JP7118843B2 - Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery - Google Patents
Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery Download PDFInfo
- Publication number
- JP7118843B2 JP7118843B2 JP2018186849A JP2018186849A JP7118843B2 JP 7118843 B2 JP7118843 B2 JP 7118843B2 JP 2018186849 A JP2018186849 A JP 2018186849A JP 2018186849 A JP2018186849 A JP 2018186849A JP 7118843 B2 JP7118843 B2 JP 7118843B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- solid
- electrode active
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、全固体リチウムイオン電池用正極活物質の製造方法、及び全固体リチウムイオン電池の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material for an all-solid lithium ion battery and a method for producing an all-solid lithium ion battery.
現在、使用されているリチウムイオン電池は、正極活物質として層状化合物LiMeO2(Meは平均で+III価となるように選択されるカチオンであり、レドックスカチオンを必ず含む)、スピネル化合物LiMeQO4(Qは平均で+IV価となるように選択されるカチオン)、オリビン系化合物LiX1X2O4(X1は+II価となるように選択されるカチオンであり、レドックスカチオンを必ず含む、X2は+V価となるように選択されるカチオン)や蛍石型化合物Li5MeO4等を用いており、一方でその特性を生かすことができるよう、電解液その他構成要件が年々改善されてきている。 Lithium-ion batteries currently in use employ layered compound LiMeO 2 (Me is a cation selected to have +III valence on average and always contains a redox cation), spinel compound LiMeQO 4 (Q is a cation selected to have a +IV valence on average), an olivine compound LiX1X2O 4 (X1 is a cation selected to have a +II valence and always contains a redox cation, and X2 has a +V valence Selected cations) and fluorite-type compounds such as Li 5 MeO 4 are used.
ただ、リチウムイオン電池の場合は、電解液は有機化合物が大半であり、たとえ難燃性の化合物を用いたとしても火災に至る危険性が全くなくなるとは言いきれない。こうした液系リチウムイオン電池(以下、液系LIBとも称する)の代替候補として、電解質を固体とした全固体リチウムイオン電池(以下、全固体LIBとも称する)が近年注目を集めている(特許文献1等)。その中でも、固体電解質としてLi2S-P2S5などの硫化物やそれにハロゲン化リチウムを添加した全固体リチウムイオン電池が主流となりつつある。 However, in the case of lithium-ion batteries, most of the electrolytes are organic compounds, and even if flame-retardant compounds are used, the risk of fire cannot be completely eliminated. As an alternative candidate for such a liquid-type lithium ion battery (hereinafter also referred to as a liquid-type LIB), an all-solid-state lithium-ion battery (hereinafter also referred to as an all-solid-state LIB) with a solid electrolyte has been attracting attention in recent years (Patent Document 1 etc). Among them, all-solid-state lithium ion batteries in which sulfides such as Li 2 SP 2 S 5 and lithium halide are added as solid electrolytes are becoming mainstream.
また、従来、リチウムイオン電池用正極活物質の製造方法として、例えば特許文献1に開示されているように、あらかじめ正極活物質を構成する全元素を含む前駆体原料とリチウム源(水酸化リチウム等)を混合して焼成して酸化物正極活物質を作製した後、ニオブ酸リチウムの前駆体等のコート溶液を酸化物正極活物質の表面上に塗布し、更に焼成を行うことで所望のリチウムイオン電池用正極活物質を作製している。 Further, conventionally, as a method for producing a positive electrode active material for a lithium ion battery, for example, as disclosed in Patent Document 1, a precursor raw material containing all elements constituting the positive electrode active material in advance and a lithium source (lithium hydroxide, etc.) ) is mixed and baked to prepare an oxide positive electrode active material, a coating solution such as a precursor of lithium niobate is applied on the surface of the oxide positive electrode active material, and further baked to obtain the desired lithium We are producing positive electrode active materials for ion batteries.
しかしながら、上述のように従来は正極活物質のコア粒子を製造するために少なくとも一度焼成工程があり、さらに、正極活物質のコア粒子の表面上に被覆物を塗布した後、再度焼成工程を行う必要がある。このように、焼成工程が複数回あると、熱処理コストが大きくなり、また生産のリードタイムも嵩んでしまうという問題がある。このため、より簡便な方法で正極活物質を製造することができる技術の開発が望まれている。ここで、全固体リチウムイオン電池用の正極活物質の場合は特許文献1にあるようにNbが表面に存在すると特性が大幅に改善することが知られており、この点からもNb被覆の簡便な方法が求められていたが、現在の一般的な転動流動装置では、均一に被覆しようとすると上記コア粒子の転動時間を長くとらねばならず、この間にせっかく被覆した粒子同士がぶつかって割れてしまうリスクがあった。割れた粒子はそのまま転動しているので、そのまま再被覆できれば問題なく全固体リチウムイオン電池用正極活物質として用いることができるが、再被覆がなされないまま転動流動装置から取り出されることがあり、これを正極活物質として全固体リチウムイオン電池を作製すると、時々特性が悪いものができることが判明した。従って、被覆時間の短い簡便なNb被覆方法を開発することが重要となっていた。 However, as described above, conventionally, there is a firing process at least once in order to manufacture the core particles of the positive electrode active material, and further, after coating the surface of the core particles of the positive electrode active material, the firing process is performed again. There is a need. Thus, if the firing process is performed multiple times, there is a problem that the heat treatment cost increases and the production lead time increases. Therefore, there is a demand for development of a technique that can produce a positive electrode active material by a simpler method. Here, in the case of a positive electrode active material for an all-solid-state lithium ion battery, it is known that the presence of Nb on the surface as described in Patent Document 1 significantly improves the characteristics, and from this point also, the Nb coating is simple. However, in the current general tumbling and fluidizing apparatus, it is necessary to take a long rolling time of the core particles in order to coat them uniformly. I ran the risk of breaking it. Since the cracked particles are rolling as they are, if they can be recoated as they are, they can be used as positive electrode active materials for all-solid-state lithium-ion batteries without any problems. However, it was found that when an all-solid-state lithium-ion battery was produced using this as a positive electrode active material, sometimes the characteristics were poor. Therefore, it has become important to develop a simple Nb coating method with a short coating time.
そこで、本発明の実施形態は、Nb被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供することを課題とする。 Therefore, an object of an embodiment of the present invention is to provide a simple method for producing a Nb-coated positive electrode active material for an all-solid-state lithium ion battery.
本発明は一実施形態において、ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体をロッキングミキサー中に投入し、シュウ酸ニオブ水溶液を噴霧してシュウ酸ニオブが被覆された前駆体粉体を作製する工程と、前記シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを混合して焼成する工程とを含む全固体リチウムイオン電池用正極活物質の製造方法である。 In one embodiment of the present invention, a transition metal hydroxide precursor composed of nickel, cobalt and manganese is placed in a rocking mixer and an aqueous niobium oxalate solution is sprayed to form a niobium oxalate coated precursor. A method for producing a positive electrode active material for an all-solid-state lithium-ion battery, comprising a step of preparing a powder, and a step of mixing and firing the precursor powder coated with niobium oxalate and a lithium compound.
本発明の別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体におけるニッケルとコバルトとマンガンとの物質量比が、前記ニッケル、コバルト及びマンガンの総物質量を100とすると、85~90:7~9:0~7.5(ただし、0を除く)で表され、前記リチウム化合物がLiOH・H2Oである。 A method for producing a positive electrode active material for an all-solid-state lithium-ion battery according to another embodiment of the present invention is a transition metal hydroxide precursor composed of nickel, cobalt, and manganese. The amount ratio is represented by 85 to 90:7 to 9:0 to 7.5 (excluding 0) when the total amount of nickel, cobalt and manganese is 100, and the lithium compound is LiOH.H 2 O.
本発明の更に別の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法は、前記ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体の比表面積が6.9m2/g以上である。 Still another embodiment of the present invention is a method for producing a positive electrode active material for an all-solid lithium ion battery, wherein the transition metal hydroxide precursor composed of nickel, cobalt and manganese has a specific surface area of 6.9 m 2 . / g or more.
本発明の別の実施形態は、本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、前記正極層、固体電解質層及び負極層を用いて全固体リチウムイオン電池を製造する全固体リチウムイオン電池の製造方法である。 Another embodiment of the present invention forms a positive electrode layer using a positive electrode active material for an all-solid lithium ion battery manufactured by the method for manufacturing a positive electrode active material for an all-solid lithium ion battery according to an embodiment of the present invention, A method for producing an all-solid lithium ion battery using the positive electrode layer, the solid electrolyte layer and the negative electrode layer to produce an all-solid lithium ion battery.
本発明の実施形態によれば、Nb被覆された全固体リチウムイオン電池用正極活物質の簡便な製造方法を提供することができる。 According to the embodiments of the present invention, it is possible to provide a simple method for producing a Nb-coated positive electrode active material for an all-solid-state lithium ion battery.
(全固体リチウムイオン電池用正極活物質の製造方法)
ニッケル源:コバルト源:マンガン源が、モル比でNi:Co:Mn=85~90:7~9:0~7.5(ただし、Mn=0を除く)となるように調製した遷移金属水溶液を準備する。ニッケル源、コバルト源、マンガン源は、それぞれ硫酸塩、硝酸塩、塩酸塩等であってもよい。
(Method for producing positive electrode active material for all-solid-state lithium ion battery)
An aqueous transition metal solution prepared so that the molar ratio of nickel source:cobalt source:manganese source is Ni:Co:Mn=85-90:7-9:0-7.5 (excluding Mn=0) prepare. The nickel source, cobalt source, and manganese source may be sulfates, nitrates, hydrochlorides, and the like, respectively.
