JP7110215B6 - Lighter-than-air vehicle having a shell, laminate for such shell, method of making such laminate - Google Patents

Lighter-than-air vehicle having a shell, laminate for such shell, method of making such laminate Download PDF

Info

Publication number
JP7110215B6
JP7110215B6 JP2019542798A JP2019542798A JP7110215B6 JP 7110215 B6 JP7110215 B6 JP 7110215B6 JP 2019542798 A JP2019542798 A JP 2019542798A JP 2019542798 A JP2019542798 A JP 2019542798A JP 7110215 B6 JP7110215 B6 JP 7110215B6
Authority
JP
Japan
Prior art keywords
layer
lighter
laminate
air vehicle
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019542798A
Other languages
Japanese (ja)
Other versions
JP2019533610A5 (en
JPWO2018077806A5 (en
JP2019533610A (en
JP7110215B2 (en
Inventor
べスタゴー フランスン ミゲル
キム デイビッド
デイビッド ブラッドフォード フィリップ
モハメド セヤム アブデル-ファッター
バラブ ラフル
リー アン
Original Assignee
スイエ ソシエテ アノニム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スイエ ソシエテ アノニム filed Critical スイエ ソシエテ アノニム
Publication of JP2019533610A publication Critical patent/JP2019533610A/en
Publication of JP2019533610A5 publication Critical patent/JP2019533610A5/ja
Publication of JPWO2018077806A5 publication Critical patent/JPWO2018077806A5/en
Application granted granted Critical
Publication of JP7110215B2 publication Critical patent/JP7110215B2/en
Publication of JP7110215B6 publication Critical patent/JP7110215B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/58Arrangements or construction of gas-bags; Filling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/548Creep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Description

本発明は外殻を有する空気より軽いビーヒクル(vehicle;飛行船などの乗物のほか、気球などを含む。)、そのような外殻用の積層体、及びそのような積層体の製造方法に関する。特に、本発明は補強繊維層とガスバリアフィルムを有する多機能積層体に関する。 The present invention relates to lighter-than-air vehicles (including vehicles such as airships, as well as balloons) having outer shells, laminates for such outer shells, and methods of making such laminates. In particular, the present invention relates to multifunctional laminates having reinforcing fiber layers and gas barrier films.

空気より軽いビーヒクルは、気体、典型的にはHeで充満された可撓性外殻を有する。ビーヒクルが内部構造フレーム体を有していない場合、それは軟式飛行船(blimp)とも呼ばれ、飛行船の形状(典型的には長尺状)は内部圧力によって保持される。外殻は、破裂しないために十分に安定であり、外殻内の典型的にはヘリウム(He)に対しガスバリアとして機能する、積層体によって作製されるべきである。 Lighter- than-air vehicles have flexible shells filled with a gas, typically He. If the vehicle does not have an internal structural framework, it is also called a blimp, and the shape of the airship (typically elongated) is maintained by internal pressure. The shell should be made of a laminate that is stable enough not to burst and acts as a gas barrier to the typically helium (He) within the shell.

高い高度で空気より軽いビーヒクルのための外殻材料には、多くの要件がある。それは軽量でありながら、同時に機械的安定性を提供しなければならない。高い高度における攻撃的な雰囲気、特に空気中のオゾンに化学的に抵抗しなければならない。同様に、UV抵抗性であり、高温及び低温で安定かつ可撓性でなければならない。これらの要件のそれぞれのための材料は公知であるが、それらの組合せになると、外殻材料の開発には厳しいチャレンジとなる。 There are many requirements for shell materials for high altitude, lighter than air vehicles . It must be lightweight while at the same time providing mechanical stability. It must be chemically resistant to aggressive atmospheres at high altitudes, especially atmospheric ozone. It should also be UV resistant, stable and flexible at high and low temperatures. Materials for each of these requirements are known, but their combination presents severe challenges to the development of shell materials.

Lockheed Martin Corporationに譲渡されたLavan et alの米国特許第7,354,636号は、液晶ポリマー繊維層、例えばVectran(登録商標)と、液晶ポリマー繊維層に固定されたポリイミド(PI)層と、PI層に固定されたポリフッ化ビニリデン(PVDF)層とを有する積層体を開示する。これらの層はポリウレタン(PU)接着剤でお互いに固定されている。隣接する積層体は外側表面のPVDFカバーテープと内側表面の構造テープによってお互いに固定されてよい。構造テープはビーヒクルの一体性を確保するために液晶ポリマー繊維層とPI 層を含む。代替材料は、液晶ポリマー繊維層と液晶ポリマー繊維層の両側に配置されたPVDF 層を含んでよい。重量は5オンス/平方ヤード(170grams/square meter)程度である。引張強度は240 lbs/inch(420N/cm)程度である。 Lavan et al, U.S. Pat. No. 7,354,636, assigned to Lockheed Martin Corporation, discloses a liquid crystal polymer fiber layer, such as Vectran®, a polyimide (PI) layer secured to the liquid crystal polymer fiber layer, and a polyimide (PI) layer secured to the PI layer. A laminate having a coated polyvinylidene fluoride (PVDF) layer is disclosed. These layers are fixed together with polyurethane (PU) glue. Adjacent laminates may be secured together by PVDF cover tape on the outer surface and structural tape on the inner surface. The structural tape includes a liquid crystal polymer fiber layer and a PI layer to ensure vehicle integrity. Alternative materials may include a liquid crystal polymer fiber layer and a PVDF layer disposed on both sides of the liquid crystal polymer fiber layer. It weighs about 5 ounces/square yard (170 grams/square meter). Tensile strength is on the order of 240 lbs/inch (420 N/cm).

有効荷重容量(payload capacity)が外殻の重量に直接に関係することからすると、強度を維持又は増加さえしながら、重量を減らすことが望ましいであろう。 Given that payload capacity is directly related to shell weight, it would be desirable to reduce weight while maintaining or even increasing strength.

良好な重量対強度比が文献“Tear propagation of a High-performance Airship Envelope Material” (Maekawa、Yoshino著、Journal of Aircraft Vol. 45, No. 5, Sept-Oct. 2008)に記載されている。開示された材料は重量157 g/m2 及び引張強度 997 N/cmを有する。 積層体はその基材布帛としてZylon(登録商標)繊維を含む。Zylon(登録商標)は、剛性ロッド状リオトロピック液晶ポリマーについての東洋紡の商品名である。より詳細には、それは熱硬化結晶性ポリオキサゾール、ポリ(p-フェニレン-2,6-ベンゾビスオキサゾール)(PBOとも称される)である。 A good weight-to-strength ratio is described in the document "Tear propagation of a High-performance Airship Envelope Material" (Maekawa and Yoshino, Journal of Aircraft Vol. 45, No. 5, Sept-Oct. 2008). The disclosed material has a weight of 157 g/m 2 and a tensile strength of 997 N/cm. The laminate contains Zylon® fibers as its base fabric. Zylon® is Toyobo's trade name for a rigid rod-shaped lyotropic liquid crystal polymer. More specifically, it is a thermoset crystalline polyoxazole, poly(p-phenylene-2,6-benzobisoxazole) (also called PBO).

Zylon(登録商標)(PBO)は、他の商業的に入手可能な他の高性能繊維と比べて高い比強度を有する。Zylon(登録商標)ヤーンは、クリープ伸びに対する高い抵抗性も有するので、積層体材料の繊維補強(FR)に有用である。しかし、PBOはまたUVのみならず可視光による光劣化に非常に敏感であることが知られている。湿分及び酸素が存在すると光劣化を促進することが見出された。このため、高い強度及び低いクリープという見かけの利点にもかかわらず、成層圏飛行船に用いる場合、この繊維材料には他のチャレンジが伴う。 Zylon® (PBO) has a high specific strength compared to other commercially available high performance fibers. Zylon® yarns also have high resistance to creep elongation, making them useful for fiber reinforcement (FR) of laminate materials. However, PBO is also known to be very sensitive to photodegradation by visible light as well as UV. It has been found that the presence of moisture and oxygen accelerates photodegradation. Thus, despite the apparent advantages of high strength and low creep, this fibrous material presents other challenges when used in stratospheric airships.

もう1つの外殻材料がLockheed Martinに譲渡されたCuccias et al.の米国特許第6074722号に開示されており、ここでは積層体が可塑性樹脂材料に積層された繊維層からなる。繊維層は織布であるか、又は一軸性フィラメント材料の多層のいずれかである。飛行船用の織布を有する積層体がMilliken & Companyに譲渡されたVogt et al.の米国特許第7713890号にも開示されている。外殻層における電子部品の一体化がLockheed Martin Corporationに譲渡されたLiggett et al.の米国特許第8152093に開示されている。 Another shell material is disclosed in US Pat. No. 6,074,722 to Cuccias et al., assigned to Lockheed Martin, where the laminate consists of a fibrous layer laminated to a plastic resin material. The fibrous layer is either a woven fabric or multiple layers of uniaxial filamentary material. Laminates with woven fabrics for airship applications are also disclosed by Vogt et al., US Pat. No. 7,713,890, assigned to Milliken & Company. The integration of electronic components in the outer shell layer is disclosed in US Pat. No. 8,152,093 to Liggett et al., assigned to Lockheed Martin Corporation.

様々な外殻材料が、文献“Material challenges for Lighter-Than-Air Systems in High Altitude Applications”(Zhai and Euler著、American Institute of Aeronautics and Astronautics、AIAA 5th Aviation, Technology, Integration, and Operations Conference (ATIO) 26-28 Sept. 2005, Arlington California)において検討されている。この文献では、空気より軽い気室(ballonet)材料、特に気体保持層用並びに荷重担持織構造層(荷重/応力を担う)用材料に関する様々な材料が検討されている。これらの層は接着剤層によってお互いに結合されている。接着剤結合は、ポリウレタン、エポキシ及びアクリルを参照して記載されている。気体保持層について、この文献は、低気体透過率、最小重量、良好な結合可能性、摩耗抵抗性及び耐オゾン性を含む様々な望ましい特性の中で、低温可撓性が最も重要なパラメータであると記載している。この文献の表5には、エチレンビニルアルコール共重合体(EVOH)は低温可撓性に劣るので、EVOHは、高い高度では典型的である低温における空気より軽い飛行船のための気室又は外殻材料には適当ではないと記載している。この見かけの理由のために、この文献はポリオレフィン、ポリウレタン、エチレンプロピレンジエンモノマー(EPDM)ゴム及びシリコーンゴムが、気体保持層用に最も相応しいポリマー材料であると述べている。 A variety of shell materials have been demonstrated in the publication “Material challenges for Lighter-Than-Air Systems in High Altitude Applications” by Zhai and Euler, American Institute of Aeronautics and Astronautics, AIAA 5th Aviation, Technology, Integration, and Operations Conference (ATIO ) 26-28 Sept. 2005, Arlington California). This document discusses various materials for lighter-than-air ballonet materials, particularly for gas-retaining layers as well as for load-bearing woven layers (bearing loads/stresses). These layers are bonded together by an adhesive layer. Adhesive bonding has been described with reference to polyurethanes, epoxies and acrylics. For gas-retentive layers, this document states that among various desirable properties including low gas permeability, minimal weight, good bondability, abrasion resistance and ozone resistance, low temperature flexibility is the most important parameter. It states that there is Table 5 of this document shows that ethylene vinyl alcohol copolymer (EVOH) has poor low temperature flexibility, so EVOH is typical at high altitudes. It states that the material is not suitable. For this apparent reason, this document states that polyolefins, polyurethanes, ethylene propylene diene monomer (EPDM) rubbers and silicone rubbers are the most suitable polymeric materials for the gas retaining layer.

