JP7119524B2 - power control unit - Google Patents

power control unit Download PDF

Info

Publication number
JP7119524B2
JP7119524B2 JP2018078991A JP2018078991A JP7119524B2 JP 7119524 B2 JP7119524 B2 JP 7119524B2 JP 2018078991 A JP2018078991 A JP 2018078991A JP 2018078991 A JP2018078991 A JP 2018078991A JP 7119524 B2 JP7119524 B2 JP 7119524B2
Authority
JP
Japan
Prior art keywords
power supply
power
charge
temperature
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078991A
Other languages
Japanese (ja)
Other versions
JP2019187189A (en
Inventor
真市 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018078991A priority Critical patent/JP7119524B2/en
Publication of JP2019187189A publication Critical patent/JP2019187189A/en
Application granted granted Critical
Publication of JP7119524B2 publication Critical patent/JP7119524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、出力型電源及び容量型電源を備える電源システムに適用される電源制御装置に関する。 The present invention relates to a power supply control device applied to a power supply system having an output power supply and a capacitive power supply.

従来、出力が相対的に大きい出力型電源と、蓄積可能な電力量が相対的に大きい容量型電源とを双方向電力変換器により電力授受可能に接続した電源システムにおいて、電力変換器の作動を制御する電源制御装置が知られている。例えば特許文献1に開示された電源制御装置は、高圧電源に出力型電源を用い、中圧電源に容量型電源を用いるハイブリッド車両の電源システムに適用される。 Conventionally, in a power supply system in which an output-type power supply with a relatively large output and a capacity-type power supply with a relatively large amount of storable power are connected so that power can be exchanged by a bidirectional power converter, the operation of the power converter is Controlling power control devices are known. For example, the power supply control device disclosed in Patent Document 1 is applied to a hybrid vehicle power supply system that uses an output type power supply as a high voltage power supply and a capacitive power supply as an intermediate voltage power supply.

特許文献1の電源制御装置は、車両の走行路面が上り勾配であるとき、中圧電源のSOCが低下して中圧電源SOC下限値に到達するまで、容量型の中圧電源から出力型の高圧電源へ電力が供給されるように電力変換器を制御する。また、この電源制御装置は、車両の走行路面が下り勾配であるとき、中圧電源のSOCが上昇して中圧電源SOC上限値に到達するまで、出力型の高圧電源から容量型の中圧電源へ電力が供給されるように電力変換器を制御する。 In the power supply control device of Patent Document 1, when the road surface on which the vehicle is traveling is upsloping, the SOC of the intermediate voltage power supply decreases and the SOC of the intermediate voltage power supply reaches the lower limit value of the intermediate voltage power supply. The power converter is controlled so that power is supplied to the high voltage power supply. In addition, when the road surface on which the vehicle is traveling is downhill, the power supply control device controls the output-type high-voltage power supply until the SOC of the medium-voltage power supply rises and reaches the upper limit value of the medium-voltage power supply SOC. Control the power converter so that power is supplied to the power supply.

特開2017-73934号公報JP 2017-73934 A

引用文献1の技術において車両の走行路面が上り勾配のときは高負荷状態であり、下り勾配のときは低負荷状態である。引用文献1の技術では、下り勾配の低負荷状態のとき、出力型電源への電力供給は行われない。例えば、ハイブリッド車両が短い下り坂を走行した後に長い上り坂を走行する状況を想定する。引用文献1の技術では、車両が上り坂にさしかかった時点で容量型電源から出力型電源への電力供給が開始されるため、充電の対応が遅れ、出力型電源のSOC(すなわち充電量)が十分に上昇しないおそれがある。その結果、高負荷状態の登板走行開始時に出力型電源のSOCが低いと、エンジンが早掛かりし、燃費悪化に繋がるという問題がある。 In the technique of Document 1, when the road surface on which the vehicle travels is uphill, it is in a high load state, and when it is downhill, it is in a low load state. In the technique disclosed in Document 1, power is not supplied to the output type power supply when the load is low on a downward slope. For example, assume a situation in which a hybrid vehicle travels a short downhill followed by a long uphill. In the technique of Document 1, when the vehicle approaches an uphill, power supply from the capacitive power source to the output power source is started. It may not rise enough. As a result, if the SOC of the output-type power source is low when the vehicle starts running on a hill under high load, the engine starts early, leading to a problem of deterioration in fuel consumption.

本発明はこのような点に鑑みて創作されたものであり、その目的は、次回走行時に備えて出力型電源の充電量を適切に確保する電源制御装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been created in view of such a point, and an object thereof is to provide a power supply control device that appropriately secures the amount of charge of an output type power supply in preparation for the next run.

本発明の電源制御装置は、車両に搭載され、第1電源(50)、第2電源(30)、及び電力変換器(40)を備える電源システムに適用され、電力変換器の作動を制御する。第1電源は、モータジェネレータ(65)を駆動する駆動システム(600)に接続される。第2電源は第1電源より電圧が低い。電力変換器は、駆動システム及び第1電源と第2電源との間で双方向に電力授受を行う。 The power supply control device of the present invention is mounted on a vehicle, applied to a power supply system comprising a first power supply (50), a second power supply (30), and a power converter (40), and controls the operation of the power converter. . A first power supply is connected to a drive system (600) that drives a motor generator (65). The second power supply has a lower voltage than the first power supply. The power converter exchanges power bi-directionally between the drive system and the first and second power supplies.

第1電源は、第2電源に比べ出力が大きい出力型電源である。第2電源は、第1電源に比べ蓄積可能な電力量が大きい容量型電源である。例えば第1電源はリチウムイオンキャパシタであり、第2電源はリチウムイオン電池である。 The first power supply is an output type power supply having a higher output than the second power supply. The second power supply is a capacitive power supply that can store more power than the first power supply. For example, the first power source is a lithium ion capacitor and the second power source is a lithium ion battery.

電源制御装置は、走行状態取得部(87)と、充電判定部(83)と、電力変換器操作部(84)と、を有する。走行状態取得部は、車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する。充電判定部は、第1電源電力検出器(75)が検出した第1電源の充電量、第2電源電力検出器(73)が検出した第2電源の充電量、及び、走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、第2電源から第1電源への充電実施を判定する。電力変換器操作部は、充電判定部の判定結果に従って電力変換器を操作する。 The power supply control device has a running state acquisition section (87), a charge determination section (83), and a power converter operation section (84). The running state acquisition unit acquires information related to the running state of the vehicle including vehicle stop or the set running state. The charge determination unit determines the charge amount of the first power supply detected by the first power supply power detector (75), the charge amount of the second power supply detected by the second power supply power detector (73), and the running state acquisition unit. Based on the acquired running state or running setting state of the vehicle, it is determined whether the second power source should charge the first power source. The power converter operation unit operates the power converter according to the determination result of the charging determination unit.

両の走行状態又は走行設定状態が、(1)車速が所定の判定車速以下の低車速時、又は、アクセルオフ時、(2)シフトレンジがPレンジの時、又は、Pレンジへの若しくはPレンジからのレンジ変更時、(3)パワースイッチオフ操作時、(4)レディオフから判定時間経過後、のうちいずれか一つ以上であるとき、充電判定部は、第1電源の充電量が充電量閾値未満の場合、電力変換器を作動させて第2電源から第1電源への充電を行い、第1電源の充電量が充電量閾値以上の場合、第2電源から第1電源への充電を停止するように判定する。「充電量」として、代表的にはSOCが用いられる。 When the driving state or driving setting state of the vehicle is (1) when the vehicle speed is low below a predetermined judgment vehicle speed, or when the accelerator is off, (2) when the shift range is in the P range, or when the shift range is shifted to the P range. When one or more of (3) the power switch is turned off, and (4) the determination time has elapsed since the ready-off state, the charge determination unit determines whether the charge amount of the first power supply has reached the P range. If the charge amount is less than the charge amount threshold, the power converter is operated to charge the first power supply from the second power supply. Determine to stop charging . SOC is typically used as the charge amount”.

本発明では、駐停車時等に、次回走行時に備えて、第1電源の充電量が充電量閾値に達するまで(例えば満充電になるまで)、第2電源から第1電源へ充電する。これにより、次回走行開始時に出力型電源を高SOC状態とし、出力型電源の出力可能電力が高い状態をなるべく長い時間維持する。したがって、ハイブリッド車両では、エンジンの早掛かりを防止し、燃費を向上させることができる。 In the present invention, when the vehicle is parked or stopped, the first power source is charged from the second power source until the charge amount of the first power source reaches the charge amount threshold value (for example, until the first power source is fully charged) in preparation for the next run. As a result, the output-type power source is placed in a high SOC state when the vehicle starts running next time, and the state in which the output-type power source is capable of outputting high power is maintained for as long as possible. Therefore, in the hybrid vehicle, it is possible to prevent the engine from starting early and improve the fuel efficiency.

第1~第5実施形態による電源制御装置が適用される電源システムの全体構成図。FIG. 1 is an overall configuration diagram of a power supply system to which power supply control devices according to first to fifth embodiments are applied; リチウムイオンキャパシタ及びEDLCの自己放電特性を比較する図。The figure which compares the self-discharge characteristic of a lithium ion capacitor and EDLC. 第1実施形態による出力型電源の充電制御を説明する図。4A and 4B are diagrams for explaining charge control of the output type power supply according to the first embodiment; FIG. 第1実施形態による充電制御のフローチャート。4 is a flowchart of charging control according to the first embodiment; 第1実施形態による充電制御のタイムチャート。4 is a time chart of charging control according to the first embodiment; 第2実施形態による充電制御のタイムチャート。6 is a time chart of charging control according to the second embodiment; 第3実施形態による充電制御のタイムチャート。Time chart of charging control according to the third embodiment. 第4実施形態による充電制御のタイムチャート。The time chart of charge control by 4th Embodiment. 第5実施形態による出力型電源及び補機電源の充電制御を説明する図。FIG. 11 is a diagram for explaining charging control of an output-type power source and an auxiliary power source according to a fifth embodiment; 第5実施形態による充電制御のフローチャート。FIG. 11 is a flow chart of charging control according to the fifth embodiment; FIG. 電源温度と電力との関係を示す特性図。FIG. 3 is a characteristic diagram showing the relationship between power supply temperature and power; 第6実施形態による電源制御装置が適用される電源システムの全体構成図。FIG. 11 is an overall configuration diagram of a power supply system to which a power supply control device according to a sixth embodiment is applied; 第6実施形態による充電制御のフローチャート。10 is a flow chart of charging control according to the sixth embodiment; 電源温度の予測を説明するタイムチャート。The time chart explaining prediction of power supply temperature. 低温判定値の設定を説明する図。FIG. 5 is a diagram for explaining setting of a low temperature judgment value; 第6実施形態による充電制御のタイムチャート。FIG. 11 is a time chart of charging control according to the sixth embodiment; FIG.

以下、電源制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成、又は、フローチャートの実質的に同一のステップには、同一の符号又は同一のステップ番号を付して説明を省略する。また、第1~第6実施形態を包括して「本実施形態」という。本実施形態の電源制御装置は、エンジン及びモータジェネレータ(以下「MG」)を動力源とするハイブリッド車両に搭載された電源システムに適用される。以下、本実施形態が適用される電源システムの包括符号を「10」とする。各実施形態で電源システムを区別する場合、電源システムの符号に、「10」に続く3桁目に実施形態の番号を付す。 A plurality of embodiments of the power control device will be described below with reference to the drawings. In a plurality of embodiments, substantially the same configurations or substantially the same steps in flowcharts are denoted by the same reference numerals or the same step numbers, and descriptions thereof are omitted. Also, the first to sixth embodiments will be collectively referred to as "the present embodiment". The power supply control device of the present embodiment is applied to a power supply system mounted on a hybrid vehicle using an engine and a motor generator (hereinafter referred to as "MG") as power sources. Hereinafter, the generic code of the power supply system to which this embodiment is applied is assumed to be "10". When distinguishing the power supply system in each embodiment, the number of the embodiment is attached to the third digit following "10" to the code of the power supply system.

[電源システムの構成]
最初に、第1~第5実施形態の電源制御装置に共通する全体構成について、図1を参照する。図1では、各実施形態が適用される電源システムの符号として包括符号「10」を用いる。電源システム10は、駆動システム600等を含む高電圧系統と、補機負荷15等を含む低電圧系統との間に設けられる。
[Configuration of power supply system]
First, FIG. 1 will be referred to for the overall configuration common to the power supply control devices of the first to fifth embodiments. In FIG. 1, the generic code "10" is used as the code of the power supply system to which each embodiment is applied. Power supply system 10 is provided between a high voltage system including drive system 600 and the like and a low voltage system including auxiliary load 15 and the like.

駆動システム600は、車両の動力源であるMG65をインバータ60が変換した電力により駆動するシステムである。MG65の力行動作時には、電源システム10から供給される直流電力がインバータ60で交流電力に変換されてMG65に供給される。また、MG65の回生動作時には、MG65で発生した交流電力がインバータ60で直流電力に変換されて電源システム10に回生される。システムによっては、インバータの入力側に昇圧コンバータが設けられてもよい。 Drive system 600 is a system that drives MG 65, which is the power source of the vehicle, with electric power converted by inverter 60. FIG. During the power running operation of MG 65 , DC power supplied from power supply system 10 is converted into AC power by inverter 60 and supplied to MG 65 . Further, during the regenerative operation of MG 65 , AC power generated by MG 65 is converted into DC power by inverter 60 and regenerated by power supply system 10 . Depending on the system, a boost converter may be provided on the input side of the inverter.

補機負荷15は、電動パワーステアリング装置、パワーウインドウ装置、ブロワ、ファン等、主機とは異なる各種機能を担う装置であり、補機電源20の低圧直流電力で駆動される。 The auxiliary load 15 is a device such as an electric power steering device, a power window device, a blower, a fan, etc., which performs various functions different from those of the main machine, and is driven by the low-voltage DC power of the auxiliary power supply 20 .

電源システム10は、基本要素として、第1電源50、第2電源30、双方向DCDCコンバータ(以下「双方向DDC」)、電源電力検出器75、73、及び電源制御装置80を含む。第1電源50は、高電圧系統の駆動システム600に接続され、駆動システム600との電力授受を行う。第2電源30は、第1電源50より電圧が低い。 The power supply system 10 includes a first power supply 50, a second power supply 30, a bidirectional DCDC converter (hereinafter "bidirectional DDC"), power supply power detectors 75 and 73, and a power supply control device 80 as basic elements. The first power supply 50 is connected to a drive system 600 of a high voltage system and exchanges power with the drive system 600 . The second power supply 30 has a lower voltage than the first power supply 50 .

「電力変換器」としての双方向DDC40は、駆動システム600及び第1電源50と第2電源30との間で双方向に電力授受を行う。第1電源電力検出器75及び第2電源電力検出器73は、それぞれ第1電源50及び第2電源30の電力を、例えば電流及び電圧の積により検出する。電源制御装置80は、双方向DDC40の作動を制御する。 The bi-directional DDC 40 as a “power converter” exchanges power bi-directionally between the drive system 600 and the first power supply 50 and the second power supply 30 . A first power supply power detector 75 and a second power supply power detector 73 detect the power of the first power supply 50 and the second power supply 30, respectively, by, for example, the product of current and voltage. Power control device 80 controls the operation of bidirectional DDC 40 .

本実施形態では、第1電源50としてリチウムイオンキャパシタ(以下「LiC」)等の出力型電源が用いられ、第2電源30としてリチウムイオン電池(以下「LiB」)等の容量型電源が用いられる。出力型電源は容量型電源に比べて出力が大きく、容量型電源は出力型電源に比べて蓄積可能な電力量が大きい。出力型電源である第1電源50の電圧は例えば200Vであり、容量型電源である第2電源30の電圧は例えば48Vである。図中、及び明細書中の一部の箇所では、「出力型第1電源50」、「容量型第2電源30」というように記載する。 In the present embodiment, an output type power supply such as a lithium ion capacitor (hereinafter "LiC") is used as the first power supply 50, and a capacitive power supply such as a lithium ion battery (hereinafter "LiB") is used as the second power supply 30. . An output type power supply has a larger output than a capacitive type power supply, and a capacitive type power supply has a large amount of electric power that can be stored compared to an output type power supply. The voltage of the first power supply 50, which is an output power supply, is 200V, for example, and the voltage of the second power supply 30, which is a capacitive power supply, is 48V, for example. In the drawings and some parts of the specification, they are described as "output type first power supply 50" and "capacitance type second power supply 30".

このように電源システム10は、出力型電源である第1電源50に、蓄電性能が優れたLiC等のキャパシタを用いる構成を前提とする。図2に、LiCとEDLC(すなわち電気二重層キャパシタ)との自己放電特性の比較を示す。EDLCは、早期に電荷が放電し、500Hr程度でSOCが約半分にまで低下するという問題があるため、放置前にEDLCのエネルギーを移送させたりして用いられる。 As described above, the power supply system 10 is premised on a configuration in which a capacitor such as LiC having excellent power storage performance is used for the first power supply 50, which is an output type power supply. FIG. 2 shows a comparison of self-discharge characteristics between LiC and EDLC (that is, electric double layer capacitor). EDLC has a problem that the electric charge is discharged early and the SOC is reduced to about half after about 500 hours.

一方、LiCの自己放電特性は、約3か月でのSOC低下が5%程度と少ない。このようにLiCは蓄電性能が優れ、放置中も蓄電量を維持でき、LiBよりも蓄電性能が優れる。また、LiCは化学反応なく放電できるため、低温時の出力性能も優れる。LiCの優れた出力、蓄電性能に注目すれば、放置前にLiCに蓄電させることで次回走行の性能を向上させることができる。 On the other hand, the self-discharge characteristic of LiC is as small as about 5% decrease in SOC after about 3 months. As described above, LiC has excellent power storage performance, can maintain the amount of stored power even when left standing, and is superior to LiB in power storage performance. In addition, since LiC can be discharged without chemical reaction, output performance at low temperature is also excellent. Focusing on the excellent output and power storage performance of LiC, it is possible to improve the performance of the next run by storing power in LiC before the vehicle is left unattended.

さらに電源システム10は、補機負荷15に接続される補機電源20、第2電源30の電圧を降圧して補機電源20に供給する補機用降圧DDC25、及び、補機電源20の電力を検出する補機電源電力検出器72を含む。補機電源20は、例えば電圧14V程度の鉛電池(PbB)やリチウム電池(LiB)等が用いられる。 Further, the power supply system 10 includes an auxiliary power supply 20 connected to the auxiliary load 15, an auxiliary step-down DDC 25 for stepping down the voltage of the second power supply 30 and supplying the voltage to the auxiliary power supply 20, and the electric power of the auxiliary power supply 20. includes an accessory power supply power detector 72 that detects the A lead battery (PbB) or a lithium battery (LiB) with a voltage of about 14 V, for example, is used as the auxiliary power supply 20 .

本明細書では、便宜上、第1電源50の200V級の電圧を「高電圧」、第2電源30の48V級の電圧を「中電圧」、補機電源20の14V級の電圧を「低電圧」という。双方向DDC40は、高電圧系統に接続された第1電源50側と、中低電圧系統に接続された第2電源30及び補機電源20側との間で電力授受を行う。 In this specification, for convenience, the 200V class voltage of the first power supply 50 is referred to as "high voltage", the 48V class voltage of the second power supply 30 is referred to as "medium voltage", and the 14V class voltage of the auxiliary power supply 20 is referred to as "low voltage". ”. The bi-directional DDC 40 exchanges power between the first power supply 50 connected to the high voltage system and the second power supply 30 and auxiliary power supply 20 connected to the medium and low voltage system.

電源制御装置80は、走行状態取得部87、充電判定部83、及び、「電力変換器操作部」としてのDDC操作部84を有する。走行状態取得部87は、車両停止を含む車両の走行状態又は走行設定状態に関する情報として、車速情報、シフトレンジ情報、パワースイッチ情報等を取得する。 The power supply control device 80 has a running state acquisition unit 87, a charging determination unit 83, and a DDC operation unit 84 as a "power converter operation unit". The running state acquisition unit 87 acquires vehicle speed information, shift range information, power switch information, etc. as information relating to the running state of the vehicle including the vehicle stop or the running setting state.

充電判定部83は、電源電力検出部75、73から取得した第1電源50及び第2電源30の充電量、及び、走行状態取得部87から取得した車両の走行状態又は走行設定状態に基づき、第2電源30から第1電源50への充電実施を判定する。DDC操作部84は、充電判定部83の判定結果に従って双方向DDC40を操作する。第5実施形態では、充電判定部83は、さらに補機電源電力検出部72から補機電源20の充電量を取得し、DDC操作部44は、さらに補機用降圧DDC25を操作する。 Based on the charge amount of the first power source 50 and the second power source 30 acquired from the power source power detection units 75 and 73 and the running state or running setting state of the vehicle acquired from the running state acquisition unit 87, the charge determination unit 83 It is determined whether or not the second power supply 30 is to charge the first power supply 50 . DDC operation unit 84 operates bidirectional DDC 40 according to the determination result of charging determination unit 83 . In the fifth embodiment, the charge determination unit 83 further acquires the charge amount of the auxiliary power supply 20 from the auxiliary power supply power detection unit 72, and the DDC operation unit 44 further operates the step-down DDC 25 for auxiliary equipment.

また、電源システム10は、電源制御装置80を自動で起動及び停止させる自動起動装置90をさらに備える。例えば自動起動装置90は、車両の駐車中に電源制御装置80を起動及び停止させる。 The power supply system 10 further includes an automatic activation device 90 that automatically activates and deactivates the power control device 80 . For example, the automatic activation device 90 activates and deactivates the power control device 80 while the vehicle is parked.

ところで、駐停車中の車両が次回走行開始するとき、第1電源50のSOCが低いと、早い段階で出力可能電力が制限されてしまい、エンジンの早掛かりが発生するなど、燃費悪化に繋がる問題がある。そこで本実施形態の電源システム10は、次回走行開始時に出力型第1電源50(すなわちキャパシタ)の出力性能を損なわないように、電源間の電力供給を制御することを目的とする。 By the way, when the parked vehicle starts running next time, if the SOC of the first power supply 50 is low, the power that can be output is limited at an early stage. There is Therefore, the power supply system 10 of the present embodiment aims to control the power supply between the power supplies so as not to impair the output performance of the output type first power supply 50 (that is, the capacitor) when the vehicle starts running next time.

そのために電源制御装置80は、次回走行開始までの期間において、出力型第1電源50(すなわちキャパシタ)が満充電状態でなければ、双方向DDC40を作動させ、容量型第2電源30(すなわち電池)から出力型第1電源50へ電力供給して第1電源50を充電する。したがって、第1電源50は、駐停車中(すなわち電源の放置中)にも蓄電される。以下、第2電源30から第1電源50への充電(或いは補充電)を行う制御を「充電制御」という。続いて、各実施形態の「充電制御」の構成及び作用効果について順に説明する。 For this reason, the power supply control device 80 operates the bidirectional DDC 40 to operate the second capacitive power supply 30 (i.e., battery ) to the output-type first power source 50 to charge the first power source 50 . Therefore, the first power supply 50 is charged even while the vehicle is parked (that is, while the power supply is left unused). Hereinafter, control for charging (or supplementary charging) from the second power supply 30 to the first power supply 50 is referred to as "charging control". Next, the configuration and effects of the "charging control" of each embodiment will be described in order.

(第1実施形態)
第1実施形態の電源システムについて、図3~図5を参照して説明する。まず、電源システム101で実施される第1実施形態の充電制御について、図3を参照する。図3において、実線の矢印は、積極的に実施される電力供給を示す。前回走行終了時から駐停車中の期間、第1電源50が満充電状態でなければ、第2電源30から第1電源50に充電するように制御される。
(First embodiment)
A power supply system according to the first embodiment will be described with reference to FIGS. 3 to 5. FIG. First, FIG. 3 will be referred to regarding the charging control of the first embodiment performed by the power supply system 101 . In FIG. 3, solid arrows indicate power supplies that are actively implemented. If the first power source 50 is not fully charged during the period from the end of the previous run to the parking stop, the second power source 30 is controlled to charge the first power source 50 .

次に、第1実施形態による充電制御について、図4のフローチャートを参照して説明する。以下のフローチャートの説明で、記号Sは「ステップ」を表す。S71で充電判定部83は、走行状態取得部87から取得した「走行状態又は走行設定状態に関する情報」に基づき、充電制御を開始するか否か判定する。例えば充電判定部83は、パワースイッチのオフ操作を充電制御開始トリガーとして、S71でYESと判定する。一方、パワースイッチのオフ操作がされない場合、充電判定部83はS71でNOと判定し、待機する。 Next, charging control according to the first embodiment will be described with reference to the flowchart of FIG. In the description of the flow charts below, the symbol S stands for "step". In S<b>71 , the charge determination unit 83 determines whether or not to start charging control based on the “information regarding the running state or the set running state” acquired from the running state acquisition unit 87 . For example, the charge determination unit 83 determines YES in S71 by using the power switch OFF operation as a charge control start trigger. On the other hand, if the power switch is not turned off, the charge determination unit 83 determines NO in S71 and waits.

S72Aで充電判定部83は、第1電源50のSOCが満充電閾値未満であるか否かにより、充電要求があるか否か判定する。第1電源50が満充電状態でなければ、電源システム10の停止前に充電しておいた方が良いため、S72AでYESと判定し、S73に移行する。一方、第1電源50が満充電である場合、充電要求が発生しないため、S72AでNOと判定し、処理を終了する。 In S72A, the charge determination unit 83 determines whether or not there is a charge request based on whether or not the SOC of the first power supply 50 is less than the full charge threshold. If the first power source 50 is not in a fully charged state, it is better to charge the power source system 10 before it is stopped. On the other hand, if the first power supply 50 is fully charged, no charging request is generated, so the determination in S72A is NO, and the process ends.

S73では、充電が実施可能であるか否か判断される。充電が実施可能である場合、S73でYESと判定され、S74に移行する。典型的には第2電源30のSOCが下限値を超えており、余剰SOCがある場合に充電実施可能と判断される。一方、第2電源30のSOCが下限値以下である場合、第2電源30に十分なエネルギーが無く充電実施が不可であるため、S73でNOと判定され、処理を終了する。S75でのNO判定からS73へのループが繰り返される場合、第2電源30のSOCが下限値まで低下した時点で、充電判定部83は充電を終了する。 In S73, it is determined whether or not charging can be performed. If charging is possible, YES is determined in S73, and the process proceeds to S74. Typically, the SOC of the second power supply 30 exceeds the lower limit value, and it is determined that charging can be performed when there is a surplus SOC. On the other hand, if the SOC of the second power source 30 is equal to or lower than the lower limit value, the second power source 30 does not have sufficient energy and charging cannot be performed. If the loop from the NO determination in S75 to S73 is repeated, the charging determination unit 83 ends charging when the SOC of the second power supply 30 drops to the lower limit.

また、第2電源30から第1電源50への充電が実施不可と判断されるその他の場合として、過度の電力制限がなされる場合がある。例えば加減速走行後には電池劣化の抑制のため電力が制限される。或いは、第2電源30や双方向DDC40が所定範囲より低温又は高温の場合にも電力が制限される。なお、第2電源30や双方向DDC40が高温の場合、冷えるのを待ってから充電が実施されてもよい。また、システム異常発生時にも充電が実施不可と判断される。 As another case where it is determined that charging from the second power source 30 to the first power source 50 is not possible, excessive power restriction may be applied. For example, after accelerating or decelerating, electric power is limited in order to suppress deterioration of the battery. Alternatively, power is also limited when the temperature of the second power supply 30 or the bidirectional DDC 40 is lower or higher than a predetermined range. If the second power supply 30 or the bi-directional DDC 40 has a high temperature, the charging may be performed after waiting for cooling. In addition, it is determined that charging cannot be performed even when a system abnormality occurs.

S73で充電実施可能と判定された場合、S74でDDC操作部84は、双方向DDC40を作動させ、第2電源30から第1電源50に電力供給して充電する。S75では、充電により第1電源50が満充電に達したか否か判断される。第1電源50が満充電になれば、DDC操作部84は双方向DDC40の作動を停止して充電を終了し、通常のシステム停止シーケンスに移行する。第1電源50が満充電に達していなければS73の前に戻り、充電を継続する。 If it is determined in S73 that charging can be performed, the DDC operation unit 84 operates the bidirectional DDC 40 in S74 to supply power from the second power supply 30 to the first power supply 50 for charging. In S75, it is determined whether or not the first power source 50 has reached full charge. When the first power supply 50 is fully charged, the DDC operation unit 84 stops the operation of the bi-directional DDC 40 to end charging, and shifts to a normal system shutdown sequence. If the first power supply 50 has not reached full charge, the process returns to before S73 to continue charging.

続いて、この充電制御を構成するパラメータの設定や制御方法について補足する。 Next, the setting of the parameters constituting this charging control and the control method will be supplemented.

[1]「上限SOC/下限SOC」及び「満充電閾値」
制御用SOCの範囲は、制御余裕度を考慮して、上限SOCから下限SOCまでの範囲とされることが多い。なお、SOCの数値は定義によって変わる。例えば上限SOCがSOC100%の値と定義される場合もある。したがって、定義が明確でない限り、SOCの数値のみでは電源の充電状態を適確に把握できない点に注意が必要である。満充電閾値は、上限SOCと同じ値に設定されてもよいし、上限SOCに所定の余裕分を加えた値に設定されてもよい。
[1] "Upper Limit SOC/Lower Limit SOC" and "Full Charge Threshold"
The range of the control SOC is often set to the range from the upper limit SOC to the lower limit SOC in consideration of the control margin. Note that the SOC value varies depending on the definition. For example, the upper limit SOC may be defined as the value of SOC 100%. Therefore, it should be noted that unless the definition is clear, the state of charge of the power supply cannot be accurately grasped only by the numerical value of the SOC. The full charge threshold may be set to the same value as the upper limit SOC, or may be set to a value obtained by adding a predetermined margin to the upper limit SOC.

[2]SOC推定
周知技術では一般に、電池の充電量として、電池の残容量[Ah]を電池の満充電容量[Ah]で除した値を百分率で表したSOCが用いられる。電池のSOCは、電池に充放電を行う前には、起電圧とSOCとの関係マップから求められる。しかし、電池の充放電を行うことにより一時的に化学反応量が低下するなどで見かけ上の内部抵抗変化が生じるため、様々なSOC推定方法が提案されている。例えば,電荷移動量を追跡する電流積算法、電池反応モデル、電池の適応フィルタモデル等が知られている。また、キャパシタのSOCは、電池のような化学反応による影響はほとんどないため,一般に電圧を用いて推定される。本実施形態では、周知技術のSOC推定方法が用いられればよい。
[2] SOC Estimation Generally, SOC, which is obtained by dividing the remaining capacity [Ah] of the battery by the fully charged capacity [Ah] of the battery and expressed as a percentage, is used as the charge amount of the battery. The SOC of a battery can be obtained from a relationship map between the electromotive voltage and the SOC before charging and discharging the battery. However, charging and discharging of the battery causes an apparent change in the internal resistance due to a temporary decrease in the amount of chemical reaction, and various SOC estimation methods have been proposed. For example, a current integration method for tracking the amount of charge transfer, a battery reaction model, a battery adaptive filter model, and the like are known. Also, the SOC of a capacitor is generally estimated using voltage because it is hardly affected by a chemical reaction as in a battery. In this embodiment, a well-known SOC estimation method may be used.

[3]満充電容量
SOC推定に用いられる電池の満充電容量は、出荷時には設計諸元値により把握されるが、電池劣化によって低下するため、都度、満充電容量を推定して更新する必要がある。満充電容量推定方法について、周知技術では、上下限電圧から広範囲で連続放電/充電等を行って満充電容量を計測する方法、電池反応モデルや適応フィルタモデルを用いて求める方法等が知られている。
[3] Full charge capacity The full charge capacity of the battery used for SOC estimation is grasped from the design specification values at the time of shipment, but it decreases due to battery deterioration, so it is necessary to estimate and update the full charge capacity each time. be. As for the method of estimating the full charge capacity, known techniques include a method of measuring the full charge capacity by continuously discharging/charging in a wide range from the upper and lower voltage limits, and a method of obtaining the full charge capacity using a battery reaction model or an adaptive filter model. there is

電池には、「劣化」以外に「充電深度」という考え方がある。例えば電池が冷えている場合、電池の内部抵抗の増加が顕著となり、所定時間で充電が進まない特性があるため、見かけ上で電池温度によって満充電容量が低下するものとして扱われる。この方法では、所定条件の充放電試験が実施され、電池温度に応じた満充電容量マップが作成される。本実施形態では、周知技術の満充電容量推定方法が用いられればよい。そして、電池劣化に応じて都度更新された満充電容量に基づいて電池のSOCが推定されればよい。 In addition to "degradation", there is a concept of "charge depth" for batteries. For example, when the battery is cold, the internal resistance of the battery increases significantly, and charging does not proceed within a predetermined time. In this method, a charge/discharge test is performed under predetermined conditions, and a full charge capacity map corresponding to battery temperature is created. In this embodiment, a well-known full charge capacity estimation method may be used. Then, the SOC of the battery may be estimated based on the full charge capacity updated each time the battery deteriorates.

[4]充電方法
電源制御装置80は、次の順序で第1電源50の充電を行うことができる。
[4] Charging Method The power supply control device 80 can charge the first power supply 50 in the following order.

<1>例えば駐車中にパワースイッチオフ操作がなされたことをトリガーとして、第1電源50のSOCが満充電閾値より低い場合、充電判定部83は、第2電源30の余剰分のSOCを利用して、第2電源30から第1電源50への充電を開始する。この充電は、前の走行で第2電源30及び第1電源50が暖機された後に実施されるため、ジュール損失が少なくなり、充電効率を維持できる利点がある。 <1> For example, if the SOC of the first power supply 50 is lower than the full-charge threshold value triggered by turning off the power switch while parking, the charging determination unit 83 uses the surplus SOC of the second power supply 30. Then, charging from the second power supply 30 to the first power supply 50 is started. Since this charging is performed after the second power supply 30 and the first power supply 50 have been warmed up in the previous run, there is an advantage that Joule loss is reduced and charging efficiency can be maintained.

<2>双方向DDC40によって第2電源30から第1電源50へ電力が供給される。供給電力は、第2電源30(すなわち電池)や双方向DDC40等の機器の状態に応じて可変とする。ただし、所定の供給電力となるように指令していても第1電源50が満充電閾値に近づけば、過充電防止の電力制限によって供給電力が制限される。したがって、満充電閾値に達した時点での供給電力は略0kWとなる。 <2> Power is supplied from the second power supply 30 to the first power supply 50 by the bidirectional DDC 40 . The power to be supplied is variable according to the state of devices such as the second power source 30 (that is, battery) and the two-way DDC 40 . However, if the first power supply 50 approaches the full-charge threshold even if a command to supply a predetermined power is issued, the power to be supplied is limited by the power limit for overcharge prevention. Therefore, the power supplied at the time when the full charge threshold is reached is approximately 0 kW.

<3>第2電源30のSOCが下限SOCより低い場合、充電判定部83は、第2電源30から第1電源50への充電を中断する。 <3> When the SOC of the second power supply 30 is lower than the lower limit SOC, the charging determination unit 83 suspends charging from the second power supply 30 to the first power supply 50 .

<4>第1電源50のSOCが満充電閾値に到達したとき、充電判定部83は充電完了と判定し、レディオフする。ただし、充電期間内に異常が生じた場合、充電判定部83は充電を中断してレディオフする。 <4> When the SOC of the first power supply 50 reaches the full-charge threshold, the charging determination unit 83 determines that charging is complete, and turns off the ready. However, if an abnormality occurs during the charging period, the charging determination unit 83 suspends charging and turns off the ready.

次に、図5のタイムチャートを参照する。図5には、レディ(図中「READY」)状態、充電制御開始要求、双方向DDC出力電力、第1電源50及び第2電源30のSOCの経時変化を示す。双方向DDC出力電力の「+」は、容量型第2電源30から出力型第1電源50への電力供給(すなわち第1電源50の充電)を意味し、「-」は、出力型第1電源50から容量型第2電源30への電力供給(すなわち第1電源50の放電)を意味する。充電制御開始時における第1電源SOCの現在値と満充電閾値との差は、充電要求量を示す。また、充電制御開始時における第2電源SOCの現在値と下限値との差は、充電可能量(すなわち余剰SOC分)を示す。 Next, refer to the time chart in FIG. FIG. 5 shows changes over time in the ready (“READY” in the figure) state, charge control start request, bidirectional DDC output power, and SOC of the first power supply 50 and the second power supply 30 . The "+" of the bidirectional DDC output power means power supply from the capacitive second power supply 30 to the output type first power supply 50 (that is, charging the first power supply 50), and the "-" means the output type first power supply. Power supply from the power supply 50 to the capacitive second power supply 30 (that is, discharge of the first power supply 50). The difference between the current value of the first power supply SOC at the start of charging control and the full charge threshold indicates the required charging amount. Further, the difference between the current value of the second power supply SOC and the lower limit value at the start of charging control indicates the chargeable amount (that is, the amount of surplus SOC).

時刻ts1以前の初期には、レディ状態はオン、充電制御開始要求はオフであり、双方向DDC出力電力は、0よりも少し「+」側の値である。また、第1電源SOCは下限値より少し高い程度の値であり、第2電源SOCは下限値より十分高い値である。第1実施形態では、走行状態取得部87にてパワースイッチ情報が取得される。そして、パワースイッチがオフされた時刻ts1に充電開始制御要求がオンし、双方向DDC40の作動が開始され、第2電源30から第1電源50への充電が開始される。 In the initial period before time ts1, the ready state is on, the charge control start request is off, and the bidirectional DDC output power is slightly on the "+" side of zero. Also, the first power supply SOC is a value slightly higher than the lower limit, and the second power supply SOC is a value sufficiently higher than the lower limit. In the first embodiment, power switch information is acquired by the running state acquisition unit 87 . At time ts1 when the power switch is turned off, the charge start control request is turned on, the bidirectional DDC 40 starts operating, and charging from the second power supply 30 to the first power supply 50 starts.

これにより、制御開始時刻ts1から第1電源SOCは上昇し、第2電源SOCは低下する。その後、第1電源SOCが満充電閾値に到達する時刻te2に充電制御開始要求がオフし、充電が終了する。ここで、破線で示す比較例では、パワースイッチオフ操作と同時にレディオフするのに対し、第1実施形態では、パワースイッチオフ操作後、充電完了時刻te1までレディオン状態が継続され、充電制御が実行される。なお、双方向DDC出力電力は、充電完了時刻te1の少し前から徐々に低下する。 As a result, the first power supply SOC increases and the second power supply SOC decreases from the control start time ts1. Thereafter, at time te2 when the first power supply SOC reaches the full charge threshold, the charge control start request is turned off, and charging ends. Here, in the comparative example indicated by the dashed line, the ready-off state is performed simultaneously with the power switch-off operation, whereas in the first embodiment, after the power switch-off operation, the ready-on state continues until the charging completion time te1, and charging control is executed. be. Note that the bidirectional DDC output power gradually decreases slightly before the charging completion time te1.

このように第1実施形態では、駐車開始時のパワースイッチオフ操作を制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。充電時期は駐車開始直後となり、効果として、回生取りこぼしの頻度が低い。また、充電時間を確保でき、駐車中に第1電源50を満充電にすることができる。 As described above, in the first embodiment, power is supplied from the second power supply 30 to the first power supply 50 by using the power switch OFF operation at the start of parking as a control start trigger. The charging time is immediately after parking starts, and as an effect, the frequency of missing regeneration is low. Also, the charging time can be secured, and the first power source 50 can be fully charged while the vehicle is parked.

以上のように第1実施形態では、電源制御装置80は、パワースイッチオフ操作を制御開始トリガーとして、前回走行終了時から駐停車中の期間、第1電源50が満充電状態でなければ、第2電源30から第1電源50に充電するように制御する。これにより、電源制御装置80は、次回走行開始時に出力型第1電源50を高SOC状態にし、第1電源50の出力可能電力が高い状態をなるべく長い時間維持することで、エンジンの早掛かりを遅らせることができる。その結果、車両の燃費が改善される。 As described above, in the first embodiment, the power supply control device 80 uses the power switch OFF operation as a control start trigger, and if the first power supply 50 is not in a fully charged state during the period from the end of the previous run to the parking stop, the The second power source 30 is controlled to charge the first power source 50 . As a result, the power supply control device 80 puts the output-type first power supply 50 into the high SOC state when the next running is started, and maintains the state in which the output power of the first power supply 50 is high as long as possible, so that the engine starts early. can be delayed. As a result, fuel efficiency of the vehicle is improved.

(第2、3、4実施形態)
S72の充電開始判定において、第1実施形態でのパワースイッチオフ操作以外の情報を充電制御開始トリガーとして用いる第2、3、4実施形態について、それぞれ、図6、図7、図8のタイムチャートを参照して説明する。
(Second, third and fourth embodiments)
In the charging start determination of S72, the time charts of FIGS. 6, 7, and 8 are used for the second, third, and fourth embodiments, in which information other than the power switch OFF operation in the first embodiment is used as the charging control start trigger, respectively. will be described with reference to

図6に示す第2実施形態では、走行状態取得部87にてシフト位置情報が取得される。例えばシフトレンジがPレンジからDレンジに変更された時刻ts2に、第2電源30から第1電源50への充電が開始される。その後、第1電源SOCが満充電閾値に到達する時刻te2に充電が終了する。 In the second embodiment shown in FIG. 6, the shift position information is acquired by the running state acquiring section 87 . For example, charging from the second power supply 30 to the first power supply 50 is started at time ts2 when the shift range is changed from the P range to the D range. After that, charging ends at time te2 when the first power supply SOC reaches the full charge threshold.

このように第2実施形態では、シフトレンジがPレンジであること、又は、Pレンジへ若しくはPレンジからシフトレンジが変更されたことを制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。充電時期は、駐車前のDレンジからPレンジへの操作時からレディオフまでの期間、又は、起動後のPレンジからDレンジへの操作時である。効果としては、回生取りこぼしの頻度が低い。 As described above, in the second embodiment, the shift range from the second power supply 30 to the first power supply 50 is switched from the second power supply 30 to the first power supply 50 using the fact that the shift range is the P range or the fact that the shift range is changed to or from the P range as a control start trigger. Powered. The charging timing is the period from when the vehicle is operated from the D range to the P range before parking until the time the vehicle is ready-off, or when the vehicle is operated from the P range to the D range after startup. As an effect, the frequency of regeneration failure is low.

図7に示す第3実施形態では、走行状態取得部87にて車速情報が取得され、判定車速と比較される。図7の初期には車速が比較的大きい中高速状態である。双方向DDC出力電力は「-」であり、電力は第1電源50から第2電源30へ回生される。減速中には、さらに回生電力が大きくなり、第1電源SOC及び第2電源SOCはいずれも上昇する。時刻tj3に車速が判定車速を下回り、その後、判定期間Tjの間、車速が判定車速未満の状態が継続すると、時刻ts3に、第2電源30から第1電源50への充電が開始される。その後、第1電源SOCが満充電閾値に到達する時刻te3に充電が終了する。 In the third embodiment shown in FIG. 7, the vehicle speed information is acquired by the running state acquisition unit 87 and compared with the determined vehicle speed. In the early stage of FIG. 7, the vehicle speed is relatively high, i.e., the medium-high speed state. The bi-directional DDC output power is “−” and power is regenerated from the first power supply 50 to the second power supply 30 . During deceleration, the regenerated electric power further increases, and both the first power supply SOC and the second power supply SOC increase. At time tj3, the vehicle speed falls below the determination vehicle speed, and thereafter, when the vehicle speed continues below the determination vehicle speed for the determination period Tj, charging from the second power supply 30 to the first power supply 50 is started at time ts3. After that, charging ends at time te3 when the first power supply SOC reaches the full charge threshold.

このように第3実施形態では、判定車速以下の低車速時であること、又は、アクセルオフ時であることを制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。なお、判定期間Tjに車速変化や出力変化が大きい場合、充電判定部83は充電を待機してもよい。充電時期は、減速回生時から駐停車前の期間、又は、起動後の発進時までの期間である。効果として、走行中に充電可能であり、減速回生後に残量を補充電できる。また、充電時間を長く確保することができる。 As described above, in the third embodiment, power is supplied from the second power supply 30 to the first power supply 50 when the vehicle speed is lower than the determination vehicle speed or when the accelerator is off as a control start trigger. Note that if the vehicle speed change or the output change is large during the determination period Tj, the charging determination unit 83 may wait for charging. The charging period is the period from the time of deceleration regeneration to the period before parking or stopping, or the period from the time of starting after activation. As an effect, the battery can be charged while driving, and the remaining amount can be supplemented after deceleration regeneration. Also, a long charging time can be ensured.

図8に示す第4実施形態では、走行状態取得部87にて、レディオフによる駐車開始時刻tp4から起算した駐車時間が取得され、判定時間と比較される。図8の初期にはレディオン状態で、第1電源SOC及び第2電源SOCは、ほぼ満充電状態である。駐車開始時刻tp4後の駐車中、第1電源SOC及び第2電源SOCは、自己放電により徐々に低下する。駐車時間が判定時間に達した時刻ts4に、自動起動装置90が電源システム10の電源制御装置80を自動で起動し、第2電源30から第1電源50への充電が開始される。 In the fourth embodiment shown in FIG. 8, the driving state acquisition unit 87 acquires the parking time calculated from the parking start time tp4 due to the ready-off, and compares it with the judgment time. At the beginning of FIG. 8, the battery is ready-on, and the first power supply SOC and the second power supply SOC are almost fully charged. During parking after the parking start time tp4, the first power supply SOC and the second power supply SOC gradually decrease due to self-discharge. At time ts4 when the parking time reaches the judgment time, the automatic activation device 90 automatically activates the power supply control device 80 of the power supply system 10, and charging from the second power supply 30 to the first power supply 50 is started.

その後、第1電源SOCが満充電閾値に到達する時刻te4に双方向DDC40の出力電力がオフされ、充電が終了すると共に駐車時間がリセットされる。時刻te4から再び判定時間が経過したとき、再び充電が開始される。このように第4実施形態では、レディオフから所定の判定時間が経過したことを制御開始トリガーとして、第2電源30から第1電源50へ電力供給される。充電時期は駐車中である。効果として、第1実施形態と同様の効果の他、長期間の駐車中の自己放電に対しても補充電ができる。また、自動起動装置90を備えることで、駐車中に自動で第1電源50を充電することができる。 After that, at time te4 when the first power supply SOC reaches the full charge threshold, the output power of the bidirectional DDC 40 is turned off, charging is completed, and the parking time is reset. When the determination time elapses again from time te4, charging is started again. As described above, in the fourth embodiment, power is supplied from the second power supply 30 to the first power supply 50 using the fact that the predetermined determination time has elapsed since the ready-off as the control start trigger. The charging time is during parking. As an effect, in addition to the same effect as the first embodiment, supplementary charging can be performed even for self-discharge during long-term parking. Also, by providing the automatic activation device 90, the first power supply 50 can be automatically charged while the vehicle is parked.

第1~第4実施形態で充電制御開始トリガーとして用いられる「車両の走行状態又は走行設定状態」を、車両走行中の減速から駐車までの時間の流れに沿って並べると、以下のようになる。これらの充電タイミングを選択し組み合わせることで自由に制御を構成し、充電頻度を確保することができる。 The "vehicle driving state or driving setting state" used as a charging control start trigger in the first to fourth embodiments can be arranged along the time flow from deceleration to parking while the vehicle is running, as follows. . By selecting and combining these charging timings, it is possible to freely configure control and ensure charging frequency.

(1)車速が所定の判定車速以下の低車速時、又は、アクセルオフ時(第2実施形態)
(2)シフトレンジがPレンジの時、又は、Pレンジへの若しくはPレンジからのレンジ変更時(第3実施形態)
(3)パワースイッチオフ操作時(第1実施形態)
(4)レディオフから判定時間経過後(第4実施形態)
(1) When the vehicle speed is lower than or equal to a predetermined determination vehicle speed, or when the accelerator is off (second embodiment)
(2) When the shift range is the P range, or when the range is changed to or from the P range (third embodiment)
(3) When the power switch is turned off (first embodiment)
(4) After elapse of determination time from ready-off (fourth embodiment)

(第5実施形態)
次に第5実施形態について、図9、図10を参照して説明する。電源システム105で実施される第5実施形態の充電制御を図9に示す。電源制御装置80は、容量型第2電源30から第1電源50へ充電すると同時に、第2電源30から補機用降圧DDC25を経由して補機電源20へも充電を行う。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. 9 and 10. FIG. FIG. 9 shows the charging control of the fifth embodiment implemented by the power supply system 105. As shown in FIG. The power supply control device 80 charges the first power supply 50 from the capacitive second power supply 30 and also charges the auxiliary power supply 20 from the second power supply 30 via the auxiliary step-down DDC 25 .

車両の長期放置中に補機電池20のSOCが枯渇するおそれがある。この問題に対し、駐車中に自動起動装置90により電源システム10を起動させ、補機電池20を充電する制御技術がある。しかし、駐車中に、第4実施形態による第1電源50の充電制御と補機電源20の充電制御とが別々に作動すると、駐車中の起動時間が長くなるなど、効率面で望ましくないことになる。 There is a possibility that the SOC of auxiliary battery 20 may be depleted while the vehicle is left unused for a long period of time. To solve this problem, there is a control technology that activates the power supply system 10 by the automatic activation device 90 and charges the auxiliary battery 20 while the vehicle is parked. However, if the charging control of the first power supply 50 and the charging control of the auxiliary power supply 20 according to the fourth embodiment are operated separately during parking, it is not desirable in terms of efficiency, for example, the startup time during parking becomes long. Become.

そこで第5実施形態では、上記問題に関し、第1電源50及び補機電源20の両方の充電を同時に行う。これにより、起動時間の短縮により損失が低減する。また、充電電力が増えることで第2電源30(すなわち電池)が暖機されるため、充電効率が有利となる。さらに、第2電源30(すなわち電池)のSOCを減らすことで保存劣化の抑制効果が得られる、などの利点が得られる。 Therefore, in the fifth embodiment, both the first power supply 50 and the auxiliary power supply 20 are charged at the same time with respect to the above problem. This reduces losses by shortening the start-up time. In addition, since the second power supply 30 (that is, the battery) is warmed up by increasing the charging power, the charging efficiency is advantageous. Furthermore, by reducing the SOC of the second power supply 30 (that is, the battery), there are advantages such as the effect of suppressing storage deterioration.

具体的に電源制御装置80は、第1電源50又は補機電源20の充電要求があるとき、双方向DDC40を作動させて第2電源30から第1電源50に電力供給して充電すると同時に、第2電源30から補機電源20に電力供給して充電を行う。特に駐停車時に充電を行う場合、自動起動装置90は、第1電源50又は補機電源20の少なくとも一方の充電要求があるとき電源制御装置80を起動させる。そして、自動起動装置90は、両方の電源50、20の充電が終了したとき電源制御装置80を停止する。これにより、無駄な起動時間が長くなることの損失を低減することができる。 Specifically, when there is a request to charge the first power supply 50 or the auxiliary power supply 20, the power supply control device 80 operates the bidirectional DDC 40 to supply power from the second power supply 30 to the first power supply 50 for charging. Electric power is supplied from the second power supply 30 to the auxiliary power supply 20 for charging. Especially when charging is performed while the vehicle is parked or stopped, the automatic activation device 90 activates the power supply control device 80 when there is a request to charge at least one of the first power supply 50 and the auxiliary power supply 20 . Then, the automatic activation device 90 stops the power control device 80 when charging of both power sources 50 and 20 is completed. As a result, it is possible to reduce the loss caused by lengthening the useless start-up time.

図10のフローチャートに第5実施形態による充電制御を示す。S71の充電制御開始トリガーによる充電開始判定は、図4に示す第1実施形態と同様である。S72Bで充電判定部83は、第1電源50の充電要求、又は補機電源20の充電要求があるか否か判定する。S72BでYESの場合、充電判定部83は両方の電源50、20の充電制御を開始すると判定し、S73及びS76に移行する。第1電源50への充電に関するS73、S74、S75については、図4と同様であるため、省略する。 The flowchart of FIG. 10 shows charging control according to the fifth embodiment. The charge start determination by the charge control start trigger in S71 is the same as in the first embodiment shown in FIG. In S72B, the charging determination unit 83 determines whether or not there is a request to charge the first power supply 50 or a request to charge the auxiliary power supply 20. FIG. In the case of YES in S72B, the charging determination unit 83 determines to start charging control of both power sources 50 and 20, and proceeds to S73 and S76. S73, S74, and S75 regarding charging to the first power source 50 are the same as those in FIG. 4, and therefore are omitted.

補機電源20への充電に関し、S76では、S73と同様に、第2電源30の余剰SOCがあるか否か判定される。S76でYESと判定された場合、S77で、第2電源30から補機電源20への充電が実施される。一方、S76でNOと判定された場合、充電が禁止され、S79へ移行する。 Regarding charging of the auxiliary power supply 20, in S76, it is determined whether or not there is an excess SOC of the second power supply 30, as in S73. If it is determined YES in S76, charging from the second power supply 30 to the auxiliary power supply 20 is carried out in S77. On the other hand, if the determination in S76 is NO, charging is prohibited, and the process proceeds to S79.

S78では、補機電源20のSOCが満充電閾値に達したか否か判定される。NOの場合、S76の前に戻って充電を継続し、YESの場合、補機電源20の充電を完了する。S79では、第1電源50及び補機電源20の両方の充電が完了したか判定される。NOの場合、待機し、YESの場合、電源システム105の停止が許可される。 In S78, it is determined whether or not the SOC of auxiliary power supply 20 has reached the full charge threshold. In the case of NO, the process returns to S76 to continue charging, and in the case of YES, the charging of the auxiliary power supply 20 is completed. In S79, it is determined whether charging of both the first power supply 50 and the auxiliary power supply 20 has been completed. If NO, wait; if YES, shutdown of power system 105 is allowed.

(第6実施形態)
次に第6実施形態について、図11~図16を参照して説明する。上記実施形態による充電制御を実施するにあたり、車両が放置されて電源が冷えた状態では、容量型第2電源30から出力型第1電源50に電力を供給し第1電源50を充電しようとしても、電力制限が作動し、充電時間が極端に長くなるという問題がある。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. 11 to 16. FIG. In carrying out the charging control according to the above embodiment, when the vehicle is left and the power source is cold, even if power is supplied from the capacitive second power source 30 to the output type first power source 50 to charge the first power source 50, , there is a problem that the power limit is activated and the charging time becomes extremely long.

図11に示すように、キャパシタは、原理的にはセル内部での物質移動がないので低温時の電力特性は比較的良好である。一方、電池については、種類によって、低温時の電力特性が大幅に低下するものがある。そのため、電力不足により、両電源間での、すなわち電池からキャパシタへの充電ができなくなる問題が生じる。例えば暖機移行前の温度領域でも、両電源間の充電に使用する容量型電源の電力が確保できなくなる。つまり、容量型電源が低温になった後の状態で容量型電源から出力型電源に充電しようとすると、充電を行うことができず、燃費悪化につながる。 As shown in FIG. 11, in principle, the capacitor has relatively good power characteristics at low temperatures because there is no mass transfer inside the cell. On the other hand, with regard to batteries, depending on the type, the power characteristics at low temperatures may be significantly reduced. As a result, there arises a problem that due to power shortage, it becomes impossible to charge the capacitor between the two power sources, that is, from the battery. For example, even in the temperature range before transition to warm-up, the power of the capacitive power supply used for charging between the two power supplies cannot be secured. That is, if an attempt is made to charge the output power source from the capacitive power source after the capacitive power source has cooled down, charging cannot be performed, leading to deterioration in fuel efficiency.

そこで第6実施形態では、車両放置中に容量型第2電源30が冷える前に、次回の走行に備えて第2電源30から第1電源50へ充電する。図12に示すように、第6実施形態の電源制御装置806は、図1の電源制御装置80に対し、電源温度推定部88をさらに備える。電源温度推定部88は、駐車開始時情報、走行履歴、ナビゲーション情報、気象情報のうち一つ以上の情報を用い、次回走行開始時における第2電源30の予測温度である予測電源温度を推定する。ここで、駐車開始時情報は、駐車開始時の電源温度及び駐車開始時刻を含む。走行履歴は、次回の走行開始時刻の推定に用いられる。ナビゲーション情報は、車両の駐車位置を示す。気象情報は、駐車位置での時間帯毎の予想気温を含む。 Therefore, in the sixth embodiment, the first power source 50 is charged from the second power source 30 in preparation for the next run before the capacitive second power source 30 cools while the vehicle is left unattended. As shown in FIG. 12, a power supply control device 806 of the sixth embodiment further includes a power supply temperature estimator 88 in addition to the power supply control device 80 of FIG. The power supply temperature estimating unit 88 uses one or more of the parking start time information, driving history, navigation information, and weather information to estimate the predicted power supply temperature, which is the predicted temperature of the second power supply 30 at the next start of driving. . Here, the parking start information includes the power supply temperature and the parking start time at the start of parking. The travel history is used to estimate the next travel start time. The navigation information indicates the parking position of the vehicle. The weather information includes the expected temperature for each time zone at the parking position.

以下、第6実施形態の「電源温度」は、原則として容量型第2電源30の温度、すなわち「電池温度」を意味する。なお、第1電源50及び第2電源30の温度環境は同等であると考えられるため、「電源温度」を両電源50、30の共通温度と解釈してもよい。 Hereinafter, the "power supply temperature" in the sixth embodiment basically means the temperature of the capacitive second power supply 30, that is, the "battery temperature". Since the temperature environments of the first power supply 50 and the second power supply 30 are considered to be the same, the "power supply temperature" may be interpreted as the common temperature of both the power supplies 50 and 30 .

第6実施形態では、第2電源30が前回の走行で暖機されて出力可能電力が高い状態を見計らって利用するために、次回走行開始時の電源温度を推定する。そして、次回走行開始時に第2電源30が低温状態になると予測される場合、電源が冷える前の所定期間内に第1電源50が満充電状態でなければ、双方向DDC40を作動させて第2電源30から第1電源50へ電力供給し、第1電源50を充電しておく。 In the sixth embodiment, the temperature of the power supply at the start of the next run is estimated in order to use the second power supply 30 warmed up in the previous run and to utilize the state in which the outputtable power is high. Then, when it is predicted that the second power source 30 will be in a low temperature state at the start of the next running, if the first power source 50 is not in a fully charged state within a predetermined period before the power source cools down, the bidirectional DDC 40 is operated to operate the second power source. Power is supplied from the power source 30 to the first power source 50 to charge the first power source 50 .

次回走行開始時に電源が低温状態である場合、電源から電力を取り出せなくなるため、出力低下や燃費悪化等の性能低下が著しい。影響度を考慮すると、このことは着目すべき点である。考え方によっては、次回走行開始時に電源が低温状態であると予想された場合に限り、積極的に充電制御を行うようにしてもよい。 If the power supply is in a low temperature state when the vehicle starts running next time, it will not be possible to take out power from the power supply, resulting in significant performance degradation such as a decrease in output and deterioration in fuel efficiency. Considering the degree of impact, this is a point worth noting. Depending on the way of thinking, the charging control may be positively performed only when the power supply is expected to be in a low temperature state when the next running is started.

第6実施形態による充電制御を図13に示す。電源温度推定部88はS61で、次回起動時、つまり、次回走行開始時の予測電源温度を推定する。続いて電源温度推定部88は、S62で、予測電源温度に基づき、次回走行開始時に第2電源30が低温状態であるか否か判定する。S61での予測電源温度の推定方法、及び、S62での次回起動時の低温判定方法の詳細は後述する。 FIG. 13 shows charging control according to the sixth embodiment. In S61, the power supply temperature estimating unit 88 estimates the predicted power supply temperature at the time of next startup, that is, at the next start of running. Subsequently, in S62, the power supply temperature estimator 88 determines whether or not the second power supply 30 is in a low temperature state when the vehicle starts running next time based on the predicted power supply temperature. The details of the method of estimating the predicted power supply temperature in S61 and the method of determining the low temperature at the next start-up in S62 will be described later.

S62でYESと判定された場合、充電が許可され、S71の充電制御開始判定に移行する。S71~S75は、図4に示す第1実施形態の処理と同様である。充電制御が開始されない場合、S71でNOと判定され、S61の前に戻る。 When it is determined as YES in S62, charging is permitted, and the process proceeds to the charging control start determination in S71. S71 to S75 are the same as the processing of the first embodiment shown in FIG. If the charging control is not started, it is determined as NO in S71, and the process returns to before S61.

次に図14を参照し、S61での「次回起動時の電源温度の推定方法」の詳細を説明する。例えば電源温度推定部88は、駐車時に、レディオフ時点の電源温度、駐車時間、駐車場所の平均温度等から次回起動時の電源温度を推定する。より具体的には、以下の方法が挙げられる。[1]の算出方法について、各段階に[S61-1]から[S61-6]までのサブステップ番号を付す。 Next, with reference to FIG. 14, the details of the "method for estimating power supply temperature at next startup" in S61 will be described. For example, the power supply temperature estimating unit 88 estimates the power supply temperature at the time of next activation from the power supply temperature at the time of ready-off, the parking time, the average temperature of the parking place, and the like when the vehicle is parked. More specifically, the following methods are mentioned. Regarding the calculation method of [1], substep numbers from [S61-1] to [S61-6] are attached to each step.

[1]ナビ情報や走行履歴を用いた予測電源温度の算出方法
[S61-1]:駐車開始時電源温度Tb(0)、駐車開始時刻t0
現在の電源温度(例えば電源セルの最低温度)が駐車開始時電源温度Tb(0)として取得される。それと同時に、現時刻が駐車開始時刻t0として取得される。
[1] Method for calculating predicted power supply temperature using navigation information and driving history [S61-1]: Power supply temperature at parking start time Tb(0), parking start time t0
The current power supply temperature (for example, the lowest temperature of the power supply cell) is acquired as the parking start power supply temperature Tb(0). At the same time, the current time is acquired as the parking start time t0.

[S61-2]:走行開始時刻tr
通勤やレジャーを想定し、曜日毎の走行開始時刻の履歴に基づいて、次回の走行開始時刻trが取得される。
[S61-2]: Running start time tr
Assuming commuting and leisure, the next travel start time tr is acquired based on the history of travel start times for each day of the week.

[S61-3]:時間帯毎の予想気温
GPS情報を基に、駐車位置の天気予報情報又は平均気温に基づき予想気温が取得される。例えば1週間程度の時間帯毎の予想気温が取得される。
[S61-3]: Expected temperature for each time zone Based on the GPS information, the expected temperature is acquired based on the weather forecast information or the average temperature of the parking position. For example, the expected temperature is obtained for each time period of about one week.

[S61-4]:予想気温の時間帯の時間幅
駐車開始時刻t0から走行開始時刻trまでの期間を幾つかの区間に区切り、予想気温の時間幅が設定される。図14の例では、τ1~τ4の時間幅が設定される。
[S61-4]: Time Width of Time Zone of Expected Temperature The period from the parking start time t0 to the running start time tr is divided into several intervals, and the time span of the expected temperature is set. In the example of FIG. 14, time widths τ1 to τ4 are set.

[S61-5]:次回走行開始時の予測電源温度Tb(r)
駐車開始時刻t0から走行開始時刻trまでの期間において、駐車開始時電源温度Tb(0)を初期値とし、時間帯毎の予想気温とその時間幅とに基づいて予測電源温度Tb(r)が算出される。この算出には、電源の放置冷却に関する熱伝達差分式や、予め取得された実験データから作成されたマップ等が用いられる。
[S61-5]: Estimated power supply temperature Tb(r) at next start of running
In the period from the parking start time t0 to the driving start time tr, the power supply temperature Tb(0) at the start of parking is set as an initial value, and the predicted power supply temperature Tb(r) is calculated based on the predicted air temperature for each time period and the duration thereof. Calculated. For this calculation, a heat transfer difference formula relating to the cooling of the power supply in a standing state, a map created from experimental data obtained in advance, and the like are used.

[S61-6]:予測電源温度の確定
最終的に、IGスイッチオフ時の電源温度及び時刻が判定に用いられる。図14に示す例では、走行開始時刻trにおける予測電源温度Tb(r)は低温判定値Tbchgを下回っている。
[S61-6]: Determination of Predicted Power Supply Temperature Finally, the power supply temperature and time when the IG switch is turned off are used for determination. In the example shown in FIG. 14, the predicted power source temperature Tb(r) at the running start time tr is lower than the low temperature determination value Tb chg .

[2]予想気温の算出
電源温度推定部88は、「予想気温の計測」として、(a)カーナビを利用して、当日の気象情報による予想気温を通信で取得してもよい。(b)直近1週間の時間帯毎の気温を計測して記録し、時間帯毎の最低気温を時間帯毎の予想気温としてもよい。(c)駐車中のLi電池のセル電圧均等化処理の機会を利用して気温を取得してもよい。また、電源温度推定部88は、「予想気温の簡易計算」として、(d)夜間時間帯毎の予想気温を一晩の平均温度または最低気温として簡易的に取得してもよい。(e)日時を取得し、季節や月例気温を参照して充電可否を簡易的に判定してもよい。
[2] Calculation of Expected Air Temperature The power supply temperature estimating unit 88 may (a) use a car navigation system to acquire the expected temperature based on the weather information for the day as the “measurement of the expected temperature” by communication. (b) It is also possible to measure and record the temperature for each time period in the most recent week, and use the minimum temperature for each time period as the expected temperature for each time period. (c) The air temperature may be obtained by taking advantage of the cell voltage equalization process of the parked Li battery. In addition, the power source temperature estimating unit 88 may simply acquire the (d) expected temperature for each night time zone as the average temperature or minimum temperature for the night as the “simplified calculation of the expected temperature”. (e) The date and time may be acquired, and the season and monthly temperature may be referenced to simply determine whether charging is possible.

[3]予測電源温度Tb(r)の算出
[3-1]電源温度推定部88は、式(1)に示す簡略化された電源周りの熱伝達差分式を用い、駐車開始時刻t0から走行開始時刻trまでのループ計算により、予測電源温度Tb(r)を算出すればよい。簡易モデルの熱伝達差分式を用いることで、システムへの実装が容易となる。なお、電源温度推定部88は、詳細な電源周りの伝熱モデルを構成して予測電源温度Tb(r)を算出してもよい。
[3] Calculation of predicted power supply temperature Tb(r) [3-1] Power supply temperature estimating unit 88 uses the simplified heat transfer difference formula around the power supply shown in formula (1), and starts running from parking start time t0. Predicted power supply temperature Tb(r) may be calculated by loop calculation up to start time tr. By using the heat transfer difference formula of the simple model, it becomes easy to implement it in the system. Note that the power supply temperature estimator 88 may configure a detailed heat transfer model around the power supply to calculate the predicted power supply temperature Tb(r).

Tb(t+Δt)
=Tb(t)-α(Tb(t)-Ta(t))+β(Ib(t))2 ・・・(1)
Tb(t):電源温度[℃] (初期値=Tb(0))
Ta(t):時間帯毎の予想気温[℃]
Ib(t):電流[A]
t:時間[s]、Δt:時間幅[s],
α,β:係数
Tb(t+Δt)
=Tb(t)-α(Tb(t)-Ta(t))+β(Ib(t)) 2 (1)
Tb(t): Power supply temperature [°C] (initial value = Tb(0))
Ta(t): Expected temperature for each time period [°C]
Ib(t): current [A]
t: time [s], Δt: time width [s],
α, β: Coefficient

[3-2]電源温度推定部88は、直近1週間の走行開始前の電源温度及び時刻を取得して電源制御装置806に記録し、次回走行開始時刻trに合わせて、最低電源温度を次回走行開始時trの予測電源温度Tb(r)としてもよい。 [3-2] The power supply temperature estimating unit 88 acquires the power supply temperature and the time before the start of running for the most recent one week, records it in the power supply control device 806, and calculates the lowest power supply temperature next time according to the next running start time tr. It may be the predicted power source temperature Tb(r) at the time tr when the vehicle starts running.

[3-3]電源の保温性能によっては、電源を一晩放置することで電源は概ね放熱して予想気温付近まで電源温度が冷やされるものと考えられる。したがって、予測電源温度Tb(r)は予想気温と同じであると仮定してよい。仮に電源が放熱しきることなく、電源温度が予想気温まで低下しなくても、予測電源温度を予想気温として仮定すれば、充電を促す安全側の設定となるため問題は無い。 [3-3] Depending on the heat retention performance of the power supply, it is considered that leaving the power supply to stand overnight will cause the power supply to generally dissipate heat and cool the power supply temperature to near the expected air temperature. Therefore, it may be assumed that the predicted power supply temperature Tb(r) is the same as the predicted air temperature. Even if the power supply does not completely dissipate heat and the power supply temperature does not drop to the expected temperature, assuming that the predicted power supply temperature is the expected temperature, the setting will be on the safe side to encourage charging, so there is no problem.

次に図15を参照し、S62での「次回起動時の低温判定方法」の詳細を説明する。 Next, with reference to FIG. 15, the details of the "low temperature determination method at next start-up" in S62 will be described.

[1]低温判定値の算出
[1-1]要求電力に基づく計算方法
容量型電源の出力可能電力を決定する変数には、電源温度、SOC、劣化度(抵抗増加率)がある。一般にこれらの電源の特性値は、電源制御装置806の内部でマップ値として記憶され、常時演算されている。電源温度をTb、SOCをθ、劣化度(抵抗増加率)をKとすると、式(2.1)に示すように、電源の出力可能電力Poutは、これらの変数の関数として表される。
out=f(Tb,θ,K) ・・・(2.1)
[1] Calculation of low temperature determination value [1-1] Calculation method based on required power Variables that determine the output power of a capacitive power supply include power supply temperature, SOC, and degree of deterioration (resistance increase rate). Generally, these power supply characteristic values are stored as map values inside the power supply control device 806 and are constantly calculated. Assuming that the temperature of the power supply is Tb, the SOC is θ, and the degree of deterioration (rate of resistance increase) is K, the output power P out of the power supply is expressed as a function of these variables, as shown in Equation (2.1). .
P out =f(Tb, θ, K) (2.1)

電源温度推定部88は、まず、電源間充電に要する容量型電源の要求出力電力Pchgを設定する。そして、式(2.1)に要求出力電力、SOC、劣化度を代入して要求出力電力Pchgを実現できる電源温度Tbを計算し、そのうちの最低電源温度を低温判定値Tbchgとする。すなわち、式(2.2)が成り立つとき、式(2.3)により、低温判定値Tbchgが算出される。この方法で算出される低温判定値Tbchgは、図15の(*1)に示すように、電源(Li電池)の温度-電力特性線が要求出力電力Pchgに交わるときの電源温度である。
max=f(Tb,θ,K)≧Pchg ・・・(2.2)
Tbchg=Min(Tbchg,Tb) ・・・(2.3)
The power supply temperature estimator 88 first sets the required output power P chg of the capacitive power supply required for charging between power supplies. Then, the required output power, the SOC, and the degree of deterioration are substituted into equation (2.1) to calculate the power supply temperature Tb at which the required output power P chg can be achieved, and the lowest power supply temperature among them is taken as the low temperature determination value Tb chg . That is, when the formula (2.2) holds, the low temperature determination value Tb chg is calculated by the formula (2.3). The low temperature determination value Tb chg calculated by this method is the power supply temperature when the temperature-power characteristic line of the power supply (Li battery) crosses the required output power P chg , as shown in (*1) in FIG. .
P max =f(Tb, θ, K)≧P chg (2.2)
Tb chg =Min(Tb chg , Tb) (2.3)

[1-2]充電効率に基づく計算方法
低温時には電源(すなわちLi電池)の内部抵抗が増加してジュール損失が増加する。そこで、図15の(*2)に示すように、内部抵抗増加によって充電効率が下がり始める電源温度が低温判定値Tbchgとして設定されてもよい。
[1-2] Calculation Method Based on Charging Efficiency At low temperatures, the internal resistance of the power source (that is, the Li battery) increases and Joule loss increases. Therefore, as indicated by (*2) in FIG. 15, the power supply temperature at which the charging efficiency begins to decrease due to an increase in internal resistance may be set as the low temperature determination value Tb chg .

[2]低温判定方法
電源温度推定部88は、予測電源温度Tb(r)が低温判定値Tbchg以下となる場合、次回走行開始時に電源温度が低温判定値Tbchgより低温になると判定し、電源間の充電を許可する。
[2] Low temperature determination method When the predicted power supply temperature Tb(r) is equal to or lower than the low temperature determination value Tb chg , the power supply temperature estimator 88 determines that the power supply temperature will be lower than the low temperature determination value Tb chg when the vehicle starts running next time. Allow charging between sources.

図16に、第6実施形態による充電制御を示す。図16では、図5に対し2段目の予測電源温度が追加されている。時刻ts1における予測電源温度Tb(r)は低温判定値Tbchgより低いため、次回走行開始時に第2電源30は低温状態であると推定される。したがって、時刻ts1後、図5と同様に補充電処理が開始される。 FIG. 16 shows charging control according to the sixth embodiment. In FIG. 16, the predicted power supply temperature on the second stage is added to FIG. Since the predicted power source temperature Tb(r) at time ts1 is lower than the low temperature determination value Tb chg , it is estimated that the second power source 30 will be in a low temperature state when the vehicle starts running next time. Therefore, after time ts1, the supplementary charging process is started in the same manner as in FIG.

以上のように第6実施形態では、車両放置中に容量型第2電源30が冷える前に、次回の走行に備えて第2電源30から第1電源50へ充電する。これにより、前の走行後に第2電源30及び第1電源50が暖機された性能の高い状態で、充電を行うことができる。また、電源温度推定部88は、駐車開始時情報、走行履歴、ナビゲーション情報、気象情報のうち一つ以上の情報を用いることで、次回走行開始時の予測電源温度を適切に推定することができる。 As described above, in the sixth embodiment, the first power source 50 is charged from the second power source 30 in preparation for the next run before the capacitive second power source 30 cools while the vehicle is left unattended. As a result, charging can be performed while the second power source 30 and the first power source 50 are warmed up after the previous run and have high performance. In addition, the power supply temperature estimating unit 88 can appropriately estimate the predicted power supply temperature at the next start of driving by using one or more of the parking start time information, travel history, navigation information, and weather information. .

ここで、電源温度推定部88は、例えば次回走行開始時を含む日または月の気温情報に基づいて、次回走行開始時の電源温度を推定してもよい。このような簡略計算によってコスト低減が可能となる。或いは、電源温度推定部88は、車両の走行開始時の電源温度及び取得時刻を都度記憶し、記憶された電源温度及び取得時刻に基づいて、次回走行開始時の電源温度を推定してもよい。通勤時等には、以前の走行開始時の電源温度を記憶しておき、次回走行開始時の温度と仮定してもよい。 Here, the power supply temperature estimator 88 may estimate the power supply temperature at the next start of running, for example, based on the temperature information of the day or month that includes the next start of running. Cost can be reduced by such simple calculation. Alternatively, the power supply temperature estimating unit 88 may store the power supply temperature and acquisition time each time the vehicle starts running, and estimate the power supply temperature at the next start of running based on the stored power supply temperature and acquisition time. . During commuting or the like, the temperature of the power supply at the start of the previous run may be stored and assumed to be the temperature at the start of the next run.

或いは、電源温度推定部88は、外部の装置で推定された温度情報又は温度の関連情報を通信によって取得し、取得した情報に基づいて、次回走行開始時の電源温度を推定してもよい。これにより、電源制御装置806の負荷を低減できる。また、演算方法を更新できるため、より正確な電源温度が得られる。 Alternatively, the power supply temperature estimator 88 may acquire temperature information or temperature-related information estimated by an external device through communication, and estimate the power supply temperature at the next start of running based on the acquired information. As a result, the load on the power control device 806 can be reduced. Also, since the calculation method can be updated, a more accurate power supply temperature can be obtained.

(その他の実施形態)
(a)出力型第1電源50及び容量型第2電源30は、上記実施形態に例示したリチウムイオンキャパシタ及びリチウムイオン電池に限らず、それ以外のキャパシタ及び電池、或いは、キャパシタ又は電池以外の電源を用いてもよい。また、電源の種類、電圧、電力の範囲などは変更してもよい。
(Other embodiments)
(a) The output-type first power supply 50 and the capacitive-type second power supply 30 are not limited to the lithium-ion capacitors and lithium-ion batteries exemplified in the above embodiments, but also other capacitors and batteries, or power supplies other than capacitors or batteries. may be used. Also, the type of power supply, voltage, power range, etc. may be changed.

(b)本発明の電源制御装置は、第2電源30が補機系統に接続されない電源システムに適用されてもよい。また補機系統において補機電源20や補機用降圧DDC25が設けられず、第2電源30の電力が直接補機負荷15に供給されるようにしてもよい。 (b) The power supply control device of the present invention may be applied to a power supply system in which the second power supply 30 is not connected to the accessory system. Alternatively, the auxiliary power supply 20 and the step-down DDC 25 for auxiliary equipment may not be provided in the auxiliary equipment system, and the electric power of the second power supply 30 may be directly supplied to the auxiliary equipment load 15 .

(c)上記実施形態の充電制御において、第1電源50が満充電状態でなければ、次回走行開始するまでに第1電源50を毎回充電するようにしてもよい。また、次回走行時に電源が低温状態になることを事前に予測できた時に限り、事前に第1電源50を充電するようにしてもよい。その場合でも、ある程度の効果は得られる。 (c) In the charging control of the above embodiment, if the first power source 50 is not in a fully charged state, the first power source 50 may be charged every time until the next running starts. Alternatively, the first power source 50 may be charged in advance only when it is possible to predict in advance that the power source will be in a low temperature state during the next run. Even in that case, a certain degree of effect can be obtained.

(d)本発明の電源制御装置は、ハイブリッド車両でなく電気自動車の電源システムに適用されてもよい。その場合、ハイブリッド車両におけるエンジン早掛かり防止の課題を、加速性能低下防止等の課題に置き換えて、上記実施形態の作用効果を拡張適用すればよい。 (d) The power supply control device of the present invention may be applied to the power supply system of an electric vehicle instead of a hybrid vehicle. In that case, the problem of preventing the engine from starting early in the hybrid vehicle may be replaced with the problem of preventing deterioration in acceleration performance, etc., and the effect of the above embodiment may be extended and applied.

以上、本発明は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 As described above, the present invention is by no means limited to the above embodiments, and can be embodied in various forms without departing from the spirit of the present invention.

10(101、105)・・・電源システム、
30 ・・・(容量型)第2電源、
40 ・・・双方向DDC(電力変換器)、
50 ・・・(出力型)第1電源、
600・・・駆動システム、
65 ・・・MG(モータジェネレータ)、
73 ・・・第2電源電力検出器、 75 ・・・第1電源電力検出器、
80、806 ・・・電源制御装置、
83 ・・・充電判定部、 84 ・・・電力変換器操作部
87 ・・・走行状態取得部。
10 (101, 105) power supply system,
30 (capacitance type) second power supply,
40 Bi-directional DDC (power converter),
50 (output type) first power supply,
600 drive system,
65 ... MG (motor generator),
73 ... second power supply power detector, 75 ... first power supply power detector,
80, 806 ... power control device,
83... Charging determination unit, 84... Electric power converter operation unit, 87... Running state acquisition unit.

Claims (15)

車両に搭載され、モータジェネレータ(65)を駆動する駆動システム(600)に接続される第1電源(50)、前記第1電源より電圧が低い第2電源(30)、並びに、前記駆動システム及び前記第1電源と前記第2電源との間で双方向に電力授受を行う電力変換器(40)を備え、前記第1電源は、前記第2電源に比べて出力が大きい出力型電源であり、前記第2電源は、前記第1電源に比べて蓄積可能な電力量が大きい容量型電源である電源システム(10)に適用され、前記電力変換器の作動を制御する電源制御装置であって、
車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する走行状態取得部(87)と、
第1電源電力検出器(75)が検出した前記第1電源の充電量、第2電源電力検出器(73)が検出した前記第2電源の充電量、及び、前記走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、前記第2電源から前記第1電源への充電実施を判定する充電判定部(83)と、
前記充電判定部の判定結果に従って前記電力変換器を操作する電力変換器操作部(84)と、
を有し、
両の走行状態又は走行設定状態が、
(1)車速が所定の判定車速以下の低車速時、又は、アクセルオフ時、
(2)シフトレンジがPレンジの時、又は、Pレンジへの若しくはPレンジからのレンジ変更時、
(3)パワースイッチオフ操作時、
(4)レディオフから判定時間経過後、
のうちいずれか一つ以上であるとき、
前記充電判定部は、
前記第1電源の充電量が充電量閾値未満の場合、前記電力変換器を作動させて前記第2電源から前記第1電源への充電を行い、
前記第1電源の充電量が前記充電量閾値以上の場合、前記第2電源から前記第1電源への充電を停止するように判定する電源制御装置。
A first power supply (50) mounted on a vehicle and connected to a drive system (600) that drives a motor generator (65), a second power supply (30) having a lower voltage than the first power supply, and the drive system and A power converter (40) for bi-directionally transmitting and receiving power between the first power supply and the second power supply, wherein the first power supply is an output type power supply having a larger output than the second power supply. a power supply system (10) in which the second power supply is a capacitive power supply having a larger amount of storable power than the first power supply, and a power control apparatus for controlling the operation of the power converter, ,
a running state acquisition unit (87) that acquires information about the running state of the vehicle including vehicle stop or the set running state;
The amount of charge of the first power supply detected by the first power supply power detector (75), the amount of charge of the second power supply detected by the second power supply power detector (73), and the amount of charge of the second power supply detected by the running state acquisition unit. a charge determination unit (83) for determining whether to charge the first power supply from the second power supply based on a running state or a running setting state of the vehicle;
a power converter operation unit (84) that operates the power converter according to the determination result of the charge determination unit;
has
The running state or running setting state of the vehicle is
(1) When the vehicle speed is a predetermined judgment vehicle speed or less, or when the accelerator is off,
(2) When the shift range is P range, or when the range is changed to or from P range,
(3) When the power switch is turned off,
(4) After the judgment time has passed since ready-off,
when one or more of
The charging determination unit
when the charge amount of the first power supply is less than the charge amount threshold, the power converter is operated to charge the first power supply from the second power supply;
A power supply control device that determines to stop charging from the second power supply to the first power supply when the charge amount of the first power supply is equal to or greater than the charge amount threshold.
当該電源制御装置を自動で起動及び停止させる自動起動装置(90)をさらに備える前記電源システムに適用され、
車両の駐車中に前記自動起動装置により起動及び停止し、前記第2電源から前記第1電源への充電を実施及び停止する請求項に記載の電源制御装置。
Applied to the power supply system further comprising an automatic starter (90) that automatically starts and stops the power control device,
2. The power control device according to claim 1 , wherein the automatic activation device starts and stops the charging from the second power source to the first power source while the vehicle is parked.
車両に搭載され、モータジェネレータ(65)を駆動する駆動システム(600)に接続される第1電源(50)、前記第1電源より電圧が低い第2電源(30)、並びに、前記駆動システム及び前記第1電源と前記第2電源との間で双方向に電力授受を行う電力変換器(40)を備え、前記第1電源は、前記第2電源に比べて出力が大きい出力型電源であり、前記第2電源は、前記第1電源に比べて蓄積可能な電力量が大きい容量型電源である電源システム(10)に適用され、前記電力変換器の作動を制御する電源制御装置であって、前記電源システムは、当該電源制御装置を自動で起動及び停止させる自動起動装置(90)をさらに備え、
車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する走行状態取得部(87)と、
第1電源電力検出器(75)が検出した前記第1電源の充電量、第2電源電力検出器(73)が検出した前記第2電源の充電量、及び、前記走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、前記第2電源から前記第1電源への充電実施を判定する充電判定部(83)と、
前記充電判定部の判定結果に従って前記電力変換器を操作する電力変換器操作部(84)と、
を有し、
車両が所定の走行状態又は走行設定状態のとき、
前記充電判定部は、
前記第1電源の充電量が充電量閾値未満の場合、前記電力変換器を作動させて前記第2電源から前記第1電源への充電を行い、
前記第1電源の充電量が前記充電量閾値以上の場合、前記第2電源から前記第1電源への充電を停止するように判定し、
車両の駐車中に前記自動起動装置により起動及び停止し、前記第2電源から前記第1電源への充電を実施及び停止する電源制御装置。
A first power supply (50) mounted on a vehicle and connected to a drive system (600) that drives a motor generator (65), a second power supply (30) having a lower voltage than the first power supply, and the drive system and A power converter (40) for bi-directionally transmitting and receiving power between the first power supply and the second power supply, wherein the first power supply is an output type power supply having a larger output than the second power supply. a power supply system (10) in which the second power supply is a capacitive power supply having a larger amount of storable power than the first power supply, and a power control apparatus for controlling the operation of the power converter, , the power supply system further comprises an automatic starter (90) for automatically starting and stopping the power control device,
a running state acquisition unit (87) that acquires information about the running state of the vehicle including vehicle stop or the set running state;
The amount of charge of the first power supply detected by the first power supply power detector (75), the amount of charge of the second power supply detected by the second power supply power detector (73), and the amount of charge of the second power supply detected by the running state acquisition unit. a charge determination unit (83) for determining whether to charge the first power supply from the second power supply based on a running state or a running setting state of the vehicle;
a power converter operation unit (84) that operates the power converter according to the determination result of the charge determination unit;
has
When the vehicle is in a predetermined running state or running setting state,
The charging determination unit
when the charge amount of the first power supply is less than the charge amount threshold, the power converter is operated to charge the first power supply from the second power supply;
determining to stop charging from the second power supply to the first power supply when the charge amount of the first power supply is equal to or greater than the charge amount threshold ;
A power control device that is activated and stopped by the automatic activation device while the vehicle is parked, and performs and stops charging from the second power source to the first power source .
車両に搭載され、モータジェネレータ(65)を駆動する駆動システム(600)に接続される第1電源(50)、前記第1電源より電圧が低い第2電源(30)、前記駆動システム及び前記第1電源と前記第2電源との間で双方向に電力授受を行う電力変換器(40)、車両の補機負荷(15)に電源供給する補機電源(20)、並びに、前記第2電源の電圧を降圧し前記補機電源に電力供給する補機用電力変換器(25)を備え、前記第1電源は、前記第2電源に比べて出力が大きい出力型電源であり、前記第2電源は、前記第1電源に比べて蓄積可能な電力量が大きい容量型電源である電源システム(10)に適用され、前記電力変換器の作動を制御する電源制御装置であって、
車両停止を含む車両の走行状態又は走行設定状態に関する情報を取得する走行状態取得部(87)と、
第1電源電力検出器(75)が検出した前記第1電源の充電量、第2電源電力検出器(73)が検出した前記第2電源の充電量、及び、前記走行状態取得部が取得した車両の走行状態又は走行設定状態に基づいて、前記第2電源から前記第1電源への充電実施を判定する充電判定部(83)と、
前記充電判定部の判定結果に従って前記電力変換器を操作する電力変換器操作部(84)と、
を有し、
車両が所定の走行状態又は走行設定状態のとき、
前記充電判定部は、
前記第1電源の充電量が充電量閾値未満の場合、前記電力変換器を作動させて前記第2電源から前記第1電源への充電を行い、
前記第1電源の充電量が前記充電量閾値以上の場合、前記第2電源から前記第1電源への充電を停止するように判定し、
前記充電判定部は、さらに補機電源電力検出器(72)が検出した前記補機電源の充電量に基づいて、前記第2電源から前記第1電源又は前記補機電源への充電実施を判定し、
前記電力変換器操作部は、前記充電判定部の判定結果に従ってさらに前記補機用電力変換器を操作する電源制御装置。
A first power source (50) mounted on a vehicle and connected to a drive system (600) that drives a motor generator (65), a second power source (30) having a lower voltage than the first power source , the drive system, and the a power converter (40) for bi-directionally transmitting and receiving power between a first power supply and the second power supply; an auxiliary power supply (20) for supplying power to an auxiliary load (15) of the vehicle; An accessory power converter (25) for stepping down a voltage of a power source and supplying power to the accessory power source , wherein the first power source is an output type power source having a larger output than the second power source, A power supply control device that is applied to a power supply system (10) in which the second power supply is a capacitive power supply that can store a larger amount of power than the first power supply, and controls the operation of the power converter,
a running state acquisition unit (87) that acquires information about the running state of the vehicle including vehicle stop or the set running state;
The amount of charge of the first power supply detected by the first power supply power detector (75), the amount of charge of the second power supply detected by the second power supply power detector (73), and the amount of charge of the second power supply detected by the running state acquisition unit. a charge determination unit (83) for determining whether to charge the first power supply from the second power supply based on a running state or a running setting state of the vehicle;
a power converter operation unit (84) that operates the power converter according to the determination result of the charge determination unit;
has
When the vehicle is in a predetermined running state or running setting state,
The charging determination unit
when the charge amount of the first power supply is less than the charge amount threshold, the power converter is operated to charge the first power supply from the second power supply;
determining to stop charging from the second power supply to the first power supply when the charge amount of the first power supply is equal to or greater than the charge amount threshold ;
The charging determination unit further determines whether or not the second power supply should charge the first power supply or the auxiliary power supply based on the amount of charge of the auxiliary power supply detected by the auxiliary power supply power detector (72). death,
The power converter operation unit further operates the power converter for auxiliary equipment according to the determination result of the charging determination unit .
前記第2電源から前記第1電源への充電を実施すると同時に、前記第2電源から前記補機電源への充電を行う請求項に記載の電源制御装置。 5. The power supply control device according to claim 4 , wherein the auxiliary power supply is charged from the second power supply at the same time that the first power supply is charged from the second power supply. 前記第1電源又は前記補機電源の充電要求があるとき、前記充電判定部は、前記電力変換器を作動させて前記第2電源から前記第1電源及び前記補機電源への充電を実施するように判定し、
前記第1電源及び前記補機電源への両方の充電が終了したとき、前記電力変換器の作動を停止すように判定する請求項に記載の電源制御装置。
When there is a request to charge the first power supply or the auxiliary power supply, the charge determination unit operates the power converter to charge the first power supply and the auxiliary power supply from the second power supply. determined as
6. The power supply control device according to claim 5 , wherein a determination is made to stop the operation of the power converter when charging of both the first power supply and the auxiliary power supply is completed.
前記第1電源はキャパシタであり、前記第2電源は電池である前記電源システムに適用される請求項1~6のいずれか一項に記載の電源制御装置。 The power supply control device according to any one of claims 1 to 6 , wherein said first power supply is a capacitor and said second power supply is a battery. 前記第1電源はリチウムイオンキャパシタであり、前記第2電源はリチウムイオン電池である前記電源システムに適用される請求項に記載の電源制御装置。 8. The power control device according to claim 7 , applied to said power supply system, wherein said first power supply is a lithium ion capacitor and said second power supply is a lithium ion battery. 前記充電判定部は、前記第2電源の充電量が所定値以下の場合、前記第2電源から前記第1電源への充電を禁止する請求項1~のいずれか一項に記載の電源制御装置。 The power supply control according to any one of claims 1 to 8 , wherein the charge determination unit prohibits charging from the second power supply to the first power supply when the charge amount of the second power supply is equal to or less than a predetermined value. Device. 次回走行開始時における前記第2電源の予測温度である予測電源温度を推定する電源温度推定部(88)を有し、
前記予測電源温度が低温判定値以下の場合、前記第2電源が冷える前の所定期間内に前記第1電源への充電を実施する請求項1~9のいずれか一項に記載の電源制御装置。
a power supply temperature estimating unit (88) for estimating a predicted power supply temperature that is a predicted temperature of the second power supply at the next start of running;
10. The power supply control device according to any one of claims 1 to 9, wherein when the predicted power supply temperature is equal to or lower than the low temperature determination value, the first power supply is charged within a predetermined period before the second power supply cools down. .
前記低温判定値は、前記第2電源の出力可能電力、充電量、劣化度のうち少なくとも一つを含む特性に基づいて、前記第1電源への充電に要求される出力電力を実現できる最低電源温度として設定される請求項10に記載の電源制御装置。 The low temperature determination value is the lowest power source capable of realizing the output power required to charge the first power source, based on characteristics including at least one of the output power, charge amount, and degree of deterioration of the second power source. 11. The power control device of claim 10, set as a temperature. 前記電源温度推定部は、
駐車開始時の電源温度及び駐車開始時刻を含む駐車開始時情報、次回の走行開始時刻の推定に用いられる走行履歴情報、車両の駐車位置を示すナビゲーション情報、及び、駐車位置での時間帯毎の予想気温を含む気象情報、のうち一つ以上の情報を用い、
電源の放置冷却に関する熱伝達差分式または実験データに基づき、次回走行開始時の予測電源温度を推定する請求項10または11に記載の電源制御装置。
The power supply temperature estimator,
Parking start information including the power supply temperature and parking start time at the start of parking, driving history information used for estimating the next driving start time, navigation information indicating the parking position of the vehicle, and time zone information at the parking position using one or more of weather information, including expected temperatures,
12. The power supply control device according to claim 10, wherein the predicted power supply temperature at the start of next running is estimated based on a heat transfer difference formula or experimental data relating to cooling of the power supply under standing.
前記電源温度推定部は、
次回走行開始時を含む日または月の気温情報に基づいて、次回走行開始時の電源温度を推定する請求項10~12のいずれか一項に記載の電源制御装置。
The power supply temperature estimator,
13. The power supply control device according to any one of claims 10 to 12, wherein the power supply temperature at the next start of running is estimated based on the temperature information of the day or month including the next start of running.
前記電源温度推定部は、
車両の走行開始時の電源温度及び取得時刻を都度記憶し、記憶された電源温度及び取得時刻に基づいて、次回走行開始時の電源温度を推定する請求項10~13のいずれか一項に記載の電源制御装置。
The power supply temperature estimator,
14. The method according to any one of claims 10 to 13, wherein the power source temperature and the acquired time when the vehicle starts running are stored each time, and the power source temperature at the next start of running is estimated based on the stored power source temperature and acquired time. power control unit.
前記電源温度推定部は、
外部の装置で推定された温度情報又は温度の関連情報を通信によって取得し、取得した情報に基づいて、次回走行開始時の電源温度を推定する請求項10~14のいずれか一項に記載の電源制御装置。
The power supply temperature estimator,
15. The method according to any one of claims 10 to 14, wherein temperature information or temperature-related information estimated by an external device is acquired by communication, and the power supply temperature at the next start of running is estimated based on the acquired information. Power control unit.
JP2018078991A 2018-04-17 2018-04-17 power control unit Active JP7119524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018078991A JP7119524B2 (en) 2018-04-17 2018-04-17 power control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078991A JP7119524B2 (en) 2018-04-17 2018-04-17 power control unit

Publications (2)

Publication Number Publication Date
JP2019187189A JP2019187189A (en) 2019-10-24
JP7119524B2 true JP7119524B2 (en) 2022-08-17

Family

ID=68337422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078991A Active JP7119524B2 (en) 2018-04-17 2018-04-17 power control unit

Country Status (1)

Country Link
JP (1) JP7119524B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962302B2 (en) * 2018-09-28 2021-11-05 オムロン株式会社 Power supply and power system
JP2021095005A (en) * 2019-12-17 2021-06-24 株式会社デンソーテン Control device and control method
WO2021125282A1 (en) * 2019-12-18 2021-06-24 本田技研工業株式会社 Electric power device, display device, charging rate calculation method, program, and memory medium
JP7295915B2 (en) * 2021-09-22 2023-06-21 本田技研工業株式会社 vehicle power system
WO2023157278A1 (en) * 2022-02-21 2023-08-24 日本電気株式会社 Battery state estimation device, battery state estimation system, battery state estimation method, and recording medium
WO2024038502A1 (en) * 2022-08-16 2024-02-22 三菱自動車工業株式会社 Hybrid vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336715A (en) 2006-06-15 2007-12-27 Toyota Motor Corp Power supply device for vehicle
JP2010154652A (en) 2008-12-25 2010-07-08 Honda Motor Co Ltd Power supply system
CN101938155A (en) 2010-09-16 2011-01-05 上海中科深江电动车辆有限公司 Automatic charging device for static electric automobile storage battery
JP2014138536A (en) 2013-01-18 2014-07-28 Toyota Motor Corp Vehicle power supply device
US20160089992A1 (en) 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery system bi-stable relay control
JP2018042341A (en) 2016-09-06 2018-03-15 株式会社デンソー Power source system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192658B2 (en) * 2003-04-09 2008-12-10 トヨタ自動車株式会社 Vehicle control apparatus and control method
JP4218634B2 (en) * 2004-12-16 2009-02-04 株式会社デンソー Charge control device for hybrid type vehicle
JP2009284596A (en) * 2008-05-20 2009-12-03 Autonetworks Technologies Ltd Power supply device for vehicles
JP5104780B2 (en) * 2009-02-24 2012-12-19 株式会社デンソー Vehicle power supply system
JP6398276B2 (en) * 2014-04-11 2018-10-03 株式会社ジェイテクト Electric assist power supply control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336715A (en) 2006-06-15 2007-12-27 Toyota Motor Corp Power supply device for vehicle
JP2010154652A (en) 2008-12-25 2010-07-08 Honda Motor Co Ltd Power supply system
CN101938155A (en) 2010-09-16 2011-01-05 上海中科深江电动车辆有限公司 Automatic charging device for static electric automobile storage battery
JP2014138536A (en) 2013-01-18 2014-07-28 Toyota Motor Corp Vehicle power supply device
US20160089992A1 (en) 2014-09-30 2016-03-31 Johnson Controls Technology Company Battery system bi-stable relay control
JP2018042341A (en) 2016-09-06 2018-03-15 株式会社デンソー Power source system

Also Published As

Publication number Publication date
JP2019187189A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7119524B2 (en) power control unit
US9849793B2 (en) Electrical storage system for vehicle
US9126488B2 (en) Charging device and charging method
CN105905102B (en) Engine off threshold based on battery state of charge for predicted operation
CN105905100B (en) Battery state of charge target based on predicted regenerative energy
US10461545B2 (en) Battery system
EP3006291B1 (en) Control device for a plug-in hybrid vehicle
CN105905107B (en) Battery state of charge targeting based on vehicle inclination
US8222862B2 (en) Electrically powered vehicle
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
JP5067611B2 (en) Vehicle battery control device
US20140012447A1 (en) Thermal management of vehicle battery pack during charging
JP5847837B2 (en) Method for controlling a hybrid self-propelled vehicle and a hybrid vehicle adapted to such a method
JP5998755B2 (en) Vehicle power supply control apparatus and method
US20110221400A1 (en) Charge controller
JP6183242B2 (en) Power storage system
US20170120774A1 (en) Management device for secondary battery
KR102078123B1 (en) Method for managing an alternator combined with at least one power battery and driven by a heat engine
US10513194B2 (en) Method for charging the starter battery of a vehicle
JP2009136109A (en) Charge control device and method
JP4984726B2 (en) Vehicle power supply control device
JP5202576B2 (en) Vehicle power supply system
JP2007161000A (en) Vehicular power supply control device
JP2015095917A (en) Vehicle
JP6631155B2 (en) Operation mode control device, operation mode control method, moving object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151