JP7124797B2 - 機械学習方法および移動ロボット - Google Patents
機械学習方法および移動ロボット Download PDFInfo
- Publication number
- JP7124797B2 JP7124797B2 JP2019121762A JP2019121762A JP7124797B2 JP 7124797 B2 JP7124797 B2 JP 7124797B2 JP 2019121762 A JP2019121762 A JP 2019121762A JP 2019121762 A JP2019121762 A JP 2019121762A JP 7124797 B2 JP7124797 B2 JP 7124797B2
- Authority
- JP
- Japan
- Prior art keywords
- obstacle
- route
- mobile robot
- destination
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010801 machine learning Methods 0.000 title claims description 32
- 230000033001 locomotion Effects 0.000 claims description 105
- 238000004364 calculation method Methods 0.000 claims description 38
- 238000013528 artificial neural network Methods 0.000 claims description 14
- 238000012549 training Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 9
- 238000011156 evaluation Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 23
- 238000004088 simulation Methods 0.000 description 23
- 238000003825 pressing Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
- G05D1/0236—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0251—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/008—Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Robotics (AREA)
- Multimedia (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Instructional Devices (AREA)
- Manipulator (AREA)
Description
このようにシミュレーション上で使用者の指定により移動経路を与えれば、実際の移動ロボットを用いて作成するより、多くの教師データを蓄積することができる。すなわち、移動ロボットの円滑な自律移動を実現するための実用的なニューラルネットワークを生成することができる。
Claims (6)
- 与えられた地図情報と検出された移動体情報に基づいて、目的地までの移動ロボットの経路を出力するようコンピュータを機能させるためのニューラルネットワークの機械学習方法であって、
仮想空間に静止した第1障害物と動作する第2障害物とを配置する第1配置ステップと、
前記仮想空間に前記移動ロボットの現在地と目的地を配置する第2配置ステップと、
前記第2障害物を予め設定された条件に従って動作させる動作ステップと、
静止した前記第1障害物と動作している前記第2障害物とを回避して前記現在地から前記目的地へ向かう移動経路の指定を使用者から受け付ける受付ステップと
を繰返し実行することによって蓄積された教師データを用いて学習する機械学習方法。 - 前記受付ステップにおいて、前記使用者が指定する前記移動経路を進む前記移動ロボットが前記第1障害物と交叉する場合は、交叉しないように修正する請求項1に記載の機械学習方法。
- 前記受付ステップにおいて、前記使用者が指定する前記移動経路を進む前記移動ロボットが前記第2障害物と接触する場合は、前記使用者の指定を再度受け付ける請求項1または2に記載の機械学習方法。
- 前記第2配置ステップと前記動作ステップの間に、
前記現在地から前記目的地まで前記第1障害物を回避した仮移動経路を生成する生成ステップを有し、
前記動作ステップは、前記第2障害物を動作させると共に、前記現在地から前記仮移動経路に沿って前記移動ロボットを予め設定された条件に従って移動させる請求項1から3のいずれか1項に記載の機械学習方法。 - 前記受付ステップで前記使用者から受け付けた前記移動経路に対して、前記第1障害物および前記第2障害物との接触の有無、前記接触が生じた場合の接触位置から前記目的地までの経路距離、前記第1障害物および前記第2障害物から経路までの距離、前記移動経路の経路距離、前記移動経路の滑らかさ、前記移動経路を移動するのに要する時間の少なくともいずれかを評価指標とする得点を計算して前記使用者に呈示する得点呈示ステップを有する請求項1から4のいずれか1項に記載の機械学習方法。
- 請求項1から5のいずれか1項に記載の機械学習方法によって学習した学習済みニューラルネットワークが実装された移動ロボットであって、
前記第1障害物が記述された地図情報および目的地を取得する取得部と、
周囲で動作する前記第2障害物を検知する検知部と、
前記取得部が取得した前記地図情報および前記目的地と、前記検知部が検知した前記第2障害物の検知情報とを前記学習済みニューラルネットワークに入力して前記目的地まで到達する経路を演算する演算部と、
前記演算部が演算した前記経路に沿って移動するように制御する移動制御部と
を備える移動ロボット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019121762A JP7124797B2 (ja) | 2019-06-28 | 2019-06-28 | 機械学習方法および移動ロボット |
CN202010585979.9A CN112230649B (zh) | 2019-06-28 | 2020-06-24 | 机器学习方法及移动机器人 |
US16/911,639 US20200409379A1 (en) | 2019-06-28 | 2020-06-25 | Machine learning method and mobile robot |
EP20182455.4A EP3757714B1 (en) | 2019-06-28 | 2020-06-26 | Machine learning method and mobile robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019121762A JP7124797B2 (ja) | 2019-06-28 | 2019-06-28 | 機械学習方法および移動ロボット |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021009466A JP2021009466A (ja) | 2021-01-28 |
JP7124797B2 true JP7124797B2 (ja) | 2022-08-24 |
Family
ID=71170405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019121762A Active JP7124797B2 (ja) | 2019-06-28 | 2019-06-28 | 機械学習方法および移動ロボット |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200409379A1 (ja) |
EP (1) | EP3757714B1 (ja) |
JP (1) | JP7124797B2 (ja) |
CN (1) | CN112230649B (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7221839B2 (ja) * | 2019-10-08 | 2023-02-14 | 国立大学法人静岡大学 | 自律移動ロボットおよび自律移動ロボットの制御プログラム |
JP2024508805A (ja) * | 2021-02-25 | 2024-02-28 | ナノトロニクス イメージング インコーポレイテッド | 製造環境における模倣学習 |
JPWO2023037539A1 (ja) * | 2021-09-13 | 2023-03-16 | ||
WO2024210127A1 (ja) * | 2023-04-06 | 2024-10-10 | オムロン株式会社 | データ収集方法、データ収集用移動装置、学習済みモデル、学習済みモデルの製造方法、自律型移動装置、学習用データの製造方法 |
CN117232516B (zh) * | 2023-08-30 | 2024-06-04 | 广东穗鑫高科智能科技有限公司 | 移动家居设备及其导航方法、装置和介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190004524A1 (en) | 2016-08-31 | 2019-01-03 | Faraday&Future Inc. | System and method for planning a vehicle path |
JP2019500693A (ja) | 2015-12-15 | 2019-01-10 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 自律視覚ナビゲーション |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005071265A (ja) * | 2003-08-27 | 2005-03-17 | Matsushita Electric Ind Co Ltd | 学習装置および方法、並びにロボットのカスタマイズ方法 |
JP4375320B2 (ja) * | 2005-10-27 | 2009-12-02 | 株式会社日立製作所 | 移動ロボット |
JP5142137B2 (ja) * | 2007-12-10 | 2013-02-13 | 本田技研工業株式会社 | リモコン |
JP5215740B2 (ja) | 2008-06-09 | 2013-06-19 | 株式会社日立製作所 | 移動ロボットシステム |
AU2015218522B2 (en) * | 2010-12-30 | 2017-01-19 | Irobot Corporation | Mobile robot system |
JP6020326B2 (ja) * | 2013-04-16 | 2016-11-02 | 富士ゼロックス株式会社 | 経路探索装置、自走式作業装置、プログラム及び記録媒体 |
US9463571B2 (en) * | 2013-11-01 | 2016-10-11 | Brian Corporation | Apparatus and methods for online training of robots |
US9562773B2 (en) * | 2014-03-15 | 2017-02-07 | Aurora Flight Sciences Corporation | Autonomous vehicle navigation system and method |
US11281211B2 (en) * | 2015-09-30 | 2022-03-22 | Sony Corporation | Driving control apparatus, driving control method, and program |
JP6747044B2 (ja) | 2016-05-11 | 2020-08-26 | 株式会社豊田中央研究所 | 走行経路生成装置、モデル学習装置、及びプログラム |
KR20180059188A (ko) * | 2016-11-25 | 2018-06-04 | 연세대학교 산학협력단 | 딥 러닝을 이용한 동적 장애물이 없는 배경 위주의 3차원 지도 생성 방법 |
JP6809705B2 (ja) * | 2016-12-08 | 2021-01-06 | 株式会社国際電気通信基礎技術研究所 | シミュレーションシステム |
KR20180075176A (ko) * | 2016-12-26 | 2018-07-04 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
US10124798B2 (en) * | 2017-03-16 | 2018-11-13 | Michael Hall | Performance of autonomous control |
CN107677285B (zh) * | 2017-04-11 | 2019-05-28 | 平安科技(深圳)有限公司 | 机器人的路径规划系统及方法 |
JP2019005834A (ja) * | 2017-06-22 | 2019-01-17 | 株式会社デンソー | 学習システム及び学習方法 |
CN107272705B (zh) * | 2017-07-31 | 2018-02-23 | 中南大学 | 一种智能环境下机器人路径的多神经网络控制规划方法 |
CN107703945A (zh) * | 2017-10-30 | 2018-02-16 | 洛阳中科龙网创新科技有限公司 | 一种多目标融合的智能农用机械路径规划方法 |
US20190286145A1 (en) * | 2018-03-14 | 2019-09-19 | Omron Adept Technologies, Inc. | Method and Apparatus for Dynamic Obstacle Avoidance by Mobile Robots |
CN108407805B (zh) * | 2018-03-30 | 2019-07-30 | 中南大学 | 一种基于dqn的车辆自动泊车方法 |
US10997729B2 (en) * | 2018-11-30 | 2021-05-04 | Baidu Usa Llc | Real time object behavior prediction |
CN109782763B (zh) * | 2019-01-18 | 2021-11-23 | 中国电子科技集团公司信息科学研究院 | 一种动态环境下的移动机器人路径规划方法 |
-
2019
- 2019-06-28 JP JP2019121762A patent/JP7124797B2/ja active Active
-
2020
- 2020-06-24 CN CN202010585979.9A patent/CN112230649B/zh active Active
- 2020-06-25 US US16/911,639 patent/US20200409379A1/en active Pending
- 2020-06-26 EP EP20182455.4A patent/EP3757714B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019500693A (ja) | 2015-12-15 | 2019-01-10 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 自律視覚ナビゲーション |
US20190004524A1 (en) | 2016-08-31 | 2019-01-03 | Faraday&Future Inc. | System and method for planning a vehicle path |
Also Published As
Publication number | Publication date |
---|---|
CN112230649B (zh) | 2024-01-09 |
EP3757714A1 (en) | 2020-12-30 |
JP2021009466A (ja) | 2021-01-28 |
EP3757714B1 (en) | 2022-10-26 |
CN112230649A (zh) | 2021-01-15 |
US20200409379A1 (en) | 2020-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7124797B2 (ja) | 機械学習方法および移動ロボット | |
JP7188279B2 (ja) | 機械学習方法および移動ロボット | |
US20200046169A1 (en) | Robot system and control method of the same | |
CN104794214B (zh) | 一种设计大数据驱动云机器人的方法 | |
JP5318623B2 (ja) | 遠隔操作装置および遠隔操作プログラム | |
JP2022542241A (ja) | ロボット装置からの視覚的出力を補強するシステム及び方法 | |
Tölgyessy et al. | The Kinect sensor in robotics education | |
JP7221839B2 (ja) | 自律移動ロボットおよび自律移動ロボットの制御プログラム | |
JP2024001106A (ja) | ロボットが技能を学習し実行するシステム、装置及び方法 | |
CN115063879A (zh) | 手势识别装置、移动体、手势识别方法及存储介质 | |
KR20190104483A (ko) | 로봇 시스템 및 그 제어 방법 | |
KR102573687B1 (ko) | 원격 조작 시스템 및 원격 조작 방법 | |
EP4288254A1 (en) | Systems, apparatuses, and methods for robotic learning and execution of skills including navigation and manipulation functions | |
CN114800535B (zh) | 机器人的控制方法、机械臂控制方法、机器人及控制终端 | |
CN112975950B (zh) | 远程操作系统及远程操作方法 | |
Al-Shanoon et al. | Learn to grasp unknown objects in robotic manipulation | |
Lewis et al. | An adjustable autonomy paradigm for adapting to expert-novice differences | |
US20200001459A1 (en) | Robot system and control method of the same | |
Iossifidis et al. | Anthropomorphism as a pervasive design concept for a robotic assistant | |
WO2023286138A1 (ja) | ロボット制御システム、ロボットシステム、ロボット制御方法、およびロボット制御プログラム | |
CN115903773A (zh) | 移动体控制装置、移动体、学习装置及方法、及存储介质 | |
US20240075623A1 (en) | Remote control system, remote control method, and control program | |
US20240075628A1 (en) | Remote control system, remote control method, and control program | |
Zhao et al. | A robot demonstration method based on LWR and Q-learning algorithm | |
JP7258426B2 (ja) | シミュレーションシステム、シミュレーションプログラムおよび学習装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210827 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220725 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7124797 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |