JP7119979B2 - Composite magnetic material and magnetic core - Google Patents
Composite magnetic material and magnetic core Download PDFInfo
- Publication number
- JP7119979B2 JP7119979B2 JP2018238402A JP2018238402A JP7119979B2 JP 7119979 B2 JP7119979 B2 JP 7119979B2 JP 2018238402 A JP2018238402 A JP 2018238402A JP 2018238402 A JP2018238402 A JP 2018238402A JP 7119979 B2 JP7119979 B2 JP 7119979B2
- Authority
- JP
- Japan
- Prior art keywords
- peak
- aspect ratio
- powder
- acicular
- acicular powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、複合磁性材料および磁心に関する。 The present invention relates to composite magnetic materials and magnetic cores.
近年、携帯電話機や携帯情報端末等の無線通信機器の利用周波数帯域の高周波化が進行し、使用される無線信号周波数はGHz帯となっている。そこで、そのようなGHz帯の高周波領域で使用される電子部品に対して、GHz帯の高周波領域においても透磁率が比較的大きい磁性材料を適用することで、フィルタ特性の改善やアンテナ寸法の小型化を図る試みがなされている。また、高周波領域磁気損失も低下させることが望まれている。その中で、磁心に用いられる磁性材料のアスペクト比などを大きくすることが試みられてきた。 2. Description of the Related Art In recent years, the frequency band used by wireless communication devices such as mobile phones and personal digital assistants has been increasing, and the used wireless signal frequency is in the GHz band. Therefore, by applying a magnetic material with a relatively high magnetic permeability even in the high frequency region of the GHz band to electronic parts used in such a high frequency region of the GHz band, it is possible to improve the filter characteristics and reduce the size of the antenna. Attempts are being made to improve It is also desired to reduce the magnetic loss in the high frequency region. Among them, attempts have been made to increase the aspect ratio of the magnetic material used for the magnetic core.
例えば、特許文献1には、FeSiAl系の針状粉および球状粉を用いる複合材が記載されている。特許文献2には、アモルファス系の針状粉および球状粉を用いる複合材が記載されている。
For example,
しかし、現在では、さらに比透磁率μrが高く磁気損失tanδが低い磁心が求められている。 However, at present, there is a demand for a magnetic core with a higher relative permeability μr and a lower magnetic loss tan δ.
本発明は、GHz帯の高周波領域において、比透磁率μrが高く磁気損失tanδが低い磁心に用いられる複合磁性材料および磁心を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a composite magnetic material and a magnetic core that are used for a magnetic core having a high relative magnetic permeability μr and a low magnetic loss tan δ in the high frequency region of the GHz band.
上記の目的を達成するために、本発明の複合磁性材料は、
針状粉および樹脂を含む複合磁性材料であり、
前記針状粉はFeまたはFeおよびCoを主成分とし、
前記針状粉の一次粒子における平均短軸長が100nm以下であり、
前記針状粉の一次粒子におけるアスペクト比の頻度分布において、最も頻度が高い第1ピークのアスペクト比および2番目に頻度が高い第2ピークのアスペクト比がそれぞれ3.0以上10以下の範囲内にあり、
(第1ピークのアスペクト比)/(第2ピークのアスペクト比)および(第2ピークのアスペクト比)/(第1ピークのアスペクト比)のうち小さい方が0.30以上0.80以下であることを特徴とする。
In order to achieve the above object, the composite magnetic material of the present invention
A composite magnetic material containing acicular powder and resin,
The acicular powder is mainly composed of Fe or Fe and Co,
The primary particles of the acicular powder have an average minor axis length of 100 nm or less,
In the frequency distribution of the aspect ratios of the primary particles of the acicular powder, the aspect ratio of the first peak with the highest frequency and the aspect ratio of the second peak with the second highest frequency are in the range of 3.0 or more and 10 or less. can be,
(aspect ratio of first peak) / (aspect ratio of second peak) and (aspect ratio of second peak) / (aspect ratio of first peak), whichever is smaller is 0.30 or more and 0.80 or less It is characterized by
本発明の複合磁性材料は、上記の平均短軸長およびアスペクト比の頻度分布等を有する構成により、GHz帯の高周波領域において比透磁率μrが高く磁気損失tanδが低い磁心に用いられる複合磁性材料となる。 The composite magnetic material of the present invention has the above-described average minor axis length and aspect ratio frequency distribution, and is used for magnetic cores with high relative permeability μr and low magnetic loss tan δ in the high-frequency region of the GHz band. becomes.
前記針状粉において、主成分に対するCoの含有割合が0~40atom%(0atom%を含まない)であることが好ましい。 In the acicular powder, it is preferable that the content ratio of Co to the main component is 0 to 40 atom % (not including 0 atom %).
本発明の磁心は上記の複合磁性材料を含む。 A magnetic core of the present invention includes the composite magnetic material described above.
以下、本発明を、図面に示す実施形態に基づき説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described based on embodiments shown in the drawings.
本実施形態の磁心(コア)は、針状粉および樹脂を含む複合磁性材料からなる。 The magnetic core (core) of this embodiment is made of a composite magnetic material containing acicular powder and resin.
そして、針状粉がFeまたはFeおよびCoを主成分とする軟磁性材料からなる。針状粉の一次粒子における平均短軸長が100nm以下である。平均短軸長が100nm以下であることにより、磁心の磁気損失(tanδ)を低減することができる。なお、針状粉の一次粒子における平均短軸長には特に下限はない。例えば針状粉の一次粒子における平均短軸長が15nm以上であってもよい。 The acicular powder is composed of a soft magnetic material containing Fe or Fe and Co as main components. The average minor axis length of the primary particles of the acicular powder is 100 nm or less. When the average minor axis length is 100 nm or less, the magnetic loss (tan δ) of the magnetic core can be reduced. There is no particular lower limit to the average minor axis length of the primary particles of the acicular powder. For example, the primary particles of the acicular powder may have an average minor axis length of 15 nm or more.
なお、平均短軸長が100nmを超える場合に磁心の磁気損失が大きくなるのは、一次粒子内に複磁区が生じやすくなり、渦電流損失が大きくなるためである。 When the average minor axis length exceeds 100 nm, the magnetic loss of the magnetic core increases because double magnetic domains are likely to occur in the primary particles, resulting in increased eddy current loss.
また、針状粉の形状には特に制限はない。針状であってもよく、擬針状、回転楕円体状または擬回転楕円体状であってもよい。 Moreover, the shape of the acicular powder is not particularly limited. It may be acicular, pseudoacicular, spheroidal, or pseudospheroidal.