次に、当該遷移金属水溶液と、水酸化ナトリウム水溶液と、アンモニア水とを別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させる。続いて、反応物をろ過、水洗及び乾燥を行うことで組成式:NiaCobMnc(OH)2[式中、a:b:c=85~90:7~9:0~7.5(ただし、c=0を除く)]で示される前駆体粉体を作製する。 Next, the transition metal aqueous solution, the sodium hydroxide aqueous solution, and the ammonia water are prepared in separate tanks, and these are put into one reaction tank and reacted by the crystallization method. Subsequently, the reactant was filtered, washed with water and dried to obtain a composition formula: NiaCobMnc (OH) 2 [wherein a: b : c =85-90:7-9:0-7. 5 (excluding c=0)] is prepared.
このとき、該ニッケル、コバルト及びマンガンで構成される遷移金属の水酸化物前駆体粉体の比表面積が6.9m2/g以上であるのが好ましい。なお、該比表面積は、例えば水酸化物の製造条件(温度、pH、雰囲気等)によって当業者が常識と考える程度で制御することができる。当該前駆体粉体の比表面積が6.9m2/g以上であると、前駆体粉体の細孔容積が大きくなり、表面に付着する水分の許容量が向上する。このため、前駆体粉体が水分を多くしても粉体のままで維持できるため、「だま」になり難い。このように水分の影響が低減するため、後述のように焼成工程が1度であっても正極活物質の製造がより容易となる。 At this time, the transition metal hydroxide precursor powder composed of nickel, cobalt and manganese preferably has a specific surface area of 6.9 m 2 /g or more. The specific surface area can be controlled, for example, by the hydroxide production conditions (temperature, pH, atmosphere, etc.) to the extent considered common sense by those skilled in the art. When the specific surface area of the precursor powder is 6.9 m 2 /g or more, the pore volume of the precursor powder is increased and the allowable amount of water adhering to the surface is improved. Therefore, even if the precursor powder has a large amount of moisture, it can be maintained as a powder, so that it is difficult to form "lumps". Since the influence of moisture is reduced in this way, it becomes easier to manufacture the positive electrode active material even if the baking step is performed only once, as will be described later.
次に、該前駆体粉体をロッキングミキサー(乾式粉体混合機)に投入する。続いて、Nbを63~189g/Lの濃度で含むシュウ酸ニオブ水溶液を、物質量百分率Nb/(Ni+Co+Mn)が0.27~0.55となるように、室温で噴霧時間17~35秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、ロッキングミキサーによって10~15分撹拌し、シュウ酸ニオブが被覆された前駆体粉体を得る。 Next, the precursor powder is put into a rocking mixer (dry powder mixer). Subsequently, a niobium oxalate aqueous solution containing Nb at a concentration of 63 to 189 g / L was sprayed at room temperature for 17 to 35 seconds so that the substance amount percentage Nb / (Ni + Co + Mn) was 0.27 to 0.55. After spraying, the surface of the precursor powder was sprayed in a rocking mixer with a smoothing time of 900 seconds, a rotation speed of 30 Hz, and a rocking speed of 30 Hz. to obtain a precursor powder.
ここで、ロッキングミキサーは、回転と揺動が個別に可変できる乾式粉体混合機であり、回転による拡散混合と揺動による移動混合を同時に行なうことで短時間での均一混合が可能である。 Here, the rocking mixer is a dry powder mixer in which rotation and rocking can be independently changed, and by performing diffusion mixing by rotation and moving mixing by rocking at the same time, uniform mixing in a short time is possible.
続いて、シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを乾式混合して焼成する。具体的には、まず、ロッキングミキサーからシュウ酸ニオブが被覆された前駆体粉体を取り出し、該前駆体粉体とLiOH・H2Oとを、湿度が40~65%の大気雰囲気にて質量百分率Li/(Ni+Co+Mn)が1.0~1.03となるように一つの袋に計量する。次に、袋を粗混合して得た粉体(以下、「粗混合粉」とも称する)を袋から全てヘンシェルミキサーに入れて、10~30Hzで5~15分間混合する。 Subsequently, the precursor powder coated with niobium oxalate and the lithium compound are dry-mixed and fired. Specifically, first, the precursor powder coated with niobium oxalate is taken out from the rocking mixer, and the precursor powder and LiOH.H 2 O are mixed in an air atmosphere with a humidity of 40 to 65%. Weigh into one bag so that the percentage Li/(Ni+Co+Mn) is between 1.0 and 1.03. Next, the powder obtained by roughly mixing the bag (hereinafter also referred to as "coarsely mixed powder") is put entirely from the bag into a Henschel mixer and mixed at 10 to 30 Hz for 5 to 15 minutes.
続いて、混合した粉体(以下、「混合粉」とも称する)をアルミナ匣鉢に充填する。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて、酸素雰囲気下で、350℃で2時間、続いて490℃で8時間、750℃で4時間焼成する。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して正極活物質を得る。 Subsequently, the mixed powder (hereinafter also referred to as “mixed powder”) is filled in an alumina sagger. Next, the firing furnace is filled with oxygen, the alumina sagger is placed in the firing furnace, and fired in an oxygen atmosphere at 350° C. for 2 hours, followed by 490° C. for 8 hours and 750° C. for 4 hours. . After cooling this to room temperature, the alumina sagger is taken out from the firing furnace into dry air and crushed by a roll crusher and an ACM pulverizer to obtain a positive electrode active material.
上記の方法によれば、焼成工程が1度でよいため、熱処理コストが低減し、生産のリードタイムも減少する。このように、本発明の実施形態に係る製造方法によれば、非常に簡便な方法でNb被覆正極活物質を製造することができる。また、当該正極活物質は、リチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されている。 According to the above method, since only one firing step is required, the heat treatment cost is reduced and the production lead time is also reduced. As described above, according to the manufacturing method according to the embodiment of the present invention, the Nb-coated positive electrode active material can be manufactured by a very simple method. In the positive electrode active material, the surface of the lithium-nickel-cobalt-manganese composite oxide is uniformly coated with Nb.
(全固体リチウムイオン電池の製造方法)
本発明の実施形態に係る全固体リチウムイオン電池用正極活物質の製造方法によって製造された全固体リチウムイオン電池用正極活物質を用いて正極層を形成し、固体電解質層、当該正極層及び負極層を備えた全固体リチウムイオン電池を作製することができる。
(Manufacturing method of all-solid-state lithium-ion battery)
A positive electrode layer is formed using a positive electrode active material for an all-solid lithium ion battery manufactured by the method for manufacturing a positive electrode active material for an all-solid lithium ion battery according to an embodiment of the present invention, and a solid electrolyte layer, the positive electrode layer and the negative electrode All-solid-state lithium-ion batteries with the layers can be made.
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 The following examples are provided for a better understanding of the invention and its advantages, but the invention is not limited to these examples.
(実施例1)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で90:7:3となるように調製した遷移金属水溶液、水酸化ナトリウム水溶液、アンモニア水を別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させ、ろ過、水洗及び乾燥を行うことで組成式:Ni0.90Co0.07Mn0.03(OH)2で示される前駆体粉体を得た。この前駆体(以下、コア前駆体とも称する)の平均粒径D50は6μmであり、比表面積(BET)は6.9m2/gであった。
(Example 1)
An aqueous transition metal solution, an aqueous sodium hydroxide solution, and an aqueous ammonia prepared at a molar ratio of nickel sulfate:cobalt sulfate:manganese sulfate of 90:7:3 are prepared in separate tanks, and these are added to one reaction tank. The mixture was reacted by a crystallization method, filtered, washed with water and dried to obtain a precursor powder represented by the composition formula: Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 . This precursor (hereinafter also referred to as core precursor) had an average particle size D50 of 6 μm and a specific surface area (BET) of 6.9 m 2 /g.
次に、コア前駆体の粉体をロッキングミキサーに投入した。続いて、Nbを63~189g/Lの濃度で含むシュウ酸ニオブ水溶液を、室温で噴霧時間17秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、ロッキングミキサーによって20分撹拌した。 The core precursor powder was then charged into a rocking mixer. Subsequently, a niobium oxalate aqueous solution containing Nb at a concentration of 63 to 189 g/L was added to the precursor in a rocking mixer at room temperature for 17 seconds for spraying, 900 seconds for smoothing after spraying, 30 Hz for rotation, and 30 Hz for rocking. An operation of spraying onto the surface of the solid powder was performed, followed by stirring with a rocking mixer for 20 minutes.
次に、該前駆体粉体とLiOH・H2Oとを、湿度が60%の大気雰囲気にて質量百分率Li/(Ni+Co+Mn)が1.01となるように一つの袋に計量した。次に、袋を膨らませたまま開口部を手で握って粉が漏れないようにして、握ってない方の手を袋の底にあてて両方の手で袋を揺らして粗混合した。この粗混合した粉体(以下、「粗混合粉」とも称する)を袋から全てヘンシェルミキサーに入れて、10~30Hzで5~15分間混合した。 Next, the precursor powder and LiOH.H 2 O were weighed into one bag so that the mass percentage Li/(Ni+Co+Mn) was 1.01 in an air atmosphere with a humidity of 60%. Next, while the bag was inflated, the opening was gripped with a hand to prevent the powder from leaking out, and the non-gripped hand was placed on the bottom of the bag and the bag was shaken with both hands to roughly mix the powders. The coarsely mixed powder (hereinafter also referred to as “coarsely mixed powder”) was put into a Henschel mixer from the bag and mixed at 10 to 30 Hz for 5 to 15 minutes.
