JP7118589B2 - Electronic component life prediction device and electronic component life prediction method - Google Patents

Electronic component life prediction device and electronic component life prediction method Download PDF

Info

Publication number
JP7118589B2
JP7118589B2 JP2017001178A JP2017001178A JP7118589B2 JP 7118589 B2 JP7118589 B2 JP 7118589B2 JP 2017001178 A JP2017001178 A JP 2017001178A JP 2017001178 A JP2017001178 A JP 2017001178A JP 7118589 B2 JP7118589 B2 JP 7118589B2
Authority
JP
Japan
Prior art keywords
electronic components
variation
electronic component
load
load test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001178A
Other languages
Japanese (ja)
Other versions
JP2018112410A (en
Inventor
雄一 角本
和也 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017001178A priority Critical patent/JP7118589B2/en
Publication of JP2018112410A publication Critical patent/JP2018112410A/en
Application granted granted Critical
Publication of JP7118589B2 publication Critical patent/JP7118589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、電子部品の寿命予測装置及び電子部品の寿命予測方法に関する。 TECHNICAL FIELD Embodiments of the present invention relate to an electronic component life prediction apparatus and an electronic component life prediction method.

電解コンデンサやLEDなどの電子部品は、静電容量などの諸特性が経時的に劣化することが知られている。そこで、電子部品の寿命(耐用期間)を短時間で予測する技術が提案されている。 It is known that electronic components such as electrolytic capacitors and LEDs deteriorate over time in various characteristics such as capacitance. Therefore, techniques have been proposed for predicting the life (service life) of electronic components in a short period of time.

電子部品の寿命を予測する場合、例えば加速劣化試験を電子部品に対して実施することにより、耐用年数などが検証される。一般に、電子部品の保障期間や規格を考慮したうえで加速劣化試験を行う際には、電子部品の実使用環境下における耐用期間を予測することが重要となる。 When predicting the life of an electronic component, for example, the useful life and the like are verified by performing an accelerated deterioration test on the electronic component. In general, when performing accelerated deterioration tests in consideration of the warranty period and standards of electronic components, it is important to predict the service life of the electronic components under the actual usage environment.

特開2013-44714号公報JP 2013-44714 A 特開2012-132882号公報JP 2012-132882 A

近年では、電子部品の長寿命化(耐用期間の長期化)に伴い、数千時間から数万時間にも及ぶ加速劣化試験を行う必要性がある。このため、近年の電子部品は、耐用期間の予測に多くの時間を要する。つまり、電子部品を搭載する電子機器類の開発期間を短縮するためにも、電子部品の寿命の予測に要する時間を削減することが求められている。 In recent years, with the extension of the life of electronic components (extension of service life), there is a need to conduct accelerated deterioration tests for thousands to tens of thousands of hours. For this reason, it takes a long time to predict the useful life of electronic components in recent years. In other words, in order to shorten the development period of electronic equipment on which electronic components are mounted, it is required to reduce the time required for predicting the life of electronic components.

そこで、本発明が解決しようとする課題は、電子部品の寿命を短時間で予測できる電子部品の寿命予測装置及び電子部品の寿命予測方法を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electronic component life prediction apparatus and an electronic component life prediction method capable of predicting the life of an electronic component in a short time.

実施の形態に係る電子部品の寿命予測装置は、記憶部、ばらつき取得部及び寿命算出部を備えている。記憶部は、複数の負荷因子を同時に与える複合負荷試験を実施した後の複数の第1の電子部品における特性の変動量のばらつきと前記複数の第1の電子部品の寿命との相関関係を記憶する。ばらつき取得部は、複合負荷試験を実施した後の複数の第2の電子部品における特性の変動量のばらつきを取得する。寿命算出部は、記憶部に記憶された相関関係と前記取得された特性の変動量のばらつきとに基づいて、複数の第2の電子部品の寿命を算出する。複数の第1及び第2の電子部品における特性の変動量のばらつきは、品質工学における静特性のうちの望小特性として算出可能な機能余裕度SN比である。前記複数の第1及び第2の電子部品のそれぞれは、製品の仕様が互いに共通する電子部品である。
An electronic component lifespan prediction apparatus according to an embodiment includes a storage unit, a variation acquisition unit, and a lifespan calculation unit. The storage unit stores a correlation between variations in characteristic fluctuation amounts of the plurality of first electronic components after performing a combined load test in which a plurality of load factors are applied simultaneously and life spans of the plurality of first electronic components. do. The variation acquisition unit acquires variations in the amount of variation in the characteristics of the plurality of second electronic components after performing the combined load test. The service life calculation unit calculates the service life of the plurality of second electronic components based on the correlation stored in the storage unit and the variation in the obtained variation amount of the characteristics. Variation in the amount of characteristic variation in the plurality of first and second electronic components is a functional margin SN ratio that can be calculated as a desirable or small characteristic among static characteristics in quality engineering . Each of the plurality of first and second electronic components is an electronic component having common product specifications.

本発明によれば、電子部品の寿命を短時間で予測することが可能な電子部品の寿命予測装置及び電子部品の寿命予測方法を提供することができる。 According to the present invention, it is possible to provide an electronic component life prediction apparatus and an electronic component life prediction method capable of predicting the life of an electronic component in a short time.

実施の形態に係る電子部品の寿命予測装置の構成を機能的に示すブロック図。1 is a block diagram functionally showing the configuration of an electronic component life prediction apparatus according to an embodiment; FIG. 図1の寿命予測装置が寿命予測の対象とする電解コンデンサの断面図。FIG. 2 is a cross-sectional view of an electrolytic capacitor whose life is to be predicted by the life prediction device of FIG. 1 ; 比較例として温度加速劣化試験の結果を例示した図。The figure which illustrated the result of the temperature accelerated deterioration test as a comparative example. 図1の寿命予測装置が適用する相関近似線を得るためのフローチャート。FIG. 2 is a flow chart for obtaining a correlation approximation line applied by the life prediction device of FIG. 1; FIG. 図4の相関近似線の一例を示す図。The figure which shows an example of the correlation approximation line of FIG. 図1の寿命予測装置が用いる複合負荷試験の負荷因子を選定するためのフローチャート。2 is a flowchart for selecting load factors for a combined load test used by the life prediction device of FIG. 1; 図2の電解コンデンサへ適用可能な負荷因子毎の試験条件の一例を示す図。FIG. 3 is a diagram showing an example of test conditions for each load factor applicable to the electrolytic capacitor of FIG. 2; 図2の電解コンデンサへ適用可能な負荷因子毎における静電容量の低下に対する影響度、及び他の負荷因子と組み合せた場合の有用性を例示した図。FIG. 3 is a diagram exemplifying the degree of impact on capacitance reduction for each load factor applicable to the electrolytic capacitor of FIG. 2 and usefulness when combined with other load factors; 図2の電解コンデンサへ適用可能な単一負荷因子の静電容量の低下に対する影響度の一例を示すグラフ。FIG. 3 is a graph showing an example of the influence of a single load factor applicable to the electrolytic capacitor of FIG. 2 on the decrease in capacitance; FIG. 図2の電解コンデンサへ適用可能な複合負荷因子の静電容量の低下に対する影響度の一例を示すグラフ。FIG. 3 is a graph showing an example of the degree of influence of a composite load factor applicable to the electrolytic capacitor of FIG. 2 on a decrease in capacitance; FIG. LEDへ適用可能な負荷因子毎の試験条件の一例を示す図。The figure which shows an example of the test conditions for every load factor applicable to LED. 図1の寿命予測装置による電子部品の寿命を予測するフローチャート。2 is a flow chart for predicting the life of an electronic component by the life prediction device of FIG. 1;

以下、実施の形態を図面に基づき説明する。
図1に示すように、本実施形態に係る電子部品の寿命予測装置10は、相関関係記憶部11、ばらつき取得部12、寿命算出部13、データベース14、影響度判定部15などを備えている。
Embodiments will be described below with reference to the drawings.
As shown in FIG. 1, an electronic component life prediction device 10 according to the present embodiment includes a correlation storage unit 11, a variation acquisition unit 12, a life calculation unit 13, a database 14, an influence determination unit 15, and the like. .

相関関係記憶部11は、複合負荷試験を実施した後の複数の第1の電子部品における特性の変動量のばらつき(機能余裕度SN比)と、前記複数の第1の電子部品の寿命との相関関係(相関近似線)を記憶する。複合負荷試験は、試験対象の電子部品に対して複数の負荷因子を同時に与える。一方、ばらつき取得部12は、前記複合負荷試験を実施した後の複数の第2の電子部品における特性の変動量のばらつきを取得する。ここで、上記した複数の第1及び第2の電子部品のそれぞれは、製品の仕様が互いに共通する電子部品であって、より具体的には、製造メーカや製造場所などが異なるものの、製品のスペック(製品規格)が同じ電子部品である。 The correlation storage unit 11 stores the variation in characteristic fluctuation amount (functional margin SN ratio) in the plurality of first electronic components after the combined load test and the service life of the plurality of first electronic components. Store the correlation (correlation approximation line). A compound load test subjects an electronic component under test to multiple load factors simultaneously. On the other hand, the variation acquiring unit 12 acquires variations in characteristic variation amounts of the plurality of second electronic components after the composite load test is performed. Here, each of the plurality of first and second electronic components described above is an electronic component whose product specifications are common to each other. Electronic components with the same specifications (product standards).

寿命算出部13は、相関関係記憶部11に記憶された相関関係と、ばらつき取得部12によって取得された特性の変動量のばらつきと、に基づいて、前記複数の第2の電子部品の寿命を算出する。データベース14は、電子部品の寿命の予測に必要な各種のデータを記憶している。影響度判定部15は、複合負荷試験に適用する負荷因子を選定するために、前記第1、第2の電子部品の経時的劣化に対する単一の負荷因子(負荷因子毎)の影響度を判定する。なお、相関関係記憶部11、ばらつき取得部12、寿命算出部13などの図1に示す各部の構成については後に詳述する。 A lifespan calculation unit 13 calculates the lifespan of the plurality of second electronic components based on the correlation stored in the correlation storage unit 11 and the variation in characteristic variation acquired by the variation acquisition unit 12. calculate. The database 14 stores various data necessary for predicting the life of electronic components. In order to select a load factor to be applied to the composite load test, the impact determination unit 15 determines the impact of a single load factor (each load factor) on the deterioration over time of the first and second electronic components. do. The configuration of each unit shown in FIG. 1, such as the correlation storage unit 11, the variation acquisition unit 12, and the life calculation unit 13, will be described in detail later.

図2に示すように、本実施形態では、寿命の予測に適用される第1、第2の電子部品としてリードタイプの電解コンデンサ20を例示する。電解コンデンサ20は、電源回路の平滑用として、産業機器に多用されている有限寿命部品である。電解コンデンサ20は、スリーブ21、アルミニウムケース22、素子部23、封口ゴム24、アルミニウムリード25、リード線26を有する。なお、電解コンデンサが表面実装型の場合、リード線が図2に示すものとは異なる形状となる。 As shown in FIG. 2, in the present embodiment, a lead-type electrolytic capacitor 20 is exemplified as the first and second electronic components applied to life prediction. The electrolytic capacitor 20 is a finite-life component widely used in industrial equipment for smoothing power supply circuits. The electrolytic capacitor 20 has a sleeve 21 , an aluminum case 22 , an element portion 23 , a sealing rubber 24 , aluminum leads 25 and lead wires 26 . If the electrolytic capacitor is of the surface mount type, the lead wire has a shape different from that shown in FIG.

図2に示すように、素子部23は、アルミ箔の表面をエッチング処理することによって表面積を拡大し、耐電圧が高くて薄い酸化被膜を化成処理で形成した陽極箔と、エッチング処理のみの陰極箔との間に電解紙を挿入して、円筒形の素子に巻き取ることによって製造される。さらに、素子部23に電解液を含浸させ、素子部23をアルミニウムケース22に入れた後、封口ゴム24でパッキングし、アルミニウムケース22に絞り加工を施すことで封止を行う。この後、定格値など必要な表示を施したスリーブ21をアルミニウムケース22の外側に被覆する。 As shown in FIG. 2, the element portion 23 is composed of an anode foil formed by etching the surface of an aluminum foil to increase the surface area and forming a thin oxide film with a high withstand voltage by chemical conversion treatment, and a cathode foil only by etching treatment. It is manufactured by inserting electrolytic paper between the foil and winding it into a cylindrical element. Further, the element part 23 is impregnated with an electrolytic solution, the element part 23 is placed in the aluminum case 22, and then the sealing rubber 24 is used for packing. After that, the outer surface of the aluminum case 22 is covered with a sleeve 21 with necessary indications such as rated values.

このような構造の電解コンデンサ20は、経時的な劣化によって、内部に含浸された電解液が封口ゴム24の周辺から外部へ流れ出し、静電容量、誘電体内での電気エネルギ損失の度合いを表す誘電正接(tanδ)、漏れ電流、といった各種の特性が低下する。ここで、図3は、品種の異なる2種類の電解コンデンサに対し、温度の要素を単一の負荷因子として適用した加速劣化試験(温度加速劣化試験)の結果を例示している。静電容量の変化率が例えば-7%~-10%になった場合を製品寿命に達したものとして想定すると、図3では、数千時間から数万時間にも及ぶ評価時間(寿命予測時間)が必要であることが表されている。 In the electrolytic capacitor 20 having such a structure, the electrolytic solution impregnated inside flows out from the periphery of the sealing rubber 24 due to deterioration over time, and the capacitance and the dielectric, which expresses the degree of electrical energy loss in the dielectric. Various properties such as tangent (tan δ) and leakage current are degraded. Here, FIG. 3 illustrates the results of an accelerated deterioration test (temperature accelerated deterioration test) in which temperature is applied as a single load factor to two types of electrolytic capacitors of different types. Assuming that the product has reached the end of its life when the rate of change in capacitance reaches, for example, -7% to -10%, FIG. ) is required.

そこで、本実施形態に係る電子部品の寿命予測装置10は、上記したように、経時的に劣化する電解コンデンサなどの電子部品の寿命を、短時間で予測することの可能な機能を有している。まず、図4~図6を参照して、寿命の予測に必要な相関近似線を得る手順について説明する。 Therefore, as described above, the electronic component life prediction apparatus 10 according to the present embodiment has a function capable of quickly predicting the life of an electronic component such as an electrolytic capacitor that deteriorates over time. there is First, with reference to FIGS. 4 to 6, a procedure for obtaining a correlation approximation line necessary for life prediction will be described.

図4に示すように、複数の種類の電解コンデンサ(上記した第1の電子部品)を複数個ずつ準備する(S[ステップ]1)。準備する電解コンデンサは、例えば型式や寸法などを特に限定する必要はないものの、製品のスペックが共通のものを用意する。例えば3種類以上の品種の電解コンデンサをそれぞれ3個~5個ほど準備する。 As shown in FIG. 4, a plurality of types of electrolytic capacitors (first electronic components described above) are prepared (S [step] 1). The electrolytic capacitors to be prepared do not have to be limited in terms of model or size, but prepare those with common product specifications. For example, three to five electrolytic capacitors of three or more types are prepared.

次に、電解コンデンサ毎に初期の諸特性として例えば静電容量を計測する(S2)。初期の特性は、複合負荷試験を行う前の特性である。なお、電解コンデンサの特性として、例えば静電容量を例示しているが、計測する特性を静電容量に限定する必要はない。劣化する対象の特性が複数ある場合には、少なくとも一つを限定して、指定された特性の初期特性を計測すればよい。また、計測環境は、例えば常温及び常湿の環境である。 Next, for each electrolytic capacitor, capacitance is measured as initial characteristics (S2). The initial properties are the properties before the combined load test. In addition, although the capacitance is exemplified as the characteristic of the electrolytic capacitor, the characteristic to be measured need not be limited to the capacitance. If there are a plurality of characteristics to be degraded, at least one of them should be limited and the initial characteristics of the specified characteristics should be measured. Also, the measurement environment is, for example, a normal temperature and normal humidity environment.

続いて、初期の特性が計測された各電解コンデンサに対して複合負荷試験を実施する(S3)。複合負荷試験は、電解コンデンサに対し、複数の種類の負荷因子(劣化をひき起こす要素)を同時に適用する。この複合負荷試験は、温度の要素を単一の負荷因子として適用した加速劣化試験(数千時間以上もの試験時間を要していた上記の温度加速劣化試験)よりも短い、数十時間程度の試験時間で完了する。 Subsequently, a combined load test is performed on each electrolytic capacitor whose initial characteristics have been measured (S3). A combined load test simultaneously applies multiple types of load factors (factors that cause degradation) to an electrolytic capacitor. This combined load test takes several tens of hours, which is shorter than the accelerated aging test that applies the temperature element as a single load factor (the above-mentioned temperature accelerated aging test, which required thousands of hours or more). Complete in exam time.

次いで、複合負荷試験が完了した後、各電解コンデンサの諸特性として静電容量を計測する(S4)。この場合の計測環境も、S2(ステップ2)と同様に例えば常温、常湿の環境である。次に、電解コンデンサ毎の、複合負荷試験前に計測した特性と複合負荷試験後に計測した特性とに基づいて、機能余裕度SN比を算出する(S5)。つまり、複合負荷試験前後における各電解コンデンサの特性の変動量(静電容量)のばらつきを示す機能余裕度SN比を求める。 Next, after the composite load test is completed, capacitance is measured as various characteristics of each electrolytic capacitor (S4). The measurement environment in this case is, for example, normal temperature and normal humidity as in S2 (step 2). Next, the functional margin SN ratio is calculated for each electrolytic capacitor based on the characteristics measured before the composite load test and the characteristics measured after the composite load test (S5). In other words, the functional margin SN ratio indicating the fluctuation amount (capacitance) of the characteristics of each electrolytic capacitor before and after the composite load test is obtained.

機能余裕度SN比は、例えば品質工学における静特性のうちの望小特性として算出可能であり、当該SN比が大きいほど、上述した特性の変動量(静電容量)のばらつきが小さくなる。このような静特性のSN比は、下記の式1を用いて計算されることが知られている。ここで、式1中の「yi0」は初期の特性、「yi」は負荷試験後の特性、「n」はサンプル数である。 The functional margin SN ratio can be calculated, for example, as a desired small characteristic among static characteristics in quality engineering, and the larger the SN ratio, the smaller the fluctuation amount (capacitance) of the characteristic described above. It is known that the SN ratio of such static characteristics is calculated using Equation 1 below. Here, "y i0 " in Equation 1 is the initial characteristic, "y i " is the characteristic after the load test, and "n" is the number of samples.

Figure 0007118589000001
Figure 0007118589000001

最後に、図4、図5に示すように、算出された機能余裕度SN比(電解コンデンサ毎の特性の変動量のばらつき)と、電解コンデンサ(第1の電子部品)の寿命と、の相関関係を表す相関近似線を、データベース14の内容を参照しつつ生成する(S6)。相関関係記憶部11は、生成された相関近似線を記憶する。 Finally, as shown in FIGS. 4 and 5, the correlation between the calculated functional margin SN ratio (variation in characteristic fluctuation amount for each electrolytic capacitor) and the life of the electrolytic capacitor (first electronic component) A correlation approximation line representing the relationship is generated with reference to the contents of the database 14 (S6). The correlation storage unit 11 stores the generated correlation approximation line.

データベース14には、例えばS1(ステップ1)で準備した電解コンデンサとは、型式が異なる他の電解コンデンサ(耐用期間を検証済みの他の電子部品)に関する情報が記憶されている。ただし、当該型式が異なる他の電解コンデンサ(この他の電子部品)は、準備した電解コンデンサに対して、例えばスペックが共通若しくはスペックが近似する電子部品である。データベース14には、例えば当該品種の異なる電解コンデンサの寿命と機能余裕度SN比との関係が予め記憶されている。したがって、S1(ステップ5)で算出された機能余裕度SN比とこのようなデータベース14の記憶内容とに基づいて、図5に示す相関近似線を得ることが可能となる。 The database 14 stores, for example, information on other electrolytic capacitors (other electronic components whose service life has been verified) that are different in model from the electrolytic capacitors prepared in S1 (step 1). However, the other electrolytic capacitor (other electronic component) of the different type is an electronic component having, for example, specifications common to or similar to the prepared electrolytic capacitor. The database 14 pre-stores, for example, the relationship between the service life and functional margin SN ratio of electrolytic capacitors of different types. Therefore, it is possible to obtain the approximate correlation line shown in FIG.

次に、図6~図8を参照しつつ、図4に示したS3(ステップ3)の複合負荷試験に適用される負荷因子を選定する処理手順を説明する。図4に示したステップSlと同様に、まず、図6に示すように、複数の種類の電解コンデンサ(上記した第1の電子部品)を複数個ずつ準備する(S11)。次に、図4に示したステップS2と同様に、複数の電解コンデンサの初期の特性を計測する(S12)。 Next, referring to FIGS. 6 to 8, a processing procedure for selecting load factors applied to the composite load test of S3 (step 3) shown in FIG. 4 will be described. Similarly to step Sl shown in FIG. 4, first, as shown in FIG. 6, a plurality of types of electrolytic capacitors (first electronic components described above) are prepared (S11). Next, as in step S2 shown in FIG. 4, the initial characteristics of the plurality of electrolytic capacitors are measured (S12).

さらに、図7に示すように、計測対象の特性に対して影響する負荷因子を列挙する。この列挙された負荷因子の各々に関して、限界点や規格値に基づき単一負荷試験条件を策定する。複合負荷試験では、電解コンデンサ(前述した第1及び第2の電子部品)における構成材料の物性を維持し得る条件範囲内(上記の限界点以下)での負荷因子が適用される。上記の策定された単一負荷試験条件において、例えば数十時間、各負荷因子に対応する負荷を電解コンデンサに対して与える単一負荷試験を行う(S13)。なお、単一負荷試験は、複数の電解コンデンサに対して行ってもよいし、1つの電解コンデンサに対して行ってもよい。 Furthermore, as shown in FIG. 7, load factors that affect the characteristics of the measurement object are listed. For each of the listed load factors, single load test conditions are developed based on limit points and specification values. In the composite load test, a load factor is applied within the range of conditions (below the limit points described above) that can maintain the physical properties of the constituent materials in the electrolytic capacitors (first and second electronic components described above). A single load test is performed in which a load corresponding to each load factor is applied to the electrolytic capacitor for, for example, several tens of hours under the above defined single load test conditions (S13). The single load test may be performed on a plurality of electrolytic capacitors or may be performed on one electrolytic capacitor.

次に、単一負荷試験が完了した後、各電解コンデンサの諸特性として静電容量を計測する(S14)。なお、計測環境は、S2(ステップ2)と同様に、例えば常温及び常湿の環境である。次に、電解コンデンサ毎の、単一負荷試験前に計測した特性と単一負荷試験後に計測した特性とに基づいて、機能余裕度SN比を算出する(S15)。つまり、単一負荷試験前後における各電解コンデンサの特性の変動量(静電容量)のばらつきを示す機能余裕度SN比を求める。この場合の機能余裕度SN比も、上記した式1を用いて、例えば品質工学における静特性のSN比(望小特性のSN比)を算出するものとなる。 Next, after the single load test is completed, capacitance is measured as various characteristics of each electrolytic capacitor (S14). It should be noted that the measurement environment is, for example, normal temperature and normal humidity, as in S2 (step 2). Next, the functional margin SN ratio is calculated for each electrolytic capacitor based on the characteristics measured before the single load test and the characteristics measured after the single load test (S15). In other words, the functional margin SN ratio indicating the fluctuation amount (capacitance) of the characteristics of each electrolytic capacitor before and after the single load test is obtained. The function margin SN ratio in this case is also obtained by calculating the SN ratio of the static characteristic (the SN ratio of the desired small characteristic) in quality engineering, for example, using Equation 1 described above.

最後に、S15(ステップl5)で算出された機能余裕度SN比に基づき、影響度判定部15は、各負荷因子の電解コンデンサに対する影響度を判定する(S16)。つまり、影響度判定部15は、複合負荷試験で適用する負荷因子を、一つの負荷因子を与える単一負荷試験を実施した後の複数の電解コンデンサ(第1の電子部品)における特性の変動量のばらつきを基に選定する。このような影響度の判定によって、図4に示したS3(ステップ3)における複合負荷試験において同時に組み合わせて適用する妥当な負荷因子が選定される。 Finally, based on the functional margin SN ratio calculated in S15 (step 15), the influence determination unit 15 determines the influence of each load factor on the electrolytic capacitor (S16). In other words, the influence degree determination unit 15 determines the amount of change in the characteristics of a plurality of electrolytic capacitors (first electronic components) after performing a single load test that gives one load factor as the load factor applied in the composite load test. selection based on the variation of Appropriate load factors to be combined and applied at the same time in the composite load test in S3 (step 3) shown in FIG.

図7は、電解コンデンサの例えば構成材料の限界点や、規格値を参考に試験条件案を策定した一例である。電解コンデンサの静電容量が低下する故障のメカニズムとしては、電解液のドライアップや誘電体酸化被膜の化成及び水和などが考えられる。このため、例えば温度、湿度(例えば湿度80%を50時間継続)、ヒートサイクル、逆電圧(例えば-1.5V~-2Vを印加)、過電圧(例えば定格の1.5倍の電圧を印加)などが負荷指標(抽出要因)として挙げられる。 FIG. 7 shows an example of test condition proposals drawn up with reference to, for example, the limits of constituent materials and standard values of electrolytic capacitors. Mechanisms of failure that reduce the capacitance of electrolytic capacitors include dry-up of the electrolytic solution, formation and hydration of the dielectric oxide film, and the like. For this reason, for example, temperature, humidity (e.g. 80% humidity for 50 hours), heat cycle, reverse voltage (e.g. -1.5 V to -2 V applied), overvoltage (e.g. 1.5 times the rated voltage applied) and the like are examples of load indexes (extraction factors).

また、複合負荷試験において、負荷因子を適用するための条件は、環境的負荷因子及び電気的負荷因子から電子部品毎に適宜選定されるものである。図8は、電解コンデンサの特性(静電容量)に対する負荷因子毎の影響度、及び負荷因子毎の他の負荷因子との組み合わせの有用性を示している。ここで、図8中における項目(影響度、組み合わせの有用性)毎の、「◎」は大きい、「○」は、やや大きい、「△」は、やや小さい、「×」は小さい、をそれぞれ示している。 Moreover, in the composite load test, the conditions for applying the load factor are appropriately selected for each electronic component from the environmental load factor and the electrical load factor. FIG. 8 shows the degree of influence of each load factor on the characteristics (capacitance) of the electrolytic capacitor, and the usefulness of combining each load factor with other load factors. Here, for each item (influence, usefulness of combination) in FIG. showing.

また、図9は、単一負荷試験を実施した際の(負荷因子毎の)機能余裕度SN比の算出結果を例示している。この図9は、2品種の電解コンデンサ(部品A、B)に対して、温度、湿度及び逆電圧のそれぞれの負荷因子を与えて算出された機能余裕度SN比を示している。図9に示すこの結果に基づき、影響度判定部15は、複合負荷試験で適用する複数の負荷因子を選定する。例えば、選定される複数の負荷因子は、環境負荷因子又は電気的負荷因子のうちから選定される。図9において、負荷因子が逆電圧の場合は、負荷因子が湿度の場合よりも、機能余裕度SN比が小さいことから、電解コンデンサの静電容量の低下に対して影響度が大きいことがわかる。また、例えば、逆電圧は温度との組み合わせに適しており、同時に適用することが可能である。このため、複合負荷試験において同時に適用する負荷因子として温度と逆電圧とを選定することが好ましい。 Further, FIG. 9 illustrates calculation results of the functional margin SN ratio (for each load factor) when a single load test is performed. FIG. 9 shows functional margin SN ratios calculated by giving load factors of temperature, humidity and reverse voltage to two types of electrolytic capacitors (parts A and B). Based on the results shown in FIG. 9, the influence determination unit 15 selects multiple load factors to be applied in the composite load test. For example, the plurality of selected load factors are selected from environmental load factors or electrical load factors. In FIG. 9, when the load factor is reverse voltage, the functional margin SN ratio is smaller than when the load factor is humidity, so it can be seen that the degree of influence on the decrease in the capacitance of the electrolytic capacitor is large. . Also, for example, reverse voltage is suitable in combination with temperature and can be applied simultaneously. Therefore, it is preferable to select temperature and reverse voltage as load factors to be applied simultaneously in the combined load test.

図10は、複合負荷試験を実施した結果の一例である。図10に示すように、負荷因子として温度及び逆電圧を与える複合負荷試験は、定格電圧及び定格温度を試験条件とする信頼性試験よりも、機能余裕度SN比(利得)が小さくなっていることから、電解コンデンの静電容量の低下に対して大きく影響し、これにより、図5に示した相関近似線を得るのに適していると判断することができる。 FIG. 10 shows an example of the results of a combined load test. As shown in FIG. 10, the combined load test with temperature and reverse voltage as load factors has a smaller functional margin SN ratio (gain) than the reliability test with the rated voltage and rated temperature as test conditions. Therefore, it can be judged to be suitable for obtaining the correlation approximation line shown in FIG.

図11は、発光ダイオード(LED:Light Emitting Diode)に対しての各負荷因子に関する試験条件の一例である。上記した電解コンデンサに対して選定される負荷因子と、発光ダイオードに対して選定される負荷因子とは異なることが想定される。発光ダイオードに対して選定される負荷因子は、電解コンデンサに対して選定される負荷因子の他、図11に示すように、振動、腐食性ガス、光などがさらに挙げられる。 FIG. 11 shows an example of test conditions for each load factor for a light emitting diode (LED). It is assumed that the loading factor selected for the electrolytic capacitor described above is different from the loading factor selected for the light emitting diode. In addition to the load factor selected for the electrolytic capacitor, the load factor selected for the light emitting diode may further include vibration, corrosive gas, light, etc., as shown in FIG.

次に、図12を参照して、電解コンデンサ(第2の電子部品)の寿命を予測する手順を説明する。図12に示すように、寿命予測の対象となる複数の種類の電解コンデンサ(上記した第2の電子部品)を複数個ずつ準備する(S21)。準備する電解コンデンサは、例えば型式や寸法を限定する必要はないものの、製品の仕様(スペック)が互いに共通するものを用意する。例えば3種類以上の品種の電解コンデンサをそれぞれ3個~5個ほど準備する。 Next, referring to FIG. 12, a procedure for predicting the life of the electrolytic capacitor (second electronic component) will be described. As shown in FIG. 12, a plurality of types of electrolytic capacitors (second electronic components described above) whose lifetimes are to be predicted are prepared (S21). For the electrolytic capacitors to be prepared, although there is no need to limit the type or size, for example, the specifications of the products should be common to each other. For example, three to five electrolytic capacitors of three or more types are prepared.

次に、S2(ステップ2)を行った常温及び常湿の計測環境において、電解コンデンサ毎に初期の特性として静電容量を計測する(S22)。この場合の計測環境も、S2(ステップ2)と同様に例えば常温、常湿の環境である。初期の特性は、複合負荷試験を行う前の特性である。次いで、初期の特性が計測された各電解コンデンサに対して複合負荷試験を実施する(S23)。この際の複合負荷試験は、図4に示したS3(ステップ3)と同様の試験条件とする。 Next, in the normal temperature and humidity measurement environment where S2 (step 2) was performed, the capacitance is measured as an initial characteristic for each electrolytic capacitor (S22). The measurement environment in this case is, for example, normal temperature and normal humidity as in S2 (step 2). The initial properties are the properties before the combined load test. Next, a combined load test is performed on each electrolytic capacitor whose initial characteristics have been measured (S23). The combined load test at this time is performed under the same test conditions as S3 (step 3) shown in FIG.

続いて、複合負荷試験が完了した後、各電解コンデンサの特性(静電容量)を計測する(S24)。この場合の計測環境も、S2(ステップ2)と同様に例えば常温、常湿の環境である。次に、電解コンデンサ毎の、複合負荷試験前に計測した特性と複合負荷試験後に計測した特性とに基づいて、機能余裕度SN比を算出する(S25)。つまり、ばらつき取得部12は、複合負荷試験前後における各電解コンデンサ(第2の電子部品)の特性の変動量(静電容量)のばらつきを表す機能余裕度SN比を取得する。 Subsequently, after the composite load test is completed, the characteristics (capacitance) of each electrolytic capacitor are measured (S24). The measurement environment in this case is, for example, normal temperature and normal humidity as in S2 (step 2). Next, the functional margin SN ratio is calculated for each electrolytic capacitor based on the characteristics measured before the composite load test and the characteristics measured after the composite load test (S25). In other words, the variation acquisition unit 12 acquires the functional margin SN ratio representing the variation in the characteristic variation (capacitance) of each electrolytic capacitor (second electronic component) before and after the composite load test.

最後に、寿命算出部13は、相関関係記憶部11に記憶された図5に示す相関近似線(相関関係)と、ばらつき取得部12によって取得された機能余裕度SN比と、に基づいて、複数の電解コンデンサ(第2の電子部品)の寿命を算出する。 Finally, the life calculation unit 13, based on the correlation approximation line (correlation) shown in FIG. Lifespans of a plurality of electrolytic capacitors (second electronic components) are calculated.

既述したように、本実施形態に係る電子部品の寿命予測装置10及び電子部品の寿命予測方法では、複数の負荷因子を同時に与える複合負荷試験及び品質工学における機能余裕度SN比を効果的に適用することによって、電子部品の寿命を短時間で高精度に予測することができる。 As described above, in the electronic component life prediction device 10 and the electronic component life prediction method according to the present embodiment, the functional margin SN ratio in the composite load test and quality engineering that simultaneously apply a plurality of load factors is effectively By applying it, the life of electronic parts can be predicted in a short time with high accuracy.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This novel embodiment can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and its equivalents.

10…電子部品の寿命予測装置、11…相関関係記憶部、12…ばらつき取得部、13…寿命算出部、20…電解コンデンサ。 DESCRIPTION OF SYMBOLS 10... Life prediction apparatus of an electronic component, 11... Correlation storage part, 12... Variation acquisition part, 13... Life calculation part, 20... Electrolytic capacitor.

Claims (8)

複数の負荷因子を同時に与える複合負荷試験を実施した後の複数の第1の電子部品における特性の変動量のばらつきと前記複数の第1の電子部品の寿命との相関関係を記憶する記憶部と、
前記複合負荷試験を実施した後の複数の第2の電子部品における特性の変動量のばらつきを取得するばらつき取得部と、
前記記憶部に記憶された相関関係と前記取得された特性の変動量のばらつきとに基づいて、前記複数の第2の電子部品の寿命を算出する寿命算出部と、
を備え、
前記複数の第1及び第2の電子部品における特性の変動量のばらつきは、品質工学における静特性のうちの望小特性として算出可能な機能余裕度SN比であり、
前記複数の第1及び第2の電子部品のそれぞれは、製品の仕様が互いに共通する電子部品である、
電子部品の寿命予測装置。
a storage unit that stores a correlation between variations in variation in characteristics of a plurality of first electronic components after performing a composite load test in which a plurality of load factors are applied simultaneously and life spans of the plurality of first electronic components; ,
a variation acquisition unit that acquires variations in variation amounts of characteristics of the plurality of second electronic components after the composite load test has been performed;
a lifespan calculation unit that calculates the lifespan of the plurality of second electronic components based on the correlation stored in the storage unit and the variation in the variation amount of the acquired characteristic;
with
Variation in the amount of variation in the characteristics of the plurality of first and second electronic components is a functional margin SN ratio that can be calculated as a desired or small characteristic among static characteristics in quality engineering ,
each of the plurality of first and second electronic components is an electronic component having common product specifications;
A device for predicting the life of electronic components.
前記複合負荷試験で適用する負荷因子は、一つの負荷因子を与える単一負荷試験を実施した後の複数の第1の電子部品における特性の変動量のばらつきを基に選定される、
請求項1に記載の電子部品の寿命予測装置。
The load factor to be applied in the composite load test is selected based on variations in the amount of variation in the characteristics of the plurality of first electronic components after performing a single load test that gives one load factor.
The electronic component life prediction device according to claim 1 .
前記複合負荷試験は、前記第1及び第2の電子部品における構成材料の物性を維持し得る条件範囲内での負荷因子が適用されている、
請求項1又は2に記載の電子部品の寿命予測装置。
In the composite load test, a load factor is applied within a range of conditions that can maintain the physical properties of the constituent materials of the first and second electronic components.
3. The electronic component life prediction device according to claim 1 or 2 .
前記複合負荷試験は、温度の要素を単一の負荷因子として適用した加速劣化試験よりも短い試験時間で完了する、
請求項1からまでのいずれか1項に記載の電子部品の寿命予測装置。
The combined load test is completed in a shorter test time than an accelerated aging test in which the temperature factor is applied as a single loading factor.
4. The electronic component life prediction device according to any one of claims 1 to 3 .
複数の負荷因子を同時に与える複合負荷試験を実施した後の複数の第1の電子部品における特性の変動量のばらつきと前記複数の第1の電子部品の寿命との相関関係を記憶部が記憶するステップと、
前記複合負荷試験を実施した後の複数の第2の電子部品における特性の変動量のばらつきを取得するステップと、
前記記憶部に記憶された相関関係と前記取得された特性の変動量のばらつきとに基づいて、前記複数の第2の電子部品の寿命を算出するステップと、
を有し、
前記複数の第1及び第2の電子部品における特性の変動量のばらつきは、品質工学における静特性のうちの望小特性として算出可能な機能余裕度SN比であり、
前記複数の第1及び第2の電子部品のそれぞれは、製品の仕様が互いに共通する電子部品である、
電子部品の寿命予測方法。
A storage unit stores a correlation between variations in characteristic fluctuation amounts in a plurality of first electronic components after performing a composite load test in which a plurality of load factors are applied simultaneously and life spans of the plurality of first electronic components. a step;
a step of obtaining variations in characteristic fluctuation amounts in a plurality of second electronic components after performing the composite load test;
a step of calculating the service life of the plurality of second electronic components based on the correlation stored in the storage unit and the variation in the variation amount of the acquired characteristic;
has
Variation in the amount of variation in the characteristics of the plurality of first and second electronic components is a functional margin SN ratio that can be calculated as a desired or small characteristic among static characteristics in quality engineering ,
each of the plurality of first and second electronic components is an electronic component having common product specifications;
A method for predicting the life of electronic components.
前記複合負荷試験で適用する負荷因子を、一つの負荷因子を与える単一負荷試験を実施した後の複数の第1の電子部品における特性の変動量のばらつきを基に選定するステップ、
をさらに有する請求項に記載の電子部品の寿命予測方法。
A step of selecting a load factor to be applied in the composite load test based on variations in characteristic fluctuation amounts in the plurality of first electronic components after performing a single load test giving one load factor;
The method for predicting the life of an electronic component according to claim 5 , further comprising:
前記複合負荷試験は、前記第1及び第2の電子部品における構成材料の物性を維持し得る条件範囲内での負荷因子が適用されている、
請求項5又は6に記載の電子部品の寿命予測方法。
In the composite load test, a load factor is applied within a range of conditions that can maintain the physical properties of the constituent materials of the first and second electronic components.
7. The life prediction method for an electronic component according to claim 5 or 6 .
前記複合負荷試験は、温度の要素を単一の負荷因子として適用した加速劣化試験よりも短い試験時間で完了する、
請求項からまでのいずれか1項に記載の電子部品の寿命予測方法。
The combined load test is completed in a shorter test time than an accelerated aging test in which the temperature factor is applied as a single loading factor.
The life prediction method for an electronic component according to any one of claims 5 to 7 .
JP2017001178A 2017-01-06 2017-01-06 Electronic component life prediction device and electronic component life prediction method Active JP7118589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001178A JP7118589B2 (en) 2017-01-06 2017-01-06 Electronic component life prediction device and electronic component life prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001178A JP7118589B2 (en) 2017-01-06 2017-01-06 Electronic component life prediction device and electronic component life prediction method

Publications (2)

Publication Number Publication Date
JP2018112410A JP2018112410A (en) 2018-07-19
JP7118589B2 true JP7118589B2 (en) 2022-08-16

Family

ID=62911043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001178A Active JP7118589B2 (en) 2017-01-06 2017-01-06 Electronic component life prediction device and electronic component life prediction method

Country Status (1)

Country Link
JP (1) JP7118589B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246391A (en) 2001-02-21 2002-08-30 Nec Corp Method of manufacturing semiconductor device
JP2008282272A (en) 2007-05-11 2008-11-20 Renesas Technology Corp Design support device for semiconductor device, program and recording medium for making computer function as relevant device, and production method for semiconductor device
JP2015002242A (en) 2013-06-14 2015-01-05 株式会社東芝 Life assessment method for semiconductor element
JP2016217942A (en) 2015-05-22 2016-12-22 株式会社東芝 Screening method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313127A (en) * 2005-05-09 2006-11-16 Hitachi Ltd System for evaluating soldered joint section
JP5769413B2 (en) * 2010-12-24 2015-08-26 三菱電機株式会社 Electronic component quality evaluation apparatus and method
KR102171096B1 (en) * 2014-04-21 2020-10-28 삼성전자주식회사 Method and device to estimate battery lifetime during driving of electrical vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246391A (en) 2001-02-21 2002-08-30 Nec Corp Method of manufacturing semiconductor device
JP2008282272A (en) 2007-05-11 2008-11-20 Renesas Technology Corp Design support device for semiconductor device, program and recording medium for making computer function as relevant device, and production method for semiconductor device
JP2015002242A (en) 2013-06-14 2015-01-05 株式会社東芝 Life assessment method for semiconductor element
JP2016217942A (en) 2015-05-22 2016-12-22 株式会社東芝 Screening method

Also Published As

Publication number Publication date
JP2018112410A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
Gupta et al. A review of degradation behavior and modeling of capacitors
Stevens et al. The service life of large aluminum electrolytic capacitors: effects of construction and application
KR102009636B1 (en) Method for testing performance of cell
Wang et al. A humidity-dependent lifetime derating factor for DC film capacitors
Jánó et al. Accelerated ageing tests for predicting capacitor lifetimes
Sun et al. A degradation model of aluminum electrolytic capacitors for LED drivers
JP2013044714A (en) Lifetime diagnosis method of electrolytic capacitor
KR101046752B1 (en) Transformer life assessment method
JP4330567B2 (en) Capacitor performance measuring apparatus and measuring method
KR102122580B1 (en) Apparatus and method for calculating service life of capacitor
JP7118589B2 (en) Electronic component life prediction device and electronic component life prediction method
CN113655315A (en) Method, system, device and medium for comprehensively evaluating residual life of super capacitor
JP5944773B2 (en) Method for diagnosing remaining life of insulators in substation equipment
Zhang Reliability and lifetime prediction of LED drivers
Jánó et al. Accelerated ageing tests of aluminum electrolytic capacitors for evaluating lifetime prediction models
CN114624526A (en) Stepping stress accelerated life test method for evaluating reliability of electric meter
Lachkar et al. Failure analysis of aluminum electrolytic capacitors based on electrical and physicochemical characterizations
Lall et al. Prognostics of damage accrual in SSL luminaires and drivers subjected to HTSL accelerated aging
Hewitt et al. Observation of electrolytic capacitor ageing behaviour for the purpose of prognostics
JP2016217942A (en) Screening method
Gulbrandsen et al. Comparison of aluminum electrolytic capacitor lifetimes using accelerated life testing
Tao Trends and challenges in solid state lighting reliability
Bhargava et al. Health Prognostics of electrolytic capacitor using various environmental testing methods
Riz et al. Inner gas pressure measurement based life-span estimation of electrolytic capacitors
JP2015153991A (en) Electrolytic capacitor life diagnosis method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210208

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210615

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211019

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220308

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220607

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220705

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7118589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150