Zhai及びEulerの文献ではEVOHは高い高度での飛行船には有用でないと述べられているが、EVOHは、上記文献で可能性のある材料として記載されているポリウレタンと共に挟持層として用いると、有用であることが見出された。これと関連して、Eval Europe NV(Kuraray Co. Ltd.の子会社)の販売カタログが参照されるが、このカタログはインタ―ネットのサイトhttp://eval-americas.com/media/15453/eval%20industrial%20application.pdfに見られる。このカタログでは、大きな可撓性と優れたガスバリア性について、EVOH樹脂(EvalTM)が熱可塑性ポリウレタン(TPU)の層の間に挟持された共押出フィルム構造体(簡単にTPU/EvalTM/TPUと記載)における寒冷大気条件における好適性とともに述べられている。この挟持フィルムの提案用途の1つは、宇宙飛行船(stratospheric dirigibles)用材料である。このカタログは、2層のTPUフィルムの間にEVOHを挟持すると、EVOH自体の乏しい低温可撓性の不利を克服すると述べている。しかし、飛行船の適当な上昇能力に必須である軽量の外殻材料においては、TPU層間のEVOH挟持は、最終外殻材料の強度を最適化することなく、外殻に重量を追加する不利がある。 Although the Zhai and Euler article states that EVOH is not useful for airships at high altitudes, EVOH is useful as a sandwich layer with the polyurethanes listed as potential materials in the article. Something was discovered. In this connection reference is made to the sales catalog of Eval Europe NV (a subsidiary of Kuraray Co. Ltd.), which can be found on the Internet site http://eval-americas.com/media/15453/eval Found in %20industrial%20application.pdf . This catalog describes a coextruded film structure in which EVOH resin (Eval TM ) is sandwiched between layers of thermoplastic polyurethane (TPU) (simply TPU/Eval TM /TPU) for great flexibility and excellent gas barrier properties. ), along with its suitability in cold atmospheric conditions. One proposed use for this sandwich film is as a material for stratospheric dirigibles. The catalog states that sandwiching EVOH between two layers of TPU film overcomes the disadvantage of poor low temperature flexibility of EVOH itself. However, in a lightweight outer shell material, which is essential for proper climb capability of the airship, EVOH sandwiching between TPU layers has the disadvantage of adding weight to the outer shell without optimizing the strength of the final outer shell material. .

したがって、外殻材料のために最適な解決法は未だ見出されていないようである。結論として、従来技術の飛行船外殻用に数多くの提案があるが、改良と最適化に未だ根強い需要がある。 Therefore, it seems that the optimal solution for the shell material has not yet been found. In conclusion, although there are many proposals for prior art airship hulls, there is still a strong need for improvement and optimization.

したがって、本発明の目的は、従来技術の改良を提供することである。改良された外殻を有する空気より軽いビーヒクルを提供することが別の目的である。とりわけ、改良された積層体外殻は、重量対強度並びに最小化気体透過率に関して最適化される。これらの目的は以下に詳細に記載される積層体を含む外殻を有する空気より軽いビーヒクルによって実現される。 SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an improvement over the prior art. It is another object to provide a lighter-than-air vehicle with an improved shell. Among other things, the improved laminate shell is optimized for weight versus strength as well as minimizing gas permeability. These objectives are achieved by a lighter-than-air vehicle having an outer shell comprising laminates as described in detail below.

下記の略称を用いる。
ypi(yarns/inch), 1 inch = 2.54cm, 1 ypi = 1/(2.54)yarns/cm
tpi(捩れ/inch);tpm(捩れ毎メートル);1 tpi=39 tpm
gsm(グラム/平方メートル)
sqm(平方メートル)
UV-Vis風化(weathering)-UV放射線及び/又は可視光への暴露による劣化
The following abbreviations are used.
ypi(yarns/inch), 1 inch = 2.54 cm, 1 ypi = 1/(2.54) yarns/cm
tpi (torsion/inch); tpm (torsion per meter); 1 tpi=39 tpm
gsm (grams per square meter)
sqm (square meter)
UV-Vis weathering - deterioration due to exposure to UV radiation and/or visible light

外殻用積層体は、ガスバリア及び負荷担持構造として積層体材料を含み、積層体は、補強繊維層と、繊維層の一面で繊維層に溶融結合した第一のエチレンビニルアルコール(EVOH)フィルムとを含み、EVOHは補強繊維層と直接接触している。 The outer shell laminate comprises a laminate material as a gas barrier and load bearing structure, the laminate comprising a reinforcing fiber layer and a first ethylene vinyl alcohol (EVOH) film melt bonded to the fiber layer on one side of the fiber layer. , the EVOH is in direct contact with the reinforcing fiber layer.

用語「直接接触」はEVOH層と繊維層の間に配置された他の材料の層がないことを意味する。とりわけ、EVOHフィルムは、それを繊維層に溶融結合する前に、2層のTPU層の間に挟持された複合フィルムの一部として提供されることはない。 The term "direct contact" means that there are no layers of other material interposed between the EVOH layer and the fiber layer. In particular, the EVOH film is not provided as part of a composite film sandwiched between two TPU layers prior to melt bonding it to the fibrous layer.

任意に、積層体は繊維層の反対面で繊維層に溶融結合した第二のEVOHフィルムを含み、第二のEVOHフィルムのEVOHも補強繊維層と直接接触する。この場合、補強繊維層は、繊維層のどちらかの面に溶融されている第一及び第二のエチレンビニルアルコール(EVOH)フィルムの間に挟持されている。 Optionally, the laminate includes a second EVOH film melt bonded to the fibrous layer on the opposite side of the fibrous layer, the EVOH of the second EVOH film also in direct contact with the reinforcing fibrous layer. In this case, the reinforcing fiber layer is sandwiched between first and second ethylene vinyl alcohol (EVOH) films that are fused on either side of the fiber layer.

EVOHは非常に低いヘリウム気体透過率を有しており、これは有用性が高い。これはUV安定性であり、耐オゾン性である。さらに、これは熱シール可能である。従来技術において指摘されている乏しい低温可撓性は、ガスバリア層としてEVOHを含む積層体に用いるか又は単独で用いる場合には、実験において問題は見出だされなかった。 EVOH has a very low helium gas permeability, which is of great utility. It is UV stable and ozone resistant. Additionally, it is heat sealable. The poor low temperature flexibility noted in the prior art was not found to be a problem in experiments when used in laminates containing EVOH as a gas barrier layer or when used alone.

外殻材料では、第一のEVOHフィルムが一面から繊維層上に及び少なくとも部分的に内部に溶融結合され、そして任意に第二のEVOHフィルムが繊維層の反対の面から繊維層上に及び少なくとも部分的に内部に溶融結合されている。このような溶融結合はこれらの層を一緒に熱プレスすることで達成される。例えば、175~180℃の範囲の温度は有用である。以下の段落に記載される積層体では、EVOHフィルムは層をお互いに結合する接着剤として機能するのみならず、ガスバリアとしても働く。したがって、それは多機能層である。 In the outer shell material, a first EVOH film is melt bonded from one side onto the fibrous layer and at least partially into the interior, and optionally a second EVOH film from the opposite side of the fibrous layer onto and at least the fibrous layer. Partially melt-bonded internally. Such fusion bonding is accomplished by hot pressing the layers together. For example, temperatures in the range of 175-180°C are useful. In the laminates described in the following paragraphs, the EVOH film not only acts as an adhesive bonding the layers together, but also acts as a gas barrier. It is therefore a multifunctional layer.

繊維補強(FR)層の高い強度と軽い重量を提供するために、液晶繊維、例えば、ポリ[p-フェニレン-2, 6-ベンゾビスオキサゾール](PBO)は良好な候補である。このような繊維は、すでにはじめに記載したように、Zylon(登録商標)として市販されている。 Liquid crystal fibers, such as poly[p-phenylene-2,6-benzobisoxazole] (PBO), are good candidates to provide high strength and light weight for fiber reinforced (FR) layers. Such fibers are commercially available as Zylon®, as already mentioned earlier.

強度及び/又は均一性を最適化するために、場合によっては、捩れ繊維(twisted fibres)、サイジングした繊維(sized fibres)、並びにサイジング及び捩れの両方をした繊維の少なくとも1つを含むことは有利である。任意に、サイジングした繊維は、特にサイジング材料が接着剤層と適合性であれば、層間の追加結合を補助する。サイジングした材料の例は特定のPVA(ポリ酢酸ビニル)繊維である。もう1つの例は商品名Excevalとして市販されている繊維である。例えば、繊維のサイジングはサイジング材料を繊維に対するスピン仕上げ材として適用することで実現される。 In some cases, it is advantageous to include at least one of twisted fibers, sized fibers, and both sized and twisted fibers to optimize strength and/or uniformity. is. Optionally, sized fibers aid in additional bonding between layers, particularly if the sizing material is compatible with the adhesive layer. An example of a sized material is certain PVA (polyvinyl acetate) fibers. Another example is the fiber marketed under the trade name Exceval. For example, sizing of fibers is accomplished by applying a sizing material as a spin finish to the fibers.

適当なサイジング剤はポリビニルアルコールである。このような剤は、例えば、日本企業Kuraray Co, Ltd.から市販されている。Kurarayからの商品名Excevalの疎水変性ポリビニルアルコールを用いた実験でも良好な結果が得られた。このようなポリビニルアルコールに基づくサイジング剤は高弾性であり、化学抵抗性であり、EVOHに匹敵することが見出された。ポリビニルアルコールはZylon(登録商標)ヤーンを強化することが実験で示された。また、それは布帛(fabric)とEVOHの間の良好な接着も提供した。 A suitable sizing agent is polyvinyl alcohol. Such agents are commercially available, for example, from the Japanese company Kuraray Co, Ltd. Good results were also obtained in experiments with hydrophobically modified polyvinyl alcohol from Kuraray under the trade name Exceval. Such polyvinyl alcohol-based sizing agents have been found to be highly elastic, chemically resistant, and comparable to EVOH. Experiments have shown that polyvinyl alcohol strengthens Zylon® yarns. It also provided good adhesion between fabric and EVOH.

例えば、繊維層の第一の組の繊維(任意に液晶繊維)は、捩られているが、繊維層の第二の組の繊維(任意に液晶繊維)は、捩られていない。 For example, the first set of fibers (optionally liquid crystal fibers) of the fibrous layer are twisted while the second set of fibers (optionally liquid crystal fibers) of the fibrous layer are not twisted.

一部の態様において、2組の繊維が異なる方向に配置される。例えば、第一の方向に配向した第一の組の繊維は捩られており、第二の方向に配向した第二の組の繊維は捩られていない。例えば、第一及び第二の方向はその方向の間の角度が少なくとも30度、例えば、45度、任意に直角である。30と50の間の捩れ/メートルの捩れを有する捩れ繊維(twisted fibres)によって良好な結果が実現された。 In some aspects, the two sets of fibers are arranged in different directions. For example, a first set of fibers oriented in a first direction are twisted and a second set of fibers oriented in a second direction are untwisted. For example, the first and second directions are at an angle of at least 30 degrees, such as 45 degrees, optionally perpendicular, between the directions. Good results have been achieved with twisted fibers having between 30 and 50 twists per meter.

均衡(balanced)及び非均衡(unbalanced)の繊維層の両方が有用である可能性がある。一部の態様では、第二の組の繊維が第一の組の繊維より少なくとも2倍太い(厚い)。一部の態様では、第一の組の繊維は第一の糸密度(thread density)を有し、第二の組の繊維は第一の糸密度と少なくとも2倍異なる第二の糸密度を有する。 Both balanced and unbalanced fiber layers can be useful. In some embodiments, the second set of fibers is at least twice as thick (thick) as the first set of fibers. In some embodiments, the first set of fibers has a first thread density and the second set of fibers has a second thread density that differs from the first thread density by a factor of at least two. .

重量が重要である空気より軽いビーヒクルでは、40g/sqmと70g/sqmの間の重量を持つ繊維層において実験的な結果が得られた。 For lighter-than-air vehicles where weight is important, experimental results have been obtained with fiber layers having weights between 40 and 70 g/sqm.

例えば、EVOH層の厚さは10μmと20μmの間である。 For example, the thickness of the EVOH layer is between 10 μm and 20 μm.