続いて、混合した粉体(以下、「混合粉」とも称する)をアルミナ匣鉢に充填した。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、750℃で8時間焼成した。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕して実施例1の正極活物質とした。実施例1の正極活物質の組成は、物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。また、被覆部のNb被覆量を、前駆体の組成分析結果、及びシュウ酸ニオブのニオブ濃度に基づいて算出した。 Subsequently, the mixed powder (hereinafter also referred to as “mixed powder”) was filled in an alumina sagger. Next, the firing furnace was filled with oxygen, and the alumina sagger was placed in the firing furnace to create an oxygen atmosphere of 0.1 MPa and fired at 750° C. for 8 hours. After cooling this to room temperature, the alumina sagger was taken out from the kiln into dry air and pulverized with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Example 1. The composition of the positive electrode active material of Example 1 was Ni:Co:Mn=90:7:3 in material amount ratio, Li/(Ni+Co+Mn)=1.01 in mass percentage, and Nb/(Ni+Co+Mn) in material amount percentage. = 0.27. Also, the Nb coating amount of the coated portion was calculated based on the compositional analysis result of the precursor and the niobium concentration of niobium oxalate.
(実施例2)
コア前駆体の組成と平均粒径D50及び比表面積を表1の通りとした以外は、実施例1と同様の方法でNb被覆正極活物質を作製した。実施例2の正極活物質の組成は、物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Example 2)
A Nb-coated positive electrode active material was produced in the same manner as in Example 1, except that the composition, average particle diameter D50, and specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Example 2 was as follows: Ni:Co:Mn=87:9:3 in material amount ratio, Li/(Ni+Co+Mn)=1.01 in mass percentage, and Nb/(Ni+Co+Mn) in material amount percentage. = 0.27.
(実施例3)
コア前駆体の表面のNbが被覆した部分(表1の被覆部)のNb被覆量、シュウ酸ニオブの添加量、被覆時間を表1に示す通りとした以外は、実施例2と同様の方法でNb被覆正極活物質を作製した。実施例3の正極活物質の組成は物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Example 3)
The same method as in Example 2 except that the Nb coating amount of the Nb-coated portion of the surface of the core precursor (coated portion in Table 1), the amount of niobium oxalate added, and the coating time were as shown in Table 1. to prepare a Nb-coated positive electrode active material. The composition of the positive electrode active material of Example 3 has a material amount ratio of Ni:Co:Mn=87:9:3, a mass percentage of Li/(Ni+Co+Mn)=1.01, and a material amount percentage of Nb/(Ni+Co+Mn)= was 0.55.
(実施例4)
コア前駆体の平均粒径D50及び比表面積を表1の通りとした以外は、実施例1と同様の方法でNb被覆正極活物質を作製した。実施例4の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Example 4)
A Nb-coated positive electrode active material was produced in the same manner as in Example 1, except that the average particle diameter D50 and specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Example 4 has a material amount ratio of Ni:Co:Mn=90:7:3, a mass percentage of Li/(Ni+Co+Mn)=1.03, and a material amount percentage of Nb/(Ni+Co+Mn)= was 0.27.
(実施例5)
コア前駆体の組成と平均粒径D50及び比表面積を表1の通りとした以外は、実施例3と同様の方法でNb被覆正極活物質を作製した。実施例5の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Example 5)
A Nb-coated positive electrode active material was produced in the same manner as in Example 3, except that the composition, average particle diameter D50, and specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Example 5 is Ni:Co:Mn=90:7:3 in material amount ratio, Li/(Ni+Co+Mn)=1.03 in mass percentage, and material amount percentage Nb/(Ni+Co+Mn)= was 0.55.
(実施例6)
コア前駆体の組成と平均粒径D50及び比表面積を表1の通りとした以外は、実施例3と同様の方法でNb被覆正極活物質を作製した。実施例6の正極活物質の組成は物質量比でNi:Co:Mn=85:7.5:7.5、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Example 6)
A Nb-coated positive electrode active material was produced in the same manner as in Example 3, except that the composition, average particle diameter D50, and specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Example 6 has a material amount ratio of Ni:Co:Mn=85:7.5:7.5, a mass percentage of Li/(Ni+Co+Mn)=1.01, and a material amount percentage of Nb/ (Ni+Co+Mn)=0.55.
実施例1~6の正極活物質の粒子断面をEPMAで観察したところ、いずれもリチウムニッケルコバルトマンガン複合酸化物の表面にNbが均一に被覆されており、粒子表面にリチウムニッケルコバルトマンガン複合酸化物が露出していることはなかった。 When the cross section of the particles of the positive electrode active materials of Examples 1 to 6 was observed by EPMA, the surfaces of the lithium-nickel-cobalt-manganese composite oxides were uniformly coated with Nb in all cases, and the surfaces of the particles were covered with lithium-nickel-cobalt-manganese composite oxides. was never exposed.
(比較例1)
硫酸ニッケル:硫酸コバルト:硫酸マンガンがモル比で90:7:3となるように調製した遷移金属水溶液、水酸化ナトリウム水溶液、アンモニア水を別々の槽に用意し、これらを一つの反応槽に投入して晶析法により反応させ、ろ過、水洗及び乾燥を行うことで組成式:Ni0.90Co0.07Mn0.03(OH)2で示される前駆体粉体を得た。この前駆体(コア前駆体とも称する)の平均粒径D50は6μmであり、比表面積(BET)は6.9m2/gであった。次に、当該前駆体と水酸化リチウムを実施例1と同様の方法で混合した後、アルミナ匣鉢に充填した。次に、焼成炉中に酸素を充填し、該アルミナ匣鉢を焼成炉中に入れて0.1MPaの酸素雰囲気とし、750℃で8時間焼成した。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕し、正極材を得た。
(Comparative example 1)
An aqueous transition metal solution, an aqueous sodium hydroxide solution, and an aqueous ammonia prepared at a molar ratio of nickel sulfate:cobalt sulfate:manganese sulfate of 90:7:3 are prepared in separate tanks, and these are added to one reaction tank. The mixture was reacted by a crystallization method, filtered, washed with water and dried to obtain a precursor powder represented by the composition formula: Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 . This precursor (also called core precursor) had an average particle size D50 of 6 μm and a specific surface area (BET) of 6.9 m 2 /g. Next, after mixing the said precursor and lithium hydroxide by the method similar to Example 1, the alumina sagger was filled. Next, the firing furnace was filled with oxygen, and the alumina sagger was placed in the firing furnace to create an oxygen atmosphere of 0.1 MPa and fired at 750° C. for 8 hours. After cooling this to room temperature, the alumina sagger was taken out from the firing furnace into dry air and crushed with a roll crusher and an ACM pulverizer to obtain a positive electrode material.
続いて、当該正極材の粉体をロッキングミキサーに投入した。Nbを63~189g/Lの濃度で含むシュウ酸ニオブ水溶液を、室温で噴霧時間17秒、噴霧後均し時間900秒、回転数30Hz、揺動数30Hzでロッキングミキサー中の該前駆体粉体表面へ噴霧する操作を行い、500℃で6時間焼成した。これを室温まで冷却した後、焼成炉から該アルミナ匣鉢をドライエアー中に取り出し、ロールクラッシャーとACMパルベライザーで解砕し、比較例1の正極活物質とした。比較例1の正極活物質の組成は、物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。 Subsequently, the positive electrode material powder was put into a rocking mixer. An aqueous niobium oxalate solution containing Nb at a concentration of 63 to 189 g/L was sprayed at room temperature for 17 seconds, smoothed for 900 seconds after spraying, and the precursor powder was placed in a rocking mixer at a rotation speed of 30 Hz and a rocking speed of 30 Hz. The surface was sprayed and baked at 500° C. for 6 hours. After cooling this to room temperature, the alumina sagger was taken out from the kiln into dry air and pulverized with a roll crusher and an ACM pulverizer to obtain a positive electrode active material of Comparative Example 1. The composition of the positive electrode active material of Comparative Example 1 is Ni:Co:Mn=90:7:3 in material amount ratio, Li/(Ni+Co+Mn)=1.01 in mass percentage, and Nb/(Ni+Co+Mn) in material amount percentage. = 0.27.
(比較例2)
コア前駆体の組成、平均粒径D50、比表面積を表1の通りとした以外は、比較例1と同様の方法でNb被覆正極活物質を作製した。比較例2の正極活物質の組成は物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Comparative example 2)
A Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 1, except that the composition of the core precursor, the average particle size D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 2 is Ni:Co:Mn=87:9:3 in material amount ratio, Li/(Ni+Co+Mn)=1.01 in mass percentage, and material amount percentage Nb/(Ni+Co+Mn)= was 0.27.
(比較例3)
被覆部のNb被覆量、シュウ酸ニオブの添加量、被覆時間を表1の通りとした以外は、比較例2と同様の方法でNb被覆正極活物質を作製した。比較例3の正極活物質の組成は物質量比でNi:Co:Mn=87:9:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Comparative Example 3)
An Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 2, except that the Nb coating amount of the coating portion, the amount of niobium oxalate added, and the coating time were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 3 has a material amount ratio of Ni:Co:Mn=87:9:3, a mass percentage of Li/(Ni+Co+Mn)=1.01, and a material amount percentage of Nb/(Ni+Co+Mn)= was 0.55.
(比較例4)
コア前駆体の平均粒径D50、比表面積を表1の通りとした以外は、比較例1と同様の方法でNb被覆正極活物質を作製した。比較例4の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.27であった。
(Comparative Example 4)
An Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 1, except that the average particle diameter D50 and the specific surface area of the core precursor were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 4 has a material amount ratio of Ni:Co:Mn=90:7:3, a mass percentage of Li/(Ni+Co+Mn)=1.03, and a material amount percentage of Nb/(Ni+Co+Mn)= was 0.27.
(比較例5)
コア前駆体の組成、平均粒径D50、比表面積を表1の通りとした以外は、比較例3と同様の方法でNb被覆正極活物質を作製した。比較例5の正極活物質の組成は物質量比でNi:Co:Mn=90:7:3、かつ質量百分率でLi/(Ni+Co+Mn)=1.03、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Comparative Example 5)
A Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 3, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 5 has a material amount ratio of Ni:Co:Mn=90:7:3, a mass percentage of Li/(Ni+Co+Mn)=1.03, and a material amount percentage of Nb/(Ni+Co+Mn)= was 0.55.
(比較例6)
コア前駆体の組成、平均粒径D50、比表面積を表1の通りとした以外は、比較例3と同様の方法でNb被覆正極活物質を作製した。比較例6の正極活物質の組成は物質量比でNi:Co:Mn=85:7.5:7.5、かつ質量百分率でLi/(Ni+Co+Mn)=1.01、かつ物質量百分率Nb/(Ni+Co+Mn)=0.55であった。
(Comparative Example 6)
A Nb-coated positive electrode active material was produced in the same manner as in Comparative Example 3, except that the composition of the core precursor, the average particle diameter D50, and the specific surface area were as shown in Table 1. The composition of the positive electrode active material of Comparative Example 6 was Ni:Co:Mn=85:7.5:7.5 in material amount ratio, and Li/(Ni+Co+Mn)=1.01 in mass percentage, and Nb/ (Ni+Co+Mn)=0.55.
-電池特性の評価(全固体リチウムイオン電池)-
実施例および比較例の正極活物質と、LiI-Li2S-P2S5とを、7:3の質量比で秤量し、混合して正極合剤とした。内径10mmの金型中にLi-In合金、LiI-Li2S-P2S5、正極合剤、Al箔をこの順で充填し、500MPaでプレスした。このプレス後の成形体を、金属製治具を用いて100MPaで拘束することにより、全固体リチウムイオン電池を作製した。この電池について、充放電レート0.05Cで得られた初期放電容量(25℃、充電上限電圧:3.7V、放電下限電圧:2.5V)を測定した。次に充放電レート1Cで充放電を10回繰り返した(55℃、充電上限電圧:3.7V、放電下限電圧:2.5V)。充放電レート1Cでの1回目の放電で得られた容量を放電容量1とし、充放電レート1Cでの10回目の放電で得られた容量を放電容量2とし、(放電容量2)/(放電容量1)の比を百分率としてサイクル特性:「10サイクル(%)」とした。
試験条件及び評価結果を表1に示す。
-Evaluation of battery characteristics (all-solid-state lithium-ion battery)-
The positive electrode active materials of Examples and Comparative Examples and LiI—Li 2 SP 2 S 5 were weighed at a mass ratio of 7:3 and mixed to obtain a positive electrode mixture. A mold having an inner diameter of 10 mm was filled with a Li--In alloy, LiI--Li 2 SP 2 S 5 , positive electrode mixture and Al foil in this order, and pressed at 500 MPa. An all-solid-state lithium ion battery was produced by constraining the compact after pressing at 100 MPa using a metal jig. For this battery, the initial discharge capacity obtained at a charge/discharge rate of 0.05C (25°C, upper limit charge voltage: 3.7V, lower limit discharge voltage: 2.5V) was measured. Next, charging and discharging were repeated 10 times at a charging and discharging rate of 1 C (55° C., upper limit charging voltage: 3.7 V, lower limiting discharging voltage: 2.5 V). The capacity obtained in the first discharge at a charge/discharge rate of 1C is defined as discharge capacity 1, the capacity obtained in the tenth discharge at a charge/discharge rate of 1C is defined as discharge capacity 2, and (discharge capacity 2) / (discharge The ratio of the capacity 1) was defined as a percentage, and the cycle characteristics were defined as "10 cycles (%)".
Table 1 shows test conditions and evaluation results.
前駆体の組成及び処理方法が同様の実施例1と比較例1とを対比すると、実施例1は焼成工程が1回で済むにもかかわらず、比較例1に対して電池特性が同程度または優れていた。
同様に、実施例2~6についても、焼成工程が1回で済むにもかかわらず、前駆体の組成及び処理方法がそれぞれ同様である比較例2~6に対して電池特性が同程度または優れていた。
Comparing Example 1 and Comparative Example 1, which have the same precursor composition and treatment method, although Example 1 requires only one firing step, the battery characteristics are comparable or similar to those of Comparative Example 1. was excellent.
Similarly, in Examples 2 to 6, the battery characteristics were comparable or superior to those in Comparative Examples 2 to 6, in which the composition of the precursor and the treatment method were the same, although only one firing step was required. was
Claims (4)
前記シュウ酸ニオブが被覆された前駆体粉体とリチウム化合物とを混合して焼成する工程と、
を含む全固体リチウムイオン電池用正極活物質の製造方法。 A step of putting a transition metal hydroxide precursor composed of nickel, cobalt and manganese into a rocking mixer and spraying a niobium oxalate aqueous solution to prepare precursor powder coated with niobium oxalate;
a step of mixing and firing the precursor powder coated with niobium oxalate and a lithium compound;
A method for producing a positive electrode active material for an all-solid-state lithium ion battery, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018186849A JP7118843B2 (en) | 2018-10-01 | 2018-10-01 | Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018186849A JP7118843B2 (en) | 2018-10-01 | 2018-10-01 | Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020057503A JP2020057503A (en) | 2020-04-09 |
JP7118843B2 true JP7118843B2 (en) | 2022-08-16 |
Family
ID=70107539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018186849A Active JP7118843B2 (en) | 2018-10-01 | 2018-10-01 | Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7118843B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101662671B1 (en) * | 2014-05-30 | 2016-10-06 | 삼성중공업 주식회사 | Fuel cell system having impurity reuse structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380995B (en) * | 2021-04-29 | 2022-08-12 | 厦门大学 | Modification method of lithium-rich cathode material |
KR102707545B1 (en) * | 2021-10-28 | 2024-09-13 | 주식회사 에코프로비엠 | Method for manufacturing positive electrode active material for solid secondary battery |
KR102707546B1 (en) * | 2021-10-29 | 2024-09-13 | 주식회사 에코프로비엠 | Method for manufacturing positive electrode active material for solid secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015002120A (en) | 2013-06-17 | 2015-01-05 | 住友金属鉱山株式会社 | Nickel cobalt manganese composite hydroxide, and method for manufacturing the same |
JP2017098196A (en) | 2015-11-27 | 2017-06-01 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid |
JP2018073686A (en) | 2016-10-31 | 2018-05-10 | 住友化学株式会社 | Positive electrode active material precursor for lithium secondary battery and method of producing positive electrode active material for lithium secondary battery |
-
2018
- 2018-10-01 JP JP2018186849A patent/JP7118843B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015002120A (en) | 2013-06-17 | 2015-01-05 | 住友金属鉱山株式会社 | Nickel cobalt manganese composite hydroxide, and method for manufacturing the same |
JP2017098196A (en) | 2015-11-27 | 2017-06-01 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and method for manufacturing coating liquid |
JP2018073686A (en) | 2016-10-31 | 2018-05-10 | 住友化学株式会社 | Positive electrode active material precursor for lithium secondary battery and method of producing positive electrode active material for lithium secondary battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101662671B1 (en) * | 2014-05-30 | 2016-10-06 | 삼성중공업 주식회사 | Fuel cell system having impurity reuse structure |
Also Published As
Publication number | Publication date |
---|---|
JP2020057503A (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7118843B2 (en) | Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery | |
JP7118851B2 (en) | Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery | |
JP6943985B2 (en) | Positive electrode for solid-state battery, solid-state battery, and method for manufacturing solid-state battery | |
US10050258B2 (en) | Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same | |
CN104409700A (en) | Anode material for nickel-base lithium ion battery and preparation method of anode material | |
KR102324996B1 (en) | Positive active material for all-solid-state lithium secondary battery | |
EP3736889B1 (en) | Positive electrode active material for all-solid lithium ion battery, positive electrode for all-solid lithium ion battery, and all-solid lithium ion battery | |
JP7159639B2 (en) | Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery | |
JP2017188211A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, positive electrode mixture paste for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
CN111261851A (en) | Ternary cathode material of lithium ion battery and preparation method thereof | |
JP6269645B2 (en) | Method for producing active material composite | |
JP7198170B2 (en) | Positive electrode active material for all-solid lithium-ion battery, method for producing positive electrode active material for all-solid-state lithium-ion battery, and all-solid lithium-ion battery | |
JP6737930B1 (en) | Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery, and method for producing positive-electrode active material for all-solid-state lithium-ion battery | |
JP6568333B1 (en) | Positive electrode active material, method for producing the same, positive electrode, and lithium ion battery | |
JP2021163580A (en) | Positive electrode composite active material particle and production method thereof, positive electrode, and solid battery | |
CN109473636A (en) | A kind of solid state lithium battery surface modified anode material and preparation method thereof | |
JP7109334B2 (en) | Method for manufacturing positive electrode for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery | |
CN110120503A (en) | A kind of composite positive pole and its preparation method and application | |
JP7198173B2 (en) | Method for manufacturing positive electrode active material for all-solid-state lithium-ion battery, method for manufacturing positive electrode for all-solid-state lithium-ion battery, and method for manufacturing all-solid-state lithium-ion battery | |
JP7338133B2 (en) | Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
KR20180074340A (en) | Method of manufacturing positive active material for lithium secondary battery | |
JP7119302B2 (en) | Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP6880086B2 (en) | Manufacturing method of oxide-based positive electrode active material for all-solid-state lithium-ion battery, oxide-based positive electrode active material for all-solid-state lithium-ion battery, and all-solid-state lithium-ion battery | |
JP7292026B2 (en) | Method for producing positive electrode active material for all-solid-state lithium-ion battery, and method for producing all-solid-state lithium-ion battery | |
JP7541152B1 (en) | Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220803 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7118843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |