2 ppm was taken as the end point, and the adsorption characteristics were evaluated based on the amount of flowing liquid (L) that could have flowed up to that point. The higher the amount of flowing liquid, the higher the adsorption performance.

[製造例1]
純水1743g、水酸化ナトリウム48%水溶液406g、水酸化ニオブ171g、及び、無定形シリコチタネートゲル286g(固形分として)を加え、よく混合して原料組成物を得た。原料組成物の組成は、TiOを1とした場合のモル比として、SiO:1.4、Nb:0.3、NaO:1.75、HO:109であった。無定形シリコチタネートゲルは、有機系アルコキシ金属化合物を含まない無機系チタン化合物及び無機系ケイ素化合物から形成したものである。
この原料組成物を4Lのステンレス製オートクレーブ(商品名:TAS-4型、耐圧工業硝子製)に密閉し、196rpmで回転させながら180℃で24時間加熱して、無定形シリコチタネートゲルを結晶化した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、100℃で乾燥して、結晶化したシリコチタネートを含む粉末生成物を得た。粉末生成物の組成は、TiOを1とした場合のモル比として、SiO:0.94、Nb:0.28、NaO:0.75であった。
得られた粉末生成物100重量部に対して、SiO(商品名:ST-30L、日産化学製)12重量部、カルボキシメチルセルロース(商品名:F-20HC、日本製紙製)3重量部を添加して混練して成形し、次いで焼結して成形体とした。成形体の形状は直径1mm、長さ1~2mmの円柱状とした。
得られた円柱状の成形体を酸性水溶液で処理した。酸性水溶液としては、0.1mol/Lの塩酸水溶液を使用した。この成形体300mLをガラスカラムに充填して、0.1mol/Lの塩酸水溶液(pH=1)1800mLを線速13.5cm/minで循環流通した。この時、塩酸水溶液の温度は40~45℃に調整した。塩酸水溶液の流通時間は7時間とした。酸性水溶液で処理した後は純水で洗浄して100℃で乾燥し、シリコチタネート系吸着剤を得た。シリコチタネート系吸着剤の組成とpHを表1に示す。NaO含有量が8.9重量%、Na/Tiモル比が0.81であることを確認した。
また、得られたシリコチタネート系吸着剤の粉末X線回折図を図1に示す。得られたX線回折パターンと、特定回折ピークとを比較した結果、本製造例のシリコチタネート系吸着剤は、シチナカイト構造を有するシリコチタネートを含み、さらに2θ=29.4°及び2θ=21.8°に回折ピークを有する結晶性物質を含むことを確認した。
得られたシリコチタネート系吸着剤のBET表面積は90.5m/gであった。
得られたシリコチタネート系吸着剤のSr吸着性能は11.8Lであった。
[Production Example 1]
1743 g of pure water, 406 g of a 48% sodium hydroxide aqueous solution, 171 g of niobium hydroxide and 286 g of amorphous silicotitanate gel (as a solid content) were added and thoroughly mixed to obtain a raw material composition. The composition of the raw material composition was SiO 2 : 1.4, Nb 2 O 5 : 0.3, Na 2 O: 1.75, H 2 O: 109 as a molar ratio when TiO 2 was 1. rice field. Amorphous silicotitanate gels are formed from inorganic titanium compounds and inorganic silicon compounds that do not contain organic alkoxy metal compounds.
This raw material composition is sealed in a 4 L stainless steel autoclave (trade name: TAS-4 type, manufactured by Pressure Industrial Glass) and heated at 180° C. for 24 hours while rotating at 196 rpm to crystallize the amorphous silicotitanate gel. did. The product after heating was subjected to solid-liquid separation, and the resulting solid phase was washed with a sufficient amount of pure water and dried at 100° C. to obtain a powder product containing crystallized silicotitanate. The composition of the powder product was SiO 2 : 0.94, Nb 2 O 5 : 0.28, Na 2 O: 0.75 as a molar ratio when TiO 2 is 1.
12 parts by weight of SiO 2 (trade name: ST-30L, manufactured by Nissan Chemical Industries) and 3 parts by weight of carboxymethyl cellulose (trade name: F-20HC, manufactured by Nippon Paper Industries) are added to 100 parts by weight of the obtained powder product. The mixture was kneaded, molded, and then sintered to obtain a molded body. The shape of the compact was a cylinder with a diameter of 1 mm and a length of 1 to 2 mm.
The obtained cylindrical compact was treated with an acidic aqueous solution. A 0.1 mol/L hydrochloric acid aqueous solution was used as the acidic aqueous solution. 300 mL of this compact was packed in a glass column, and 1800 mL of a 0.1 mol/L hydrochloric acid aqueous solution (pH=1) was circulated at a linear velocity of 13.5 cm/min. At this time, the temperature of the hydrochloric acid aqueous solution was adjusted to 40-45°C. The circulation time of the hydrochloric acid aqueous solution was 7 hours. After being treated with an acidic aqueous solution, it was washed with pure water and dried at 100° C. to obtain a silicotitanate-based adsorbent. Table 1 shows the composition and pH of the silicotitanate-based adsorbent. It was confirmed that the Na 2 O content was 8.9% by weight and the Na/Ti molar ratio was 0.81.
FIG. 1 shows the powder X-ray diffraction pattern of the obtained silicotitanate-based adsorbent. As a result of comparing the obtained X-ray diffraction pattern with the specific diffraction peaks, the silicotitanate-based adsorbent of this production example contains silicotitanate having a sitinakite structure, and 2θ=29.4° and 2θ=21. It was confirmed to contain a crystalline substance with a diffraction peak at 8°.
The obtained silicotitanate-based adsorbent had a BET surface area of 90.5 m 2 /g.
The Sr adsorption performance of the obtained silicotitanate-based adsorbent was 11.8L.

[製造例2]
製造例1で得られた円柱状の成形体を用いて酸性水溶液で処理を行った。酸性水溶液としては、0.1mol/Lの塩酸水溶液を使用した。この成形体300mLをガラスカラムに充填して、0.1mol/Lの塩酸水溶液(pH=1)1800mLを線速13.5cm/minで循環流通した。この時、塩酸水溶液の温度は40~45℃に調整した。塩酸水溶液の流通時間は5時間とした。酸性水溶液で処理した後は純水で洗浄して100℃で乾燥し、シリコチタネート系吸着剤を得た。酸性水溶液で処理したシリコチタネート系吸着剤の組成とpHを表1に示す。NaO含有量が9.2重量%、Na/Tiモル比が0.84であることを確認した。
また、得られたシリコチタネート系吸着剤の粉末X線回折図を図2に示す。得られたX線回折パターンと、特定回折ピークとを比較した結果、本製造例のシリコチタネート系吸着剤は、シチナカイト構造を有するシリコチタネートを含み、さらに2θ=29.5°及び2θ=21.8°にピークを有する結晶性物質を含むことを確認した。
得られたシリコチタネート系吸着剤のBET表面積は87.4m/gであった。
得られたシリコチタネート系吸着剤のSr吸着性能は8.0Lであった。
[Production Example 2]
Using the cylindrical shaped body obtained in Production Example 1, it was treated with an acidic aqueous solution. A 0.1 mol/L hydrochloric acid aqueous solution was used as the acidic aqueous solution. 300 mL of this compact was packed in a glass column, and 1800 mL of a 0.1 mol/L hydrochloric acid aqueous solution (pH=1) was circulated at a linear velocity of 13.5 cm/min. At this time, the temperature of the hydrochloric acid aqueous solution was adjusted to 40-45°C. The flow time of the hydrochloric acid aqueous solution was 5 hours. After being treated with an acidic aqueous solution, it was washed with pure water and dried at 100° C. to obtain a silicotitanate-based adsorbent. Table 1 shows the composition and pH of the silicotitanate-based adsorbent treated with the acidic aqueous solution. It was confirmed that the Na 2 O content was 9.2% by weight and the Na/Ti molar ratio was 0.84.
FIG. 2 shows the powder X-ray diffraction pattern of the obtained silicotitanate-based adsorbent. As a result of comparing the obtained X-ray diffraction pattern with the specific diffraction peaks, the silicotitanate-based adsorbent of this production example contains silicotitanate having a sitinakite structure, and 2θ=29.5° and 2θ=21. It was confirmed to contain crystalline material with a peak at 8°.
The obtained silicotitanate-based adsorbent had a BET surface area of 87.4 m 2 /g.
The Sr adsorption performance of the obtained silicotitanate-based adsorbent was 8.0L.

[製造例3]
製造例1で得られた円柱状の成形体を用いて大型酸性処理装置を用いて酸性水溶液で処理を行った。酸性水溶液としては、0.1mol/Lの塩酸水溶液を使用した。この成形体80Lを160L容量のグラスファイバー製カラムに充填して、0.1mol/Lの塩酸水溶液(pH=1)480Lを線速20.4cm/minで循環流通した。この時、塩酸水溶液の温度は40~45℃に調整した。塩酸水溶液の流通時間は6時間とした。酸性水溶液で処理した後は純水で洗浄して100℃で乾燥し、シリコチタネート系吸着剤を得た。酸性水溶液で処理したシリコチタネート系吸着剤の組成とpHを表1に示す。NaO含有量が7.5重量%、Na/Tiモル比が0.69であることを確認した。
また、得られたシリコチタネート系吸着剤の粉末X線回折図を図3に示す。得られたX線回折パターンと、特定回折ピークとを比較した結果、本製造例のシリコチタネート系吸着剤は、シチナカイト構造を含み、さらに2θ=29.5°及び2θ=21.8°にピークを有する結晶性物質を含むことを確認した。
得られたシリコチタネート系吸着剤のBET表面積は93.5m/gであった。
得られたシリコチタネート系吸着剤のSr吸着性能は10.6Lであった。
[Production Example 3]
Using the cylindrical compact obtained in Production Example 1, a treatment was performed with an acidic aqueous solution using a large-sized acid treatment apparatus. A 0.1 mol/L hydrochloric acid aqueous solution was used as the acidic aqueous solution. 80 L of this compact was packed in a 160 L capacity glass fiber column, and 480 L of a 0.1 mol/L hydrochloric acid aqueous solution (pH=1) was circulated at a linear velocity of 20.4 cm/min. At this time, the temperature of the hydrochloric acid aqueous solution was adjusted to 40-45°C. The circulation time of the hydrochloric acid aqueous solution was 6 hours. After being treated with an acidic aqueous solution, it was washed with pure water and dried at 100° C. to obtain a silicotitanate-based adsorbent. Table 1 shows the composition and pH of the silicotitanate-based adsorbent treated with the acidic aqueous solution. It was confirmed that the Na 2 O content was 7.5% by weight and the Na/Ti molar ratio was 0.69.
FIG. 3 shows the powder X-ray diffraction pattern of the obtained silicotitanate-based adsorbent. As a result of comparing the obtained X-ray diffraction pattern with the specific diffraction peaks, the silicotitanate-based adsorbent of this production example contains a sitinakite structure and has peaks at 2θ = 29.5 ° and 2θ = 21.8 °. It was confirmed that it contains a crystalline substance having
The obtained silicotitanate-based adsorbent had a BET surface area of 93.5 m 2 /g.
The Sr adsorption performance of the obtained silicotitanate-based adsorbent was 10.6L.

[製造例4]
製造例1で得られた円柱状の成形体を用いて大型酸性処理装置を用いて酸性水溶液で処理を行った。酸性水溶液としては、0.2mol/Lの塩酸水溶液を使用した。この成形体80Lを160L容量のグラスファイバー製カラムに充填して、0.2mol/Lの塩酸水溶液(pH=1)480Lを線速20.4cm/minで循環流通した。この時、塩酸水溶液の温度は40~45℃に調整した。塩酸水溶液の流通時間は18~19時間とした。酸性水溶液で処理した後は純水で洗浄して100℃で乾燥し、シリコチタネート系吸着剤を得た。酸性水溶液で処理したシリコチタネート系吸着剤の組成とpHを表1に示す。NaO含有量が6.5重量%、Na/Tiモル比が0.60であることを確認した。
また、得られたシリコチタネート系吸着剤の粉末X線回折図を図4に示す。得られたX線回折パターンと、特定回折ピークとを比較した結果、本製造例のシリコチタネート系吸
着剤は、シチナカイト構造を含み、2θ=29.5°及び2θ=21.8°にピークを有する結晶性物質を含むことを確認した。
得られたシリコチタネート系吸着剤のBET表面積は95.0m/gであった。
得られたシリコチタネート系吸着剤のSr吸着性能は14.7Lであった。
[Production Example 4]
Using the cylindrical compact obtained in Production Example 1, a treatment was performed with an acidic aqueous solution using a large-sized acid treatment apparatus. A 0.2 mol/L hydrochloric acid aqueous solution was used as the acidic aqueous solution. 80 L of this compact was packed in a 160 L capacity glass fiber column, and 480 L of a 0.2 mol/L hydrochloric acid aqueous solution (pH=1) was circulated at a linear velocity of 20.4 cm/min. At this time, the temperature of the hydrochloric acid aqueous solution was adjusted to 40-45°C. The circulation time of the hydrochloric acid aqueous solution was 18 to 19 hours. After being treated with an acidic aqueous solution, it was washed with pure water and dried at 100° C. to obtain a silicotitanate-based adsorbent. Table 1 shows the composition and pH of the silicotitanate-based adsorbent treated with the acidic aqueous solution. It was confirmed that the Na 2 O content was 6.5% by weight and the Na/Ti molar ratio was 0.60.
FIG. 4 shows the powder X-ray diffraction pattern of the obtained silicotitanate-based adsorbent. As a result of comparing the obtained X-ray diffraction pattern with the specific diffraction peaks, the silicotitanate-based adsorbent of this production example contains a sitinakite structure and has peaks at 2θ = 29.5 ° and 2θ = 21.8 °. It was confirmed that it contains a crystalline substance with
The obtained silicotitanate-based adsorbent had a BET surface area of 95.0 m 2 /g.
The Sr adsorption performance of the obtained silicotitanate-based adsorbent was 14.7L.

[製造例5]
製造例1で得られた円柱状の成形体を用いて酸性水溶液で処理を行った。酸性水溶液としては、0.15mol/Lの塩酸水溶液を使用した。この成形体900mLを1500mL容量のガラスカラムに充填して、0.15mol/Lの塩酸水溶液(pH=1)5400mLを線速13.5cm/minで循環流通した。この時、塩酸水溶液の温度は40~45℃に調整した。塩酸水溶液の流通時間は18~19時間とした。酸性水溶液で処理した後は純水で洗浄して100℃で乾燥し、シリコチタネート系吸着剤を得た。酸性水溶液で処理したシリコチタネート系吸着剤の組成とpHを表1に示す。NaO含有量が5.4重量%、Na/Tiモル比が0.50であることを確認した。
また、得られたシリコチタネート系吸着剤の粉末X線回折図を図5に示す。得られたX線回折パターンと、特定回折ピークとを比較した結果、本製造例のシリコチタネート系吸着剤は、シチナカイト構造を含み、さらに2θ=29.5°及び2θ=21.8°にピークを有する結晶性物質を含むことを確認した。
得られたシリコチタネート系吸着剤のBET表面積は97.2m/gであった。
得られたシリコチタネート系吸着剤のSr吸着性能は17.2Lであった。
[Production Example 5]
Using the cylindrical shaped body obtained in Production Example 1, it was treated with an acidic aqueous solution. A 0.15 mol/L hydrochloric acid aqueous solution was used as the acidic aqueous solution. 900 mL of this compact was packed in a glass column with a capacity of 1500 mL, and 5400 mL of a 0.15 mol/L hydrochloric acid aqueous solution (pH=1) was circulated at a linear velocity of 13.5 cm/min. At this time, the temperature of the hydrochloric acid aqueous solution was adjusted to 40-45°C. The circulation time of the hydrochloric acid aqueous solution was 18 to 19 hours. After being treated with an acidic aqueous solution, it was washed with pure water and dried at 100° C. to obtain a silicotitanate-based adsorbent. Table 1 shows the composition and pH of the silicotitanate-based adsorbent treated with the acidic aqueous solution. It was confirmed that the Na 2 O content was 5.4% by weight and the Na/Ti molar ratio was 0.50.
FIG. 5 shows the powder X-ray diffraction pattern of the obtained silicotitanate-based adsorbent. As a result of comparing the obtained X-ray diffraction pattern with the specific diffraction peaks, the silicotitanate-based adsorbent of this production example contains a sitinakite structure and has peaks at 2θ = 29.5 ° and 2θ = 21.8 °. It was confirmed that it contains a crystalline substance having
The obtained silicotitanate-based adsorbent had a BET surface area of 97.2 m 2 /g.
The Sr adsorption performance of the obtained silicotitanate-based adsorbent was 17.2L.

[比較製造例1]
製造例1において、シリコチタネートを含む粉末生成物を成形体とした後、酸性水溶液による処理を行わなかった。この成形体の組成とpHを表1に示す。NaO含有量が12.3重量%、Na/Tiモル比が1.11であることを確認した。
また、この成形体の粉末X線回折図を図6に示す。得られたX線回折パターンと、特定回折ピークとを比較した結果、この成形体は、シチナカイト構造を有するシリコチタネートと、2θ=29.5°のみに回折ピークを有する結晶性物質と、を含むことを確認した。
得られた成形体のBET表面積は65.6m/gであった。
得られた成形体のSr吸着性能は6.4Lであった。

Figure 0007126979000001
[Comparative Production Example 1]
In Production Example 1, after forming the powder product containing silicotitanate into a compact, the treatment with an acidic aqueous solution was not performed. Table 1 shows the composition and pH of this compact. It was determined that the Na 2 O content was 12.3% by weight and the Na/Ti molar ratio was 1.11.
FIG. 6 shows the powder X-ray diffraction pattern of this compact. As a result of comparing the obtained X-ray diffraction pattern with the specific diffraction peaks, it was found that this compact contains silicotitanate having a cytinachite structure and a crystalline substance having a diffraction peak only at 2θ=29.5°. It was confirmed.
The BET surface area of the obtained compact was 65.6 m 2 /g.
The Sr adsorption performance of the obtained compact was 6.4L.
Figure 0007126979000001

[実施例1]
[模擬汚染海水1の調製]
大阪薬研株式会社の人工海水製造用薬品であるマリンアートSF-1(塩化ナトリウム:22.1g/L、塩化マグネシウム六水和物:9.9g/L、塩化カルシウム二水和物
:1.5g/L、無水硫酸ナトリウム:3.9g/L、塩化カリウム:0.61g/L、炭酸水素ナトリウム:0.19g/L、臭化カリウム:96mg/L、ホウ砂:78mg/L、無水塩化ストロンチウム:13mg/L、フッ化ナトリウム:3mg/L、塩化リチウム:1mg/L、ヨウ化カリウム:81μg/L、塩化マンガン四水和物:0.6μg/L、塩化コバルト六水和物:2μg/L、塩化アルミニウム六水和物:8μg/L、塩化第二鉄六水和物:5μg/L、タングステン酸ナトリウム二水和物:2μg/L、モリブデン酸アンモニウム四水和物:18μg/L)を用いて、塩分濃度が0.17wt%になるように水溶液を調製した。そこに、セシウム濃度が1mg/Lとなるように塩化セシウムを添加し、模擬汚染海水1を調製した。
[Example 1]
[Preparation of simulated contaminated seawater 1]
Osaka Yaken Co., Ltd.'s artificial seawater manufacturing chemicals Marine Art SF-1 (sodium chloride: 22.1 g / L, magnesium chloride hexahydrate: 9.9 g / L, calcium chloride dihydrate: 1.5 g /L, anhydrous sodium sulfate: 3.9 g / L, potassium chloride: 0.61 g / L, sodium hydrogen carbonate: 0.19 g / L, potassium bromide: 96 mg / L, borax: 78 mg / L, anhydrous strontium chloride : 13 mg/L, sodium fluoride: 3 mg/L, lithium chloride: 1 mg/L, potassium iodide: 81 μg/L, manganese chloride tetrahydrate: 0.6 μg/L, cobalt chloride hexahydrate: 2 μg/L L, aluminum chloride hexahydrate: 8 µg/L, ferric chloride hexahydrate: 5 µg/L, sodium tungstate dihydrate: 2 µg/L, ammonium molybdate tetrahydrate: 18 µg/L) was used to prepare an aqueous solution having a salt concentration of 0.17 wt %. Cesium chloride was added thereto so that the cesium concentration was 1 mg/L, and simulated contaminated seawater 1 was prepared.

[模擬汚染海水1のカラム通水]
製造例1で調製したシリコチタネート系吸着剤20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水1を流量6.5ml/min(通水線流速LV=2m/h、空間速度SV=20h-1)にて下降流で通水し、カラム出口水を定期的に採取して、ICP-MSにてセシウム又はストロンチウム濃度を測定した。
セシウムの除去性能を図7に、ストロンチウムの除去性能を図8に示す。図7及び8において、横軸は吸着剤の体積に対して何倍量の模擬汚染海水を通水したのかを示すB.V.であり、縦軸はカラム出口のセシウム又はストロンチウムの濃度(C)をカラム入口のセシウム又はストロンチウムの濃度(C)でそれぞれ除した値である。
図7及び8より、比較製造例1のシリコチタネート成形体ではB.V.5000でC/Cが約0.2に達するのに対して、本発明のシリコチタネート系吸着剤を用いる廃水の処理方法ではB.V.13000でもC/Cが0.2未満であり、ストロンチウムの吸着性能が向上していることがわかる。
[Flow of Simulated Contaminated Seawater 1 through Column]
20 ml of the silicotitanate-based adsorbent prepared in Production Example 1 was packed in a glass column with an inner diameter of 16 mm so that the layer height was 10 cm, and the simulated contaminated seawater 1 was added at a flow rate of 6.5 ml / min (flow rate LV = 2 m / h, space velocity SV=20 h −1 ), water was passed through the column in a descending flow, and the column outlet water was periodically sampled to measure the cesium or strontium concentration by ICP-MS.
Cesium removal performance is shown in FIG. 7, and strontium removal performance is shown in FIG. In Figures 7 and 8, the horizontal axis indicates how many times the volume of the adsorbent was passed through the simulated contaminated seawater. V. and the vertical axis is the value obtained by dividing the cesium or strontium concentration (C) at the column outlet by the cesium or strontium concentration (C 0 ) at the column inlet.
7 and 8, in the silicotitanate molded article of Comparative Production Example 1, B. V. 5000, the C/C 0 reaches about 0.2, whereas in the wastewater treatment method using the silicotitanate-based adsorbent of the present invention, the B.C. V. Even with 13000, the C/ C0 is less than 0.2, indicating that the strontium adsorption performance is improved.

[実施例2]
[模擬汚染海水1のカラム通水]
製造例1で調製したシリコチタネート系吸着剤200mlを内径16mmのガラスカラムに100cmの層高となるように充填し、模擬汚染海水1を流量66.5ml/min(通水線流速LV=20m/h、空間速度SV=200h-1)にて下降流で通水し、カラム出口水を定期的に採取して、ICP-MSにてセシウム又はストロンチウム濃度を測定した。
セシウムの除去性能を図9に、ストロンチウムの除去性能を図10に示す。図9及び図10において、横軸は吸着剤の体積に対して何倍量の模擬汚染海水を通水したのかを示すB.V.であり、縦軸はカラム出口のセシウム又はストロンチウムの濃度(C)をカラム入口のセシウム又はストロンチウムの濃度(C)でそれぞれ除した値である。
図9及び10より、比較製造例1のシリコチタネート成形体ではB.V.15000でC/Cが約0.4を超えているのに対して、本発明のシリコチタネート系吸着剤を用いる廃水の処理方法ではB.V.25000でC/Cが約0.4を超え、ストロンチウムの吸着性能が向上していることがわかる。
[Example 2]
[Flow of Simulated Contaminated Seawater 1 through Column]
200 ml of the silicotitanate-based adsorbent prepared in Production Example 1 was packed in a glass column with an inner diameter of 16 mm so that the layer height was 100 cm, and the simulated contaminated seawater 1 was added at a flow rate of 66.5 ml / min (flow rate LV = 20 m / h, space velocity SV=200 h −1 ), water was passed through the column in a descending flow, and the column outlet water was periodically sampled to measure the cesium or strontium concentration by ICP-MS.
The cesium removal performance is shown in FIG. 9, and the strontium removal performance is shown in FIG. 9 and 10, the horizontal axis indicates how many times the volume of the adsorbent was passed through the simulated contaminated seawater. V. and the vertical axis is the value obtained by dividing the cesium or strontium concentration (C) at the column outlet by the cesium or strontium concentration (C 0 ) at the column inlet.
9 and 10, in the silicotitanate molded article of Comparative Production Example 1, B. V. 15000, the C/C 0 exceeds about 0.4, whereas in the wastewater treatment method using the silicotitanate-based adsorbent of the present invention, the B.C. V. At 25000, C/ C0 exceeds about 0.4, indicating that the strontium adsorption performance is improved.

[実施例3]
[模擬汚染海水2の調製]
並塩を用いて塩分濃度が0.1wt%になるように水溶液を作成した。そこに、セシウム濃度が0.2mg/L、ストロンチウム濃度が0.2mg/L、カルシウム及びマグネシウム濃度が50mg/Lとなるように、各々の塩化物塩を添加し、模擬汚染海水2を調製した。
[Example 3]
[Preparation of simulated contaminated seawater 2]
An aqueous solution was prepared using ordinary salt so that the salt concentration was 0.1 wt %. Simulated contaminated seawater 2 was prepared by adding respective chloride salts to the solution so that the cesium concentration was 0.2 mg/L, the strontium concentration was 0.2 mg/L, and the calcium and magnesium concentrations were 50 mg/L. .

[模擬汚染海水2のカラム通水]
製造例1で調製したシリコチタネート系吸着剤20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水2を流量6.5ml/min(通水線流速LV=2m/h、空間速度SV=20h-1)にて下降流で通水し、カラム出口水
を定期的に採取して、ICP-MSにてセシウム又はストロンチウム濃度を測定した。
セシウムの除去性能を図11に、ストロンチウムの除去性能を図12に示す。図11及び図12において、横軸は吸着剤の体積に対して何倍量の模擬汚染海水を通水したのかを示すB.V.であり、縦軸はカラム出口のセシウム又はストロンチウムの濃度(C)をカラム入口のセシウム又はストロンチウムの濃度(C)でそれぞれ除した値である。
図11及び12より、比較製造例1のシリコチタネート成形体ではB.V.10000でC/Cが約0.1に達するのに対して、本発明のシリコチタネート系吸着剤を用いる廃水の処理方法ではB.V.16000でC/Cが約0.1未満であり、ストロンチウムの吸着性能が向上していることがわかる。
[Flow of Simulated Contaminated Seawater 2 through Column]
20 ml of the silicotitanate-based adsorbent prepared in Production Example 1 was packed in a glass column with an inner diameter of 16 mm so that the layer height was 10 cm, and the simulated contaminated seawater 2 was added at a flow rate of 6.5 ml / min (flow velocity LV = 2 m / h, space velocity SV=20 h −1 ), water was passed through the column in a descending flow, and the column outlet water was periodically sampled to measure the cesium or strontium concentration by ICP-MS.
The cesium removal performance is shown in FIG. 11, and the strontium removal performance is shown in FIG. 11 and 12, the horizontal axis indicates how many times the volume of the adsorbent was passed through the simulated contaminated seawater. V. and the vertical axis is the value obtained by dividing the cesium or strontium concentration (C) at the column outlet by the cesium or strontium concentration (C 0 ) at the column inlet.
11 and 12, in the silicotitanate molded article of Comparative Production Example 1, B. V. 10,000, the C/C 0 reaches about 0.1, whereas in the wastewater treatment method using the silicotitanate-based adsorbent of the present invention, the B.C. V. At 16000, the C/ C0 is less than about 0.1, indicating that the strontium adsorption performance is improved.

Claims (4)

シチナカイト構造を有するシリコチタネートと、粉末X線回折によるX線回折角2θ=8.7±0.5°、2θ=10.0±0.5°、2θ=27.8±0.5°又は2θ=29.4±0.5°の少なくとも1つに回折ピークを有し、かつX線回折角2θ=21.8±0.5°に回折ピークを有する結晶性物質と、1.0重量%以上12.0重量%以下のNaOと、を含み、Na/Tiモル比が0.1以上1.0以下であるシリコチタネート系吸着剤に、セシウム又はストロンチウムを含有する廃液を接触させる、セシウム及び/又はストロンチウムを含有する廃液の処理方法。 Silicotitanate having a cytinakite structure and powder X-ray diffraction X-ray diffraction angles 2θ = 8.7 ± 0.5°, 2θ = 10.0 ± 0.5°, 2θ = 27.8 ± 0.5° or 1.0 weight % or more and 12.0% or less by weight of Na 2 O, and a silicotitanate-based adsorbent having a Na/Ti molar ratio of 0.1 or more and 1.0 or less, and a waste liquid containing cesium or strontium is contacted. , a method for treating a waste liquid containing cesium and/or strontium. 前記シリコチタネート系吸着剤は、80m/g以上のBET表面積を有することを特徴とする請求項1に記載の廃液の処理方法。 The waste liquid treatment method according to claim 1, wherein the silicotitanate-based adsorbent has a BET surface area of 80 m2 /g or more. 前記シリコチタネート系吸着剤を10cm以上300cm以下の層高で充填した吸着塔に、セシウム又はストロンチウムを含有する廃液を通水線流速(LV)1m/h以上40m/h以下、空間速度(SV)200h-1以下で通水して、当該シリコチタネート系吸着剤にセシウム及び/又はストロンチウムを吸着させることを含む、請求項1又は2に記載の廃液の処理方法。 A waste liquid containing cesium or strontium is passed through an adsorption tower filled with the silicotitanate-based adsorbent at a layer height of 10 cm or more and 300 cm or less, and a linear flow velocity (LV) of 1 m / h or more and 40 m / h or less and a space velocity (SV). 3. The method for treating a waste liquid according to claim 1 or 2, comprising allowing the silicotitanate-based adsorbent to adsorb cesium and/or strontium by passing water at 200 h -1 or less. 前記廃液が、Naイオン、Caイオン及び/又はMgイオンをさらに含む廃液である、請求項1~3のいずれか1に記載の廃液の処理方法。
The waste liquid treatment method according to any one of claims 1 to 3, wherein the waste liquid further contains Na ions, Ca ions and/or Mg ions.
JP2019062460A 2018-04-24 2019-03-28 Method for treating waste liquid containing cesium and/or strontium Active JP7126979B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082942 2018-04-24
JP2018082942 2018-04-24

Publications (2)

Publication Number Publication Date
JP2019191163A JP2019191163A (en) 2019-10-31
JP7126979B2 true JP7126979B2 (en) 2022-08-29

Family

ID=68390112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062460A Active JP7126979B2 (en) 2018-04-24 2019-03-28 Method for treating waste liquid containing cesium and/or strontium

Country Status (1)

Country Link
JP (1) JP7126979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419952B2 (en) 2020-04-23 2024-01-23 東ソー株式会社 Novel silicotitanate composition and method for producing the same
CN116411181A (en) * 2021-12-30 2023-07-11 天津大学 Electric adsorber, device and extraction method for extracting cesium ions in salt lake in situ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591420A (en) 1995-08-25 1997-01-07 Battelle Memorial Institute Cesium titanium silicate and method of making
US6110378A (en) 1993-02-25 2000-08-29 Sandia Corporation Method of using novel silico-titanates
JP2017087172A (en) 2015-11-13 2017-05-25 日本化学工業株式会社 Strontium adsorbent and cesium adsorbent
JP2017170440A (en) 2015-05-11 2017-09-28 東ソー株式会社 Method for adsorbing at least one of cesium and strontium using composition containing silicotitanate having sitinakite structure
JP2019189516A (en) 2018-04-24 2019-10-31 東ソー株式会社 Silicotitanate composition and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110378A (en) 1993-02-25 2000-08-29 Sandia Corporation Method of using novel silico-titanates
US6479427B1 (en) 1993-02-25 2002-11-12 The Texas A&M University System Silico-titanates and their methods of making and using
US5591420A (en) 1995-08-25 1997-01-07 Battelle Memorial Institute Cesium titanium silicate and method of making
JP2017170440A (en) 2015-05-11 2017-09-28 東ソー株式会社 Method for adsorbing at least one of cesium and strontium using composition containing silicotitanate having sitinakite structure
JP2017087172A (en) 2015-11-13 2017-05-25 日本化学工業株式会社 Strontium adsorbent and cesium adsorbent
JP2019189516A (en) 2018-04-24 2019-10-31 東ソー株式会社 Silicotitanate composition and manufacturing method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. Chitra et al.,Optimization of Nb-substitution and Cs+/Sr+2 ion exchange in crystalline silicotitanates (CST),Journal of Radioanalytical and Nuclear Chemistry,2013年,295,p.607-613
S. Chitra et al.,Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes,Journal of Radioanalytical and Nuclear Chemistry,2011年,287,p.955-960

Also Published As

Publication number Publication date
JP2019191163A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
Figueiredo et al. Inorganic ion exchangers for cesium removal from radioactive wastewater
Popa et al. Radioactive wastewaters purification using titanosilicates materials: State of the art and perspectives
Cho et al. Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions
Oleksiienko et al. Titanosilicates in cation adsorption and cation exchange–A review
Reda et al. Bismuth-based materials for iodine capture and storage: A review
Dechnik et al. Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water
Zhang et al. Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent
Wang et al. Defluoridation of drinking water by Mg/Al hydrotalcite-like compounds and their calcined products
Mansy et al. Evaluation of synthetic aluminum silicate modified by magnesia for the removal of 137Cs, 60Co and 152+ 154Eu from low-level radioactive waste
Lv et al. Uptake equilibria and mechanisms of heavy metal ions on microporous titanosilicate ETS-10
JP7126979B2 (en) Method for treating waste liquid containing cesium and/or strontium
Wu et al. Iodine adsorption on silver-exchanged titania-derived adsorbents
Ivanets et al. Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type
El-Shazly et al. Kinetic and isotherm studies for the sorption of 134Cs and 60Co radionuclides onto supported titanium oxide
Hao et al. Recent advances in the removal of radioactive iodine by bismuth-based materials
Yang et al. Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium
KR101641136B1 (en) Zeolite Rho absorbent for removing radionuclide and manufacturing method thereof
US20220258127A1 (en) Metal-Organic Frameworks for Removal of Iodine Oxy-Anion
JP6716247B2 (en) Radioactive antimony, radioiodine and radioruthenium adsorbents, and radioactive waste liquid treatment methods using the adsorbents
JP7293799B2 (en) Silicotitanate composition and method for producing the same
KR102035801B1 (en) Titanosilicate Adsorbent Having Sodium and Potassium for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same
WO2018066634A1 (en) Method for treating radioactive liquid waste containing radioactive cesium
Kunishi et al. Investigation on strontium adsorption selectivity of hydrothermally synthesized layered sodium titanates
CN112657473B (en) Selective and rapid removal of Sr from strongly alkaline solution2+Metal organic frame material and its preparation and application
Pavel et al. Improvement of retention capacity of ETS-10 for uranyl ions by porosity modification and their immobilization into a titanosilicate matrix

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220817

R150 Certificate of patent or registration of utility model

Ref document number: 7126979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150