有利には、積層体は、第一のEVOH層に溶融結合した多機能性の耐候性層を含み、耐候性層は、ポリマーフィルムの一つの面だけに又は代替的にポリマーフィルムの両側に単一金属層を有する金属化ポリマーフィルムを含む。耐候性層が単一金属層だけを有する場合には、金属層と共にEVOHに向かって配向し、第一のEVOHフィルム層上に溶融結合することが有利である。このようにして、耐候性層の外側へ配向したポリマー、例えば、ポリイミドによって保護される。このような耐候性層は外殻を反応性オゾン及びその他の化学的攻撃から保護するとともに、補強繊維層をUV放射線から保護すべきである。初めに述べたように、PBO、例えばZylon(登録商標)は、UV光で非常に迅速に劣化する。さらに、これは追加のガスバリアとして機能する。耐候性層のポリマーの良好な候補はポリイミド(PI)である。この目的の代わりの材料の例はポリ塩化ビニル(PVF)である。例えば、耐候性層の厚さは10μmと20μmとの間である。 Advantageously, the laminate includes a multifunctional weatherable layer melt bonded to the first EVOH layer, the weatherable layer being on only one side of the polymer film or alternatively on both sides of the polymer film. It includes a metallized polymer film having one metal layer. If the weatherable layer has only a single metal layer, it is advantageous to orient with the metal layer toward the EVOH and melt bond onto the first EVOH film layer. In this way it is protected by a polymer, eg polyimide, oriented to the outside of the weatherable layer. Such a weather resistant layer should protect the outer shell from reactive ozone and other chemical attacks, as well as protect the reinforcing fiber layer from UV radiation. As mentioned earlier, PBO, such as Zylon®, degrades very quickly with UV light. Additionally, it acts as an additional gas barrier. A good candidate for the weatherable layer polymer is polyimide (PI). An example of an alternative material for this purpose is polyvinyl chloride (PVF). For example, the thickness of the weatherable layer is between 10 and 20 μm.

外側向きポリマー層は隣接する積層体の間に強いシーム(seems)を作り出すのにも有用であることを指摘する。 It is pointed out that outward facing polymer layers are also useful in creating strong seams between adjacent laminates.

EVOH は良好なガスバリアであるが、耐候性層の反対側である外殻の内側で積層体に金属化ガスバリア層を追加することによって気密性を改良することができる。この目的で、金属化ガスバリアが任意に第二のEVOHフィルムに溶融結合される。金属化ポリマーフィルム層のための候補はポリエチレンテレフタレート(PET)、例えば、4μmと8μmの間の厚さのPET層である。 EVOH is a good gas barrier, but hermeticity can be improved by adding a metallized gas barrier layer to the laminate on the inside of the shell opposite the weatherable layer. For this purpose, a metallized gas barrier is optionally melt-bonded to the second EVOH film. A candidate for the metallized polymer film layer is polyethylene terephthalate (PET), eg a PET layer of thickness between 4 and 8 μm.

実験において、以下により詳細に説明されるように、90gsmと110gsmの間の範囲の重量で、気密かつ安定な積層体を作成することができることが示された。例えば、積層体についてのテナシティ(tenacity)対重量比は実験的に約890kNm/kgであることが見出された。 Experiments have shown that a weight range between 90 gsm and 110 gsm can produce airtight and stable laminates, as described in more detail below. For example, the tenacity to weight ratio for the laminate was experimentally found to be about 890 kNm/kg.

一部の態様では、繊維層は経糸と横糸をもつ織層(woven layer)である。長尺状の軟式飛行船(elongate blimps)では、外殻の横断方向に必要な強度は長手方向より大きい。したがって、経糸と横糸は、任意に、異なる太さ(thickness)及び/又は密度のフィラメントを有する。無縮れ繊維層(non-crimp fibre layer)を用いるとき、それは、異なる層が異なるフィラメント方向、例えば垂直方向を有する、一軸性フィラメントを有する複数の層からなる。また、この場合、一方向のフィラメントは、不必要な重量の追加なしで強度を最適化するために、第二の方向より太く及び/又は高密度であることが有利である。 In some embodiments, the fibrous layer is a woven layer having warp and weft threads. In elongated blimps, the strength required in the transverse direction of the hull is greater than in the longitudinal direction. Thus, the warp and weft optionally have filaments of different thickness and/or density. When a non-crimp fiber layer is used, it consists of multiple layers with uniaxial filaments, with different layers having different filament directions, eg, perpendicular. Also in this case, the filaments in one direction are advantageously thicker and/or denser than in the second direction to optimize strength without adding unnecessary weight.

均衡及び不均衡の構造の両方が有用であることが見出された。均衡又は不均衡の構造の選択は目的による。例えば、一方向において他の方向より高い強度が望ましい。これは外殻の形状安定性並びに重量の最小化に関連する。なぜなら、長尺状の外殻形状のゆえに布帛(fabric)にかかる力が長手方向では横断方向とは異なることを考えると、不均衡構造が典型的には最適の強度/重量比のためのより大きい可能性を有するからである。 Both balanced and unbalanced structures have been found to be useful. The choice of balanced or unbalanced structure is objective. For example, a higher strength in one direction than the other is desirable. This relates to dimensional stability of the shell as well as weight minimization. Because of the elongated shell shape, given that the forces on the fabric are different in the longitudinal direction than in the transverse direction, an unbalanced structure is typically more flexible for optimum strength/weight ratio. This is because it has great potential.

上記から見られるように、積層体は各層の組合せによって多機能である多数の層を含む。その機能は、UV放射線、可視光、オゾン、単一項酸素及び熱に対する保護を含む。最外層は、低放射率を有して熱管理も提供する。 As can be seen from the above, the laminate includes multiple layers that are multi-functional depending on the combination of each layer. Its functions include protection against UV radiation, visible light, ozone, singlet oxygen and heat. The outermost layer has a low emissivity and also provides thermal management.

第一の値と第二の値の間の範囲では、第一の値と第二の値は任意に含まれる。 For ranges between the first value and the second value, the first value and the second value are optionally included.

本発明を図面を参照してより詳細に説明する。
図1は、外殻材料の積層体の原理スケッチである。 図2は、外殻材料の積層体の別の原理スケッチである。 図3は、繊維強化(FR)層、a)無縮れ(non-crimp)2プライ(ply)クロスプライ(cross-ply)、b)織り(woven);c)無縮れ(non-crimp)3プライを示す。 図4は、プロトタイプP3,a)概略設計及びb)外側及び内側の写真である。 図5は、プロトタイプP4,a)概略設計、b)外側及び内側の写真である。 図6は、プロトタイプP9,a)概略設計及びb)外側及び内側の写真である。 図7は、プロトタイプP10,a)概略設計及びb)外側及び内側の写真である。 図8は、新規な積層体プロトタイプと他の研究で開発された積層体材料の強度及び重量の比較である。 図9は、新規な積層体プロトタイプと他の研究で開発された積層体材料の強度対重量比の比較である。 図10は、熱暴露及び加速UV-Vis風化の前と後のプロトタイプの引張強度の比較である。 図11は、熱暴露及び加速UV-Vis風化の後の強度損失である。 図12は、カットスリット引裂試験片の概略図である。 図13は、一定荷重1250Nに供したプロトタイプP4の荷重伸び曲線を示す。 図14は、プロトタイプP12の概略設計を示す。 図15は、プロトタイプP13の概略設計を示す。 図16は、プロトタイプP14の概略設計を示す。 図17aは、プロトタイプP4のEVOHフィルムに実施したDMA測定結果を示す。 図17bは、プロトタイプP4のMylarフィルムに実施したDMA測定結果を示す。 図17cはプロトタイプP4のPIフィルムに実施したDMA測定結果を示す。 図17dは、プロトタイプP4の経糸に実施したDMA測定結果を示す。
The invention will be explained in more detail with reference to the drawings.
FIG. 1 is a principle sketch of a laminate of shell materials. FIG. 2 is another principle sketch of a stack of shell materials. Figure 3 shows fiber reinforced (FR) layers, a) non-crimp 2-ply cross-ply, b) woven; c) non-crimp 3 Indicates ply. Figure 4 Prototype P3, a) schematic design and b) photographs of outside and inside. Figure 5 Prototype P4, a) Schematic design, b) Photos of outside and inside. Figure 6 Prototype P9, a) schematic design and b) photographs of outside and inside. Figure 7 Prototype P10, a) schematic design and b) photographs of outside and inside. FIG. 8 is a strength and weight comparison of the novel laminate prototype and laminate materials developed in other studies. FIG. 9 is a comparison of the strength-to-weight ratio of the novel laminate prototype and laminate materials developed in other studies. Figure 10 is a comparison of the tensile strength of the prototype before and after thermal exposure and accelerated UV-Vis weathering. Figure 11 is the intensity loss after thermal exposure and accelerated UV-Vis weathering. FIG. 12 is a schematic diagram of a cut-slit tear test piece. Figure 13 shows the load elongation curve of prototype P4 subjected to a constant load of 1250N. FIG. 14 shows a schematic design of prototype P12. FIG. 15 shows a schematic design of prototype P13. FIG. 16 shows a schematic design of prototype P14. Figure 17a shows the DMA measurements performed on the prototype P4 EVOH film. Figure 17b shows the DMA measurements performed on the prototype P4 Mylar film. Figure 17c shows the DMA measurements performed on the prototype P4 PI film. Figure 17d shows the DMA measurements performed on the prototype P4 warp yarns.

薄く軽量であり、同時に気密、耐UV性、耐熱性及び化学抵抗性、特に単一項酸素及びオゾンに対して抵抗性である、外殻材料積層体を提供するために、図1に例示される以下の基本スキームを用いた。荷重担持繊維補強(FR)層は2つの接着剤層の間に挟持され、その接着剤層を用いてFRはさらなる層、例えば、外側外殻層、以下ではそう称される耐候性層、及びガスバリアとしての可能性内側外殻層に結合される。特に、接着剤層は低気体透過率の有効なガスバリアとして構成される。例えば、これらの接着剤層は主ガスバリアであって、接着剤層の全気体透過率が残りの層の気体透過率より小さい。接着性及び低気体透過率の機能のこの組合せは従来にはない。これに対照的に、従来技術では、接着剤層と異なる特定の主ガスバリアが存在し、主ガスバリアは接着剤層より小さい気体透過率を有する。この文脈において、気体透過率は外殻の内側のガス、典型的にはヘリウム又は水素ガスに関する。 In order to provide an outer shell material laminate that is thin and lightweight, while at the same time being hermetic, UV-resistant, thermally and chemically resistant, especially to singlet oxygen and ozone, We used the following basic scheme: A load-bearing fiber reinforced (FR) layer is sandwiched between two adhesive layers, with which the FR is attached to additional layers, such as an outer shell layer, hereinafter so-called weather resistant layer, and Bonded to the inner shell layer with potential as a gas barrier. In particular, the adhesive layer is configured as an effective gas barrier with low gas permeability. For example, these adhesive layers are the primary gas barriers and the overall gas permeability of the adhesive layers is less than the gas permeability of the remaining layers. This combination of adhesion and low gas permeability features is unprecedented. In contrast, in the prior art, there is a specific primary gas barrier that is different from the adhesive layer, the primary gas barrier having a lower gas permeability than the adhesive layer. In this context, gas permeability relates to gas inside the shell, typically helium or hydrogen gas.

図1に詳細に記載されている例として、荷重担持繊維層が2層のEVOH層の間に挟持され、そのEVOH層はガスバリアとして作用するのみならず、可能性追加層、特に外側外殻層、以下で称される耐候性層、及び追加ガスバリアとしての可能性内側外殻層のための接着剤の役割を果たす。それらの層、特に耐候性層の追加の機能は、UV放射線、可視光、オゾン、単一項酸素及び熱に対する保護である。 As an example detailed in FIG. 1, a load-bearing fiber layer is sandwiched between two EVOH layers, which not only act as a gas barrier, but also potentially add layers, especially the outer shell layer. , the weather resistant layer referred to below, and a possible inner shell layer as an additional gas barrier. An additional function of these layers, in particular the weatherproof layer, is protection against UV radiation, visible light, ozone, singlet oxygen and heat.

最適プロセスでは2層のEVOHフィルム層を用いたが、繊維層に溶融結合した単一のEVOH層も従来技術の積層体系よりは有利であると考えられる。 Although the optimized process used two EVOH film layers, a single EVOH layer melt bonded to the fiber layer is also believed to be advantageous over prior art laminate systems.

図1の設計思想の変形が図2に示される。この場合、積層体材料は別の内側の主ガスバリア層を有していない。代わりに、積層体の内側表面は積層体作成後に金属化される。低気体透過率を有する接着剤材料としてのEVOHの使用及び内側表面の金属化は積層体材料の優れたガスバリア性を与える。ガスバリア層の省略は全積層体重量を減少するが、積層体の引張強度には影響しない。 A variation of the design concept of FIG. 1 is shown in FIG. In this case the laminate material does not have a separate inner main gas barrier layer. Alternatively, the inner surface of the laminate is metallized after the laminate is made. The use of EVOH as an adhesive material with low gas permeability and the metallization of the inner surface gives the laminate material excellent gas barrier properties. Omitting the gas barrier layer reduces the overall laminate weight, but does not affect the tensile strength of the laminate.

以下では、外殻積層体材料の最適化を実施した実験に関連して材料及び製造方法を記載する。 Materials and methods of manufacture are described below in connection with experiments conducted to optimize the outer shell laminate materials.

ヤーン選択
低重量と高強度を同時に最適化するために、高強度繊維を用いることが有利である。荷重担持繊維層の有利な材料の例は、商業的に入手可能な高機能繊維の中で非常に高い強度及び比弾性を有する繊維であるという理由から、結晶質PBO(結晶質ポリオキサゾール、ポリ(p-フェニレン-2,6-ベンゾビスオキサゾール)繊維、特に商標Zylon(登録商標)の繊維であった。これらのヤーンはクリープ伸びに対する高い抵抗性も有する。したがって、Zylon(登録商標)ヤーンは実験で用いた積層体材料において繊維補強のために選択した。しかし、PBOは光劣化に非常に敏感であることが知られている。湿分及び酸素の存在が光劣化を促進したことから、保護のメカニズムが発見されるべきであった。
Yarn Selection To simultaneously optimize low weight and high strength, it is advantageous to use high strength fibers. An example of an advantageous material for the load-bearing fiber layer is crystalline PBO (crystalline polyoxazole, poly (p-phenylene-2,6-benzobisoxazole) fibers, especially those with the trademark Zylon®.These yarns also have a high resistance to creep elongation.Therefore, Zylon® yarns was selected for fiber reinforcement in the laminate materials used in the experiments.However, PBO is known to be very sensitive to photodegradation.The presence of moisture and oxygen accelerated photodegradation. A mechanism of protection should have been discovered.

繊維補強層では、平衡及び非平衡の構造の両方を用いることが可能である。一部の態様では、LTA飛行船の長手及びフープ方向に必要な異なる強度を提供するために非平衡構造を選択した。 Both balanced and unbalanced structures can be used in fiber reinforced layers. In some embodiments, a non-balanced structure was chosen to provide the different strengths needed in the longitudinal and hoop directions of the LTA airship.

99デニール,150デニール及び250デニールの番手(yarn count)のZylon(登録商標)ヤーンはToyobo Co., Ltdから供給された。供給されたヤーンは、ゼロ捩れ(無捩れ)であったが、引張強度を試験した。無捩れで99デニール及び250デニールのヤーンの平均引張強度は、それぞれ35.5gf/デニール(4.8% cv;cv=誤差係数)及び34.9gf/デニール(3.0%cv)であった。ヤーンに最適の捩れ(捩れ係数)を付加すると最も高い引張強度を提供する事実に鑑みて、99デニール及び250デニールのZylon(登録商標)ヤーンで達成可能な最適の捩れ係数(Twist Factor)及び対応する最大引張強度を決定するために一連の試験を行った。捩れ係数(TF)は、捩れの数(捩れ/インチ,tpi;捩れ/メートル,tpm;1 tpi=39tpm)と番手に依存するが、式TF=0.124・tpi・dtex0.5(式中、dtexは番手の単位であり、ヤーン線形密度(1デニールは0.9dtexに等しい)とも呼ばれる)を用いて計算した。 Zylon® yarns of 99 denier, 150 denier and 250 denier yarn counts were supplied by Toyobo Co., Ltd. The yarn as supplied had zero twist (no twist) and was tested for tensile strength. The untwisted 99 denier and 250 denier yarns had average tensile strengths of 35.5 gf/denier (4.8% cv; cv=error coefficient) and 34.9 gf/denier (3.0% cv), respectively. Given the fact that adding the optimum twist (twist factor) to the yarn provides the highest tensile strength, the optimum twist factor and corresponding A series of tests were conducted to determine the ultimate tensile strength for The twist factor (TF) depends on the number of twists (twisting/inch, tpi; twisting/meter, tpm ; 1 tpi=39 tpm) and the yarn count. It was calculated using yarn linear density (1 denier equals 0.9 dtex)), which is a unit of yarn count.

99デニール(110dtex)及び250デニール(278dtex)のヤーンは様々な量の捩れ(tpi, tpm)を有し、引張強度について試験した。表1にまとめた結果によれば、99デニール及び250デニールの両ヤーンの引張強度は、99デニールのヤーンについては捩れ係数10のとき(これは7.69tpi(303捩れ/メートル,tpm)に対応する)、250デニールのヤーンでは4.84tpi(190tpm))のとき、最も高いことが示された。

Figure 0007110215000001
Yarns of 99 denier (110 dtex) and 250 denier (278 dtex) had varying amounts of twist (tpi, tpm) and were tested for tensile strength. The results summarized in Table 1 show that the tensile strength of both 99 denier and 250 denier yarns at a twist factor of 10 for the 99 denier yarn, which corresponds to 7.69 tpi (303 twists/meter, tpm). ) and 4.84 tpi (190 tpm) for 250 denier yarn.
Figure 0007110215000001

繊維補強の形態
実験では、荷重担持層についていくつかの原理を適用した。1つは、図3aに示す無縮れ・2プライ・クロスプライ繊維補強層であり、もう1つは図3bに示す織り繊維補強層であった。第三の原理は図3cに示す90/±45度プライであった。
In the fiber reinforcement morphology experiments, several principles were applied for the load-bearing layer. One was a crimp-free, two-ply cross-ply fiber reinforced layer shown in Figure 3a and the other was a woven fiber reinforced layer shown in Figure 3b. The third principle was the 90/±45 degree ply shown in Figure 3c.

積層体のためのフィルム選択
EVOH(エチレンビニルアルコール共重合体)がガス、特にHeに関して非常に低い透過率を有しており、これが接着剤層の良好な候補の理由である。
Film selection for laminates
EVOH (ethylene vinyl alcohol copolymer) has a very low permeability to gases, especially He, which is why it is a good candidate for the adhesive layer.

外側雰囲気に対する外側耐候性層の良好な候補はPI(ポリイミド)であることが見出されたが、他のポリマー、例えば、ポリ塩化ビニリデン(PVF)も可能である。有利には、外側耐候性層は、放射線と熱を反射するために金属化された。金属を損傷から保護するために、金属コーティングは内側に向けられ、耐候性層のポリマーとEVOHの間にある。このようにして、ポリマーが成層圏の腐食性環境から金属を保護する。 A good candidate for an outer weather resistant layer to the outside atmosphere has been found to be PI (polyimide), but other polymers such as polyvinylidene chloride (PVF) are also possible. Advantageously, the outer weatherable layer is metallized to reflect radiation and heat. To protect the metal from damage, the metal coating faces inward and is between the weather resistant layer polymer and EVOH. In this way the polymer protects the metal from the corrosive environment of the stratosphere.

代替的に耐候性層は両面で金属化される。耐候性層が両面で金属化されるか、又は環境に露出された金属化面を有する場合、耐食性コーティングで保護することが有利である。 Alternatively the weatherable layer is metallized on both sides. If the weatherable layer is metallized on both sides or has a metallized side exposed to the environment, it is advantageous to protect it with a corrosion resistant coating.

一部の態様では、耐候性層に対して多層の反対側に内側ガスバリアを追加し、その内側ガスバリア層は金属化ポリエチレンテレフタレート(PET)フィルム、例えば、Mylar(登録商標)であった。 In some embodiments, an inner gas barrier was added on the opposite side of the multilayer to the weatherable layer, which inner gas barrier layer was a metallized polyethylene terephthalate (PET) film, such as Mylar®.

積層は、7.5 inch x 7.5 inch(19 cm x 19 cm)の寸法の積層体について、2つのアルミニウム定盤の間で、圧力285psi=1965kPa、温度175-178℃で、15分間行い、その温度範囲の上限で最良の積層結果が得られた。これらの試料を以下に記載する様々な種類の試験に使用した。 Lamination is carried out between two aluminum platens at a pressure of 285 psi = 1965 kPa and a temperature of 175-178°C for 15 minutes on a laminate with dimensions of 7.5 inch x 7.5 inch (19 cm x 19 cm) and the temperature range The best lamination results were obtained at the upper limit of . These samples were used in various types of tests described below.

しかしながら、異なる温度及び滞留時間の組合せが可能である。他の実験では、180-200℃の範囲のより高い温度でより低い圧力とより短い滞留時間で良好な結果であった。例えば、196℃の温度で60psi=414kPaの圧力と2秒間を用いた。 However, different temperature and residence time combinations are possible. Other experiments have shown good results at higher temperatures in the range 180-200°C, lower pressures and shorter residence times. For example, a pressure of 60 psi=414 kPa and 2 seconds at a temperature of 196° C. was used.

強度測定
引張強度測定は、Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method) ASTM D5035に従って実施した。引張強度値はN/cm及びgf/デニール(mN/tex = 88.3gf/den)の単位で報告される。N/cmの引張強度は単位幅cm当りの試料のテナシティ(tenacity)を表す。gf/デニールの引張強度は荷重方向のヤーンの合計デニール当りの試料のテナシティ(tenacity)を表す。gf/デニールの引張強度を規格化測定基準(normalized metric)として用いて、ヤーン強度が如何にして積層/非積層の繊維補強強度に翻訳されるかを決定した。
Strength Measurements Tensile strength measurements were performed according to the Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method) ASTM D5035. Tensile strength values are reported in units of N/cm and gf/denier (mN/tex = 88.3 gf/den). The tensile strength in N/cm represents the tenacity of the sample per unit cm of width. Tensile strength in gf/denier represents the tenacity of the sample per total denier of the yarn in the load direction. Tensile strength in gf/denier was used as a normalized metric to determine how yarn strength translates to laminated/unlaminated fiber reinforcement strength.

非平衡構造の場合、以下に詳細に説明するように、推測引張強度(ヤーン強度と繊維補強構造パラメータに基づいて計算される)は、経糸と横糸方向でそれぞれ1033N/cmと516N/cmであった。一般的に、すべての試料(積層織り繊維補強を除く)の経糸方向の引張強度は1000N/cmに近いことが見出されたが、すべての試料の横糸は500N/cmより大きいことが見出された。対応するパラメータ値は31~35gf/denの範囲であった。 For the non-equilibrium structure, the inferred tensile strength (calculated based on yarn strength and fiber reinforcement structural parameters) was 1033 N/cm and 516 N/cm in the warp and weft directions, respectively, as detailed below. rice field. In general, the warp direction tensile strength of all samples (except the laminated woven fiber reinforcement) was found to be close to 1000 N/cm, whereas the weft of all samples was found to be greater than 500 N/cm. was done. Corresponding parameter values ranged from 31 to 35 gf/den.

布帛のZylon(登録商標)ヤーンに基づく平衡布帛構造についても実験を行った。99デニールで、密度46-50ypi(約18-20yarns/cm)の低捩れ(3-5 tpi)Zylon(登録商標)ヤーンを、平織の経糸と横糸の両方に用いた。Zylon(登録商標)ヤーンはポリビニルアルコールでサイジングした。引張強度は経糸及び横糸方向で520~615N/cm及び28~34gf/denの範囲と測定され、2.9-3.2%の破断時伸びであった。これらの結果も、目的のために非常に良好であり、これらは、布帛についての値であり、全積層体についての値ではない。より詳細には下記データが測定された。 Experiments were also conducted on a balanced fabric construction based on Zylon® yarns in the fabric. Low twist (3-5 tpi) Zylon® yarns of 99 denier and density of 46-50 ypi (approximately 18-20 yarns/cm) were used for both the warp and fill of the plain weave. The Zylon® yarn was sized with polyvinyl alcohol. Tensile strength was measured in the range of 520-615 N/cm and 28-34 gf/den in the warp and weft directions with an elongation at break of 2.9-3.2%. These results are also very good for the purpose, these are the values for the fabric and not the total laminate. More specifically, the following data were measured.

結論として、高強度ヤーンを用いた平衡及び非平衡構造の両方が非常に有用であることが示された。 In conclusion, both equilibrium and non-equilibrium structures with high strength yarns have been shown to be very useful.

例1 - P3
図4aは図2の原理スケッチの特定の態様を示す。図の左は、各層の重量をg/m(gsm)の単位で示し、厚さ(μm)を右に示す。作製した積層体の写真を図4bに示す。
Example 1 - P3
FIG. 4a shows a particular embodiment of the principle sketch of FIG. The left side of the figure shows the weight of each layer in units of g/m 2 (gsm) and the right side shows the thickness (μm). A photograph of the produced laminate is shown in FIG. 4b.