針状粉の一次粒子における短軸長、長軸長およびアスペクト比の算出は、以下に示す方法により行う。 The minor axis length, major axis length and aspect ratio of the primary particles of the acicular powder are calculated by the following methods.
まず、SEMまたはTEM等を用いて、長軸長、短軸長およびアスペクト比を測定する針状粉1を二次元画像にて撮影する。撮影した二次元画像上において、図1に示すように当該針状粉1に外接する楕円1aを描き、当該楕円1aの長軸L1の長さを長軸長、短軸L2の長さを短軸長とする。そして、アスペクト比はL1/L2とする。
First, using a SEM, TEM, or the like, a two-dimensional image of the
本実施形態に係る複合磁性材料は、針状粉の一次粒子におけるアスペクト比の頻度分布において、最も頻度が高い第1ピークおよび2番目に頻度が高い第2ピークを有する。すなわち、針状粉の一次粒子におけるアスペクト比の頻度分布において、少なくとも2つのピークを有する。 The composite magnetic material according to this embodiment has the first peak with the highest frequency and the second peak with the second highest frequency in the frequency distribution of the aspect ratio of the primary particles of the acicular powder. That is, the primary particles of the acicular powder have at least two peaks in the aspect ratio frequency distribution.
そして、第1ピークのアスペクト比および第2ピークのアスペクト比がそれぞれ3以上10以下の範囲内にある。アスペクト比3.0以上10以下の範囲に頻度が高い2つのピークが存在することにより、ピークが1つだけ存在する場合と比較して後述する充填率を高くしやすくなる。そして、比透磁率μrを向上させることができる。 And the aspect-ratio of a 1st peak and the aspect-ratio of a 2nd peak exist in the range of 3-10, respectively. The presence of two peaks with high frequency in the aspect ratio range of 3.0 or more and 10 or less makes it easier to increase the filling factor, which will be described later, compared to the case where only one peak exists. Then, the relative magnetic permeability μr can be improved.
なお、第1ピークまたは第2ピークのアスペクト比が10を超える場合には比透磁率μrを向上させる効果が得られない。 If the aspect ratio of the first peak or the second peak exceeds 10, the effect of improving the relative magnetic permeability μr cannot be obtained.
さらに、(第1ピークのアスペクト比)/(第2ピークのアスペクト比)および(第2ピークのアスペクト比)/(第1ピークのアスペクト比)のうち小さい方が0.30以上0.80以下である。すなわち、第1ピークと第2ピークとでアスペクト比がある程度、開いていることが必要である。第1ピークと第2ピークとでアスペクト比がある程度、開いていることにより、充填率を高くしやすくなり、比透磁率μrを向上させやすくなる。 Furthermore, the smaller of (aspect ratio of the first peak) / (aspect ratio of the second peak) and (aspect ratio of the second peak) / (aspect ratio of the first peak) is 0.30 or more and 0.80 or less is. That is, it is necessary that the aspect ratio between the first peak and the second peak is open to some extent. Since the aspect ratio is widened to some extent between the first peak and the second peak, it becomes easier to increase the filling factor and to improve the relative permeability μr.
以下、(第1ピークのアスペクト比)/(第2ピークのアスペクト比)および(第2ピークのアスペクト比)/(第1ピークのアスペクト比)のうち小さい方を単に「アスペクト比の比」と呼ぶことがある。 Hereinafter, the smaller of (aspect ratio of first peak) / (aspect ratio of second peak) and (aspect ratio of second peak) / (aspect ratio of first peak) is simply referred to as "ratio of aspect ratio" I may call
アスペクト比の比が小さいほど充填率を高くしやすくなる。一方、アスペクト比の比が大きすぎる場合には、充填率を高くすることが難しくなり、比透磁率μrを向上させることが難しくなる。 The smaller the aspect ratio, the easier it is to increase the filling rate. On the other hand, if the aspect ratio is too large, it becomes difficult to increase the filling rate, and it becomes difficult to improve the relative magnetic permeability μr.
以下、アスペクト比の頻度分布におけるピークの決定方法について図面を用いて説明する。 A method of determining a peak in the frequency distribution of aspect ratios will be described below with reference to the drawings.
まず、500個以上の針状粉の一次粒子におけるアスペクト比を測定する。次に、図2に示すように各階級の幅を0.25としてヒストグラムを作成する。 First, the aspect ratio of primary particles of 500 or more acicular powder is measured. Next, as shown in FIG. 2, a histogram is created with the width of each class set to 0.25.
次に、隣接するいずれの階級の頻度よりも頻度が高い階級を検出し、隣接するいずれの階級よりも頻度が高い階級の中央値に暫定ピークを有するとする。 Next, it is assumed that a class having a higher frequency than any adjacent class is detected and has a provisional peak at the median value of the class having a higher frequency than any adjacent class.
また、隣接する2つ以上の階級の頻度が同一である場合には、これら2つ以上の階級を単一の階級群とみなす。当該階級群の頻度は当該階級群を構成する各階級の頻度と同一とする。そして、隣接するいずれの階級よりも頻度が高い階級群の中央値に暫定ピークを有するとする。 Moreover, when the frequencies of two or more adjacent classes are the same, these two or more classes are regarded as a single class group. The frequency of the class group concerned shall be the same as the frequency of each class constituting the class group concerned. Then, it is assumed that there is a provisional peak at the median of the class group that has a higher frequency than any adjacent classes.
そして、各暫定ピークを頻度が高い順に並べ替える。 Then, each provisional peak is sorted in descending order of frequency.
次に、暫定ピークを有する階級(階級群)から2つ隣の階級の頻度を調べる。前記2つ隣の階級の頻度がいずれも暫定ピークを有する階級(階級群)の頻度よりも低い場合には、当該暫定ピークを正式にピークとする。そして、各ピークを頻度の高い方から順番に第1ピーク、第2ピーク、・・・、とする。 Next, the frequency of the class two adjacent to the class (class group) having the provisional peak is examined. If the frequencies of the two adjacent classes are both lower than the frequency of a class (class group) having a provisional peak, the provisional peak is formally defined as a peak. Then, each peak is designated as a first peak, a second peak, . . . in descending order of frequency.
以下、図2のヒストグラムにおける第1ピーク、第2ピーク、・・・、の決定手順を示す。 The procedure for determining the first peak, the second peak, . . . in the histogram of FIG. 2 will be described below.
まず、図2のヒストグラムにおける暫定ピークを決定する。図2のヒストグラムでは、暫定ピークA~Iが存在する。なお、各暫定ピークはABC順に頻度が高い。 First, the temporary peak in the histogram of FIG. 2 is determined. In the histogram of FIG. 2, provisional peaks A to I are present. Note that each provisional peak has a high frequency in ABC order.
そして、各暫定ピークが正式にピークとするか否かを調べる。 Then, it is checked whether each provisional peak is formally regarded as a peak.
暫定ピークAを有する階級の頻度はいずれの2つ隣の階級の頻度よりも高い。したがって、暫定ピークAが第1ピークとなる。 The frequency of the class with provisional peak A is higher than the frequency of any two neighboring classes. Therefore, the provisional peak A becomes the first peak.
暫定ピークBを有する階級の頻度はアスペクト比がマイナスの方向に2つ隣の階級(暫定ピークAを有する階級)の頻度よりも低い。したがって、暫定ピークBは第2ピークではない。 The frequency of the class having the provisional peak B is lower than the frequency of the next class (the class having the provisional peak A) in the negative aspect ratio direction. Therefore, provisional peak B is not the second peak.
暫定ピークCを有する階級の頻度はアスペクト比がプラスの方向に2つ隣の階級(暫定ピークAを有する階級)の頻度よりも低い。したがって、暫定ピークCは第2ピークではない。 The frequency of the class having the provisional peak C is lower than the frequency of the class (the class having the provisional peak A) two adjacent in the positive aspect ratio direction. Therefore, provisional peak C is not the second peak.
暫定ピークDを有する階級群の頻度はいずれの2つ隣の階級の頻度よりも高い。したがって、暫定ピークDは第2ピークである。 The frequency of the class group with provisional peak D is higher than the frequency of any two neighboring classes. Therefore, provisional peak D is the second peak.
暫定ピークEを有する階級の頻度はアスペクト比がプラスの方向に2つ隣の階級(暫定ピークDを有する階級群に含まれる階級)の頻度よりも低い。したがって、暫定ピークEは第3ピークではない。 The frequency of the class having the provisional peak E is lower than the frequency of the class (the class included in the class group having the provisional peak D) whose aspect ratio is two adjacent in the positive direction. Therefore, provisional peak E is not the third peak.
暫定ピークFを有する階級の頻度はアスペクト比がマイナスの方向に2つ隣の階級(暫定ピークDを有する階級群に含まれる階級)の頻度よりも低い。したがって、暫定ピークFは第3ピークではない。 The frequency of the class having the provisional peak F is lower than the frequency of the class (the class included in the class group having the provisional peak D) whose aspect ratio is two adjacent in the negative direction. Therefore, provisional peak F is not the third peak.
暫定ピークGを有する階級の頻度はアスペクト比がマイナスの方向に2つ隣の階級(暫定ピークFを有する階級)の頻度よりも低い。したがって、暫定ピークGは第3ピークではない。 The frequency of the class having the provisional peak G is lower than the frequency of the class (the class having the provisional peak F) two adjacent in the negative aspect ratio direction. Therefore, provisional peak G is not the third peak.
暫定ピークHを有する階級の頻度はいずれの2つ隣の階級の頻度よりも高い。したがって、暫定ピークHは第3ピークである。 The frequency of the class with provisional peak H is higher than the frequency of any two neighboring classes. Therefore, provisional peak H is the third peak.
暫定ピークIを有する階級の頻度はいずれの2つ隣の階級の頻度よりも高い。したがって、暫定ピークIは第4ピークである。 The frequency of the class with interim peak I is higher than the frequency of any two neighboring classes. Therefore, provisional peak I is the fourth peak.
以上より、図2のヒストグラムでは、第1ピークから第4ピークまでの4つのピークがある。なお、第1ピークのアスペクト比は2.125、第2ピークのアスペクト比は4.25、第3ピークのアスペクト比は6.875、第4ピークのアスペクト比は8.125である。 As described above, the histogram in FIG. 2 has four peaks from the first peak to the fourth peak. The aspect ratio of the first peak is 2.125, the aspect ratio of the second peak is 4.25, the aspect ratio of the third peak is 6.875, and the aspect ratio of the fourth peak is 8.125.
さらに、アスペクト比の比は、2.125/4.25=0.5となる。 Furthermore, the aspect ratio ratio is 2.125/4.25=0.5.
また、針状粉はFeまたはFeおよびCoを主成分として含む。ここで、主成分として含むとは、針状粉全体に対するFeまたはFeおよびCoの含有割合が50atom%以上であることを指す。 Further, the acicular powder contains Fe or Fe and Co as main components. Here, "containing as a main component" means that the content ratio of Fe or Fe and Co to the entire acicular powder is 50 atom % or more.
さらに主成分であるFeおよびCoの合計含有量に対するCoの含有量は0~40atom(0atom%を含まない)であることが好ましく、15~25atom%であることがさらに好ましい。針状粉がFeおよびCoを主成分として含むことで、比透磁率μrを高くする効果がさらに大きくなる。 Furthermore, the content of Co with respect to the total content of Fe and Co, which are the main components, is preferably 0 to 40 atom % (excluding 0 atom %), more preferably 15 to 25 atom %. When the acicular powder contains Fe and Co as main components, the effect of increasing the relative magnetic permeability μr is further enhanced.
また、針状粉には主成分以外の元素、例えばV、Cr、Mn、Cu、Zn、Ni、Mg、Ca、Sr、Ba、希土類元素、Ti、Zr、Hf、Nb、Ta、Zn、Al、GaおよびSiなどが含まれていてもよく、特に耐酸化性を向上させるためにAl、Siおよび/またはNiが含まれていてもよい。その他の元素の含有量には特に制限はないが、針状粉全体に対して合計で5質量%以下であることが好ましい。 In addition, the acicular powder contains elements other than the main components, such as V, Cr, Mn, Cu, Zn, Ni, Mg, Ca, Sr, Ba, rare earth elements, Ti, Zr, Hf, Nb, Ta, Zn, and Al. , Ga and Si may be included, and in particular Al, Si and/or Ni may be included to improve oxidation resistance. The content of other elements is not particularly limited, but is preferably 5% by mass or less in total with respect to the entire acicular powder.
また、針状粉に対して酸化物層が被覆されていてもよい。酸化物層を構成する酸化物の種類および酸化物層の厚みには特に制限はない。例えばMg、Ca、Sr、Ba、希土類元素、Ti、Zr、Hf、Nb、Ta、Zn、Al、GaおよびSiから選ばれる1種以上の非磁性金属を含む酸化物であってもよい。酸化物層の厚さは、例えば1.0nm以上10.0nm以下としてもよく、1.0nm以上5.0nm以下としてもよい。針状粉を酸化物層で被覆することにより、針状粉の酸化を防止しやすくなる。 Also, the acicular powder may be coated with an oxide layer. There are no particular restrictions on the type of oxide forming the oxide layer and the thickness of the oxide layer. For example, it may be an oxide containing one or more non-magnetic metals selected from Mg, Ca, Sr, Ba, rare earth elements, Ti, Zr, Hf, Nb, Ta, Zn, Al, Ga and Si. The thickness of the oxide layer may be, for example, 1.0 nm or more and 10.0 nm or less, or 1.0 nm or more and 5.0 nm or less. By covering the acicular powder with an oxide layer, it becomes easier to prevent the acicular powder from being oxidized.
針状粉は、さらに樹脂で被覆する。すなわち、本実施形態に係る複合磁性材料は樹脂を有する。樹脂の種類には特に限定はない。例えばエポキシ樹脂、フェノール樹脂、アクリル樹脂が例示される。樹脂で被覆することにより、絶縁性を向上させ、後述する磁化回転を抑制する粉体間での渦電流の発生を抑制でき、比透磁率μrを大きく向上させやすくなる。 The acicular powder is further coated with resin. That is, the composite magnetic material according to this embodiment has a resin. The type of resin is not particularly limited. Examples include epoxy resin, phenol resin, and acrylic resin. By coating with resin, it is possible to improve the insulation, suppress the occurrence of eddy currents between powders that suppress magnetization rotation, which will be described later, and easily improve the relative permeability μr.
特に高周波領域において、アスペクト比の頻度分布が上記の第1ピークおよび第2ピークを有する針状粉を含む磁心の比透磁率μrが向上する理由は以下の通りであると考えられる。 The reason why the relative magnetic permeability μr of the magnetic core containing acicular powder having the above-mentioned first and second peaks in the aspect ratio frequency distribution, particularly in the high frequency region, is improved is considered as follows.
特に高周波領域において発現する磁化の大きさは、針状粉内部における磁化の歳差運動の変位の大きさに強く依存すると考えられる。歳差運動の変位が大きいほど、発現する磁化が大きくなり、高透磁率になる。 In particular, the magnitude of magnetization that appears in the high-frequency region is considered to strongly depend on the magnitude of displacement of precession of magnetization inside the acicular powder. The greater the precession displacement, the greater the magnetization that appears and the higher the magnetic permeability.
ここで、形状異方性が大きい針状粉、すなわちアスペクト比が大きな針状粉を用いる場合ほど、外部磁界を掛けた場合に、反磁界によって単磁区構造が自己組織化しやすい。 Here, when an acicular powder having a large shape anisotropy, that is, an acicular powder having a large aspect ratio is used, a single domain structure is more easily self-organized by a demagnetizing field when an external magnetic field is applied.
その結果、アスペクト比の頻度分布が1つのピークのみ有する針状粉を用いる場合には、当該ピークにおけるアスペクト比が大きいほど磁化の歳差運動が抑制され、比透磁率μrが低くなりやすい。ただし、自己組織化により内部組織は均一なため、有効磁化が増加し、周波数特性は高周波数化する。 As a result, when acicular powder having only one peak in the frequency distribution of aspect ratios is used, the precession of magnetization is suppressed as the aspect ratio at the peak increases, and the relative magnetic permeability μr tends to decrease. However, since the internal structure is uniform due to self-organization, the effective magnetization is increased and the frequency characteristics are increased.
これに対し、当該ピークにおけるアスペクト比が小さいほど、磁化の歳差運動が増加し、比透磁率μrが高くなりやすい。ただし、自己組織化しにくく内部組織は不均一であるため、有効磁化が減少し、周波数特性は低周波数化する。 On the other hand, the smaller the aspect ratio at the peak, the greater the precession of magnetization and the higher the relative magnetic permeability μr. However, since self-organization is difficult and the internal structure is non-uniform, the effective magnetization is reduced and the frequency characteristics are lowered.
ここで、アスペクト比の頻度分布が頻度の高い2つのピークを有し、アスペクト比の比が0.80以下である場合には、アスペクト比が大きな針状粉が優先的に自己組織化する。このときに針状粉間に交換相互作用が生じ、アスペクト比が小さな針状粉もアスペクト比が大きな針状粉と同一方向に自己組織化しやすくなる。したがって、アスペクト比が大きな針状粉の自己組織化を起点としてアスペクト比が小さな針状粉の内部組織も均一化され、有効磁化が増加する。そして、周波数特性が高周波数化する。 Here, when the frequency distribution of aspect ratios has two peaks with high frequency and the ratio of aspect ratios is 0.80 or less, acicular powder with a large aspect ratio is preferentially self-organized. At this time, an exchange interaction occurs between the acicular powders, and the acicular powders with a small aspect ratio tend to self-organize in the same direction as the acicular powders with a large aspect ratio. Therefore, starting from the self-organization of the acicular powder with a large aspect ratio, the internal structure of the acicular powder with a small aspect ratio is also homogenized, increasing the effective magnetization. Then, the frequency characteristic becomes higher.
逆に、アスペクト比が小さな針状粉は歳差運動が増加している。このときに針状粉間に交換相互作用が生じ、アスペクト比が大きな針状粉の歳差運動も増加しやすくなる。したがって、アスペクト比が小さな針状粉の歳差運動を起点としてアスペクト比が大きな針状粉の歳差運動も増加する。そして、比透磁率μrが増加する。 Conversely, acicular powder with a small aspect ratio has increased precession. At this time, an exchange interaction occurs between the acicular powder, and the precession of the acicular powder having a large aspect ratio tends to increase. Therefore, the precession of the acicular powder with a large aspect ratio also increases with the precession of the acicular powder with a small aspect ratio as a starting point. Then, the relative magnetic permeability μr increases.
以上より、アスペクト比の頻度分布が頻度の高い2つのピークを有し、それぞれのピークのアスペクト比が3.0以上10以下であり、アスペクト比の比が0.80以下である場合には、周波数特性の高周波数化および比透磁率μrの増加が同時に達成される。 From the above, when the frequency distribution of the aspect ratio has two peaks with high frequency, the aspect ratio of each peak is 3.0 or more and 10 or less, and the ratio of the aspect ratio is 0.80 or less, A high frequency characteristic and an increase in the relative magnetic permeability μr are achieved at the same time.
なお、頻度の高いピークのアスペクト比が10を超える場合には、当該磁性粉を用いて作製する磁心の密度が低下し、比透磁率μrが低下する。頻度の高いピークのアスペクト比が3.0未満となる場合には、特に周波数3GHz以上の高周波領域にて磁気損失tanδが高くなる。 If the aspect ratio of the peak with high frequency exceeds 10, the density of the magnetic core produced using the magnetic powder is lowered, and the relative magnetic permeability μr is lowered. If the aspect ratio of the frequently-frequent peaks is less than 3.0, the magnetic loss tan δ increases especially in the high frequency range of 3 GHz or higher.
本実施形態に係る磁心は上記の複合磁性材料を含んでいればよい。また、磁心の種類にも特に制限はなく、例えば、圧粉磁心であってもよい。また、例えばコイルを埋め込んだ圧粉磁心が上記の複合磁性材料を含んでいてもよい。 The magnetic core according to the present embodiment may contain the composite magnetic material described above. Also, the type of the magnetic core is not particularly limited, and for example, a dust core may be used. Further, for example, a dust core in which a coil is embedded may contain the composite magnetic material.
また、磁心全体に対する針状粉の含有割合(以下、充填率とも呼ぶ)は25vol%以上とすることが好ましい。充填率を十分に高くすることにより、比透磁率μrを十分に向上させることができる。 Moreover, it is preferable that the content ratio of the acicular powder (hereinafter also referred to as the filling rate) with respect to the entire magnetic core is 25 vol % or more. By sufficiently increasing the filling rate, the relative magnetic permeability μr can be sufficiently improved.
ここで、充填率の算出方法に特に制限はない。例えば以下に示す方法が挙げられる。 Here, there is no particular limitation on the method of calculating the filling rate. For example, the method shown below is mentioned.
まず、磁心を切断して得られた断面を研磨して観察面を作製する。次に、当該観察面に対して電子顕微鏡(SEM)を用いて観察する。この際に、観察した画像についてノイズを除去して二値化してもよい。そして、観察面全体の面積に対する針状粉の面積割合を算出する。そして、本実施形態では当該面積割合と充填率とが等しいとみなし、当該面積割合を充填率とする。 First, a cross section obtained by cutting a magnetic core is polished to prepare an observation surface. Next, the observation surface is observed using an electron microscope (SEM). At this time, the observed image may be binarized by removing noise. Then, the area ratio of acicular powder to the area of the entire observation surface is calculated. In this embodiment, the area ratio and the filling rate are considered to be equal, and the area ratio is taken as the filling rate.
また、充填率を算出する上で、観察面は、前記針状粉を合計で1000粒子以上含む大きさとする。なお、観察面は複数であってもよく、合計で1000粒子以上含む大きさとしていればよい。 In addition, in calculating the filling rate, the observation surface has a size that includes a total of 1000 or more particles of the acicular powder. It should be noted that there may be a plurality of viewing surfaces, and the size may include 1000 particles or more in total.
以下、本実施形態に係る複合磁性材料および磁心の製造方法について説明するが、本実施形態に係る複合磁性材料および磁心の製造方法は以下の方法に限定されない。 A method for manufacturing the composite magnetic material and the magnetic core according to this embodiment will be described below, but the method for manufacturing the composite magnetic material and the magnetic core according to this embodiment is not limited to the following methods.
まず、主成分がFeまたはFeおよびCoである軟磁性材料からなる針状粉を作製する。ここで、例えば平均アスペクト比が互いに異なる複数種類の針状粉を準備することで、最終的に得られる複合磁性材料において所定のアスペクト比の頻度分布を有する針状粉を含むことができる。針状粉の作製方法には特に制限はなく、本技術分野における通常の方法を用いることができる。例えば、α-FeOOH、FeOまたはCoO等の化合物からなる原料粉末を加熱還元する公知の方法により作製してもよい。原料粉末におけるFe、Coおよび/またはその他の元素の含有量を制御することにより、得られる針状粉の組成を制御することができる。 First, an acicular powder made of a soft magnetic material whose main component is Fe or Fe and Co is produced. Here, for example, by preparing a plurality of types of acicular powder having different average aspect ratios, the finally obtained composite magnetic material can contain acicular powder having a predetermined frequency distribution of aspect ratios. There is no particular limitation on the method for producing the acicular powder, and a method commonly used in this technical field can be used. For example, it may be prepared by a known method of heating and reducing a raw material powder composed of a compound such as α-FeOOH, FeO or CoO. By controlling the content of Fe, Co and/or other elements in the raw material powder, the composition of the obtained acicular powder can be controlled.
ここで、原料粉末の平均短軸長および平均アスペクト比を制御することで、針状粉の平均短軸長、平均長軸長および平均アスペクト比を制御することができる。なお、針状粉の平均短軸長、平均長軸長および平均アスペクト比を制御する方法は上記の方法に限定されない。 Here, by controlling the average minor axis length and average aspect ratio of the raw material powder, the average minor axis length, average major axis length and average aspect ratio of the acicular powder can be controlled. The method for controlling the average short axis length, average long axis length and average aspect ratio of acicular powder is not limited to the above methods.
また、針状粉に非磁性金属の酸化物層を被覆させる場合としては、原料粉末に対して、非磁性金属を含有させた後に加熱還元を行う方法が例示される。原料粉末に対して非磁性金属を含有させる方法には特に限定は無い。例えば原料粉末と非金属元素を含む溶液とを混合させた後にpH調製を行い、ろ過して乾燥させる方法が挙げられる。また、非金属元素を含む溶液の濃度、pHおよび混合時間等を制御することで酸化物層の厚みを制御することができる。 In the case of coating the acicular powder with the oxide layer of the non-magnetic metal, a method of adding the non-magnetic metal to the raw material powder and then subjecting it to thermal reduction is exemplified. There is no particular limitation on the method of adding the non-magnetic metal to the raw material powder. For example, a method of mixing a raw material powder with a solution containing a non-metallic element, adjusting the pH, filtering and drying the mixture may be used. Also, the thickness of the oxide layer can be controlled by controlling the concentration, pH, mixing time, etc. of the solution containing the nonmetallic element.
上記の方法により加熱還元させて得られた針状粉と樹脂とを混合させて針状粉に樹脂を被覆させることができる。樹脂を被覆させる方法に特に制限はない。例えば針状粉100体積%に対して樹脂を20~60体積%含む溶液を添加し、混合した後に乾燥させることで樹脂を被覆させることができる。 The acicular powder obtained by heat reduction by the above method can be mixed with the resin to coat the acicular powder with the resin. There is no particular limitation on the method of coating with the resin. For example, the resin can be coated by adding a solution containing 20 to 60% by volume of resin to 100% by volume of acicular powder, mixing the mixture, and drying.
そして、平均アスペクト比が互いに異なる複数種類の針状粉を所定の割合で混合させることで本実施形態に係る複合磁性材料を得ることができる。なお、アスペクト比が互いに異なる2種類の針状粉を混合させる場合には、各針状粉の平均アスペクト比が最終的に得られるアスペクト比の頻度分布における第1ピークまたは第2ピークのアスペクト比と概ね一致しやすい。 The composite magnetic material according to this embodiment can be obtained by mixing a plurality of types of acicular powders having different average aspect ratios at a predetermined ratio. When two types of acicular powders having different aspect ratios are mixed, the aspect ratio of the first peak or the second peak in the frequency distribution of the aspect ratios finally yields the average aspect ratio of each acicular powder. generally easy to match.
上記の複合磁性材料から磁心を作製する方法には特に制限はなく、本実施形態に係る通常の方法を用いることができる。 There is no particular limitation on the method of manufacturing the magnetic core from the above composite magnetic material, and a normal method according to this embodiment can be used.
例えば、上記の複合磁性材料を金型に充填して加圧することで圧粉体からなる磁心を製造することができる。 For example, a magnetic core made of a powder compact can be manufactured by filling the above composite magnetic material into a mold and pressing it.
本実施形態に係る磁心の用途には特に制限はない。例えば、コイル部品、LCフィルタ、アンテナ等が挙げられる。 There is no particular limitation on the use of the magnetic core according to this embodiment. For example, coil components, LC filters, antennas, and the like are included.
次に、本発明を具体的な実施例に基づきさらに詳細に説明するが、本発明は、以下の実施例に限定されない。 Next, the present invention will be described in more detail based on specific examples, but the present invention is not limited to the following examples.
まず、針状粉を作製した。針状粉は、α-FeOOHからなる粉末をH2中で加熱還元する公知の方法により作製した。 First, acicular powder was produced. The acicular powder was produced by a known method of heat-reducing powder composed of α-FeOOH in H 2 .
このときに、互いに平均アスペクト比の異なる複数の針状のα-FeOOHからなる粉末を準備した。針状のα-FeOOHからなる粉末から最終的に針状粉が得られた。このときの針状のα-FeOOHからなる粉末の短軸長、長軸長および平均アスペクト比を制御することで、各表に記載の短軸長、長軸長および平均アスペクト比を有する針状粉を得た。 At this time, a powder composed of a plurality of acicular α-FeOOH having different average aspect ratios was prepared. An acicular powder was finally obtained from the acicular α-FeOOH powder. By controlling the minor axis length, major axis length and average aspect ratio of the needle-shaped α-FeOOH powder at this time, acicular powder having the minor axis length, major axis length and average aspect ratio described in each table got the powder
さらに、α-FeOOHからなる粉末におけるCoの含有量を制御することで、針状粉の組成を各表に示す組成に制御した。なお、各表に示す組成は原子数比である。 Furthermore, by controlling the Co content in the powder composed of α-FeOOH, the composition of the acicular powder was controlled to the composition shown in each table. In addition, the composition shown in each table is an atomic number ratio.
上記の方法により得られた針状粉に対して、樹脂を添加した。また、各表に示す針状粉1と針状粉2とを各表に示す体積比で混合した。ミキシングロールを用いて、95℃で混錬し70℃まで徐冷しながら混錬を続け70℃以下では混錬を止め室温まで急冷することで複合磁性材料を得た。なお、樹脂としてはエポキシ樹脂であるJER806:三菱ケミカルを用いた。
A resin was added to the acicular powder obtained by the above method. In addition,
次に、得られた複合磁性材料を100℃に加熱した金型に投入し、980MPaの成形圧で成形を行った。得られた成形体を180℃で熱硬化してから切り出し加工することで各表に示す各実施例および比較例の磁心を得た。なお、磁心の形状は1mm×1mm×100mmの直方体とした。 Next, the obtained composite magnetic material was put into a mold heated to 100° C. and molded under a molding pressure of 980 MPa. The obtained molded body was heat-cured at 180° C. and then cut out to obtain magnetic cores of Examples and Comparative Examples shown in each table. The shape of the magnetic core was a rectangular parallelepiped of 1 mm×1 mm×100 mm.
周波数1.0GHzとした場合、および周波数3.5GHzとした場合において、実施例および比較例の比透磁率μrおよび磁気損失tanδを測定した。比透磁率μrおよび磁気損失tanδはネットワークアナライザ(アジレント・テクノロジー(株)製、HP8753D)と空洞共振器((株)関東電子応用開発製)を用いて摂動法により測定した。結果を各表に示す。なお、磁気損失tanδは、周波数1.0GHzの場合には0.005以下を良好とした。周波数3.5GHzの場合には0.015以下を良好とした。 The relative magnetic permeability μr and the magnetic loss tan δ of the examples and comparative examples were measured at a frequency of 1.0 GHz and a frequency of 3.5 GHz. The relative magnetic permeability μr and the magnetic loss tan δ were measured by the perturbation method using a network analyzer (HP8753D manufactured by Agilent Technologies) and a cavity resonator (manufactured by Kanto Denshi Applied Development Co., Ltd.). Results are shown in each table. A magnetic loss tan δ of 0.005 or less was considered good at a frequency of 1.0 GHz. In the case of a frequency of 3.5 GHz, 0.015 or less was considered good.
また、各実施例に含まれる二種類の針状粉のうち、平均アスペクト比が小さい針状粉のみを用いた比較例を基準として、比透磁率μrがどれだけ変化したかを各表に記載した。なお、周波数1.0GHzの場合における比透磁率μrの変化量をΔμ1、周波数3.5GHzの場合における比透磁率μrの変化量をΔμ2とした。 Also, of the two types of acicular powder included in each example, each table shows how much the relative magnetic permeability μr changed based on a comparative example using only acicular powder with a small average aspect ratio. did. The amount of change in relative magnetic permeability μr at a frequency of 1.0 GHz is defined as Δμ1, and the amount of change in relative magnetic permeability μr at a frequency of 3.5 GHz is defined as Δμ2.
さらに、得られた磁心に含まれる針状粉の一次粒子のアスペクト比を700個、測定し、ヒストグラムを作成した。そして、第2ピークの有無、平均短軸長が100nm以下か否か、および、第1ピークのアスペクト比および第2ピークのアスペクト比がそれぞれ3.0以上10以下か否かについて評価した。さらに、アスペクト比の比を算出した。結果を各表に示す。なお、図3には実施例8のヒストグラムを例示した。 Furthermore, the aspect ratio of 700 primary particles of acicular powder contained in the obtained magnetic core was measured, and a histogram was created. Then, the presence or absence of the second peak, whether or not the average minor axis length was 100 nm or less, and whether or not the aspect ratio of the first peak and the aspect ratio of the second peak were each 3.0 or more and 10 or less were evaluated. Furthermore, the aspect ratio ratio was calculated. Results are shown in each table. In addition, the histogram of Example 8 is illustrated in FIG.
表1および表2では、針状粉が鉄のみからなる場合について、平均アスペクト比3.0の針状粉および平均アスペクト比が5.0の針状粉を混合した実施例1の結果を示した。また、平均アスペクト比3.0の針状粉のみを用いた比較例1、および、平均アスペクト比5.0の針状粉のみを用いた比較例2の結果を示した。 Tables 1 and 2 show the results of Example 1 in which acicular powder having an average aspect ratio of 3.0 and acicular powder having an average aspect ratio of 5.0 were mixed, in the case where the acicular powder consisted only of iron. rice field. The results of Comparative Example 1 using only acicular powder with an average aspect ratio of 3.0 and Comparative Example 2 using only acicular powder with an average aspect ratio of 5.0 are also shown.
表1および表2より、アスペクト比の頻度分布が所定の頻度分布であり、平均短軸長も所定の範囲内である実施例1は、アスペクト比の頻度分布が第2ピークを有さない比較例1および比較例2と比べて比透磁率μrが向上した。 From Tables 1 and 2, the frequency distribution of the aspect ratio is a predetermined frequency distribution, and the average short axis length is also within a predetermined range. Compared with Example 1 and Comparative Example 2, the relative magnetic permeability μr was improved.
表3および表4では、針状粉が鉄とコバルトとの合金である場合について、平均アスペクト比が3.0の針状粉に平均アスペクト比が4.1~9.9の針状粉を混合させた実施例2~12の結果を示した。また、平均アスペクト比が3.0の針状粉に平均アスペクト比が12.2の針状粉を混合させた比較例9の結果を示した。さらに、1種類の針状粉のみを用いた比較例3~8の結果を示した。 In Tables 3 and 4, when the acicular powder is an alloy of iron and cobalt, acicular powder with an average aspect ratio of 3.0 is added to acicular powder with an average aspect ratio of 4.1 to 9.9. The results of mixed Examples 2-12 are shown. Also, the results of Comparative Example 9, in which acicular powder having an average aspect ratio of 3.0 was mixed with acicular powder having an average aspect ratio of 12.2, were shown. Furthermore, the results of Comparative Examples 3 to 8 using only one type of acicular powder are shown.
表3および表4より、アスペクト比の頻度分布が所定の頻度分布であり、平均短軸長も所定の範囲内である実施例2~12は、アスペクト比の頻度分布が第2ピークを有さない比較例3~8と比べて比透磁率μrが向上した。 From Tables 3 and 4, Examples 2 to 12, in which the aspect ratio frequency distribution is a predetermined frequency distribution and the average short axis length is also within a predetermined range, the aspect ratio frequency distribution has a second peak. Compared to Comparative Examples 3 to 8, which did not contain any sintered material, the relative magnetic permeability μr was improved.
さらに、第2ピークを有していても、第2ピークのアスペクト比が10.0より大きかった比較例9は、比較例3と比較して比透磁率μrが向上しなかった。 Furthermore, even though it had a second peak, Comparative Example 9, in which the aspect ratio of the second peak was greater than 10.0, did not improve the relative magnetic permeability μr compared to Comparative Example 3.
表5および表6では、針状粉が鉄とコバルトとの合金である場合について、平均アスペクト比が4.1の針状粉に平均アスペクト比が5.1~9.9の針状粉を混合させた実施例13~15の結果を示した。また、平均アスペクト比が4.1の針状粉に平均アスペクト比が12.2の針状粉を混合させた比較例11の結果を示した。さらに、1種類の針状粉のみを用いた比較例4~8の結果を示した。 In Tables 5 and 6, when the acicular powder is an alloy of iron and cobalt, acicular powder with an average aspect ratio of 4.1 is added to acicular powder with an average aspect ratio of 5.1 to 9.9. The results of mixed Examples 13-15 are shown. Also, the results of Comparative Example 11, in which needle-like powder having an average aspect ratio of 4.1 was mixed with needle-like powder having an average aspect ratio of 12.2, were shown. Furthermore, the results of Comparative Examples 4 to 8 using only one type of acicular powder are shown.
表5および表6より、アスペクト比の頻度分布が所定の頻度分布であり、平均短軸長も所定の範囲内である実施例13~15は、アスペクト比の頻度分布が第2ピークを有さない比較例4~8と比べて比透磁率μrが向上した。 From Tables 5 and 6, Examples 13 to 15, in which the aspect ratio frequency distribution is a predetermined frequency distribution and the average minor axis length is also within a predetermined range, the aspect ratio frequency distribution has a second peak. Compared to Comparative Examples 4 to 8, which did not contain any sintered material, the relative magnetic permeability μr was improved.
さらに、第2ピークを有していても、第2ピークのアスペクト比が10.0より大きかった比較例11は、比較例4と比較して比透磁率μrが向上しなかった。 Furthermore, even though it had a second peak, Comparative Example 11, in which the aspect ratio of the second peak was greater than 10.0, did not improve the relative magnetic permeability μr compared to Comparative Example 4.
表7および表8では、針状粉が鉄とコバルトとの合金である場合について、平均アスペクト比が7.3の針状粉に平均アスペクト比が9.9の針状粉を混合させた実施例16の結果を示した。また、平均アスペクト比が7.3の針状粉に平均アスペクト比が12.2の針状粉を混合させた比較例12の結果を示した。さらに、1種類の針状粉のみを用いた比較例6~8の結果を示した。 In Tables 7 and 8, when the needle-like powder is an alloy of iron and cobalt, needle-like powder having an average aspect ratio of 7.3 is mixed with needle-like powder having an average aspect ratio of 9.9. The results of Example 16 are shown. Also, the results of Comparative Example 12, in which needle-like powder having an average aspect ratio of 7.3 was mixed with needle-like powder having an average aspect ratio of 12.2, were shown. Furthermore, the results of Comparative Examples 6 to 8 using only one type of acicular powder are shown.
表7および表8より、アスペクト比の頻度分布が所定の頻度分布であり、平均短軸長も所定の範囲内である実施例16は、アスペクト比の頻度分布が第2ピークを有さない比較例6~8と比べて比透磁率μrが向上した。 From Tables 7 and 8, the aspect ratio frequency distribution is a predetermined frequency distribution, and the average short axis length is also within a predetermined range. Compared with Examples 6-8, the relative magnetic permeability μr was improved.
さらに、第2ピークを有していても、第2ピークのアスペクト比が10.0より大きかった比較例12は、比較例6と比較して比透磁率μrが向上しなかった。 Furthermore, even though it had a second peak, Comparative Example 12, in which the aspect ratio of the second peak was greater than 10.0, did not improve the relative permeability μr compared to Comparative Example 6.
表9および表10では、表1~表8に記載した針状粉と比較して平均短軸長が長い針状粉を用いた実施例17および比較例13、14を示した。 Tables 9 and 10 show Example 17 and Comparative Examples 13 and 14 using acicular powder having a longer average minor axis length than the acicular powders shown in Tables 1 to 8.
表9および表10より、アスペクト比の頻度分布が所定の頻度分布であり、平均短軸長も所定の範囲内である実施例17は、アスペクト比の頻度分布が第2ピークを有さない比較例13、14と比べて比透磁率μrが向上した。 From Tables 9 and 10, the aspect ratio frequency distribution is a predetermined frequency distribution, and the average short axis length is also within a predetermined range. Compared with Examples 13 and 14, the relative magnetic permeability μr was improved.
表11および表12では、表9および表10に記載した針状粉と比較してさらに平均短軸長が長い針状粉を用いた比較例15~17を示した。 Tables 11 and 12 show Comparative Examples 15 to 17 using acicular powders having a longer average minor axis length than the acicular powders shown in Tables 9 and 10.
表11および表12より、平均短軸長が長すぎる比較例15~17は、アスペクト比の頻度分布に関わらず磁気損失tanδが大きくなりすぎる結果となった。 From Tables 11 and 12, Comparative Examples 15 to 17, in which the average minor axis length was too long, resulted in excessively large magnetic loss tan δ regardless of the frequency distribution of aspect ratios.
1・・・針状粉
1a・・・(針状粉に外接する)楕円
1
Claims (3)
前記針状粉はFeまたはFeおよびCoを主成分とし、
前記針状粉の一次粒子における平均短軸長が100nm以下であり、
前記針状粉の一次粒子におけるアスペクト比の頻度分布において、最も頻度が高い第1ピークのアスペクト比および2番目に頻度が高い第2ピークのアスペクト比がそれぞれ3.0以上10以下の範囲内にあり、
(第1ピークのアスペクト比)/(第2ピークのアスペクト比)および(第2ピークのアスペクト比)/(第1ピークのアスペクト比)のうち小さい方が0.30以上0.80以下であることを特徴とする複合磁性材料。 A composite magnetic material containing acicular powder and resin,
The acicular powder is mainly composed of Fe or Fe and Co,
The primary particles of the acicular powder have an average minor axis length of 100 nm or less,
In the frequency distribution of the aspect ratios of the primary particles of the acicular powder, the aspect ratio of the first peak with the highest frequency and the aspect ratio of the second peak with the second highest frequency are in the range of 3.0 or more and 10 or less. can be,
(aspect ratio of first peak) / (aspect ratio of second peak) and (aspect ratio of second peak) / (aspect ratio of first peak), whichever is smaller is 0.30 or more and 0.80 or less A composite magnetic material characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018238402A JP7119979B2 (en) | 2018-12-20 | 2018-12-20 | Composite magnetic material and magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018238402A JP7119979B2 (en) | 2018-12-20 | 2018-12-20 | Composite magnetic material and magnetic core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020102486A JP2020102486A (en) | 2020-07-02 |
JP7119979B2 true JP7119979B2 (en) | 2022-08-17 |
Family
ID=71139843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018238402A Active JP7119979B2 (en) | 2018-12-20 | 2018-12-20 | Composite magnetic material and magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7119979B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105502A (en) | 2000-09-26 | 2002-04-10 | Kubota Corp | Soft magnetic metal powder, powder agglomerate, and compact |
JP2014116332A (en) | 2012-12-06 | 2014-06-26 | Samsung R&D Institute Japan Co Ltd | Magnetic body composite material |
JP2017120924A (en) | 2011-08-31 | 2017-07-06 | 株式会社東芝 | Magnetic material, inductor element, magnetic ink, and antenna device |
JP2018113436A (en) | 2017-01-12 | 2018-07-19 | Tdk株式会社 | Soft magnetic material, core and inductor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260617A (en) * | 1998-03-10 | 1999-09-24 | Tokin Corp | Dust core, manufacture of the same, and winding component |
JP5710427B2 (en) * | 2011-08-31 | 2015-04-30 | 株式会社東芝 | Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material |
-
2018
- 2018-12-20 JP JP2018238402A patent/JP7119979B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002105502A (en) | 2000-09-26 | 2002-04-10 | Kubota Corp | Soft magnetic metal powder, powder agglomerate, and compact |
JP2017120924A (en) | 2011-08-31 | 2017-07-06 | 株式会社東芝 | Magnetic material, inductor element, magnetic ink, and antenna device |
JP2014116332A (en) | 2012-12-06 | 2014-06-26 | Samsung R&D Institute Japan Co Ltd | Magnetic body composite material |
JP2018113436A (en) | 2017-01-12 | 2018-07-19 | Tdk株式会社 | Soft magnetic material, core and inductor |
Also Published As
Publication number | Publication date |
---|---|
JP2020102486A (en) | 2020-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109215922B (en) | Composite magnetic material and magnetic core | |
EP1912225B1 (en) | Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core | |
JP5708454B2 (en) | Alcohol solution and sintered magnet | |
JP5058031B2 (en) | Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet | |
KR101648658B1 (en) | Magnetic part, metal powder used therein and manufacturing method therefor | |
EP1737002B1 (en) | Soft magnetic material, powder magnetic core and process for producing the same | |
JP2007019134A (en) | Method of manufacturing composite magnetic material | |
JP2008135674A (en) | Soft magnetic alloy powder, compact, and inductance element | |
KR101963265B1 (en) | Inductor component | |
JP6582745B2 (en) | Composite soft magnetic material and manufacturing method thereof | |
TWI622065B (en) | Soft magnetic alloy | |
JP7119979B2 (en) | Composite magnetic material and magnetic core | |
JP7251468B2 (en) | Composite magnetic materials, magnetic cores and electronic components | |
TW201814738A (en) | Soft magnetic alloy | |
JP2013125901A (en) | Magnetic nanoparticle | |
JP2013207234A (en) | Green compact for high frequency use and electronic component manufactured using the same | |
JP4444191B2 (en) | High frequency magnetic material, high frequency magnetic device, and method of manufacturing high frequency magnetic material | |
US11682510B2 (en) | Composite magnetic material, magnetic core, and electronic component | |
JP7222664B2 (en) | dust core | |
JP6973234B2 (en) | Composite magnetic material | |
JP7172091B2 (en) | Composite magnetic material | |
JP3449322B2 (en) | Composite magnetic material and inductor element | |
JP6407252B2 (en) | Magnetic materials and devices | |
JP2020043175A (en) | Magnetic material | |
JP7135899B2 (en) | Composite magnetic materials and electronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210831 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220718 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7119979 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |