JP7116360B2 - sliding member - Google Patents

sliding member Download PDF

Info

Publication number
JP7116360B2
JP7116360B2 JP2018136422A JP2018136422A JP7116360B2 JP 7116360 B2 JP7116360 B2 JP 7116360B2 JP 2018136422 A JP2018136422 A JP 2018136422A JP 2018136422 A JP2018136422 A JP 2018136422A JP 7116360 B2 JP7116360 B2 JP 7116360B2
Authority
JP
Japan
Prior art keywords
coating
alloy particles
sliding member
residual stress
compressive residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018136422A
Other languages
Japanese (ja)
Other versions
JP2020012442A (en
Inventor
佳典 伊澤
豊 馬渕
淳一 荒井
盛之 野上
和貴 有馬
博久 柴山
尚樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2018136422A priority Critical patent/JP7116360B2/en
Publication of JP2020012442A publication Critical patent/JP2020012442A/en
Application granted granted Critical
Publication of JP7116360B2 publication Critical patent/JP7116360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、被膜を備える摺動部材に係り、更に詳細には、熱応力による被膜欠陥の発生を防止した摺動部材に関する。 TECHNICAL FIELD The present invention relates to a sliding member provided with a film, and more particularly to a sliding member that prevents film defects from occurring due to thermal stress.

内燃機関に用いられる摺動部材は、摩擦だけでなく、燃焼熱や燃焼生成物による酸化等にも曝されるため、耐摩耗性や耐熱性などに優れることが要求され、基材表面に環状のザグリ溝を形成し、該ザグリ溝に銅系合金等の被膜を形成することが行われている。 Sliding members used in internal combustion engines are exposed not only to friction but also to combustion heat and oxidation by combustion products. is formed, and a film such as a copper-based alloy is formed on the counterbore groove.

特許文献1には、ザグリ溝に供給した金属粉にレーザビームを照射すると共に、上記ザグリ溝に設けたガス整流壁にガスを吹き付けてザグリ溝の内側から外側へ向かって流すことで、被膜を形成する溶融金属が鉛直方向下側に垂れ下がって生じる欠肉を防止できる旨が開示されている。 In Patent Document 1, a metal powder supplied to a counterbore groove is irradiated with a laser beam, and gas is blown to a gas rectifying wall provided in the counterbore groove to flow from the inside to the outside of the counterbore groove, thereby forming a film. It is disclosed that it is possible to prevent the lack of thickness caused by the formed molten metal sagging downward in the vertical direction.

国際公開2015/001698号パンフレットInternational publication 2015/001698 pamphlet

しかしながら、特許文献1に記載のものにあっては、金属粉を溶融させて被膜を形成するため、溶融金属の凝固により体積が収縮して被膜に引張応力が残留する。そして、燃焼熱などによって溝が拡がると、被膜が引っ張られて亀裂や剥離などの欠陥が生じ、耐摩耗性が低下する。 However, in the case of Patent Document 1, since the coating is formed by melting the metal powder, the volume shrinks due to the solidification of the molten metal, and the tensile stress remains in the coating. When the grooves expand due to the heat of combustion, etc., the coating is stretched and defects such as cracks and peeling occur, resulting in a decrease in wear resistance.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、熱膨張衝撃による亀裂や剥離などの被膜欠陥の発生を防止し、耐摩耗性に優れる摺動部材を提供することにある。 The present invention has been made in view of such problems of the prior art, and the purpose thereof is to prevent the occurrence of film defects such as cracks and peeling due to thermal expansion impact, and to provide excellent wear resistance. An object of the present invention is to provide a sliding member.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、金属粉を溶融させずに粒子塊の被膜を形成することで該被膜に圧縮応力が残留し、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at achieving the above object, the present inventor found that by forming a coating of particle lumps without melting the metal powder, compressive stress remains in the coating, and the above object can be achieved. , have completed the present invention.

即ち、本発明の摺動部材は、円環状の溝を有する基材と、上記溝に設けられた被膜と、を備える。
そして、上記被膜が、銅を50質量%以上含有する銅合金粒子を含む合金材の粒子塊で成り、少なくとも一部において、周方向及び径方向の少なくとも一方の圧縮残留応力が1MPa以上であることを特徴とする。
That is, the sliding member of the present invention includes a base material having an annular groove, and a coating provided in the groove.
The coating is made of agglomerates of alloy material containing copper alloy particles containing 50% by mass or more of copper , and at least a part thereof has a compressive residual stress of 1 MPa or more in at least one of the circumferential direction and the radial direction. characterized by

本発明によれば、1MPa以上の圧縮残留応力を有する被膜を形成することとしたため、熱膨張衝撃による被膜欠陥が生じず、耐摩耗性に優れた摺動部材を提供することができる。 According to the present invention, since a film having a compressive residual stress of 1 MPa or more is formed, film defects due to thermal expansion impact do not occur, and a sliding member having excellent wear resistance can be provided.

本発明の摺動部材の断面の一例を示す概略断面図である。It is a schematic sectional view showing an example of a section of a sliding member of the present invention. 被膜組織の一例を示す概略拡大断面図である。FIG. 4 is a schematic enlarged cross-sectional view showing an example of a coating structure; 実施例1の摺動部材の断面SEM像である。4 is a cross-sectional SEM image of the sliding member of Example 1. FIG.

本発明の摺動部材について詳細に説明する。
上記摺動部材は、円環状の溝を有する基材と上記溝に設けられた被膜とを備え、上記被膜が合金材の粒子塊で成り、周方向及び径方向の少なくとも一方に圧縮残留応力を有する。なお、図1中、紙面手前から奥方向が円環の周方向であり、紙面左右方向が円環の径方向である。
The sliding member of the present invention will be described in detail.
The sliding member includes a base material having an annular groove and a coating provided in the groove, the coating being made of agglomerates of alloy material and having a compressive residual stress in at least one of the circumferential direction and the radial direction. have. In FIG. 1, the direction from the front to the back of the paper surface is the circumferential direction of the ring, and the horizontal direction of the paper surface is the radial direction of the ring.

上記被膜の室温(25℃)での被膜中央の圧縮残留応力は、1MPa以上であり、さらに100MPa以上であることが好ましく、さらに400MPa以上であることが好ましい。 The compressive residual stress at the center of the coating at room temperature (25° C.) is 1 MPa or more, preferably 100 MPa or more, and more preferably 400 MPa or more.

上記基材の溝に設けられた被膜は、圧縮残留応力を有し、被膜が基材の溝を押し広げる方向に応力がかかっているため、基材が燃焼熱などで熱せられて溝が拡がったとしても、被膜の圧縮残留応力が基材からの引張応力を打ち消すため、被膜には引張応力がかからない。したがって、被膜に亀裂が生じたり、基材から剥離したりすることがない。 The coating provided in the grooves of the base material has compressive residual stress, and stress is applied in the direction in which the coating expands the grooves of the base material. Even if there is, the compressive residual stress of the coating cancels the tensile stress from the substrate, so the coating is not subjected to tensile stress. Therefore, the coating does not crack or separate from the substrate.

本発明において粒子塊とは、図1に示すように、被膜を形成する合金材の粒子(以下、合金粒子という。)の表面が局所的に溶融して固化し、被膜全体の合金粒子同士が結合して一体化し、上記合金粒子同士が渾然一体とはならずに界面を形成している合金粒子の集合体をいい、合金粒子が完全に溶融又は溶解し固化することで渾然一体となった粒子の集合体をいわない。 In the present invention, the particle mass means, as shown in FIG. Refers to an aggregate of alloy particles that are bonded and integrated to form an interface without being harmoniously integrated with each other, and are harmoniously integrated by completely melting or dissolving and solidifying the alloy particles It does not refer to aggregates of particles.

上記被膜は、コールドスプレー法により、基材の溝に合金粒子を吹き付けることで形成できる。 The coating can be formed by spraying alloy particles into the grooves of the substrate by a cold spray method.

コールドスプレー法は、合金材子を溶融またはガス化させることなく不活性ガスと共に超音速流で固相状態のまま基材に衝突させて被膜を形成する方法であり、合金粒子を溶融させて被膜を形成する溶射法などの液相での被膜形成方法とは異なり、熱などによる合金粒子の特性変化や酸化を最小限にすることができる。 The cold spray method is a method in which the alloy material is collided with the substrate in a solid phase state with a supersonic flow together with an inert gas without melting or gasifying, and the coating is formed by melting the alloy particles. It is possible to minimize the property change and oxidation of the alloy particles due to heat and the like, unlike the film formation method in the liquid phase such as the thermal spraying method that forms the .

上記コールドスプレーで形成した被膜に圧縮応力が残留する理由は明らかではないが、合金粒子が基材に衝突すると、合金粒子の運動エネルギーは、合金粒子を潰し横方向に拡げる方向の応力に変換される。しかし、合金粒子が固相状態であり充分変形しないため、変形により上記応力を完全には解消できないことによると考えられる。
特に、溝の内部に被膜を形成する場合は、溝の内壁によって合金粒子の変形が制限されて圧縮応力が残留し易い。
The reason why the compressive stress remains in the film formed by the cold spray is not clear, but when the alloy particles collide with the substrate, the kinetic energy of the alloy particles is converted into stress in the direction of crushing and expanding the alloy particles in the lateral direction. be. However, since the alloy particles are in a solid state and are not sufficiently deformed, the stress cannot be completely eliminated by deformation.
In particular, when a film is formed inside the groove, deformation of the alloy particles is restricted by the inner wall of the groove, and compressive stress tends to remain.

また、合金粒子の運動エネルギーは、その一部が熱エネルギーに変換されて合金粒子の表面が局所的に溶融し固化することで合金粒子同士が結合して粒子塊を形成し、被膜が形成される。 In addition, part of the kinetic energy of the alloy particles is converted into thermal energy, and the surfaces of the alloy particles are locally melted and solidified, so that the alloy particles are bonded together to form particle agglomerates, and a coating is formed. be.

このとき、基材及び合金粒子の温度は、上記合金粒子の融点以下であるため、局所的に溶融した合金粒子の表面が急冷されて、図2に示すように、合金粒子と合金粒子との界面にアモルファスが形成される共に、合金粒子が塑性変形して合金粒子中の結晶粒が微細化される。 At this time, since the temperature of the base material and the alloy particles is lower than the melting point of the alloy particles, the surfaces of the locally melted alloy particles are quenched, and as shown in FIG. An amorphous phase is formed at the interface, and the alloy particles are plastically deformed to refine the crystal grains in the alloy particles.

上記合金粒子は、その少なくとも一部の合金粒子が粒径1μm未満の結晶粒を含むことが好ましい。上記合金粒子が微細な結晶粒を含むことで被膜強度が向上する。 At least some of the alloy particles preferably contain crystal grains having a particle size of less than 1 μm. The inclusion of fine crystal grains in the alloy particles improves the coating strength.

また、上記被膜は、上記粒径1μm未満の結晶粒の割合が30面積%以上であることが好ましく、さらに50面積%以上であることが好ましく、70面積%以上であることがより好ましい。
なお、本発明においては、被膜を任意に複数箇所測定し平均することで、粒径が1μm未満の結晶粒の割合を算出した。
In the coating, the ratio of crystal grains having a grain size of less than 1 μm is preferably 30 area % or more, more preferably 50 area % or more, and more preferably 70 area % or more.
In the present invention, the proportion of crystal grains having a grain size of less than 1 μm was calculated by measuring the film at multiple locations and averaging them.

また、本発明において、円環状とは、模式的に円形とみなし得れば足り、真円形だけでなく、楕円形、長円形を含む。また、周方向に端部を有さない閉じた円形だけでなく、周方向の一部が切れて端部を有する非連続の環形状をも含む。 Moreover, in the present invention, an annular shape is sufficient if it can be regarded as a circular shape, and includes not only perfect circles but also elliptical shapes and elliptical shapes. Moreover, it includes not only a closed circular shape having no ends in the circumferential direction, but also a discontinuous annular shape having ends due to a partial cut in the circumferential direction.

上記円環状の溝は、径方向に切った断面形状が底部よりも開口部が広い略台形であることが好ましい。開口部が広い略台形の断面形状であることで、溝の側壁に衝突した合金粒子には、溝の中心方向の応力が加わり易く、より中心側に堆積した合金粒子を圧縮するため、圧縮残留応力が高くなり、被膜欠陥を防止できる。 It is preferable that the annular groove has a substantially trapezoidal cross-sectional shape cut in the radial direction, with the opening wider than the bottom. Since the opening has a broad trapezoidal cross-sectional shape, the alloy particles colliding with the side wall of the groove are easily subjected to stress in the direction of the center of the groove. Higher stress can prevent coating defects.

上記被膜は、径方向に圧縮残留応力を有することが好ましい。被膜と基材との界面剥離は、主に円環状の溝が径方向に拡がって被膜に引張り応力がかかることで生じるため、径方向の圧縮残留応力を有することで被膜剥離を防止できる。 The coating preferably has compressive residual stress in the radial direction. Interfacial delamination between the coating and the substrate occurs mainly when the annular groove expands in the radial direction and applies tensile stress to the coating.

上記径方向の圧縮残留応力は、被膜を構成する合金粒子の線膨張率を基材の線膨張率よりも小さくすることで付与することができる。
被膜を形成した後に摺動部材が冷えると基材が収縮して基材の溝が縮径するため、基材の内側に存在する被膜は基材から圧縮される。しかし、被膜の線膨張率が小さいと基材に比して収縮せずに基材からの圧縮に抗するため、径方向に圧縮残留応力が生じる。
The compressive residual stress in the radial direction can be imparted by making the coefficient of linear expansion of the alloy particles forming the coating smaller than the coefficient of linear expansion of the substrate.
When the sliding member cools down after forming the coating, the base material shrinks and the grooves of the base material decrease in diameter, so the coating existing inside the base material is compressed from the base material. However, if the coefficient of linear expansion of the coating is small, it does not shrink as much as the base material and resists compression from the base material, so compressive residual stress is generated in the radial direction.

上記摺動部材は、基材の表面に残留する圧縮応力が、上記被膜の端から上記被膜の幅の20%以上離れた箇所まで存在することが好ましく、上記被膜の幅の50%以上離れた箇所まで、径方向の圧縮残留応力が存在することがより好ましい。 In the sliding member, the compressive stress remaining on the surface of the base material preferably exists from the end of the coating to a point that is 20% or more of the width of the coating, and is 50% or more of the width of the coating. It is more preferable that the compressive residual stress in the radial direction exists up to the point.

被膜だけでなく基材も残留圧縮応力を有し、圧縮残留応力を有する範囲が基材表面にまで拡がっていることで、被膜と基材とが相互に押し合い、被膜と基材との密着性が向上して被膜の剥離が防止される。 Not only the film but also the base material has residual compressive stress, and the range of the compressive residual stress extends to the surface of the base material. is improved and peeling of the film is prevented.

また、被膜形成後の摺動部材が冷えるとき、周方向の外周側と内周側とで収縮量が異なり、被膜の外周側では周方向に収縮し易いため周方向外側の圧縮残留応力が小さくなり易い。 In addition, when the sliding member after forming the coating is cooled, the amount of shrinkage differs between the outer peripheral side and the inner peripheral side in the circumferential direction. easy to become

基材表面の上記被膜の端から上記被膜の幅の80%以上離れた箇所まで、径方向の圧縮残留応力を有することで、さらに被膜と基材との密着性が向上して被膜の剥離が防止される。 By having a compressive residual stress in the radial direction from the edge of the coating on the surface of the base material to a point that is 80% or more of the width of the coating, the adhesion between the coating and the base material is further improved and the peeling of the coating is prevented. prevented.

上記被膜の厚さは、摺動部材が用いられる箇所の温度や摺動環境にもよるが、例えば、0.05~5.0mmとすることが好ましく、0.1~2.0mmとすることがより好ましい。0.05mm未満であると、被膜自体の強度が不足することがあり、また、10mmを超えると、成膜時に発生する残留応力と界面密着力の関係により被膜が剥離し易くなることがある。 The thickness of the film depends on the temperature and sliding environment of the place where the sliding member is used, but for example, it is preferably 0.05 to 5.0 mm, and preferably 0.1 to 2.0 mm. is more preferred. If it is less than 0.05 mm, the strength of the film itself may be insufficient, and if it exceeds 10 mm, the film may easily peel off due to the relationship between the residual stress generated during film formation and the interfacial adhesion.

上記合金粒子としては、上記コールドスプレー法により、合金粒子が完全に溶融することなく粒子塊を形成して被膜を形成できればよく、例えば、Cu-Ni-Si合金、Cu-Cr合金、Cr-Zr合金、Cu-Ti合金など銅を50質量%以上含有する銅合金は、塑性変形して合金粒子同士が結合して粒子塊を形成し易い。
特にCu-Ni-Si合金は、粒子同士が強固に結合して被膜欠陥が生じ難いため、好ましく使用できる。
As the alloy particles, it is sufficient that the alloy particles can form particle agglomerates and form a film by the cold spray method without being completely melted. Copper alloys containing 50% by mass or more of copper, such as alloys and Cu--Ti alloys, tend to be plastically deformed so that alloy particles are bound together to form particle agglomerates.
In particular, Cu--Ni--Si alloys can be preferably used because the particles are strongly bonded to each other and film defects are less likely to occur.

また、上記合金粒子は、上記銅合金粒子よりも硬質の合金粒子を含むことが好ましい。
合金粒子が、銅合金粒子と硬質の合金粒子とを含むことで、比較的軟らかい上記銅合金粒子が塑性変形して隙間なく堆積して結合し、銅合金粒子と銅合金粒子との界面にアモルファスを有する銅合金の粒子塊を形成する。そして、硬質の合金粒子が上記粒子塊にめり込んで、図1に示すように、上記銅合金の粒子塊中に上記硬質の合金粒子が島状に分散した被膜が形成されて被膜の耐摩耗性が向上する。
Moreover, the alloy particles preferably contain alloy particles harder than the copper alloy particles.
Since the alloy particles contain copper alloy particles and hard alloy particles, the relatively soft copper alloy particles are plastically deformed and deposited and bonded without gaps, and amorphous is formed at the interface between the copper alloy particles and the copper alloy particles. form agglomerates of copper alloy having Then, the hard alloy particles sink into the particle agglomerates, and as shown in FIG. 1, a coating is formed in which the hard alloy particles are dispersed in the form of islands in the copper alloy particle agglomerates, thereby improving the wear resistance of the coating. improves.

上記硬質の合金粒子としては、コバルト(Co)、クロム(Cr)、及びニッケル(Ni)から成る群から選ばれた少なくとも一種の金属を含む合金を使用できる。
例えば、TRIBALOY(登録商標)T-400、Stellite(登録商標)6などの硬質コバルト基合金や、TRIBALOY(登録商標)T-700、Ni700(登録商標)(Ni-32Mo-16Cr-3.1Si)などの硬質ニッケル基合金の粒子を挙げることができる。
As the hard alloy particles, an alloy containing at least one metal selected from the group consisting of cobalt (Co), chromium (Cr) and nickel (Ni) can be used.
For example, hard cobalt-based alloys such as TRIBALOY® T-400 and Stellite® 6, and TRIBALOY® T-700 and Ni700® (Ni-32Mo-16Cr-3.1Si). and particles of hard nickel-based alloys such as

上記基材としては、特に制限はなく、内燃機関の摺動部材として従来から用いられている金属を使用できるがアルミ合金は熱伝導性が高く好ましく使用できる。 The base material is not particularly limited, and metals conventionally used as sliding members of internal combustion engines can be used, but aluminum alloys are preferably used because of their high thermal conductivity.

上記アルミ合金としては、例えば、日本工業規格で規定されているAC2A、AC8A、ADC12などを挙げることができる。 Examples of the aluminum alloy include AC2A, AC8A, ADC12, etc. specified by Japanese Industrial Standards.

次に、コールドスプレー法による被膜の形成条件について説明する。
コールドスプレー法により、上記合金粒子を吹き付ける速度は、300~1200m/sであることが好ましく、500~1000m/sとであることが好ましい。
Next, conditions for forming a film by the cold spray method will be described.
The speed at which the alloy particles are sprayed by the cold spray method is preferably 300 to 1200 m/s, more preferably 500 to 1000 m/s.

また、上記合金粒子を吹き付ける作動ガスの圧力は、2~5MPaであることが好ましく、3.5~5MPaであることがより好ましい。作動ガスの圧力が2MPa未満であると、粒子速度が得られず、空孔率が大きくなることがある。 The pressure of the working gas for spraying the alloy particles is preferably 2-5 MPa, more preferably 3.5-5 MPa. If the pressure of the working gas is less than 2 MPa, the particle velocity may not be obtained and the porosity may increase.

また、作動ガスの温度は、合金粒子にもよるが、400~800℃であることが好ましく、600~800℃であることがより好ましい。
作動ガスの温度が400℃未満であると、合金粒子同士の結合が弱くなり被膜強度が低下することがある。また、作動ガスの温度が800℃を超えると、基材に衝突する合金粒子が軟らかくなり過ぎ、圧縮残留応力が小さくなって被膜が剥離し易くなることがある。
The temperature of the working gas is preferably 400 to 800.degree. C., more preferably 600 to 800.degree. C., depending on the alloy particles.
If the temperature of the working gas is less than 400° C., the bonding between the alloy particles may become weak and the strength of the coating may be lowered. On the other hand, if the temperature of the working gas exceeds 800° C., the alloy particles colliding with the base material become too soft, and the compressive residual stress becomes small, and the coating may easily peel off.

上記、作動ガスとしては、例えば、窒素ガス、ヘリウムガスなどを挙げることができ、これらは、1種を単独で用いてもよく、混合して用いてもよい。 Examples of the working gas include nitrogen gas and helium gas, and these may be used singly or in combination.

上記摺動部材は、耐摩耗性耐熱性に優れるため、バルブシートに好適に使用でき、上記被膜を孔の内面に形成することで、シリンダボア、コンロッド、及びクランクシャフトの軸受けメタルなどにも適用できる。 Since the sliding member is excellent in wear resistance and heat resistance, it can be suitably used for valve seats, and by forming the coating on the inner surface of the hole, it can be applied to cylinder bores, connecting rods, bearing metals of crankshafts, etc. .

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.

[実施例1]
シリンダヘッドにおけるエンジンバルブの着座部の加工完了状態で、狙い被膜厚み0.2mmを想定して、アルミニウム基材(日本工業規格 H 4040 A5056)に、直径25.3mm、深さ0.4mm、幅2.7mmの円環状の溝を形成した。
[Example 1]
In the completed state of machining of the seating portion of the engine valve in the cylinder head, assuming a target film thickness of 0.2 mm, an aluminum base material (Japanese Industrial Standards H 4040 A5056) was coated with a diameter of 25.3 mm, a depth of 0.4 mm, and a width of 0.4 mm. A 2.7 mm annular groove was formed.

以下の合金粒子を、上記アルミニウム基材を回転させながらに下記条件でコールドスプレーし、厚さ1.0mの被膜を形成した。 The following alloy particles were cold-sprayed under the following conditions while rotating the aluminum base material to form a coating having a thickness of 1.0 m.

銅合金粒子 :Cu-2.9Ni-0.7Si合金粒子(平均粒径30μm)
硬質の合金粒子:Co合金粒子(Kennametal社製 Tribaloy T-400:平均粒径45μm)
銅合金粒子/硬質の合金粒子(体積比):90/10
Copper alloy particles: Cu-2.9Ni-0.7Si alloy particles (average particle size 30 μm)
Hard alloy particles: Co alloy particles (Tribaloy T-400 manufactured by Kennametal: average particle size 45 μm)
Copper alloy particles/hard alloy particles (volume ratio): 90/10

高圧型コールドスプレー装置:CGT社製、Kinetiks4000
作動ガス:窒素ガス
ガス温度:600℃、
ガス圧力:3.6MPa、
粒子速度:680~720m/s
High-pressure cold spray device: Kinetics 4000 manufactured by CGT
Working gas: Nitrogen gas Gas temperature: 600°C,
gas pressure: 3.6 MPa,
Particle velocity: 680-720m/s

上記被膜を形成したアルミニウム基材を、機械加工によりシリンダヘッドのエンジンバルブの着座部の形状に仕上げ、被膜の厚さが0.45mmの摺動部材を得た。 The aluminum substrate having the film formed thereon was machined into the shape of the seating portion of the engine valve of the cylinder head to obtain a sliding member having a film thickness of 0.45 mm.

[実施例2]
シリンダヘッドにおけるエンジンバルブの着座部の加工完了状態で、狙い被膜厚み0.2mmを想定して、アルミニウム基材(日本工業規格 H 4040 A5056)に、直径25.3mm、深さ0.15mm、幅2.1mmの円環状の溝を形成した。
[Example 2]
In the state where the engine valve seating portion of the cylinder head has been processed, assuming a target film thickness of 0.2 mm, an aluminum substrate (Japanese Industrial Standard H 4040 A5056) is coated with a diameter of 25.3 mm, a depth of 0.15 mm, and a width of 0.15 mm. A 2.1 mm annular groove was formed.

上記アルミニウム基材を用いる他は実施例1と同様にして厚さ1.0mの被膜を形成した。
上記被膜を形成したアルミニウム基材を、機械加工によりシリンダヘッドのエンジンバルブの着座部の形状に仕上げ、被膜の厚さが0.20mmの摺動部材を得た。
A film having a thickness of 1.0 m was formed in the same manner as in Example 1, except that the above aluminum substrate was used.
The aluminum substrate on which the film was formed was machined into the shape of the seating portion of the engine valve of the cylinder head to obtain a sliding member having a film thickness of 0.20 mm.

[参考例1]
上記アルミニウム基材に円環状の溝を形成しない他は実施例1と同様にして厚さ1.0mの被膜を形成した。
上記被膜を形成したアルミニウム基材を、機械加工によりシリンダヘッドのエンジンバルブの着座部の形状に仕上げ、直径25.3mm、厚さ0.20mm、幅1.9mmの円環状の被膜を形成した。
[Reference example 1]
A film having a thickness of 1.0 m was formed in the same manner as in Example 1, except that no annular groove was formed on the aluminum substrate.
The aluminum substrate on which the coating was formed was machined into the shape of the seating portion of the engine valve of the cylinder head to form an annular coating having a diameter of 25.3 mm, a thickness of 0.20 mm and a width of 1.9 mm.

[比較例1]
シリンダヘッドにおけるエンジンバルブの着座部の加工完了状態で、狙い被膜厚み0.2mmを想定して、アルミニウム基材(日本工業規格 H 4040 A5056)に、直径25.3mm、深さ0.7mm、幅3.2mmの円環状の溝を形成した。
[Comparative Example 1]
In the state where the engine valve seating portion of the cylinder head has been processed, assuming a target film thickness of 0.2 mm, an aluminum base material (Japanese Industrial Standard H 4040 A5056) is coated with a diameter of 25.3 mm, a depth of 0.7 mm, and a width of 0.7 mm. A 3.2 mm annular groove was formed.

Cu-12Ni-9.7Co-3Si-1.4Fe-2V-1.7Nb-0.9Al合金粒子(平均粒径30μm)を、0.7g/secで供給しながら、酸化およびプルーム防止のため、Arガス環境下、波長960nm、出力2.0kWのレーザ光を照射させながら、レーザ肉盛、すなわちレーザクラッドを実施した。レーザクラッド後、更に仕上げ加工を経て、厚さ1.0mmの被膜を形成した。 While supplying Cu-12Ni-9.7Co-3Si-1.4Fe-2V-1.7Nb-0.9Al alloy particles (average particle size 30 μm) at 0.7 g/sec, to prevent oxidation and plume, In an Ar gas environment, laser build-up, that is, laser cladding was performed while irradiating a laser beam with a wavelength of 960 nm and an output of 2.0 kW. After laser cladding, a coating with a thickness of 1.0 mm was formed through finishing.

上記被膜を形成したアルミニウム基材を、機械加工によりシリンダヘッドのエンジンバルブの着座部の形状に仕上げ、直径25.3mm、厚さ0.80mm、幅3.2mmの円環状の被膜を形成した。 The aluminum substrate on which the coating was formed was machined into the shape of the seating portion of the engine valve of the cylinder head to form an annular coating having a diameter of 25.3 mm, a thickness of 0.80 mm and a width of 3.2 mm.

[比較例2]
Cu-14Ni-3Si-1.5Fe-2V-2Cr-1Al-0.5P合金粒子(平均粒径30μm)を用いる他は比較例1と同様にして、直径25.3mm、厚さ0.80mm、幅3.2mmの円環状の被膜を形成した。
[Comparative Example 2]
Cu-14Ni-3Si-1.5Fe-2V-2Cr-1Al-0.5P alloy particles (average particle diameter 30 μm) were used in the same manner as in Comparative Example 1, and a A ring-shaped coating with a width of 3.2 mm was formed.

[比較例3]
電解めっきによりNi-P被膜を形成し、機械加工によりシリンダヘッドのエンジンバルブの着座部の形状に仕上げ、直径25.3mm、厚さ0.20mm、幅1.5mmの円環状の被膜を形成した。
[Comparative Example 3]
A Ni--P film was formed by electroplating, and the shape of the engine valve seating portion of the cylinder head was finished by machining to form an annular film with a diameter of 25.3 mm, a thickness of 0.20 mm, and a width of 1.5 mm. .

[比較例4]
プラズマ電解析出法によりTiO被膜を形成し、機械加工によりシリンダヘッドのエンジンバルブの着座部の形状に仕上げ、直径25.3mm、厚さ0.02mm、幅1.4mmの円環状の被膜を形成した。
[Comparative Example 4]
A TiO film is formed by a plasma electrolytic deposition method, and finished to the shape of the seating portion of the engine valve of the cylinder head by machining to form an annular film with a diameter of 25.3 mm, a thickness of 0.02 mm, and a width of 1.4 mm. did.

<評価>
実施例1~8、比較例1~5の摺動部材を以下の方法で評価した。
評価結果を表1に示す。
<Evaluation>
The sliding members of Examples 1-8 and Comparative Examples 1-5 were evaluated by the following methods.
Table 1 shows the evaluation results.

(残留応力の測定)
X線残留応力測定装置を用いて被膜表面中央部、被膜と基材との界面近傍、及び基材表面について、任意に複数箇所残留応力を測定し平均値を算出した。
(Measurement of residual stress)
Using an X-ray residual stress measuring device, the residual stress was measured at arbitrary multiple locations on the central portion of the coating surface, the vicinity of the interface between the coating and the substrate, and the substrate surface, and the average value was calculated.

(被膜組織の観察)
試料を樹脂埋めし研磨して断面を作製した。SEMの組成像を取得し、画像処理で2値化して、黒色に表示される空孔と濃、淡の灰色で表示される部分の面積比率を求め、空孔率を算出した。
次に、2値化の閾値を変更して、黒色部分+濃灰色部分と淡配色部分の面積比率を求め、2回の2値化で、銅合金部と硬質の合金部、及び空孔の面積比を求めた。
(Observation of coating structure)
A sample was embedded in resin and polished to prepare a cross section. A composition image of SEM was obtained and binarized by image processing to determine the area ratio of the voids displayed in black and the portions displayed in dark and light gray to calculate the porosity.
Next, by changing the binarization threshold, the area ratio of the black part + dark gray part and the light colored part was obtained, and by twice binarizing, the copper alloy part, the hard alloy part, and the holes An area ratio was obtained.

また、走査電子顕微鏡(SEM)による電子線後方散乱回折(EBSD)を行い、回折パターンを検出器面上に投影し、その投影されたパターンから結晶方位を解析して、被膜組織中の、アモルファスの有無、粒子中の結晶粒の大きさを観察した。
実施例1の摺動部材の断面SEM像を図3に示す。
In addition, electron beam backscatter diffraction (EBSD) is performed using a scanning electron microscope (SEM), the diffraction pattern is projected onto the detector surface, and the crystal orientation is analyzed from the projected pattern. The presence or absence of grains and the size of crystal grains in the grains were observed.
A cross-sectional SEM image of the sliding member of Example 1 is shown in FIG.

(熱膨張衝撃試験)
摺動部材を電気炉で200℃に加熱し、80℃のお湯の中に水没させ、加熱前と水没後にカラーチェックを行ない、亀裂の有無を確認した。
亀裂が無いものに関して、さらに、電気炉の設定を50℃上げて250℃で摺動部材を加熱し、80℃のお湯に水没させ、再度カラーチェックを行なって亀裂の有無を確認した。
以後、加熱温度を50℃刻みで加熱温度を上げて、水没させ、亀裂の有無を確認し、加熱温度と亀裂の累積発生率を測定した。
(Thermal expansion impact test)
The sliding member was heated to 200° C. in an electric furnace, submerged in hot water of 80° C., and color-checked before heating and after submersion to confirm the presence or absence of cracks.
For those with no cracks, the setting of the electric furnace was further increased by 50° C., the sliding member was heated to 250° C., submerged in hot water at 80° C., and the color was checked again to confirm the presence or absence of cracks.
Thereafter, the heating temperature was raised in 50° C. increments and submerged in water to confirm the presence or absence of cracks, and the heating temperature and the cumulative occurrence rate of cracks were measured.

(耐摩耗性)
高千穂精機株式会社製のバルブシート摩耗試験機を用いて、下記の条件での摩耗量を測定した。
具体的には、形状測定装置を用いて試験前と試験後のシリンダヘッドにおけるエンジンバルブの着座部の形状を取得し、4カ所の摩耗量を測定し、平均値を算出して、これを摩耗量とした。
(wear resistance)
Using a valve seat wear tester manufactured by Takachiho Seiki Co., Ltd., the amount of wear was measured under the following conditions.
Specifically, using a shape measuring device, the shape of the engine valve seating portion of the cylinder head before and after the test was obtained, the amount of wear at four locations was measured, the average value was calculated, and the wear was calculated. Quantity.

相手バルブ材:SUH35
試験温度 :300℃
上下速度 :3000回/min
バルブ回転数:5rpm
着座回数 :540000回
Mating valve material: SUH35
Test temperature: 300°C
Vertical speed: 3000 times/min
Valve rotation speed: 5 rpm
Seating times: 540,000 times

Figure 0007116360000001
Figure 0007116360000001

表1の結果から、被膜が圧縮残留応力を有する実施例1,2の摺動部材は、引張残留圧縮応力を有する比較例の摺動部材に比して、熱膨張衝撃試験による剥離が生じず、耐熱性に優れ、また摩耗量が少なく耐摩耗性に優れることがわかる。
また、実施例と参考例との比較から、基材に溝を形成することで径方向の基材表面の圧縮残留応力が大きくなり、被膜と基材との剥離を防止できることがわかる。
From the results shown in Table 1, the sliding members of Examples 1 and 2, in which the films had compressive residual stress, did not peel off in the thermal expansion impact test compared to the sliding members of Comparative Example, which had tensile residual compressive stress. , excellent heat resistance, less wear amount, and excellent wear resistance.
Further, from the comparison between the examples and the reference examples, it can be seen that forming the grooves in the base material increases the compressive residual stress on the surface of the base material in the radial direction, thereby preventing separation between the coating and the base material.

1 摺動部材
2 被膜
21 銅合金粒子
22 硬質合金粒子
23 アモルファス
3 基材
31 孔
REFERENCE SIGNS LIST 1 sliding member 2 coating 21 copper alloy particles 22 hard alloy particles 23 amorphous 3 base material 31 holes

Claims (7)

円環状の溝を有する基材と、
少なくとも上記溝に設けられた被膜と、を備え
上記被膜が、銅を50質量%以上含有する銅合金粒子を含む合金材の粒子塊で成り、周方向及び径方向の少なくとも一方の圧縮残留応力が1MPa以上であることを特徴とする摺動部材。
a substrate having an annular groove;
and a coating provided in at least the groove, wherein the coating comprises agglomerates of alloy material containing copper alloy particles containing 50% by mass or more of copper, and at least one of circumferential and radial compressive residual stress is present. A sliding member characterized by being 1 MPa or more.
上記被膜表面中央の圧縮残留応力が100MPa以上であることを特徴とする請求項1に記載の摺動部材。 2. The sliding member according to claim 1, wherein the compressive residual stress at the center of the coating surface is 100 MPa or more. 上記粒子塊を形成する合金粒子が、その少なくとも一部にアモルファス及び粒径1μm未満の結晶粒を有し、
上記被膜中に上記結晶粒を70面積%以上有することを特徴とする請求項1又は2に記載の摺動部材。
At least a part of the alloy particles forming the particle agglomerates has amorphous and crystal grains with a particle size of less than 1 μm,
3. The sliding member according to claim 1, wherein the crystal grains are contained in the coating in an amount of 70 area % or more.
上記被膜が径方向の圧縮残留応力を有することを特徴とする請求項1~3のいずれか1つの項に記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the coating has a compressive residual stress in the radial direction. 上記基材表面の上記被膜の端から上記被膜の幅の20%以上離れた箇所まで、圧縮残留応力が存在することを特徴とする請求項1~4のいずれか1つの項に記載の摺動部材。 The sliding according to any one of claims 1 to 4, wherein compressive residual stress exists from the edge of the coating on the surface of the base material to a location that is 20% or more of the width of the coating. Element. 上記基材表面の上記被膜の端から上記被膜の幅の50%以上離れた箇所まで、径方向の圧縮残留応力が存在することを特徴とする請求項1~5のいずれか1つの項に記載の摺動部材。 6. The compressive residual stress according to any one of claims 1 to 5, wherein a compressive residual stress in the radial direction exists from the edge of the coating on the surface of the base material to a point separated by 50% or more of the width of the coating. sliding member. 上記基材が孔を有し、
上記孔の内面に上記被膜を備えることを特徴とする請求項1~3のいずれか1つの項に記載の摺動部材。
The substrate has pores,
The sliding member according to any one of claims 1 to 3, wherein the coating is provided on the inner surface of the hole.
JP2018136422A 2018-07-20 2018-07-20 sliding member Active JP7116360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018136422A JP7116360B2 (en) 2018-07-20 2018-07-20 sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018136422A JP7116360B2 (en) 2018-07-20 2018-07-20 sliding member

Publications (2)

Publication Number Publication Date
JP2020012442A JP2020012442A (en) 2020-01-23
JP7116360B2 true JP7116360B2 (en) 2022-08-10

Family

ID=69168844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018136422A Active JP7116360B2 (en) 2018-07-20 2018-07-20 sliding member

Country Status (1)

Country Link
JP (1) JP7116360B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160958A1 (en) 2000-12-16 2002-07-04 Ford Global Tech Inc Dynamic cold gas spray coating for aluminum engine block cylinders
JP2006176881A (en) 2004-12-21 2006-07-06 United Technol Corp <Utc> Component repair method using cold sprayed aluminum materials
JP2006183135A (en) 2004-11-23 2006-07-13 United Technol Corp <Utc> Cold gas dynamic spraying of high strength copper
JP2008540822A (en) 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method and coated product on substrate surface
JP2009249645A (en) 2008-04-01 2009-10-29 Daido Steel Co Ltd Method for producing coating film
JP2012031443A (en) 2010-07-28 2012-02-16 Fujimi Inc Metal powder for cold spray
JP2014088610A (en) 2012-07-06 2014-05-15 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Exhaust valve spindle for exhaust valve in internal combustion engine
JP2014156634A (en) 2013-02-15 2014-08-28 Toyota Motor Corp Powder for cold spray, production method thereof, and film deposition method of copper-based film by use thereof
JP2016200042A (en) 2015-04-09 2016-12-01 日産自動車株式会社 engine
US20160375451A1 (en) 2015-06-23 2016-12-29 Moog Inc. Directional cold spray nozzle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160958A1 (en) 2000-12-16 2002-07-04 Ford Global Tech Inc Dynamic cold gas spray coating for aluminum engine block cylinders
JP2006183135A (en) 2004-11-23 2006-07-13 United Technol Corp <Utc> Cold gas dynamic spraying of high strength copper
JP2006176881A (en) 2004-12-21 2006-07-06 United Technol Corp <Utc> Component repair method using cold sprayed aluminum materials
JP2008540822A (en) 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method and coated product on substrate surface
JP2009249645A (en) 2008-04-01 2009-10-29 Daido Steel Co Ltd Method for producing coating film
JP2012031443A (en) 2010-07-28 2012-02-16 Fujimi Inc Metal powder for cold spray
JP2014088610A (en) 2012-07-06 2014-05-15 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Exhaust valve spindle for exhaust valve in internal combustion engine
JP2014156634A (en) 2013-02-15 2014-08-28 Toyota Motor Corp Powder for cold spray, production method thereof, and film deposition method of copper-based film by use thereof
JP2016200042A (en) 2015-04-09 2016-12-01 日産自動車株式会社 engine
US20160375451A1 (en) 2015-06-23 2016-12-29 Moog Inc. Directional cold spray nozzle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
市川裕士 他,コールドスプレー皮膜内部の結晶粒径に関する基礎的検討,日本機械学会[No.13-8]M&M2013 材料力学カンファレンス CD-ROM論文集,日本,一般社団法人日本機械学会,2013年10月
桑島孝幸 他,中性子回折法によるコールドスプレー皮膜の残留応力測定,日本機械学会[No.10-9]M&M2010 材料力学カンファレンス CD-ROM論文集,日本,一般社団法人日本機械学会,2010年10月,330-332頁

Also Published As

Publication number Publication date
JP2020012442A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6519962B2 (en) Sliding member and method of manufacturing the same
US7455881B2 (en) Methods for coating a magnesium component
EP3357605B1 (en) Manufacturing method and post-processing treatment
JP6802079B2 (en) Manufacturing method of laminated members
JP7057830B2 (en) Sliding members and internal combustion engine members
Astarita et al. Repairing of an engine block through the cold gas dynamic spray technology
JP2007326209A (en) Method of manufacturing article from metal material, and method of processing deposited titanium-based material
JP7116360B2 (en) sliding member
JP7041407B2 (en) Sliding member
JP7030199B2 (en) Sliding members and internal combustion engine members
JP6868412B2 (en) Sliding members, sliding members of internal combustion engines, and methods for manufacturing sliding members
JP6854140B2 (en) Laminated body, sliding member, and method of manufacturing the laminated body
JP2010266020A (en) Brake disk rotor
Müller et al. Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition
Sirvent et al. Influence of processing parameters on the local scratch resistance of cold sprayed Ti6Al4V coatings
WO2023145424A1 (en) Sliding member and internal-combustion engine equipped with sliding member
WO2023223782A1 (en) Sliding member and internal combustion engine
JP6416498B2 (en) Sliding member and piston ring
McCabe Evaluation of the effects of rotational speed on microstructural and mechanical properties of additive friction stir deposited aluminum 6061
Nguyen Functionally Magnetic Gradient Copper-Nickel Material Fabricated via Directed Energy Deposition
Fatoba et al. Thermal Gradient and Dilution Effects on the Microstructural Development of Laser-Cladded Titanium Alloy
Chen et al. Laser repair cladding of Ni-base alloy on TC2 Ti alloy
Sadhu et al. Performance Evaluation of Laser-Deposited Functionally Graded Stellite 6-WC Tools in Friction Stir Lap Welding of CuCrZr-SS304
Percoco et al. Cold Spray Defects: An Investigation on Very Low Scanning Speeds
Umair For high tech industry to find physical characteristics of thin clad layer of Stellite-6 (Cobalt Base Alloys) deposited by laser cladding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220712

R151 Written notification of patent or utility model registration

Ref document number: 7116360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151