JP7118359B2 - Method for manufacturing glass article - Google Patents

Method for manufacturing glass article Download PDF

Info

Publication number
JP7118359B2
JP7118359B2 JP2018103483A JP2018103483A JP7118359B2 JP 7118359 B2 JP7118359 B2 JP 7118359B2 JP 2018103483 A JP2018103483 A JP 2018103483A JP 2018103483 A JP2018103483 A JP 2018103483A JP 7118359 B2 JP7118359 B2 JP 7118359B2
Authority
JP
Japan
Prior art keywords
melting furnace
glass
molten glass
melting
glass article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103483A
Other languages
Japanese (ja)
Other versions
JP2019206461A (en
Inventor
達 櫻林
洋司 門谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018103483A priority Critical patent/JP7118359B2/en
Priority to PCT/JP2019/017394 priority patent/WO2019230277A1/en
Priority to CN201980029226.5A priority patent/CN112074488A/en
Priority to KR1020207029398A priority patent/KR20210018195A/en
Publication of JP2019206461A publication Critical patent/JP2019206461A/en
Priority to JP2022121243A priority patent/JP2022153571A/en
Application granted granted Critical
Publication of JP7118359B2 publication Critical patent/JP7118359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Description

本発明は、ガラス物品の製造方法に関する。 The present invention relates to a method for manufacturing glass articles.

ガラス物品の製造方法では、溶融炉でガラス原料を溶融して溶融ガラスを形成した後、溶融炉の下流側に設けられた流出口から流出する溶融ガラスを移送流路(フィーダともいう)によって成形装置まで移送すると共に、移送された溶融ガラスを成形装置でガラス物品に応じた所定形状(例えば、板状)に成形する。 In the method of manufacturing a glass article, frit is melted in a melting furnace to form molten glass, and then the molten glass flowing out from an outlet provided downstream of the melting furnace is shaped by a transfer channel (also called a feeder). While transferring to the apparatus, the transferred molten glass is formed into a predetermined shape (for example, plate shape) according to the glass article in the forming apparatus.

ここで、溶融炉では、電極による通電加熱によって、ガラス原料及び/又は溶融ガラスを加熱する場合がある(例えば、特許文献1を参照)。 Here, in a melting furnace, frit and/or molten glass may be heated by electric heating by electrodes (see, for example, Patent Document 1).

特開2003-183031号公報Japanese Unexamined Patent Application Publication No. 2003-183031

ところで、移送流路が急な故障や劣化等によって使用不能となった場合、その使用不能となった移送流路を新しい移送流路と交換し、使用可能な溶融炉についてはそのまま継続使用することが経済的である。 By the way, if a transfer channel becomes unusable due to a sudden failure or deterioration, etc., the unusable transfer channel should be replaced with a new transfer channel, and the usable melting furnace should continue to be used as it is. is economical.

しかしながら、従来においては、溶融炉をそのまま残して移送流路を安全に交換する方法がなく、移送流路が使用不能となった時点で、移送流路と共に溶融炉も解体する場合がある。 However, conventionally, there is no method for safely replacing the transfer channel while leaving the melting furnace as it is.

本発明は、溶融炉をそのまま残して移送流路を安全に交換することを課題とする。 An object of the present invention is to safely replace the transfer channel while leaving the melting furnace as it is.

上記の課題を解決するために創案された本発明は、溶融炉でガラス原料を溶融して溶融ガラスを連続形成する溶融工程と、溶融炉の流出口から流出する溶融ガラスを移送流路で移送する移送工程と、移送流路で移送された溶融ガラスを成形装置でガラス物品に成形する成形工程とを備えたガラス物品の製造方法において、流出口を塞ぐように遮断部材を配置した状態で、移送流路を交換する交換工程を更に備えていることを特徴とする。このような構成によれば、遮断部材によって溶融炉の流出口が塞がれるため、移送流路を交換する際に、溶融炉内の溶融ガラスが流出口から流出するのを防止することができる。従って、溶融炉をそのまま残して移送流路を安全に交換することができる。 The present invention, which has been devised to solve the above problems, comprises a melting process for continuously forming molten glass by melting raw materials for frit in a melting furnace, and transferring the molten glass flowing out of the outlet of the melting furnace through a transfer channel. and a forming step of forming the molten glass transferred in the transfer channel into a glass article by means of a forming apparatus, in a state in which a blocking member is arranged so as to block the outlet, It is characterized by further comprising a replacement step of replacing the transfer channel. According to such a configuration, since the outlet of the melting furnace is closed by the blocking member, it is possible to prevent the molten glass in the melting furnace from flowing out from the outlet when the transfer channel is replaced. . Therefore, the transfer channel can be safely replaced while the melting furnace remains intact.

上記の構成において、交換工程では、遮断部材で流出口を塞ぐ前に、少なくとも最上流部の移送流路内で、溶融ガラスを降温することが好ましい。このようにすれば、最上流部の移送流路内で、溶融ガラスを降温するのに伴い、溶融炉の流出口周辺の溶融ガラスが高粘度になり、その流動性が低下する。これにより、溶融炉内の溶融ガラスは、溶融炉の流出口からゆっくりと流れ出すため、遮断部材の配置作業を容易に行うことができる。 In the above configuration, in the replacement step, it is preferable to lower the temperature of the molten glass at least in the most upstream transfer channel before closing the outlet with the blocking member. In this way, as the temperature of the molten glass is lowered in the most upstream transfer channel, the molten glass around the outlet of the melting furnace becomes highly viscous and its fluidity is reduced. As a result, the molten glass in the melting furnace slowly flows out from the outlet of the melting furnace, so that the work of arranging the blocking member can be easily performed.

上記の構成において、遮断部材が冷却構造を備えていることが好ましい。このようにすれば、遮断部材によって溶融炉の流出口周辺の溶融ガラスが冷却され、流出口周辺の溶融ガラスが高粘度に維持される。このため、遮断部材を配置した溶融炉の流出口から溶融ガラスが漏出するのを確実に防止することができる。また、遮断部材の熱変形も防止することができるため、遮断部材によって溶融炉の流出口を塞いだ状態を安定して維持することができる。 Said structure WHEREIN: It is preferable that the interruption|blocking member is provided with the cooling structure. In this way, the shutoff member cools the molten glass around the outlet of the melting furnace, and the molten glass around the outlet is maintained at a high viscosity. Therefore, it is possible to reliably prevent the molten glass from leaking out from the outlet of the melting furnace where the blocking member is arranged. Moreover, since thermal deformation of the blocking member can also be prevented, the state in which the outflow port of the melting furnace is blocked by the blocking member can be stably maintained.

上記の構成において、溶融炉は、溶融ガラスを通電加熱する電極を備えてもよい。この場合、電極を用いた通電加熱と、バーナー(ガス燃料の燃焼)等の他の加熱手段による加熱とを併用してもよい。 Said structure WHEREIN: A melting furnace may be equipped with the electrode which electrically heats a molten glass. In this case, electric heating using electrodes and heating by other heating means such as a burner (combustion of gas fuel) may be used together.

上記の構成において、遮断部材が絶縁構造を備えていることが好ましい。このようにすれば、交換工程中に溶融炉で電極による通電加熱を継続しても、移送流路側への漏電を防止することができる。このため、移送流路の交換作業を安全に行うことができる。 Said structure WHEREIN: It is preferable that the interruption|blocking member is equipped with an insulation structure. In this way, even if the electrodes continue to energize and heat the melting furnace during the replacement process, it is possible to prevent electrical leakage to the transfer channel side. Therefore, it is possible to safely replace the transfer channel.

上記の構成において、電極が溶融炉の底壁に設けられたボトム電極からなることが好ましい。このようにすれば、溶融炉の浸食が改善され、溶融炉の長寿命化を図ることができる。このため、溶融炉の寿命を移送流路の寿命よりも大幅に長くすることができ、溶解炉を残して移送流路を交換する効果がより顕著となる。 In the above configuration, the electrode is preferably a bottom electrode provided on the bottom wall of the melting furnace. By doing so, the erosion of the melting furnace can be improved, and the service life of the melting furnace can be extended. Therefore, the life of the melting furnace can be significantly longer than the life of the transfer channel, and the effect of replacing the transfer channel while leaving the melting furnace is more pronounced.

上記の構成において、溶融工程では、電極を用いた通電加熱のみで、ガラス原料を溶融することが好ましい。このようにすれば、溶融炉内におけるガス燃料の燃焼に起因する水蒸気量の上昇がないため、溶融ガラス中の水分量を低下させやすい。従って、ガラス物品の水分量も必然的に低くなり、その熱的寸法安定性が向上するという利点がある。 In the above configuration, in the melting step, it is preferable that the frit is melted only by electrical heating using electrodes. In this way, the amount of water vapor in the molten glass does not increase due to the combustion of the gaseous fuel in the melting furnace, so the amount of water in the molten glass can be easily reduced. Therefore, the water content of the glass article is necessarily reduced, and there is an advantage that the thermal dimensional stability is improved.

上記の構成において、溶融炉がジルコニア系耐火物を含むことが好ましい。このようにすれば、溶融炉の浸食が改善され、溶融炉の長寿命化をさらに図ることができるので、溶解炉を残して移送流路を交換する効果がより顕著となる。 Said structure WHEREIN: It is preferable that a melting furnace contains a zirconia-type refractory. By doing so, the erosion of the melting furnace can be improved and the service life of the melting furnace can be further extended, so that the effect of replacing the transfer flow path while leaving the melting furnace is more remarkable.

上記の構成において、溶融炉に接続する移送流路の数が、一つであってもよい。 In the above configuration, the number of transfer channels connected to the melting furnace may be one.

上記の構成において、溶融炉のガラス原料を溶融する溶融空間が単一の空間からなっていてもよい。 In the above configuration, the melting space for melting the frit in the melting furnace may consist of a single space.

本発明によれば、溶融炉をそのまま残して移送流路を安全に交換することができる。 According to the invention, the transfer channel can be safely replaced while leaving the melting furnace as it is.

第一実施形態に係るガラス物品の製造装置を示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows the manufacturing apparatus of the glass article which concerns on 1st embodiment. 第一実施形態に係るガラス物品の製造装置の溶融炉周辺を示す断面図である。It is a sectional view showing the circumference of the melting furnace of the manufacturing device of the glass article concerning a first embodiment. 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。It is a figure for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing which shows the state of a melting furnace periphery. 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。It is a figure for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing which shows the state of a melting furnace periphery. 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。It is a figure for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing which shows the state of a melting furnace periphery. 第一実施形態に係るガラス物品の製造方法に用いられる遮断部材の絶縁構造を説明するための図であって、遮断部材周辺の断面図である。FIG. 4 is a diagram for explaining the insulation structure of the blocking member used in the method for manufacturing the glass article according to the first embodiment, and is a cross-sectional view of the periphery of the blocking member. 第一実施形態に係るガラス物品の製造方法に用いられる遮断部材の冷却構造を説明するための図であって、遮断部材の正面図である。FIG. 4 is a front view of the shielding member for explaining the cooling structure of the shielding member used in the method for manufacturing the glass article according to the first embodiment. 第二実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 2nd embodiment. 第二実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 2nd embodiment. 第三実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 3rd embodiment. 第三実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 3rd embodiment.

以下、本発明の実施形態に係るガラス物品の製造方法について図面を参照しながら説明する。 Hereinafter, a method for manufacturing a glass article according to an embodiment of the present invention will be described with reference to the drawings.

(第一実施形態)
図1に示すように、第一実施形態に係るガラス物品の製造方法に用いられる製造装置は、上流側から順に、溶融炉1と、移送流路2と、成形装置3とを備えている。
(First embodiment)
As shown in FIG. 1, the manufacturing apparatus used in the method for manufacturing a glass article according to the first embodiment includes a melting furnace 1, a transfer channel 2, and a forming apparatus 3 in order from the upstream side.

溶融炉1は、溶融ガラスGmを連続形成する溶融工程を実施するためのものである。本実施形態では、溶融ガラスGmは、無アルカリガラスからなる。無アルカリガラスは、ガラス組成として、例えば、質量%で、SiO 50~70%、Al 12~25%、B 0~12%、LiO+NaO+KO(LiO、NaO及びKOの合量) 0~1%未満、MgO 0~8%、CaO 0~15%、SrO 0~12%、BaO 0~15%を含む。無アルカリガラスからなる溶融ガラスGmの電気抵抗率は、一般的に高く、例えば溶融炉1の加熱温度1500℃において100Ω・cm以上となる。 The melting furnace 1 is for carrying out a melting process for continuously forming molten glass Gm. In this embodiment, the molten glass Gm consists of alkali-free glass. Alkali-free glass has a glass composition of, for example, SiO 2 50 to 70%, Al 2 O 3 12 to 25%, B 2 O 3 0 to 12%, Li 2 O + Na 2 O + K 2 O (Li 2 O, Na 2 O and K 2 O) 0-1%, MgO 0-8%, CaO 0-15%, SrO 0-12%, BaO 0-15%. The electrical resistivity of the molten glass Gm made of alkali-free glass is generally high, for example, 100 Ω·cm or more at the heating temperature of the melting furnace 1 of 1500°C.

溶融ガラスGmは、無アルカリガラスに限定されるものではなく、例えば、ソーダガラス、ホウケイ酸ガラス、アルミノシリケートガラスなどであってもよい。 The molten glass Gm is not limited to alkali-free glass, and may be, for example, soda glass, borosilicate glass, aluminosilicate glass, or the like.

移送流路2は、溶融炉1から成形装置3に向けて溶融ガラスGmを移送する移送工程を実施するためのものである。移送流路2は、清澄室4と、均質化室(攪拌室)5と、ポット6と、これら各部を接続する移送管7~10とを備えている。清澄室4、均質化室(攪拌室)5、ポット6及び移送管7~10は、白金又は白金合金から構成することができ、必要に応じて通電加熱される。ここで、清澄室4などの「室」及び「ポット」という用語には、槽状構造を有するものや、管状構造を有するものが含まれるものとする。 The transfer channel 2 is for carrying out a transfer step of transferring the molten glass Gm from the melting furnace 1 toward the molding device 3 . The transfer channel 2 includes a clarification chamber 4, a homogenization chamber (stirring chamber) 5, a pot 6, and transfer pipes 7 to 10 connecting these parts. The clarification chamber 4, homogenization chamber (stirring chamber) 5, pot 6 and transfer pipes 7-10 can be made of platinum or a platinum alloy and are electrically heated as necessary. As used herein, the terms "chamber" and "pot", such as the fining chamber 4, are intended to include those having a trough-like structure and those having a tubular structure.

清澄室4は、溶融炉1から供給された溶融ガラスGmを清澄剤などの働きによって清澄(泡抜き)する清澄工程を実施するためのものである。 The fining chamber 4 is for carrying out a fining step of fining (debubbling) the molten glass Gm supplied from the melting furnace 1 by the action of a fining agent or the like.

均質化室5は、清澄された溶融ガラスGmを攪拌翼5aによって攪拌し、均一化する均質化工程を実施するためのものである。均質化室5は、複数の均質化室を連ねたものであってもよい。この場合、隣接する二つの均質化室の一方の上端部と、他方の下端部を移送管で連ねることが好ましい。 The homogenization chamber 5 is for performing a homogenization process of stirring and homogenizing the clarified molten glass Gm with a stirring blade 5a. The homogenization chamber 5 may be a series of homogenization chambers. In this case, it is preferable to connect the upper end of one of two adjacent homogenizing chambers and the lower end of the other with a transfer pipe.

ポット6は、溶融ガラスGmを成形に適した状態(例えば粘度)に調整する状態調整工程を実施するためのものである。ポット6は省略してもよい。 The pot 6 is for carrying out a conditioning process for adjusting the molten glass Gm to a state (for example, viscosity) suitable for molding. Pot 6 may be omitted.

移送管7~10は、例えば円筒管で構成されており、溶融ガラスGmを横方向(略水平方向)に移送する。本実施形態では、移送流路2のうち、最上流部に位置する移送管7は、下流端が上流端よりも上方に位置するように傾斜している。 The transfer pipes 7 to 10 are composed of cylindrical pipes, for example, and transfer the molten glass Gm laterally (substantially horizontally). In this embodiment, the most upstream transfer pipe 7 in the transfer channel 2 is inclined such that the downstream end is positioned higher than the upstream end.

成形装置3は、溶融ガラスGmを所望の形状に成形する成形工程を実施するためのものである。本実施形態では、成形装置3は、オーバーフローダウンドロー法によって、溶融ガラスGmからガラスリボンGを連続成形する成形体からなる。 The molding device 3 is for carrying out a molding process for molding the molten glass Gm into a desired shape. In this embodiment, the forming apparatus 3 is formed of a formed body that continuously forms the glass ribbon G from the molten glass Gm by the overflow downdraw method.

成形装置3は、スロットダウンドロー法などの他のダウンドロー法や、フロート法を実施するものであってもよい。 The molding apparatus 3 may perform other down-draw methods such as the slot down-draw method, or the float method.

オーバーフローダウンドロー法の場合、成形装置3に供給された溶融ガラスGmは成形装置3の頂部に形成された溝部から溢れ出た溶融ガラスGmが成形装置3の断面楔状をなす両側面を伝って下端で合流することで、板状のガラスリボンGが連続成形される。成形されたガラスリボンGは、徐冷(アニール)及び冷却された後に所定サイズに切断され、ガラス物品としての板ガラスが製造される。 In the case of the overflow down-draw method, the molten glass Gm supplied to the molding device 3 overflows from a groove formed at the top of the molding device 3. By joining at , the plate-like glass ribbon G is continuously formed. The formed glass ribbon G is annealed and then cut into a predetermined size to produce a sheet glass as a glass article.

製造された板ガラスは、例えば、厚みが0.01~10mm(好ましくは0.1~3mm)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。 The manufactured plate glass has a thickness of, for example, 0.01 to 10 mm (preferably 0.1 to 3 mm), and is used as a substrate for flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, solar cells, and the like. Used for protective cover.

図2に示すように、溶融炉1は、生産段階において、通電加熱を含む加熱によって、ガラス原料(カレットを含んでもよい)Grを溶融して溶融ガラスGmを連続形成する。溶融炉1で連続形成された溶融ガラスGmは、溶融炉1の流出口1aから移送管7内に流入するようになっている。 As shown in FIG. 2, in the production stage, the melting furnace 1 melts frit (which may include cullet) Gr by heating including electric heating to continuously form molten glass Gm. Molten glass Gm continuously formed in the melting furnace 1 flows into the transfer pipe 7 from the outlet 1 a of the melting furnace 1 .

溶融炉1は、耐火物で構成された壁部によって炉内の溶融空間を区画形成する。耐火物としては、例えば、ジルコニア系電鋳煉瓦やアルミナ系電鋳煉瓦、アルミナ・ジルコニア系電鋳煉瓦、AZS(Al-Zr-Si)系電鋳煉瓦、デンス焼成煉瓦などが挙げられるが、本実施形態では、溶融炉1は、少なくとも溶融ガラスGmと接触する壁部が高温でも浸食しにくいジルコニア系電鋳煉瓦(ジルコニア系耐火物)を含む。ジルコニア系耐火物は、ジルコニアの含有量が80~99%の高ジルコニア系耐火物であることが好ましい。 The melting furnace 1 defines a melting space within the furnace by walls made of a refractory material. Examples of refractories include zirconia-based electrocast bricks, alumina-based electrocast bricks, alumina-zirconia-based electrocast bricks, AZS (Al--Zr--Si)-based electrocast bricks, and dense sintered bricks. In the embodiment, the melting furnace 1 includes zirconia-based electroformed bricks (zirconia-based refractories) that are resistant to erosion even at high temperatures, at least in the wall portions that come into contact with the molten glass Gm. The zirconia refractory is preferably a high zirconia refractory with a zirconia content of 80 to 99%.

溶融炉1の底壁部1bには、通電加熱のために、溶融ガラスGmに浸漬された状態で複数のボトム電極11が設けられている。本実施形態では、溶融ガラスGmを連続形成する生産段階(溶融工程)において、ボトム電極11の通電加熱のみでガラス原料Grを連続溶融する、いわゆる全電気溶融が行われる。全電気溶融の場合、排ガスによる環境負荷が小さいこと、製造される板ガラスの水分量が低くなり、その熱的寸法安定性が向上することなどの利点がある。 A bottom wall portion 1b of the melting furnace 1 is provided with a plurality of bottom electrodes 11 immersed in the molten glass Gm for electrical heating. In the present embodiment, in the production stage (melting process) for continuously forming the molten glass Gm, so-called all-electric melting is performed in which the frit Gr is continuously melted only by the electrical heating of the bottom electrode 11 . In the case of all-electric melting, there are advantages such as a small environmental load due to exhaust gas, a low moisture content of the produced sheet glass, and improved thermal dimensional stability.

ボトム電極11は、例えば、モリブデン(Mo)から形成される。ボトム電極11の形状は、特に限定されるものではなく、板状やブロック状などであってもよいが、本実施形態では棒状である。 The bottom electrode 11 is made of molybdenum (Mo), for example. The shape of the bottom electrode 11 is not particularly limited, and may be plate-like or block-like, but in this embodiment it is rod-like.

電極は、溶融炉1の側壁部1cに設けられたサイド電極(図示省略)であってもよい。あるいは、ボトム電極11とサイド電極を併用してもよい。ただし、溶融炉1の側壁部1cは、もともと溶融ガラスGmの対流等の影響によって浸食されやすい部位であるため、サイド電極を設けて側壁部1cを高温にすると、より浸食されやすくなる。従って、電極は、溶融炉1の浸食が進行しにくいボトム電極11のみとし、溶融炉1の長寿命化を図ることが好ましい。この場合、溶融炉1の耐用年数(寿命)は、移送流路2の耐用年数(寿命)よりも長くなる傾向にある。このため、溶融炉1よりも移送流路2が先に劣化する場合が多くなり、溶融炉1をそのまま残して移送流路2を交換することが特に有用となる。 The electrodes may be side electrodes (not shown) provided on the side wall portion 1c of the melting furnace 1 . Alternatively, the bottom electrode 11 and side electrodes may be used together. However, since the side wall portion 1c of the melting furnace 1 is originally a portion that is easily eroded by the influence of the convection of the molten glass Gm, if the side electrode is provided and the side wall portion 1c is heated to a high temperature, the side wall portion 1c is more easily eroded. Therefore, it is preferable that only the bottom electrode 11, which is less likely to be corroded in the melting furnace 1, be used as the electrode to extend the service life of the melting furnace 1. In this case, the service life (lifetime) of the melting furnace 1 tends to be longer than the service life (lifetime) of the transfer channel 2 . For this reason, the transfer channel 2 often deteriorates before the melting furnace 1, and it is particularly useful to replace the transfer channel 2 while leaving the melting furnace 1 as it is.

溶融炉1の上流側には、原料投入装置12が設けられている。原料投入装置12は、特に限定されるものではなく、例えばプッシャーや振動フィーダなどであってもよいが、本実施形態ではスクリューフィーダである。 A raw material charging device 12 is provided on the upstream side of the melting furnace 1 . The material charging device 12 is not particularly limited, and may be, for example, a pusher or a vibrating feeder, but is a screw feeder in this embodiment.

原料投入装置12は、生産段階において、溶融ガラスGmの液面Gm1の一部にガラス原料Grに覆われていない部分が形成されるようにガラス原料Grを順次供給する。すなわち、溶融炉1は、いわゆるセミホットトップタイプである。 In the production stage, the raw material charging device 12 sequentially supplies the frit Gr such that a part of the liquid surface Gm1 of the molten glass Gm is not covered with the frit Gr. That is, the melting furnace 1 is a so-called semi-hot top type.

溶融炉1は、生産段階において、溶融ガラスGmの液面Gm1の全部がガラス原料Grに覆われた、いわゆるコールドトップタイプでもよい。 The melting furnace 1 may be a so-called cold top type in which the entire liquid surface Gm1 of the molten glass Gm is covered with the frit Gr in the production stage.

溶融炉1には、溶融炉1内の気体を外部に排出するための気体排出路としての煙道13が設けられている。煙道13内には、気体を外部に送るためのファン13aが設けられている。 The melting furnace 1 is provided with a flue 13 as a gas discharge path for discharging the gas inside the melting furnace 1 to the outside. A fan 13a is provided in the flue 13 for sending gas to the outside.

本実施形態では、溶融炉1の溶融空間は単一の空間からなるシングルメルターであり、溶融炉1に接続される移送流路2の数が一つであるシングルフィーダである。 In this embodiment, the melting space of the melting furnace 1 is a single melter consisting of a single space, and is a single feeder with one transfer channel 2 connected to the melting furnace 1 .

次に、以上のように構成された製造装置によるガラス物品の製造方法を説明する。 Next, a method for manufacturing a glass article using the manufacturing apparatus configured as described above will be described.

本製造方法は、上述のように、生産段階において、溶融工程と、移送工程と、成形工程とを備えている。このうち、移送工程は、清澄工程と、均質化工程と、状態調整工程とを含む。溶融工程、移送工程及び成形工程は、上述の製造装置の構成に併せて説明した通りであるので、詳しい説明は省略する。 As described above, this manufacturing method includes a melting process, a transfer process, and a molding process in the production stage. Among these, the transfer process includes a clarification process, a homogenization process, and a conditioning process. The melting process, transfer process, and molding process are the same as those described in conjunction with the configuration of the manufacturing apparatus described above, so detailed descriptions thereof will be omitted.

図3~図5に示すように、本製造方法は、溶融炉1の流出口1aを塞ぐように遮断部材14を配置した状態で、移送流路2を交換する交換工程を更に備えている。この交換工程は、移送流路2の故障や劣化などの何らかの事由によって、移送工程が実施されない非生産段階で実施する工程である。 As shown in FIGS. 3 to 5, this manufacturing method further includes a replacement step of replacing the transfer channel 2 in a state where the blocking member 14 is arranged so as to block the outlet 1a of the melting furnace 1. FIG. This replacement process is a process performed in a non-production stage when the transfer process is not performed due to some reason such as failure or deterioration of the transfer channel 2 .

交換工程では、まず、図3に示すように、最上流部に位置する移送管7の通電加熱のための電力供給量を生産段階よりも少なくすることにより、移送管7内の溶融ガラスGmを降温する。ここで、「通電加熱のための電力供給量を生産段階よりも少なくする」という用語には、通電加熱を停止する場合も含まれるものとする。エネルギーコストの観点からは、移送管7内の溶融ガラスGmを降温するために、移送管7の通電加熱を停止することが好ましく、移送流路2における全ての通電加熱を停止することが更に好ましい。なお、移送流路2を外部から水や空気等の冷却流体によって積極的に冷却してもよい。 In the replacement step, first, as shown in FIG. 3, the electric power supply amount for energization heating of the transfer pipe 7 positioned at the most upstream portion is made smaller than that in the production stage, thereby reducing the molten glass Gm in the transfer pipe 7. Cool down. Here, the term "reducing the amount of electric power supplied for electric heating to a level lower than that in the production stage" includes the case where electric heating is stopped. From the viewpoint of energy cost, in order to lower the temperature of the molten glass Gm in the transfer pipe 7, it is preferable to stop the electric heating of the transfer pipe 7, and it is more preferable to stop all the electric heating in the transfer passage 2. . It should be noted that the transfer channel 2 may be positively cooled from the outside with a cooling fluid such as water or air.

このように移送管7内の溶融ガラスGmを降温することにより、溶融炉1の流出口1a周辺の溶融ガラスGmが高粘度になり、その流動性が低下する。この結果、例えば、移送管7内及び流出口1a周辺に、高粘度ガラス層Gsが形成される。なお、移送管7内の溶融ガラスGmの降温は、移送管7内で溶融ガラスGmの流動が完全に停止するまで行うことが好ましい。 By lowering the temperature of the molten glass Gm in the transfer pipe 7 in this manner, the molten glass Gm around the outlet 1a of the melting furnace 1 becomes highly viscous and its fluidity is lowered. As a result, for example, a high-viscosity glass layer Gs is formed inside the transfer pipe 7 and around the outlet 1a. The temperature of the molten glass Gm in the transfer pipe 7 is preferably lowered until the flow of the molten glass Gm in the transfer pipe 7 is completely stopped.

ここで、高粘度ガラス層Gsとは、生産段階の溶融ガラスGmと比べて流動性が著しく低下したガラス層、あるいは、流動性が全くないガラス層(冷却固化されたガラスを含む)である。高粘度ガラス層Gsの粘度は、例えば10~1030dPa・sである。 Here, the high-viscosity glass layer Gs is a glass layer whose fluidity is significantly lower than that of the molten glass Gm at the production stage, or a glass layer with no fluidity (including cooled and solidified glass). The viscosity of the high-viscosity glass layer Gs is, for example, 10 6 to 10 30 dPa·s.

シングルフィーダの場合、交換工程中は、溶融ガラスGmを下流側に供給することができないため、図3の状態のように、原料投入装置12によるガラス原料Grの投入は停止することが好ましい。 In the case of a single feeder, since the molten glass Gm cannot be supplied to the downstream side during the replacement process, it is preferable to stop charging the frit Gr by the raw material charging device 12 as in the state of FIG.

次に、溶融炉1の流出口1a周辺に高粘度ガラス層Gsを形成した状態で、図4に示すように、移送管7や清澄室4を含む移送流路2を溶融炉1から分離する。 Next, with the high-viscosity glass layer Gs formed around the outlet 1a of the melting furnace 1, as shown in FIG. .

更に、移送流路2を溶融炉1から分離すると同時又はその後に、図5に示すように、溶融炉1の流出口1aを塞ぐように遮断部材14を配置する。このように遮断部材14で溶融炉1の流出口1aを塞いだ状態で、移送流路2を新しいものに交換する。本実施形態では、移送流路2と共に成形装置3も新しいものに交換する。ただし、遮断部材14は、新しい移送流路2を溶融炉1の流出口1aに接合する直前に、溶融炉1の流出口1aから取り除く。このようにすれば、交換工程のほとんど全ての期間において、遮断部材14によって溶融炉1の流出口1aが塞がれるため、移送流路2を交換する際に、溶融炉1内の溶融ガラスGmが流出口1aから流出するのを防止することができる。従って、溶融炉1をそのまま残して移送流路2を安全に交換することができる。 Furthermore, at the same time or after separating the transfer channel 2 from the melting furnace 1, as shown in FIG. With the outlet 1a of the melting furnace 1 blocked by the blocking member 14 in this way, the transfer channel 2 is replaced with a new one. In this embodiment, the transfer channel 2 and the molding device 3 are also replaced with new ones. However, the blocking member 14 is removed from the outlet 1a of the melting furnace 1 immediately before joining the new transfer channel 2 to the outlet 1a of the melting furnace 1. In this way, the outlet 1a of the melting furnace 1 is blocked by the blocking member 14 during almost the entire period of the replacement process. can be prevented from flowing out from the outflow port 1a. Therefore, the transfer channel 2 can be safely replaced while leaving the melting furnace 1 as it is.

また、本実施形態では、遮断部材14を配置する際に、移送管7内の溶融ガラスGmを降温することにより、溶融炉1の流出口1a周辺に高粘度ガラス層Gsが形成されているため、溶融炉1内の溶融ガラスGmが流出口1aから流出しにくい。特に、溶融炉1の流出口1aが高粘度ガラス層Gsによって完全に塞がれていると、溶融炉1内の溶融ガラスGmが流出口1aからより流出しにくくなる。従って、遮断部材14の配置作業を容易に行うことができる。 Further, in the present embodiment, the high-viscosity glass layer Gs is formed around the outlet 1a of the melting furnace 1 by lowering the temperature of the molten glass Gm in the transfer pipe 7 when the blocking member 14 is arranged. , the molten glass Gm in the melting furnace 1 is difficult to flow out from the outlet 1a. In particular, when the outlet 1a of the melting furnace 1 is completely blocked by the high-viscosity glass layer Gs, the molten glass Gm in the melting furnace 1 is more difficult to flow out from the outlet 1a. Therefore, the work of arranging the blocking member 14 can be easily performed.

ここで、溶融炉1の壁部がジルコニア系耐火物(特に、高ジルコニア系耐火物)を含む場合、溶融ガラスGmと接触している部分において、温度が下がりすぎると結晶構造が変化する。これにより、ジルコニア系耐火物の表層部が層状剥離する事態が生じ得る。このような層状剥離が生じると、溶融炉1の耐火物の交換も必要になるため、交換工程に要する費用が増大する。従って、交換工程中も、溶融ガラスGmをボトム電極11で通電加熱するなどして、溶融炉1内の温度を所定温度以上に保つことが好ましい。 Here, when the wall portion of the melting furnace 1 contains a zirconia-based refractory (especially, a high-zirconia-based refractory), the crystal structure of the portion in contact with the molten glass Gm changes when the temperature drops too much. This may cause delamination of the surface layer of the zirconia-based refractory. When such delamination occurs, it becomes necessary to replace the refractories of the melting furnace 1, increasing the cost required for the replacement process. Therefore, it is preferable to maintain the temperature in the melting furnace 1 at a predetermined temperature or higher by, for example, electrically heating the molten glass Gm with the bottom electrode 11 even during the replacement step.

溶融炉1の層状剥離を防止する観点からは、溶融炉1内の温度は1200℃以上であることが好ましく、1250℃以上であることがより好ましく、1300℃以上であることが更に好ましい。ただし、シングルフィーダの場合、交換工程中は溶融ガラスGmを連続形成しないため、エネルギーコストの観点からは、生産段階よりも通電加熱のための電力供給量を少なくし、溶融炉1内の温度を、生産段階の温度よりも低くすることが好ましい。溶融炉1内の温度は1600℃以下であることが好ましく、1500℃以下であることがより好ましく、1450℃以下であることが更に好ましい。ここで、溶融炉1内の温度は、高粘度ガラス層Gs及びその周辺を除く溶融ガラスGmの温度を意味する。 From the viewpoint of preventing delamination of the melting furnace 1, the temperature in the melting furnace 1 is preferably 1200°C or higher, more preferably 1250°C or higher, and even more preferably 1300°C or higher. However, in the case of a single feeder, since the molten glass Gm is not continuously formed during the replacement process, from the viewpoint of energy cost, the amount of power supply for electric heating is reduced compared to the production stage, and the temperature in the melting furnace 1 is increased. , preferably lower than the production stage temperature. The temperature in the melting furnace 1 is preferably 1600° C. or lower, more preferably 1500° C. or lower, and even more preferably 1450° C. or lower. Here, the temperature inside the melting furnace 1 means the temperature of the molten glass Gm excluding the high-viscosity glass layer Gs and its surroundings.

溶融炉1の流出口1a周辺には高粘度ガラス層Gsを形成するので、溶融炉1の流出口1aのジルコニア系耐火物も1200℃未満となり、ジルコニア系耐火物の表層部が層状剥離する事態が生じ得る。これを防止するため、溶融炉1の流出口1aは、ジルコニア系耐火物の表面を白金又は白金合金で覆うことが好ましい。また、溶融炉1の壁部のうちで、高粘度ガラス層Gs及びその周辺の低温の溶融ガラスGmと接触して1200℃未満となる部位についても、ジルコニア系耐火物の表面を白金又は白金合金で覆うことが好ましい。ジルコニア系耐火物の表面を白金又は白金合金で覆うことにより、ジルコニア系耐火物が溶融ガラスGmと直接接触することなく、白金又は白金合金を介して溶融ガラスGmと接触するので、層状剥離を防止できる。 Since the high-viscosity glass layer Gs is formed around the outlet 1a of the melting furnace 1, the temperature of the zirconia-based refractory at the outlet 1a of the melting furnace 1 is also lower than 1200°C, and the surface layer of the zirconia-based refractory is delaminated. can occur. In order to prevent this, the outlet 1a of the melting furnace 1 preferably covers the surface of the zirconia-based refractory with platinum or a platinum alloy. In addition, the surface of the zirconia refractory is coated with platinum or a platinum alloy for the portion of the wall of the melting furnace 1 that is in contact with the high-viscosity glass layer Gs and the low-temperature molten glass Gm around it and becomes lower than 1200 ° C. preferably covered with By covering the surface of the zirconia-based refractory with platinum or a platinum alloy, the zirconia-based refractory does not come into direct contact with the molten glass Gm, but comes into contact with the molten glass Gm via platinum or a platinum alloy, preventing delamination. can.

図6に示すように、遮断部材14は、絶縁構造を有する。本実施形態では、遮断部材14は、絶縁構造として、本体部材15と、本体部材15に当接する絶縁部材16と、絶縁部材16を介して本体部材15を溶融炉1側に押圧しながら保持する保持部材17とを備えている。これにより、交換工程において、溶融炉1で電極による通電加熱を継続しても、移送流路2側への漏電を防止することができる。 As shown in FIG. 6, the blocking member 14 has an insulating structure. In the present embodiment, the blocking member 14 has an insulating structure including a main body member 15, an insulating member 16 abutting against the main body member 15, and holding the main body member 15 while pressing the main body member 15 toward the melting furnace 1 through the insulating member 16. and a holding member 17 . As a result, in the replacement step, it is possible to prevent electric leakage to the transfer flow path 2 side even if the electric heating by the electrodes is continued in the melting furnace 1 .

本体部材15は、例えばステンレス等の金属板で形成され、絶縁部材16は、例えばセラミックスなどを備える。本体部材15は、ガラスや耐火物で形成してもよいが、ガラスや耐火物の場合、溶融炉1内の溶融ガラスGmと接着しやすく、交換工程後に、本体部材15を溶融炉1の流出口1aから分離しにくくなるおそれがある。従って、本体部材15は、金属板であることが好ましい。 The body member 15 is made of, for example, a metal plate such as stainless steel, and the insulating member 16 is made of, for example, ceramics. The main body member 15 may be made of glass or a refractory material. In the case of glass or a refractory material, the body member 15 is easily adhered to the molten glass Gm in the melting furnace 1. It may become difficult to separate from the outlet 1a. Therefore, it is preferable that the main body member 15 is a metal plate.

シングルメルターの場合、溶融空間が小さく、電極11で通電加熱する領域と溶融炉1の流出口1aとが接近することが多いため、このような絶縁構造が特に有用になる。遮断部材14は、接地(アース)されていることが好ましい。なお、高粘度ガラス層Gsも絶縁作用を有するので、高粘度ガラス層Gsの温度を十分に低下させることにより、絶縁を行ってもよい。また、高粘度ガラス層Gsの絶縁作用と、遮断部材14の絶縁構造とを併用してもよい。 In the case of a single melter, since the melting space is small and the area heated by the electrodes 11 is often close to the outlet 1a of the melting furnace 1, such an insulating structure is particularly useful. The blocking member 14 is preferably grounded. In addition, since the high-viscosity glass layer Gs also has an insulating effect, insulation may be performed by sufficiently lowering the temperature of the high-viscosity glass layer Gs. Also, the insulating action of the high-viscosity glass layer Gs and the insulating structure of the blocking member 14 may be used together.

図7に示すように、遮断部材14は、冷却構造を有する。本実施形態では、遮断部材14の本体部材15は、冷却構造として、その内部に水や空気などの冷却流体を流通する冷却流路15aを備えている。本体部材15は、水冷板であることが好ましい。冷却流路15aは、一端側から冷却流体が供給されると共に、他端側から冷却流体が排出されるようになっている。冷却流路15aは、本体部材15のうち、少なくとも溶融炉1の流出口1aに対応する領域に形成される。冷却流体を給排するために冷却流路15aに接続される給排管18も、少なくとも一部がセラミックスやゴム等からなる絶縁管で構成されていることが好ましい。給排管18の一部にゴムからなる絶縁管を用いる場合、熱源である溶融炉1や冷却流路15aから絶縁管を離間し、熱による絶縁管の破損を防止することが好ましい。 As shown in FIG. 7, the blocking member 14 has a cooling structure. In the present embodiment, the main body member 15 of the blocking member 14 has a cooling flow path 15a as a cooling structure through which a cooling fluid such as water or air flows. Body member 15 is preferably a water-cooled plate. The cooling flow path 15a is supplied with a cooling fluid from one end and discharged from the other end. The cooling channel 15 a is formed in a region of the body member 15 corresponding to at least the outlet 1 a of the melting furnace 1 . At least a part of the supply/discharge pipe 18 connected to the cooling flow path 15a for supplying/discharging the cooling fluid is also preferably made of an insulating pipe made of ceramics, rubber, or the like. When an insulating pipe made of rubber is used as part of the supply/discharge pipe 18, it is preferable to separate the insulating pipe from the melting furnace 1 and the cooling channel 15a, which are heat sources, to prevent damage to the insulating pipe due to heat.

遮断部材14の冷却構造は、冷却流体を冷却流路15aに流通させるものに限定されるものではなく、例えば、本体部材15に対して外部から冷却流体を吹き付けるものであってもよい。 The cooling structure of the blocking member 14 is not limited to circulating the cooling fluid in the cooling flow path 15a, and for example, the cooling fluid may be sprayed onto the main body member 15 from the outside.

なお、以上のような交換工程の終了後は、生産(溶融工程、移送工程及び成形工程)を再開する。生産の再開時は、例えば、遮断部材14を取り外し、移送流路2を溶融炉1に接続した後、通電加熱によって移送流路2を昇温すればよい。これにより、溶解炉1から溶融ガラスGmが移送流路2に供給される。また、流出口1a周辺の高粘度ガラス層Gsは、粘度が次第に低下して消滅する。シングルフィーダでガラス原料Grの投入は停止している場合、溶融炉1と移送流路2の接続に応じてガラス原料の投入を再開する。シングルフィーダで溶融炉1内の温度を生産段階の温度よりも低くしている場合、溶融炉1と移送流路2の接続前に、溶融炉1内の温度を生産段階の温度まで上昇させる。 After completion of the replacement process as described above, production (melting process, transfer process and molding process) is restarted. When restarting production, for example, after removing the blocking member 14 and connecting the transfer channel 2 to the melting furnace 1, the temperature of the transfer channel 2 may be raised by electrical heating. Thereby, the molten glass Gm is supplied from the melting furnace 1 to the transfer flow path 2 . Further, the viscosity of the high-viscosity glass layer Gs around the outflow port 1a gradually decreases and disappears. When the feeding of the frit Gr is stopped in the single feeder, the feeding of the frit Gr is restarted according to the connection between the melting furnace 1 and the transfer passage 2 . When the temperature in the melting furnace 1 is lower than the temperature in the production stage with a single feeder, the temperature in the melting furnace 1 is raised to the temperature in the production stage before connecting the melting furnace 1 and the transfer channel 2 .

(第二実施形態)
図8及び図9に示すように、第二実施形態に係るガラス物品の製造方法が、第一実施形態に係るガラス物品の製造方法と相違するところは、移送流路2を交換する交換工程である。以下では、第一実施形態との相違点を中心に説明し、第一実施形態との共通点の詳しい説明は省略する。
(Second embodiment)
As shown in FIGS. 8 and 9, the method for manufacturing a glass article according to the second embodiment differs from the method for manufacturing a glass article according to the first embodiment in the replacement step of replacing the transfer channel 2. be. In the following, differences from the first embodiment will be mainly described, and detailed descriptions of common points with the first embodiment will be omitted.

第二実施形態に係るガラス物品の製造方法に用いられる製造装置は、円滑な交換工程を実施するために、溶融炉1の流出口1aの直下流、すなわち、溶融炉1の流出口1aと、移送流路2の移送管7の上流端との間に、遮断部材14が上下移動可能に収容された収容室21を備えている。遮断部材14を上げた状態で収容室21の流路が開き、遮断部材14を下げた状態で収容室21の流路が閉じるようになっている。 In order to carry out a smooth replacement process, the manufacturing apparatus used in the method for manufacturing a glass article according to the second embodiment is arranged immediately downstream of the outlet 1a of the melting furnace 1, that is, the outlet 1a of the melting furnace 1, Between the transfer channel 2 and the upstream end of the transfer pipe 7, there is provided an accommodation chamber 21 in which a blocking member 14 is accommodated so as to be vertically movable. When the blocking member 14 is raised, the passage of the storage chamber 21 is opened, and when the blocking member 14 is lowered, the passage of the storage chamber 21 is closed.

遮断部材14は、収容室21の流路を開閉できれば上下移動する構成に限定されない。遮断部材14は、例えば水平移動する構成などであってもよい。 The blocking member 14 is not limited to a configuration that moves up and down as long as it can open and close the flow path of the storage chamber 21 . The blocking member 14 may be configured to move horizontally, for example.

遮断部材14は、第一実施形態と同様に、絶縁構造及び冷却構造を有することが好ましい。 The blocking member 14 preferably has an insulating structure and a cooling structure, as in the first embodiment.

第二実施形態に係るガラス物品の製造方法に含まれる交換工程では、図8に示すように、移送管7の通電加熱の電力供給量を生産段階よりも少なくして溶融ガラスGmを降温した後に、遮断部材14を下げて収容室21の流路を閉じる。これにより、溶融炉1の流出口1aが遮断部材14によって塞がれた状態となる。 In the replacement step included in the manufacturing method of the glass article according to the second embodiment, as shown in FIG. , the blocking member 14 is lowered to close the passage of the storage chamber 21 . As a result, the outlet 1a of the melting furnace 1 is blocked by the blocking member 14. As shown in FIG.

このように遮断部材14を下げて収容室21の流路を閉じた状態で、図9に示すように、移送流路2を収容室21から分離し、移送流路2(又は移送流路2と成形装置3)を新しいものと交換する。 In the state where the blocking member 14 is lowered to close the flow path of the storage chamber 21, the transfer flow path 2 is separated from the storage chamber 21 as shown in FIG. and molding device 3) are replaced with new ones.

交換工程の終了後は、収容室21の昇温後に遮断部材14を上げて収容室21の流路を再び開き、生産を再開する。 After the replacement step is completed, the blocking member 14 is raised after the temperature of the storage chamber 21 is raised, and the flow path of the storage chamber 21 is reopened to resume production.

収容室21に収容された遮断部材14は、溶融ガラスGmの低粘度の状態でも、収容室21の流路を簡単に閉じることができる。このため、遮断部材14を下げて収容室21の流路を閉じた後に、移送管7の通電加熱のための電力供給量を生産段階よりも少なくすることにより、溶融管7内の溶融ガラスGmを降温してもよい。 The blocking member 14 housed in the housing chamber 21 can easily close the flow path of the housing chamber 21 even when the molten glass Gm has a low viscosity. For this reason, after closing the flow path of the accommodation chamber 21 by lowering the blocking member 14, the amount of power supply for the electrical heating of the transfer tube 7 is made smaller than that in the production stage, so that the molten glass Gm in the melting tube 7 may be cooled.

生産段階では、遮断部材14は収容室21の外側に配置されると共に、交換工程の際に遮断部材14を挿入するために収容室21に設けられた開口部(図示省略)は蓋などによって塞がれていることが好ましい。 In the production stage, the blocking member 14 is arranged outside the housing chamber 21, and an opening (not shown) provided in the housing chamber 21 for inserting the blocking member 14 during the replacement process is closed with a lid or the like. It is preferable that it is dry.

(第三実施形態)
図10及び図11に示すように、第三実施形態に係るガラス物品の製造方法が、第一実施形態に係るガラス物品の製造方法と相違するところは、移送流路2を交換する交換工程である。以下では、第一実施形態との相違点を中心に説明し、第一実施形態との共通点の詳しい説明は省略する。
(Third embodiment)
As shown in FIGS. 10 and 11, the method for manufacturing a glass article according to the third embodiment differs from the method for manufacturing a glass article according to the first embodiment in the replacement step of replacing the transfer channel 2. be. In the following, differences from the first embodiment will be mainly described, and detailed descriptions of common points with the first embodiment will be omitted.

第三実施形態に係るガラス物品の製造方法に含まれる交換工程は、まず、図10に示すように、溶融炉1の底壁部1bに設けられた排出口(図示省略)から溶融炉1内の溶融ガラスGmを排出する。これにより、溶融ガラスGmの液面Gm1の高さを流出口1aよりも下げる。もちろん、溶融炉1から溶融ガラスGmを全て排出してもよい。 In the replacement step included in the method for manufacturing a glass article according to the third embodiment, first, as shown in FIG. of molten glass Gm is discharged. As a result, the height of the liquid surface Gm1 of the molten glass Gm is lowered below the outflow port 1a. Of course, all of the molten glass Gm may be discharged from the melting furnace 1 .

次に、図11に示すように、溶融炉1から移送流路2を分離すると共に、流出口1aを遮断部材14で塞ぐ。このように遮断部材14で流出口1aを塞いだ状態で、移送流路2(又は移送流路2と成形装置3)を新しいものに交換する。 Next, as shown in FIG. 11, the transfer channel 2 is separated from the melting furnace 1 and the outflow port 1a is closed with a blocking member 14. Next, as shown in FIG. With the outlet 1a blocked by the blocking member 14 in this manner, the transfer channel 2 (or the transfer channel 2 and the molding device 3) is replaced with a new one.

遮断部材14は、第一実施形態と同様に、絶縁構造及び冷却構造を有することが好ましい。 The blocking member 14 preferably has an insulating structure and a cooling structure, as in the first embodiment.

遮断部材14は、新しい移送流路2を溶融炉1の流出口1aに接合する直前に、溶融炉1の流出口1aから取り除く。例えば、溶融炉1内で溶融ガラスGmを形成し、溶融ガラスGmの液面Gm1を所定高さ(例えば、生産段階の液面の高さ)まで再び上昇させた後に、遮断部材14を取り除いて新しい移送流路2を溶融炉1の流出口1aに接合してもよい。これとは逆に、例えば、遮断部材14を取り除いて新しい移送流路2を溶融炉1の流出口1aに接合した後に、溶融炉1内で溶融ガラスGmを形成し、溶融ガラスGmの液面Gm1を所定高さまで再び上昇させてもよい。 The blocking member 14 is removed from the outlet 1a of the melting furnace 1 just before joining the new transfer channel 2 to the outlet 1a of the melting furnace 1 . For example, after forming the molten glass Gm in the melting furnace 1 and raising the liquid level Gm1 of the molten glass Gm to a predetermined height (for example, the liquid level at the production stage), the blocking member 14 is removed. A new transfer channel 2 may be joined to the outlet 1 a of the melting furnace 1 . Conversely, for example, after removing the blocking member 14 and joining a new transfer channel 2 to the outlet 1a of the melting furnace 1, the molten glass Gm is formed in the melting furnace 1, and the liquid surface of the molten glass Gm is Gm1 may be raised again to a predetermined height.

交換工程の終了後は、生産を再開する。本実施形態では、交換工程で溶融炉1内の溶融ガラスGmの量を少なくしているため、生産を再開する際に、異なるガラス組成を有する溶融ガラスGmに入れ替えてもよい。 After the replacement process is completed, production resumes. In this embodiment, since the amount of molten glass Gm in the melting furnace 1 is reduced in the replacement step, the molten glass Gm having a different glass composition may be replaced when restarting production.

ここで、溶融炉1の壁部がジルコニア系耐火物を含む場合、層状剥離を防止するために、交換工程中も溶融炉1内の温度を所定温度以上に保つことが好ましい。しかしながら、溶融炉1内の溶融ガラスGmの液面Gm1の高さを下げると、ボトム電極11の一部が空気中に露出する場合がある。この状態でボトム電極11による通電加熱を行うと、ボトム電極11が酸化により早期に損耗するおそれがある。従って、ボトム電極11による通電加熱は行わずに、バーナー等の別の加熱手段で溶融炉1内を加熱することが好ましい。このように交換工程中に溶融炉1内で電極による通電加熱を行わない場合、遮断部材14は絶縁構造を有していなくてもよい。 Here, when the wall portion of the melting furnace 1 contains zirconia-based refractories, it is preferable to keep the temperature inside the melting furnace 1 at a predetermined temperature or higher even during the replacement process in order to prevent delamination. However, when the height of the liquid surface Gm1 of the molten glass Gm in the melting furnace 1 is lowered, part of the bottom electrode 11 may be exposed to the air. If electrical heating is performed by the bottom electrode 11 in this state, the bottom electrode 11 may be quickly worn out due to oxidation. Therefore, it is preferable to heat the inside of the melting furnace 1 by another heating means such as a burner, without performing electric heating by the bottom electrode 11 . In this way, when the electric heating by the electrodes is not performed in the melting furnace 1 during the replacement process, the blocking member 14 does not have to have an insulating structure.

本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configurations of the above-described embodiments, nor is it limited to the above-described effects. Various modifications can be made to the present invention without departing from the gist of the present invention.

上記の実施形態では、シングルメルターである場合を説明したが、複数の溶融空間を連ねたマルチメルターであってもよい。マルチメルターの場合は、例えば、最上流部の溶融空間のみが電極で通電加熱され、その下流側の溶融空間は電極で通電加熱されないことがある。この場合、電極で通電加熱する領域と溶融炉の流出口とが、抵抗体として機能する溶融ガラスGmを介して大きく離反するため、遮断部材は絶縁構造を有していなくてもよい。 In the above embodiment, the case of a single melter has been explained, but a multi-melter having a plurality of melting spaces connected together may be used. In the case of a multi-melter, for example, only the most upstream melting space is electrically heated by electrodes, and the downstream melting space is not electrically heated by electrodes. In this case, since the area to be electrically heated by the electrodes and the outlet of the melting furnace are largely separated from each other through the molten glass Gm that functions as a resistor, the shielding member does not need to have an insulating structure.

上記の実施形態では、シングルフィーダである場合を説明したが、複数の成形装置に向かって延びる複数の移送流路が溶融炉に接続されたマルチフィーダであってもよい。マルチフィーダの場合、複数の移送流路の一部に対して交換工程を実施している間も、残りの移送流路に溶融炉から溶融ガラスを供給し、ガラス物品の製造を継続することができる。従って、複数の移送流路の一部に対して交換工程を実施している間も、溶融炉にガラス原料を投入することが好ましい。 In the above embodiment, the case of a single feeder has been described, but a multi-feeder may be used in which a plurality of transfer channels extending toward a plurality of molding apparatuses are connected to a melting furnace. In the case of a multi-feeder, it is possible to continue manufacturing glass articles by supplying molten glass from the melting furnace to the rest of the transfer channels even while the replacement process is being performed for some of the plurality of transfer channels. can. Therefore, it is preferable to feed frit into the melting furnace even while the exchange process is being performed for some of the plurality of transfer channels.

上記の実施形態では、溶融炉の流出口に遮断部材を配置するが、移送流路の途中(例えば、清澄室の下流端と均質化室の上流端との間)にも、遮断部材を収容する収容室を設けてもよい。この場合、交換工程において、移送流路の途中に設けられた収容室の遮断部材を閉じれば、移送流路内の溶融ガラスの流動を簡単に停止することができる。移送流路内の溶融ガラスの流動を停止させる方法としては、例えば、棒状部材(プランジャー)の外周面でポッドなどの縦管部に栓をするなどの方法であってもよい。 In the above embodiment, the blocking member is arranged at the outlet of the melting furnace, but the blocking member is also accommodated in the middle of the transfer channel (for example, between the downstream end of the clarification chamber and the upstream end of the homogenization chamber). A containment room may be provided. In this case, in the replacement step, the flow of the molten glass in the transfer channel can be easily stopped by closing the blocking member of the storage chamber provided in the middle of the transfer channel. As a method for stopping the flow of the molten glass in the transfer channel, for example, a method such as plugging a vertical tube portion such as a pod with an outer peripheral surface of a rod-shaped member (plunger) may be used.

上記の実施形態において、溶融ガラスの連続形成を開始する前の段階(溶融炉の立ち上げ段階)及び/又は生産段階で、例えばヒーター等の電気加熱手段で補助的に電気加熱してもよい。 In the above embodiments, electrical heating may be supplementary with electrical heating means such as, for example, heaters, prior to commencing continuous formation of molten glass (start-up stage of the melting furnace) and/or during the production stage.

上記の実施形態において、溶融炉は、生産段階において、通電加熱とガス燃料の燃焼とを併用してよい。ガス燃料の燃焼を用いる場合、溶融炉の側壁部等にバーナーが設けられる。生産段階において全電気溶融を行う場合でも、溶融炉の立ち上げ段階では、バーナーによる加熱を用いることができる。 In the above embodiment, the melting furnace may use both electric heating and gas fuel combustion in the production stage. When gaseous fuel combustion is used, burners are provided on the side walls of the melting furnace or the like. Even in the case of all-electric melting in the production stage, heating by burners can be used in the start-up stage of the melting furnace.

上記の実施形態では、成形装置で成形されるガラス物品が板ガラスである場合を説明したが、これに限定されない。成形装置で成形されるガラス物品は、例えば、ガラスフィルムをロール状に巻き取ったガラスロール、光学ガラス部品、ガラス管、ガラスブロック、ガラス繊維などであってもよいし、任意の形状であってよい。 In the above embodiments, the case where the glass article molded by the molding apparatus is plate glass has been described, but the present invention is not limited to this. The glass article molded by the molding apparatus may be, for example, a glass roll obtained by winding a glass film into a roll, an optical glass component, a glass tube, a glass block, a glass fiber, or the like, and may be of any shape. good.

1 溶融炉
1a 流出口
1b 底壁部
2 移送流路(フィーダ)
3 成形装置
4 清澄室
5 均質化室
6 ポット
7~10 移送管
11 ボトム電極
12 原料投入装置
13 煙道
14 遮断部材
15 本体部材
15a 冷却流路
16 絶縁部材
17 保持部材
18 給排管
21 収容室
G ガラスリボン
Gm 溶融ガラス
Gr ガラス原料
Gs 高粘度ガラス層
1 melting furnace 1a outlet 1b bottom wall 2 transfer channel (feeder)
3 Forming device 4 Clarifying chamber 5 Homogenizing chamber 6 Pots 7 to 10 Transfer pipe 11 Bottom electrode 12 Raw material charging device 13 Flue duct 14 Blocking member 15 Body member 15a Cooling channel 16 Insulating member 17 Holding member 18 Supply/discharge pipe 21 Storage chamber G Glass ribbon Gm Molten glass Gr Glass raw material Gs High viscosity glass layer

Claims (9)

電極による通電加熱により、 溶融炉でガラス原料を溶融して溶融ガラスを連続形成する溶融工程と、前記溶融炉の流出口から流出する前記溶融ガラスを移送流路で移送する移送工程と、前記移送流路で移送された溶融ガラスを成形装置でガラス物品に成形する成形工程とを備えたガラス物品の製造方法において、
前記溶融炉内に前記溶融ガラスを残すと共に 前記流出口を塞ぐように遮断部材を配置した状態で、前記移送流路を交換する交換工程を更に備え
前記交換工程中も、前記溶融炉内に残した前記溶融ガラスを前記電極により通電加熱することを特徴とするガラス物品の製造方法。
By electric heating with electrodes, A melting step of continuously forming molten glass by melting frit in a melting furnace, a transfer step of transferring the molten glass flowing out of the outlet of the melting furnace through a transfer channel, and a transfer channel through which the molten glass is transferred. A method for manufacturing a glass article comprising a molding step of molding molten glass into a glass article in a molding apparatus,
leaving the molten glass in the melting furnace and The method further comprises a replacement step of replacing the transfer channel with a blocking member arranged to block the outlet.,
During the replacement step, the molten glass left in the melting furnace is electrically heated by the electrodes.A method for producing a glass article characterized by:
前記交換工程では、前記遮断部材で前記流出口を塞ぐ前に、少なくとも最上流部の前記移送流路内の前記溶融ガラスを降温することを特徴とする請求項1に記載のガラス物品の製造方法。 2. The method for manufacturing a glass article according to claim 1, wherein in the replacing step, the temperature of the molten glass in the transfer channel at least at the most upstream portion is lowered before closing the outlet with the blocking member. . 前記遮断部材が、冷却構造を備えていることを特徴とする請求項1又は2に記載のガラス物品の製造方法。 3. The method for manufacturing a glass article according to claim 1, wherein the blocking member has a cooling structure. 前記遮断部材が、絶縁構造を備えていることを特徴とする請求項1~3のいずれか1項に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to any one of claims 1 to 3, wherein the blocking member has an insulating structure. 前記電極が、前記溶融炉の底壁に設けられたボトム電極からなることを特徴とする請求項1~4のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 4 , wherein the electrode comprises a bottom electrode provided on the bottom wall of the melting furnace. 前記溶融工程では、前記電極を用いた通電加熱のみで、前記ガラス原料を溶融することを特徴とする請求項1~5のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 5 , wherein in the melting step, the frit is melted only by electric heating using the electrode. 前記溶融炉が、ジルコニア系耐火物を含むことを特徴とする請求項1~のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 6 , wherein the melting furnace contains a zirconia-based refractory. 前記溶融炉に接続する前記移送流路の数が、一つであることを特徴とする請求項1~のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 7 , characterized in that the number of transfer channels connected to the melting furnace is one. 前記溶融炉の前記ガラス原料を溶融する溶融空間が、単一の空間からなることを特徴とする請求項1~のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 8 , characterized in that the melting space for melting the frit of the melting furnace consists of a single space.
JP2018103483A 2018-05-30 2018-05-30 Method for manufacturing glass article Active JP7118359B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018103483A JP7118359B2 (en) 2018-05-30 2018-05-30 Method for manufacturing glass article
PCT/JP2019/017394 WO2019230277A1 (en) 2018-05-30 2019-04-24 Method for manufacturing glass article
CN201980029226.5A CN112074488A (en) 2018-05-30 2019-04-24 Method for manufacturing glass article
KR1020207029398A KR20210018195A (en) 2018-05-30 2019-04-24 Glass article manufacturing method
JP2022121243A JP2022153571A (en) 2018-05-30 2022-07-29 Manufacturing method of glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103483A JP7118359B2 (en) 2018-05-30 2018-05-30 Method for manufacturing glass article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022121243A Division JP2022153571A (en) 2018-05-30 2022-07-29 Manufacturing method of glass article

Publications (2)

Publication Number Publication Date
JP2019206461A JP2019206461A (en) 2019-12-05
JP7118359B2 true JP7118359B2 (en) 2022-08-16

Family

ID=68697593

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018103483A Active JP7118359B2 (en) 2018-05-30 2018-05-30 Method for manufacturing glass article
JP2022121243A Pending JP2022153571A (en) 2018-05-30 2022-07-29 Manufacturing method of glass article

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022121243A Pending JP2022153571A (en) 2018-05-30 2022-07-29 Manufacturing method of glass article

Country Status (4)

Country Link
JP (2) JP7118359B2 (en)
KR (1) KR20210018195A (en)
CN (1) CN112074488A (en)
WO (1) WO2019230277A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022018815A (en) * 2020-07-16 2022-01-27 日本電気硝子株式会社 Method for manufacturing glass article
JP2023082986A (en) * 2021-12-03 2023-06-15 日本電気硝子株式会社 Method for manufacturing glass article
CN114057389A (en) * 2021-12-17 2022-02-18 江苏正威新材料股份有限公司 Point supply type tank furnace wire drawing device and process method thereof
CN114835379A (en) * 2022-06-22 2022-08-02 武汉荣佳达光电科技有限公司 Support plate glass electric kiln system capable of reducing emission

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203133A (en) 2008-02-28 2009-09-10 Ohara Inc Apparatus and method for feeding molten glass
JP2009221105A (en) 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
JP2011162381A (en) 2010-02-08 2011-08-25 Nippon Electric Glass Co Ltd Method and apparatus for molding glass rod
JP2012162422A (en) 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd Method for manufacturing glass article and glass melting furnace
WO2012133897A1 (en) 2011-03-31 2012-10-04 旭硝子株式会社 Vacuum degassig apparatus, apparatus for producing glassware, and method for producing glassware
JP2012229153A (en) 2011-04-26 2012-11-22 Corning Inc Electrode holder for electric glass melting
JP2013028483A (en) 2011-07-28 2013-02-07 Ihi Corp Furnace bottom nozzle part structure of glass melting furnace
JP2013086991A (en) 2011-10-14 2013-05-13 Asahi Glass Co Ltd Supply pipe for molten glass and apparatus for forming glass
CN104692646A (en) 2015-03-26 2015-06-10 山东聚智机械科技有限公司 Furnace wire-drawing system used for producing basalt continuous filament

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280320A (en) * 1975-12-27 1977-07-06 Central Glass Co Ltd Method of producing plate glass and glass fiber
JPH10297927A (en) * 1997-04-24 1998-11-10 Nippon Electric Glass Co Ltd Discharging device of heterogeneous glass
JP2003183031A (en) 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
JP5731438B2 (en) * 2012-04-06 2015-06-10 AvanStrate株式会社 Glass plate manufacturing method and manufacturing apparatus
CN203904196U (en) * 2014-04-09 2014-10-29 台湾玻璃工业股份有限公司 Producing system with one kiln matched with multiple float glass production lines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221105A (en) 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
JP2009203133A (en) 2008-02-28 2009-09-10 Ohara Inc Apparatus and method for feeding molten glass
JP2011162381A (en) 2010-02-08 2011-08-25 Nippon Electric Glass Co Ltd Method and apparatus for molding glass rod
JP2012162422A (en) 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd Method for manufacturing glass article and glass melting furnace
WO2012133897A1 (en) 2011-03-31 2012-10-04 旭硝子株式会社 Vacuum degassig apparatus, apparatus for producing glassware, and method for producing glassware
JP2012229153A (en) 2011-04-26 2012-11-22 Corning Inc Electrode holder for electric glass melting
JP2013028483A (en) 2011-07-28 2013-02-07 Ihi Corp Furnace bottom nozzle part structure of glass melting furnace
JP2013086991A (en) 2011-10-14 2013-05-13 Asahi Glass Co Ltd Supply pipe for molten glass and apparatus for forming glass
CN104692646A (en) 2015-03-26 2015-06-10 山东聚智机械科技有限公司 Furnace wire-drawing system used for producing basalt continuous filament

Also Published As

Publication number Publication date
KR20210018195A (en) 2021-02-17
JP2022153571A (en) 2022-10-12
CN112074488A (en) 2020-12-11
JP2019206461A (en) 2019-12-05
WO2019230277A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
JP7118359B2 (en) Method for manufacturing glass article
TWI527779B (en) A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product
JP7025720B2 (en) Manufacturing method of glass articles and glass melting furnace
KR101971755B1 (en) Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method
WO2012132474A1 (en) Glass substrate production method
JP7223345B2 (en) Glass article manufacturing method, manufacturing apparatus, and glass substrate
JP5731437B2 (en) Manufacturing method of glass plate
JP7174360B2 (en) Glass article manufacturing method, melting furnace and glass article manufacturing apparatus
KR102497517B1 (en) Manufacturing method and melting furnace of glass article
JP6002526B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
JP6792825B2 (en) Manufacturing method of glass articles and melting furnace
JP2014069983A (en) Method and apparatus for producing glass substrate
JP6263355B2 (en) Glass melting apparatus, glass sheet manufacturing apparatus, electrode for glass melting apparatus, and glass sheet manufacturing method
JP2013095639A (en) Preheating method of glass melting furnace, glass melting apparatus, and method for manufacturing glass article
JP6498546B2 (en) Glass plate manufacturing method and melting tank
JP6749123B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5668066B2 (en) Manufacturing method of glass substrate
JP7090844B2 (en) Manufacturing method of glass articles and glass substrate group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220717

R150 Certificate of patent or registration of utility model

Ref document number: 7118359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150