この積層体プロトタイプの概略設計(実験P3)は、繊維補強として非平衡クロスプライ(2プライ)無縮れの布帛(fabric)を含む。この布帛は250 デニールZylon(登録商標)ヤーンを90度及び0度方向に有する。布帛の坪量は48gsmであり、90度方向においてヤーン密度30ypi(30ヤーン/inchは約12ヤーン/cm)、0度方向で15ypi(約6ヤーン/cm)であり、したがって、90度方向で0度方向より高い強度を与える。プロトタイプ設計は優れた接着とガスバリア性を提供する3層のEVOHフィルムを含む。この積層体プロトタイプの推定及び測定重量は、それぞれ111gsm及び109gsmであった。 The schematic design of this laminate prototype (Experiment P3) includes an unbalanced cross-ply (2-ply) no-crimp fabric as fiber reinforcement. This fabric has 250 denier Zylon® yarns in the 90 degree and 0 degree directions. The basis weight of the fabric is 48 gsm with a yarn density of 30 ypi (30 yarns/inch is about 12 yarns/cm) in the 90 degree direction and 15 ypi (about 6 yarns/cm) in the 0 degree direction, thus Gives higher strength than the 0 degree direction. The prototype design includes a 3-layer EVOH film that provides excellent adhesion and gas barrier properties. The estimated and measured weight of this laminate prototype was 111 gsm and 109 gsm respectively.

例2 - P4
図5aは図1の原理スケッチの特定の態様を示す。図の左は、各層の重量をg/cm2(gsm)の単位で示し、厚さを右に示す。作製した積層体の写真を図5bに示す。
Example 2 - P4
FIG. 5a shows a particular embodiment of the principle sketch of FIG. The left side of the figure shows the weight of each layer in g/cm 2 (gsm) and the right side shows the thickness. A photograph of the produced laminate is shown in FIG. 5b.

この積層体プロトタイプ(実験P4)の概略設計は、繊維補強として非平衡クロスプライ(2プライ)無縮れ布帛を含む。この布帛は長手方向及び横断方向に250デニールのPBOヤーンを有する。布帛の坪量は48gsmであり、90度方向にヤーン密度30ypi(約12ヤーン/cm)、0度方向に15ypi(約6ヤーン/cm)である。より低い積層体重量を実現するために、この設計は2層のEVOH フィルムと、主ガスバリア層として働く軽量金属化PETフィルム(Mylar(登録商標))の底部層とを使用する。積層体プロトタイプの推測及び測定重量は103gsmである。 The schematic design of this laminate prototype (experiment P4) includes an unbalanced cross-ply (2-ply) no-crimp fabric as fiber reinforcement. This fabric has 250 denier PBO yarns in the longitudinal and transverse directions. The fabric has a basis weight of 48 gsm and a yarn density of 30 ypi (about 12 yarns/cm) in the 90 degree direction and 15 ypi (about 6 yarns/cm) in the 0 degree direction. To achieve a lower laminate weight, this design uses two layers of EVOH film and a bottom layer of lightweight metallized PET film (Mylar®) that acts as the primary gas barrier layer. The estimated and measured weight of the laminate prototype is 103 gsm.

例3 - P9
図6aは図1の原理スケッチの特定の態様を示す。図の左は、各層の重量g/m2(gsm)の単位で示し、厚さを右に示す。作製した積層体の写真を図6bに示す。
Example 3 - P9
FIG. 6a shows a particular embodiment of the principle sketch of FIG. The left side of the figure shows the weight of each layer in units of g/m 2 (gsm) and the right side shows the thickness. A photograph of the produced laminate is shown in Fig. 6b.

この積層体プロトタイプ(実験P9)の概略設計は、補強繊維として非平衡の織布を含む。織布は、経糸方向に40tpm捩れの99デニールZylon(登録商標)ヤーンと、横糸方向に捩れ無の250デニールZylon(登録商標)ヤーンをそれぞれ有する。布帛の坪量は50gsmであり、経糸方向にヤーン密度40ypi(約16ヤーン/cm)、横糸方向に30ypi(約12yarns/cm)である。プロトタイプP4のように、底部層は軽量金属化PETフィルム(Mylar(登録商標))であり、これが主ガスバリアとして機能する。175°Cの積層温度で製造して成功裏の層間接着が得られたが、積層温度を178°Cに上げると層間接着は改良された。この積層体プロトタイプの推測及び測定重量は105gsmであった。 The schematic design of this laminate prototype (experiment P9) includes unbalanced woven fabric as reinforcing fibers. The fabrics each have 99 denier Zylon® yarns with 40 tpm twist in the warp direction and 250 denier Zylon® yarns with no twist in the weft direction. The fabric has a basis weight of 50 gsm and a yarn density of 40 ypi (about 16 yarns/cm) in the warp direction and 30 ypi (about 12 yarns/cm) in the weft direction. Like the prototype P4, the bottom layer is a lightweight metallized PET film (Mylar®), which acts as the main gas barrier. Successful interlayer adhesion was obtained with a lamination temperature of 175°C, but increasing the lamination temperature to 178°C improved interlayer adhesion. The estimated and measured weight of this laminate prototype was 105 gsm.

例4 - P10
図7aは図1の原理設計の特定態様を示す。図の左は、各層の重量をg/m2(gsm)の単位で示し、厚さを右に示す。作製した積層体の写真を図7bに示す。
Example 4 - P10
FIG. 7a shows a particular embodiment of the principle design of FIG. The left side of the figure shows the weight of each layer in g/m 2 (gsm) and the right side shows the thickness. A photograph of the produced laminate is shown in FIG. 7b.

この積層体プロトタイプ(実験P10)の概略設計は繊維補強として非平衡の織布を含む。プロトタイプP9と異なり、プロトタイプP10は経糸方向に捩れ40tpmの99デニールZylon(登録商標)ヤーンと横糸方向に無捩れ99デニールZylon(登録商標)ヤーンをそれぞれ有する織布を用いる。布帛の坪量は50gsmであり、経糸方向にヤーン密度40ypi(約16yarns/cm)と、横糸方向に75ypi(30yarns/cm)である。横糸方向により高いypi(yarns/inch)であると、より平滑な表面組織をもつより安定な布帛構造を形成すると期待される。最初の追跡で、175°Cの積層温度を用いたが、金属化PIフィルムの接着が弱く、積層品質に劣った。積層温度を178 Cに上昇すると、積層品質が改良された。プロトタイプP9のように良好ではなかったが、満足できる結果であった。積層体プロトタイプの推測及び測定重量は105gsmであった。 The schematic design of this laminate prototype (experiment P10) includes an unbalanced woven fabric as fiber reinforcement. Unlike Prototype P9, Prototype P10 uses a woven fabric with twisted 40 tpm 99 denier Zylon® yarns in the warp direction and 99 denier Zylon® yarns untwisted in the weft direction, respectively. The basis weight of the fabric is 50 gsm with a yarn density of 40 ypi (about 16 yarns/cm) in the warp direction and 75 ypi (30 yarns/cm) in the weft direction. A higher ypi (yarns/inch) in the weft direction is expected to produce a more stable fabric structure with a smoother surface texture. In the first follow-up, a lamination temperature of 175°C was used, but the adhesion of the metallized PI film was poor and the lamination quality was poor. Increasing the lamination temperature to 178 C improved the lamination quality. It wasn't as good as the prototype P9, but the results were satisfactory. The estimated and measured weight of the laminate prototype was 105 gsm.

ガスバリア性能
ヘリウム透過率試験結果(表2)は、積層体プロトタイプP3及びP4の両方が目標値132cc/m2.day.atmよりかなり低いヘリウム透過率を有することを示す。積層体プロトタイプP4はプロトタイプP3の値と比べて顕著に低いヘリウム透過率を有する。プロトタイプP4のより低い透過率は金属化Mylar(登録商標)層の存在に基づくが、これはまたプロトタイプP4の全重量を減少させた。

Figure 0007110215000002
Gas barrier performance helium permeability test results (Table 2) show that both laminate prototypes P3 and P4 have helium permeability well below the target value of 132 cc/m 2 .day.atm. Laminate prototype P4 has a significantly lower helium permeability compared to that of prototype P3. The lower transmission of prototype P4 is due to the presence of the metallized Mylar® layer, which also reduced the overall weight of prototype P4.
Figure 0007110215000002

同じ層形成スキームであれば、プロトタイプP9及びP10のヘリウム透過率値はプロトタイプP4のそれと同じであると期待され、これは気密性の観点でP3より好ましい。 Given the same layering scheme, the helium permeability values of prototypes P9 and P10 are expected to be the same as those of prototype P4, which is preferable to P3 in terms of hermeticity.

積層体強度
積層体プロトタイプP4,P9,及びP10の経糸及び横糸方向引張強度を表3に示す。プロトタイプP3の1つの試験片の引張強度は1086N/cmであった。

Figure 0007110215000003
Laminate Strength The warp and weft tensile strengths of laminate prototypes P4, P9, and P10 are shown in Table 3. The tensile strength of one specimen of prototype P3 was 1086 N/cm.
Figure 0007110215000003

ヤーン強度と繊維補強構造パラメータに基づいて計算した推測引張強度は、2つの方向で1033N/cm及び516N/cmである。プロトタイプの測定引張強度は推測値より僅かに低い。推測引張強度と比べて低い引張強度は、積層体プロトタイプの手作業による実験製造のために、ヤーンの完全な配列の欠如とヤーンの不均一性に帰せられる。これらの不完全性のために、荷重担持ヤーンにおける荷重分担が不均一になり、最終的に引張試験中に試験片が未熟な段階で破壊を起こす。積層体を専用の大規模製造施設で製造すれば、引張強度は改良され、理論値と同様になると考えられる。しかし、実験値は理論値から10%未満のバラツキであり、これは大変に成功的な結果であることが指摘される。 Estimated tensile strengths calculated based on yarn strength and fiber reinforcement structural parameters are 1033 N/cm and 516 N/cm in two directions. The measured tensile strength of the prototype is slightly lower than the estimated value. The lower tensile strength compared to the inferred tensile strength is attributed to the lack of perfect alignment of the yarns and non-uniformity of the yarns due to the manual experimental fabrication of laminate prototypes. These imperfections lead to uneven load sharing in the load-bearing yarns and ultimately to premature specimen failure during tensile testing. It is believed that if the laminate is manufactured in a dedicated large scale manufacturing facility, the tensile strength will be improved and similar to the theoretical value. However, it is pointed out that the experimental values differ from the theoretical values by less than 10%, which is a very successful result.

他の研究との比較
新規な積層体プロトタイプと文献における他の研究で開発された積層体材料との強度及び重量の比較を図8に示す。文献は表4と関連してこの節の最後に見られる。
Comparison with Other Studies A comparison of strength and weight between the new laminate prototype and laminate materials developed in other studies in the literature is shown in FIG. References can be found at the end of this section in conjunction with Table 4.

新規な積層体と他の研究で開発された積層体との強度対重量比の比較を図9に示す。新規な積層体プロトタイプは、類似の引張強度をもつどの他の積層体より顕著に軽量であるのみならず、類似の重量をもつどの積層体よりも顕著に強度が高い。新規な積層体プロトタイプの強度対重量比は、他の研究で開発されたすべての積層体より大きい。 A comparison of the strength-to-weight ratios of the new laminate and laminates developed in other studies is shown in FIG. The novel laminate prototype is not only significantly lighter than any other laminate of similar tensile strength, but also significantly stronger than any laminate of similar weight. The strength-to-weight ratio of the novel laminate prototype is greater than all laminates developed in other studies.

この比較で見られるように、積層体P3,P4,P9,及びP10の強度は重量と比べて非常に高いので、空気より軽い飛行船に用いるのに好都合である。しかし、図9に示されるように、より優れたテナシティ対重量比は、より厚い積層体と対比できるものであり、例示の積層体が図8の全体としてより高いテナシティを有する積層体より好ましいものとすることが指摘される。 As can be seen in this comparison, the strength of laminations P3, P4, P9, and P10 is very high relative to their weight, making them suitable for use in lighter-than-air airships. However, as shown in FIG. 9, the superior tenacity-to-weight ratio is comparable to the thicker laminates, making the exemplary laminates preferable to the overall higher tenacity laminates of FIG. It is pointed out that

Figure 0007110215000004
Figure 0007110215000004

Figure 0007110215000005
Figure 0007110215000005

表4の文献:
1. Kamatsu, K, Sano, M., and Kakuta, Y., "Development of High Specific Strength Envelope Material", AAIA 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech, Nov 17-18 2003, Denver, Colorado.
2. Sasaki Y., Eguchi, K, Kono T, and Maekawa, S, “Scenario for Development of the SPF Airship Technology Demostrator", The Fifth Stratospheric Platform Systems Workshop, Feb 23-24, 2005, Tokyo, Japan.
3. Maekawa S, "On the Design Issue of a Stratospheric Platform Airship Structure" NAL TM-722, National Aerospace Laboratory of Japan, May 2003.
4. Maekawa, S and Yoshino, T, "Tear propagation of a High-Performance Airship Envelope Material", Journal of Aircraft, 45 (5), Sept-Oct 2008.
5. Nkadate, M., Maekawa, S., Maeda .T, Hiyoshi, M., Kitada, T., and Segawa6, S. "Reinforcement of an Opening for High Strength and Light Weight Envelop Material Zylon" 18th AIAA Lighter-Than-Air Systems Technology Conference, May 4-7 2009, Seattle, Washington, USA.
6. Nakadate, M., Maekawa, S., Shibasaki, K, Kurose, T. Kitada, T, and Segawa, S., “Development of High Strength and Light Weight Envelop Material Zylon" 7th International Airship Convention 2008, Friedrichshafen Germany, Oct 9-11 2008.
7. High Strength-to-Weight Ratio Non-Woven Technical Fabrics for Aerospace Applications" Cubic Tech Corp, 2009, Mesa, Arizona.
8. Kang, W, Suh, Y, and Woo, K.., "Mechanical property characterization of film-fabric laminate for stratospheric airship envelope" Composite Structures, 75, pp.151-155, 2006.
9. Gu Z., "Research of Stratospheric Airships Skin Material' Spacecraft Recovery& Remote Sensing, 28(1), pp.62-66, 2007.
10. Cao, X, and Gao, C. "Fabrication and Investigation of Envelope Materials for Stratospheric Aircraft with PBO Fabric as Load-carriers" High-tech Fibre & Application, 34(4), pp.0-5, 2009.
11. Li B, Xing L, Zhou Z, Jiang S, and Chen X., "Study on Mechanical Properties of High Performance Envelope Materials" Material Engineering, pp.1-5, 2010.
References in Table 4:
1. Kamatsu, K, Sano, M., and Kakuta, Y., "Development of High Specific Strength Envelope Material", AAIA 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech, Nov 17-18 2003, Denver, Colorado.
2. Sasaki Y., Eguchi, K, Kono T, and Maekawa, S, “Scenario for Development of the SPF Airship Technology Demostrator”, The Fifth Stratospheric Platform Systems Workshop, Feb 23-24, 2005, Tokyo, Japan.
3. Maekawa S, "On the Design Issue of a Stratospheric Platform Airship Structure" NAL TM-722, National Aerospace Laboratory of Japan, May 2003.
4. Maekawa, S and Yoshino, T, "Tear propagation of a High-Performance Airship Envelope Material", Journal of Aircraft, 45 (5), Sept-Oct 2008.
5. Nkadate, M., Maekawa, S., Maeda .T, Hiyoshi, M., Kitada, T., and Segawa6, S. "Reinforcement of an Opening for High Strength and Light Weight Envelop Material Zylon" 18th AIAA Lighter- Than-Air Systems Technology Conference, May 4-7 2009, Seattle, Washington, USA.
6. Nakadate, M., Maekawa, S., Shibasaki, K, Kurose, T. Kitada, T, and Segawa, S., “Development of High Strength and Light Weight Envelop Material Zylon” 7th International Airship Convention 2008, Friedrichshafen Germany , Oct 9-11 2008.
7. High Strength-to-Weight Ratio Non-Woven Technical Fabrics for Aerospace Applications" Cubic Tech Corp, 2009, Mesa, Arizona.
8. Kang, W, Suh, Y, and Woo, K.., "Mechanical property characterization of film-fabric laminate for stratospheric airship envelope" Composite Structures, 75, pp.151-155, 2006.
9. Gu Z., "Research of Stratospheric Airships Skin Material' Spacecraft Recovery & Remote Sensing, 28(1), pp.62-66, 2007.
10. Cao, X, and Gao, C. "Fabrication and Investigation of Envelope Materials for Stratospheric Aircraft with PBO Fabric as Load-carriers" High-tech Fiber & Application, 34(4), pp.0-5, 2009.
11. Li B, Xing L, Zhou Z, Jiang S, and Chen X., "Study on Mechanical Properties of High Performance Envelope Materials" Material Engineering, pp.1-5, 2010.

熱及びUV-Vis風化(weathering)の効果
積層体プロトタイプP4,P9及びP10を、2種の異なる風化(weathering)条件に供した。1つの風化暴露では、プロトタイプをオーブン中で80°C24時間の熱暴露に供した。他の風化暴露は、UV及び可視光(UV-Vis)スペクトル約275~700nmに170時間の加速暴露(高度10kmで~60日実時間暴露)であった。プロトタイプを、Atlas Ci 3000+ Weather-Ometer(www. atlas-mts.com)で、340nmにて1.1Watts/m2の照射レベルに暴露した。UV-Vis 風化の間、プロトタイプの温度は約80°Cに維持した。UV-Vis風化において、試験片は金属フレームに搭載し、試料の内側(Mylar(登録商標)は2層の黒色カード紙で覆って内側におけるあらゆる暴露を防いた。次いでフレームをAtlas Ci 3000+ Weather-Ometerの風化チャンバーの内部の丸いレールに搭載して、試験片の外側をUV及び可視光源に向けた。
Effects of Thermal and UV-Vis Weathering Laminate prototypes P4, P9 and P10 were subjected to two different weathering conditions. In one weathering exposure, the prototypes were subjected to a thermal exposure of 80°C for 24 hours in an oven. Another weathering exposure was an accelerated exposure to the UV and visible light (UV-Vis) spectrum from about 275 to 700 nm for 170 hours (~60 days real-time exposure at 10 km altitude). The prototype was exposed in an Atlas Ci 3000+ Weather-Ometer (www.atlas-mts.com) to an irradiation level of 1.1 Watts/ m2 at 340nm. The temperature of the prototype was maintained at approximately 80°C during UV-Vis weathering. For UV-Vis weathering, the specimen was mounted in a metal frame and the inside of the specimen (Mylar®) was covered with two layers of black cardboard to prevent any exposure on the inside. -The specimen was mounted on round rails inside the Ometer's weathering chamber with the outside facing the UV and visible light sources.

各風化暴露の後にプロトタイプの引張強度を試験した。強度損失(%)を下記で定義した。

Figure 0007110215000006
これは、熱及び光劣化を評価するために測定基準として用いた。 The tensile strength of the prototypes was tested after each weathering exposure. Strength loss (%) is defined below.
Figure 0007110215000006
This was used as a metric to assess thermal and photodegradation.

熱暴露及びUV-Vis風化の前及び後の平均引張強度は、統計的に同じであった(統計分析は95%信頼度のt-試験で実施した)。したがって、熱及びUV-Vis風化で生じる劣化は無視できることが結論される。風化暴露の前後の試験片は同じプロトタイプの異なる複製物から採用されたことが重要である。プロトタイプの手作業での製造のために、複製物には本来的なバラツキがあり、同じプロトタイプの異なる複製物にもバラツキがある。熱に暴露した試料の一部は、対応する暴露しなかった試料と比べて高い強度を示し、試料における試験片のバラツキを強く示唆した。熱暴露及びUV-Vis風化の前後のプロトタイプP4,P9及びP10の引張強度の比較グラフを図10に示す。 The average tensile strengths before and after heat exposure and UV-Vis weathering were statistically the same (statistical analysis was performed with 95% confidence t-test). It is therefore concluded that the degradation caused by thermal and UV-Vis weathering is negligible. It is important that the specimens before and after weathering exposure were taken from different replicates of the same prototype. Due to the manual manufacturing of prototypes, there is inherent variability in the copies and even between different copies of the same prototype. Some of the heat-exposed samples showed higher strength than the corresponding unexposed samples, strongly suggesting specimen variability in the samples. A comparative graph of the tensile strength of prototypes P4, P9 and P10 before and after thermal exposure and UV-Vis weathering is shown in FIG.

熱暴露及び加速UV-Vis風化後のプロトタイプP4, P9及びP10の強度損失(%)を図11に示す。 The strength loss (%) of prototypes P4, P9 and P10 after thermal exposure and accelerated UV-Vis weathering is shown in FIG.

熱暴露及びUV-Vis風化の前後の平均引張強度は、統計的に同じであった(統計分析は95%頼度のt-試験で実施した)。したがって、熱及びUV-Vis風化で生じる劣化は無視できることが結論される。風化暴露の前後の試験片は同じプロトタイプの異なる複製物から採用されたことが重要である。プロトタイプの手作業での製造のために、複製物には本来的なバラツキがあり、同じプロトタイプの異なる複製物にもバラツキがある。熱に暴露した試料の一部は、対応する暴露しなかった試料と比べて高い強度を示し、試料における試験片のバラツキを強く示唆した。 The average tensile strengths before and after heat exposure and UV-Vis weathering were statistically the same (statistical analysis was performed with 95% confidence t-test). It is therefore concluded that the degradation caused by thermal and UV-Vis weathering is negligible. It is important that the specimens before and after weathering exposure were taken from different replicates of the same prototype. Due to the manual manufacturing of prototypes, there is inherent variability in the copies and even between different copies of the same prototype. Some of the heat-exposed samples showed higher strength than the corresponding unexposed samples, strongly suggesting specimen variability in the samples.

引裂強度測定
プロトタイプP4及びP9の引裂強度をカットスリット引裂試験法MIL-C-21189を用いて測定した。引裂試験片の概略図を図12に示す。試験片の中央に試験方向に垂直に1.25インチのカットスリットを設けた。試験片は4インチ幅と、グリップ間に3インチの試験ゲージ長さであった。
Tear Strength Measurements The tear strength of prototypes P4 and P9 was measured using cut-slit tear test method MIL-C-21189. A schematic diagram of the tear test piece is shown in FIG. A 1.25 inch cut slit was made in the center of the specimen perpendicular to the test direction. The specimen was 4 inches wide and had a test gauge length of 3 inches between grips.

試験片の引裂強度は引裂試験中の5つの最も高いピーク荷重を平均して計算した。試料当り3個の試験片を経糸及び横糸方向に試験した。プロトタイプP4及びP9の引裂強度の結果を表5示す。

Figure 0007110215000007
The tear strength of the specimen was calculated by averaging the five highest peak loads during the tear test. Three specimens per sample were tested in the warp and weft directions. Tear strength results for prototypes P4 and P9 are shown in Table 5.
Figure 0007110215000007

プロトタイプP4のプロトタイプP9に比べて経糸方向の高い引裂の理由は2つの構造を対比するために用いた経糸ヤーンのデニールの違いによる。プロトタイプP4では、250デニールのヤーンを用いたが、プロトタイプP9では99デニールを用いた。引裂荷重はヤーン破壊荷重の増加によって増加することは文献から十分に支持される。 The reason for the higher tear in the warp direction of prototype P4 compared to prototype P9 is due to the difference in the denier of the warp yarns used to contrast the two constructions. Prototype P4 used 250 denier yarn, while prototype P9 used 99 denier. It is well supported from the literature that the tear load increases with an increase in the yarn breaking load.

クリープ伸びに対する抵抗
プロトタイプP4の1インチ幅試験片に、荷重フレームが荷重制御モードで走行するMTS Loadフレーム(www.mts.com)で1日間1250Nの一定荷重をかけた。試験片のゲージ長さは3インチ(76mm)であった。試験の荷重伸び曲線を図13に示す。1.6%の初期伸び後に、P4試験片は0.02%の非常に小さいクリープ伸びを示した。
Resistance to Creep Elongation A 1 inch wide specimen of prototype P4 was subjected to a constant load of 1250 N for 1 day on an MTS Load frame (www.mts.com) running the load frame in load control mode. The gauge length of the specimen was 3 inches (76 mm). The load elongation curve of the test is shown in FIG. After an initial elongation of 1.6%, the P4 specimen showed a very small creep elongation of 0.02%.

他の積層体
図14及び15は図2の原理スケッチの特定の軽量態様を示す。
Other Laminates FIGS. 14 and 15 show a particular lightweight version of the principle sketch of FIG.

図14に示す積層体プロトタイプ(実験P12)の概略設計は、繊維補強として非平衡クロスプライ・無縮れ布帛又は非平衡織布を用いる。48gsmの布帛はPBOヤーン製である。積層体(接着剤層)の内側表面は積層体作製後に金属化する。積層体プロトタイプの推測坪量は96gsmである。 The schematic design of the laminate prototype (experiment P12) shown in Figure 14 uses a non-equilibrium cross-ply, no-crimp fabric or non-equilibrium woven fabric as fiber reinforcement. The 48gsm fabric is made from PBO yarn. The inner surface of the laminate (adhesive layer) is metallized after the laminate is made. The estimated basis weight of the laminate prototype is 96 gsm.

代わりの3プライ無縮れ布帛は、繊維補強重量をさらに減少するのみならず、積層体の引張強度を増加すると期待される。3プライ繊維補強の積層体プロトタイプの例を図15に関連して以下に説明する。図15に示す積層体プロトタイプ(実験P13)の概略設計は、90°方向に15ypi(約6ーン/cm)と+/- 45°方向に11ypi(約4yarns/cm)をもつ3プライ布帛(250デニールヤーン) を用いる。3プライは図3cに示すように配置する。繊維補強重量は41gsmに等しい。プロトタイプP12と同様に、積層体(接着剤層)の内側表面を積層プロセス後に金属化する。積層体の推測重量は89gsmであると期待される。積層体プロトタイプP13の推測引張強度は1000N/cmより高いと推測される。 An alternative 3-ply no-crimp fabric is expected to not only further reduce the fiber reinforcement weight, but also increase the tensile strength of the laminate. An example of a 3-ply fiber reinforced laminate prototype is described below in connection with FIG. The schematic design of the laminate prototype (experiment P13) shown in Figure 15 is a 3-ply fabric with 15 ypi (about 6 yarns/cm) in the 90° direction and 11 ypi (about 4 yarns/cm) in the +/- 45° direction ( 250 denier yarn) is used. The three plies are arranged as shown in Figure 3c. The fiber reinforcement weight is equal to 41gsm. Similar to prototype P12, the inner surface of the laminate (adhesive layer) is metallized after the lamination process. The estimated weight of the laminate is expected to be 89gsm. The estimated tensile strength of laminate prototype P13 is estimated to be higher than 1000 N/cm.

図16に示す積層体プロトタイプ(実験P14)の概略設計は、90°方向に22ypi(約9yarns/cm)と+/- 45°方向に16ypi(約6yarns/cm)をもつ3プライ布帛(250デニールヤーン)を用いる。繊維補強重量は59gsmに等しい。3プライは図3cのように配置する。プロトタイプP12と同様に、積層体 (接着剤層)の内側表面を積層プロセス後に金属化する。積層体の推測重量は107gsmであると期待される。積層体プロトタイプP13の推測引張強度は1550N/cmより高いと推測される。強度対重量比は1400kN.m/Kg,に近いと推測されるが、他の文献で開発されたすべての積層体材料より大いに高い。 The schematic design of the laminate prototype (experiment P14) shown in Figure 16 is a three-ply fabric (250 denier yarn). The fiber reinforcement weight is equal to 59gsm. The 3 plies are arranged as shown in Figure 3c. Similar to prototype P12, the inner surface of the laminate (adhesive layer) is metallized after the lamination process. The estimated weight of the laminate is expected to be 107gsm. The estimated tensile strength of laminate prototype P13 is estimated to be higher than 1550 N/cm. The strength-to-weight ratio is estimated to be close to 1400 kN.m/Kg, much higher than all other literature-developed laminate materials.

温度安定性測定
低温が材料の可撓性にとって問題であるか否か評価するために、数多くの試料について広範囲の温度で動的機械分析(Dynamic Mechanical Analysis (DMA))を行った。温度範囲は-60°C~100°Cであった。その間に、TA Instruments, New Castle, DE19720, USA (www.TAInstruments.com)から商業的に提供されるQ800 DMA測定装置を用いて、非弾性とエネルギー散逸に関連する弾性率損失と、弾性に関連する貯蔵弾性率を、MPa単位で測定した。さらに、この2つのパラメータの間の比(Tan Deltaと称される)を計算した。測定結果を図17a, 17b及び17cに示す。
Temperature Stability Measurements To assess whether low temperatures are a problem for material flexibility, Dynamic Mechanical Analysis (DMA) was performed on a number of samples over a wide range of temperatures. The temperature range was -60°C to 100°C. In the meantime, a Q800 DMA measurement instrument, commercially available from TA Instruments, New Castle, DE19720, USA (www.TAInstruments.com) was used to measure elastic modulus loss related to inelasticity and energy dissipation, and elastic modulus loss related to elasticity. The storage modulus was measured in MPa. In addition, the ratio between these two parameters (called Tan Delta) was calculated. The measurement results are shown in Figures 17a, 17b and 17c.

測定結果は下記のように示される。
図17a:20 x 7 x 0.0130 mmの寸法のEVOHフィルムの試料
図17b:22 x 7 x 0.0050 mmの寸法のMylarフィルムの試料
図17c:23 x 7 x 0.0130 mmの寸法のポリイミド(PI)フィルムの試料
図17d:19 x 6 x 0.1020 mmの寸法のP4経糸伸び3の試料
The measurement results are shown below.
Figure 17a: Sample of EVOH film with dimensions of 20 x 7 x 0.0130 mm Figure 17b: Sample of Mylar film with dimensions of 22 x 7 x 0.0050 mm Figure 17c: Sample of polyimide (PI) film with dimensions of 23 x 7 x 0.0130 mm Sample Figure 17d: P4 warp elongation 3 sample with dimensions 19 x 6 x 0.1020 mm

測定結果は、EVOH、Mylar及びPIフィルムは、低温で低温貧強度を示すことなく、低温で安定であることを示した。EVOHフィルムでは、先に述べたZhai and Euler文献に観点から、これは驚くべきことである。Tan Delta曲線は、低温のフィルムでは起きないと思われる相変化を示唆している。プロトタイプP4の積層体では、剥離及び物理的損傷の証拠は観察されなかった。処理中に布帛を180°Cに加熱すると、布帛内のポリマーが架橋されて最終段階まで導かれるので、安定性に有利であると考えられる。 Measurement results showed that EVOH, Mylar and PI films were stable at low temperature without exhibiting low temperature poor strength at low temperature. For EVOH films, this is surprising in view of the previously mentioned Zhai and Euler article. The Tan Delta curve suggests a phase change that does not appear to occur in low temperature films. No evidence of delamination and physical damage was observed in the prototype P4 laminate. Heating the fabric to 180°C during processing is believed to be beneficial for stability as the polymer within the fabric is crosslinked leading to the final stage.

結論
高い高度で空気より軽いビーヒクルの外殻のための軽量積層体材料が開発され、その特性は改良されている。新規な積層体プロトタイプは類似の引張強度をもつ従来技術の積層体より顕著に軽いのみならず、類似の重量をもつ従来技術の積層体より顕著に強い。積層体プロトタイプの比強度(強度対重量比)は、現在の従来技術水準より顕著に高い。また、積層体プロトタイプは、熱劣化、光劣化、化学抵抗、特に単一項酸素及びオゾンに対する優れた抵抗性、優れたガスバリア性、及び優れたクリープ伸び抵抗を有する。さらに、最外側フィルム/層も優れた熱管理(低放射率を含む)を提供する。したがって、層状材料は高いレベルの多機能性を有する。この積層体設計概念は、積層体材料を、強度対重量比は大部分保持しながら、より低い又は高い重量に調整するために使用することが可能である。
以下に、本発明の実施態様の例を非限定的に示す。
(態様1)
外殻を含む空気より軽いビーヒクルであって、該外殻はガスバリア及び荷重担持構造としての積層体材料を具備し、該積層体材料は、補強繊維層と、該繊維層の一面で該繊維層に溶融結合した第一のエチレンビニルアルコール(EVOH)フィルムとを含み、そのEVOHは該補強繊維層に直接に接触している、空気より軽いビーヒクル
(態様2)
第二のEVOHフィルムが該繊維層に該繊維層の反対の面で溶融結合しており、該第二のEVOHフィルムのEVOHが該補強繊維層に直接に接触している、態様1に記載の空気より軽いビーヒクル
(態様3)
前記補強繊維層が液晶で作成された繊維を含む、態様1又は2に記載の空気より軽いビーヒクル
(態様4)
前記液晶がポリ[p-フェニレン-2,6-ベンゾビスオキサゾール](PBO)である、態様3に記載の空気より軽いビーヒクル
(態様5)
前記液晶繊維の少なくとも一部が捩れている、態様3又は4に記載の空気より軽いビーヒクル
(態様6)
前記捩れた液晶繊維がメートル当り30と50の間の捩れを含む、態様5に記載の空気より軽いビーヒクル
(態様7)
前記繊維層が少なくとも第一の組の繊維と第二の組の繊維を含み、該第一の組の繊維の繊維は、捩れた液晶繊維であり、かつ第一の方向に配向されていて、該第二の組の繊維の繊維は、捩れていない液晶繊維であり、第一の方向と異なる第二の方向に配向されている、態様5又は6に記載の空気より軽いビーヒクル
(態様8)
前記第一及び第二の方向が該方向間に少なくとも30度の角度を有する、態様7に記載の空気より軽いビーヒクル
(態様9)
前記第一及び第二の方向が直角である、態様7又は8に記載の空気より軽いビーヒクル。
(態様10)
前記第一の組の繊維が第一の糸密度を有し、前記第二の組の繊維が該第一の糸密度と少なくとも2倍異なる第二の糸密度を有する、態様7~9のいずれか一項に記載の空気より軽いビーヒクル
(態様11)
前記繊維層の重量が40g/sqmと70g/sqmの間である、態様1~9のいずれか一項に記載の空気より軽いビーヒクル
(態様12)
前記第一のEVOHフィルムの厚さが10μmと20μmの間である、態様1~10のいずれか一項に記載の空気より軽いビーヒクル
(態様13)
前記第二のEVOHフィルムの厚さが10μmと20μmの間である、態様2に直接又は間接に従属する態様2~11のいずれか一項に記載の空気より軽いビーヒクル
(態様14)
前記積層体が第前記一のEVOHフィルムに溶融結合した耐候性層を含み、該耐候性層が金属化ポリマーフィルムを含む、態様1~12のいずれか一項に記載の空気より軽いビーヒクル
(態様15)
前記金属化ポリマーフィルムが金属層を含み、該金属層は前記第一のEVOHフィルム層に前記第一のEVOHフィルム層によって溶融結合されている、態様14に記載の空気より軽いビーヒクル
(態様16)
前記耐候性層の厚さが10μmと20μmの間である、態様14又は15に記載の空気より軽いビーヒクル
(態様17)
前記積層体が、前記積層体の前記耐候性層に対して反対側の面で前記第二のEVOHフィルムに溶融結合した、金属化ガスバリア層を含む、態様1~15のいずれか一項に記載の空気より軽いビーヒクル
(態様18)
前記金属化ガスバリア層が、前記第二のEVOHフィルムに溶融結合した金属化ポリマーフィルムを含み、前記金属化ポリマーフィルムの前記第二のEVOHフィルムに対して反対側の面に金属層を有する、態様17に記載の空気より軽いビーヒクル
(態様19)
前記金属化ポリマーフィルム層が、2μmと6μmの間の厚さを有するポリエチレンテレフタレート(PET)層である、態様18に記載の空気より軽いビーヒクル
(態様20)
前記積層体が85gsmと120gsmの間の重量を有する、態様1~19のいずれか一項に記載の空気より軽いビーヒクル
(態様21)
前記積層体のテナシティ対重量比が890kNm/kgより大きい、態様1~20のいずれか一項に記載の空気より軽いビーヒクル
(態様22)
態様1~21のいずれか一項に記載の空気より軽いビーヒクルのための積層体材料の製造方法であって、補強繊維層と、該繊維層の一面に第一のEVOHフィルム又は該繊維層のいずれかの面に第一及び第二のEVOHフィルムを提供し、これらの層を溶融結合するために175℃と200℃の間の温度で一緒に熱プレスすることを含む、空気より軽いビーヒクルのための積層体材料の製造方法。
(態様23)
態様2及び態様2に直接又は間接に従属する場合の態様3~21のいずれか一項に記載の空気より軽いビーヒクルのための積層体材料であって、前記積層体材料は、85gsmと120gsmの間の重量を有し、かつ、前記積層体材料は、ポリ[p-フェニレン-2, 6-ベンゾビスオキサゾール]繊維から作成られ、40gsmと70gsmの間の重量である、補強繊維層;及び、該繊維層のいずれかの面で該繊維層に溶融結合した第一及び第二の10-15μm厚EVOHフィルム;及び、該第一のEVOH層に溶融結合した金属化面を有する10-15μm厚ポリイミドフィルムを含む、積層体材料。
(態様24)
前記積層体材料の前記耐候性層に対して反対側で前記第二のEVOHフィルムに溶融結合した4~12μm厚の金属化ポリマーフィルム層をさらに含む、態様23に記載の積層体。
CONCLUSION A lightweight laminate material for high altitude, lighter than air vehicle hulls has been developed and its properties improved. The new laminate prototype is not only significantly lighter than prior art laminates of similar tensile strength, but is also significantly stronger than prior art laminates of similar weight. The specific strength (strength to weight ratio) of the laminate prototype is significantly higher than the current state of the art. The laminate prototype also has excellent resistance to thermal degradation, light degradation, chemical resistance, especially single term oxygen and ozone, excellent gas barrier properties, and excellent creep elongation resistance. Additionally, the outermost film/layer also provides excellent thermal management (including low emissivity). Therefore, layered materials have a high level of versatility. This laminate design concept can be used to tailor laminate materials to lower or higher weights while largely retaining strength to weight ratio.
The following are non-limiting examples of embodiments of the present invention.
(Aspect 1)
A lighter-than-air vehicle comprising an outer shell comprising a laminate material as a gas barrier and load bearing structure, the laminate material comprising a reinforcing fiber layer and on one side of the fiber layer the fiber layer and a first ethylene vinyl alcohol (EVOH) film melt-bonded to the EVOH, the EVOH being in direct contact with the reinforcing fiber layer.
(Aspect 2)
Aspect 1. Aspect 1, wherein a second EVOH film is melt bonded to the fibrous layer on the opposite side of the fibrous layer, the EVOH of the second EVOH film directly contacting the reinforcing fibrous layer. A vehicle that is lighter than air.
(Aspect 3)
3. The lighter-than-air vehicle of aspects 1 or 2, wherein the reinforcing fiber layer comprises fibers made of liquid crystals .
(Aspect 4)
4. The lighter-than-air vehicle of embodiment 3, wherein said liquid crystal is poly[p-phenylene-2,6-benzobisoxazole] (PBO).
(Aspect 5)
5. The lighter-than-air vehicle of aspects 3 or 4, wherein at least some of the liquid crystal fibers are twisted .
(Aspect 6)
6. A lighter-than-air vehicle according to aspect 5, wherein said twisted liquid crystal fibers comprise between 30 and 50 twists per meter.
(Aspect 7)
said fiber layer comprising at least a first set of fibers and a second set of fibers, the fibers of said first set of fibers being twisted liquid crystal fibers and oriented in a first direction; 7. A lighter-than-air vehicle according to aspect 5 or 6, wherein the fibers of the second set of fibers are untwisted liquid crystal fibers and are oriented in a second direction different from the first direction.
(Aspect 8)
8. The lighter-than-air vehicle of aspect 7, wherein said first and second directions have an angle of at least 30 degrees therebetween .
(Aspect 9)
9. A lighter-than-air vehicle according to aspect 7 or 8, wherein said first and second directions are perpendicular.
(Mode 10)
10. Any of aspects 7-9, wherein the first set of fibers has a first yarn density and the second set of fibers has a second yarn density that differs from the first yarn density by a factor of at least two. or a lighter-than-air vehicle according to claim 1.
(Aspect 11)
10. A lighter-than-air vehicle according to any one of the preceding claims, wherein said fibrous layer weighs between 40g/sqm and 70g /sqm.
(Aspect 12)
11. A lighter-than-air vehicle according to any one of aspects 1-10, wherein the thickness of said first EVOH film is between 10 μm and 20 μm.
(Aspect 13)
12. A lighter-than-air vehicle according to any one of aspects 2-11 depending directly or indirectly on aspect 2, wherein said second EVOH film has a thickness of between 10 μm and 20 μm.
(Aspect 14)
13. The lighter-than-air vehicle of any one of aspects 1-12 , wherein said laminate comprises a weatherable layer melt bonded to said first EVOH film, said weatherable layer comprising a metallized polymeric film.
(Aspect 15)
15. The lighter-than-air vehicle of aspect 14, wherein the metallized polymer film comprises a metal layer, the metal layer melt bonded to the first EVOH film layer by the first EVOH film layer.
(Aspect 16)
16. A lighter-than-air vehicle according to aspect 14 or 15, wherein the thickness of said weatherable layer is between 10 and 20 [mu]m.
(Aspect 17)
16. Any one of aspects 1-15, wherein the laminate comprises a metallized gas barrier layer melt bonded to the second EVOH film on the opposite side of the laminate to the weatherable layer. lighter-than-air vehicle .
(Aspect 18)
An embodiment wherein the metallized gas barrier layer comprises a metallized polymer film melt bonded to the second EVOH film and having a metal layer on the opposite side of the metallized polymer film to the second EVOH film. 18. A lighter-than-air vehicle according to 17.
(Aspect 19)
19. A lighter-than-air vehicle according to aspect 18, wherein said metallized polymer film layer is a polyethylene terephthalate (PET) layer having a thickness of between 2 and 6 microns .
(Aspect 20)
20. A lighter-than-air vehicle according to any one of the preceding claims, wherein said laminate has a weight between 85gsm and 120gsm .
(Aspect 21)
21. A lighter-than-air vehicle according to any one of the preceding claims, wherein the laminate has a tenacity to weight ratio greater than 890 kNm/kg.
(Aspect 22)
22. A method of manufacturing a laminate material for a lighter-than-air vehicle according to any one of aspects 1-21 , comprising a reinforcing fibrous layer and a first EVOH film or said fibrous layer on one side of said fibrous layer. of a lighter than air vehicle comprising providing first and second EVOH films on either side and hot pressing together at a temperature between 175°C and 200°C to melt bond the layers. A method of manufacturing a laminate material for
(Aspect 23)
Aspect 2 and a laminate material for a lighter-than-air vehicle according to any one of aspects 3 to 21 when directly or indirectly dependent on aspect 2, said laminate material comprising 85 gsm and 120 gsm and the laminate material is made from poly[p-phenylene-2,6-benzobisoxazole] fibers and weighs between 40 gsm and 70 gsm; and First and second 10-15 μm thick EVOH films melt-bonded to the fibrous layer on either side of the fibrous layer; and 10-15 μm thick having a metallized surface melt-bonded to the first EVOH layer. Laminate materials, including polyimide films.
(Aspect 24)
24. The laminate of embodiment 23, further comprising a 4-12 μm thick metallized polymer film layer melt bonded to said second EVOH film on the opposite side of said laminate material to said weatherable layer.

Claims (21)

外殻を含む空気より軽いビーヒクルであって、該外殻はガスバリア及び荷重担持構造としての積層体材料を具備し、該積層体材料は、補強繊維層と、該繊維層の一面で該繊維層に溶融結合した第一のエチレンビニルアルコール(EVOH)フィルムとを含み、そのEVOHは該補強繊維層に直接に接触しており、該積層体は該第一のEVOHフィルムに溶融結合した耐候性層を含み、該耐候性層は金属化ポリマーフィルムを含み、該EVOHフィルムは、該耐候性層を該繊維層に結合する接着剤として、かつガスバリアとして機能する、空気より軽いビーヒクル。 A lighter-than-air vehicle comprising an outer shell comprising a laminate material as a gas barrier and load bearing structure, the laminate material comprising a reinforcing fiber layer and on one side of the fiber layer the fiber layer a first ethylene vinyl alcohol (EVOH) film melt bonded to the laminate, the EVOH being in direct contact with the reinforcing fiber layer, the laminate comprising a weatherable layer melt bonded to the first EVOH film; wherein the weatherable layer comprises a metallized polymer film and the EVOH film acts as an adhesive bonding the weatherable layer to the fibrous layer and as a gas barrier. 前記補強繊維層が液晶で作成された繊維を含む、請求項に記載の空気より軽いビーヒクル。 2. The lighter-than-air vehicle of claim 1 , wherein said reinforcing fiber layer comprises fibers made of liquid crystals. 前記液晶がポリ[p-フェニレン-2,6-ベンゾビスオキサゾール](PBO)である、請求項に記載の空気より軽いビーヒクル。 3. The lighter-than-air vehicle of claim 2 , wherein said liquid crystal is poly[p-phenylene-2,6-benzobisoxazole] (PBO). 前記液晶繊維の少なくとも一部が捩れている、請求項2又は3に記載の空気より軽いビーヒクル。 4. A lighter-than-air vehicle according to claim 2 or 3 , wherein at least some of the liquid crystal fibers are twisted. 前記捩れた液晶繊維がメートル当り30と50の間の捩れを含む、請求項に記載の空気より軽いビーヒクル。 5. A lighter-than-air vehicle according to claim 4 , wherein said twisted liquid crystal fibers contain between 30 and 50 twists per meter. 前記繊維層が少なくとも第一の組の繊維と第二の組の繊維を含み、該第一の組の繊維の繊維は、捩れた液晶繊維であり、かつ第一の方向に配向されていて、該第二の組の繊維の繊維は、捩れていない液晶繊維であり、第一の方向と異なる第二の方向に配向されている、請求項4又は5に記載の空気より軽いビーヒクル。 said fiber layer comprising at least a first set of fibers and a second set of fibers, the fibers of said first set of fibers being twisted liquid crystal fibers and oriented in a first direction; 6. A lighter-than-air vehicle according to claim 4 or 5 , wherein the fibers of the second set of fibers are untwisted liquid crystal fibers and are oriented in a second direction different from the first direction. 前記第一及び第二の方向が該方向間に少なくとも30度の角度を有する、請求項に記載の空気より軽いビーヒクル。 7. The lighter-than-air vehicle of claim 6 , wherein said first and second directions have an angle of at least 30 degrees therebetween. 前記第一及び第二の方向が直角である、請求項6又は7に記載の空気より軽いビーヒクル。 8. A lighter-than-air vehicle according to claim 6 or 7 , wherein said first and second directions are perpendicular. 前記第一の組の繊維が第一の糸密度を有し、前記第二の組の繊維が該第一の糸密度と少なくとも2倍異なる第二の糸密度を有する、請求項6~8のいずれか一項に記載の空気より軽いビーヒクル。 9. The method of claims 6-8 , wherein said first set of fibers has a first yarn density and said second set of fibers has a second yarn density that differs from said first yarn density by a factor of at least two. A lighter-than-air vehicle according to any one of the preceding claims. 前記繊維層の重量が40g/sqmと70g/sqmの間である、請求項1~のいずれか一項に記載の空気より軽いビーヒクル。 A lighter-than-air vehicle according to any preceding claim, wherein the weight of the fibrous layer is between 40 g/sqm and 70 g/sqm. 前記第一のEVOHフィルムの厚さが10μmと20μmの間である、請求項1~10いずれか一項に記載の空気より軽いビーヒクル。 A lighter-than-air vehicle according to any one of claims 1 to 10 , wherein the thickness of said first EVOH film is between 10 µm and 20 µm. 第二のEVOHフィルムが該繊維層に該繊維層の反対の面で溶融結合しており、該第二のEVOHフィルムのEVOHが該補強繊維層に直接に接触している、請求項1~11のいずれか一項に記載の空気より軽いビーヒクル。Claims 1-11, wherein a second EVOH film is melt bonded to the fibrous layer on the opposite side of the fibrous layer, the EVOH of the second EVOH film directly contacting the reinforcing fibrous layer. A lighter-than-air vehicle according to any one of the preceding claims. 前記第二のEVOHフィルムの厚さが10μmと20μmの間である、請求項12に記載の空気より軽いビーヒクル。 13. A lighter-than-air vehicle according to claim 12 , wherein the thickness of said second EVOH film is between 10 and 20 [mu]m. 前記金属化ポリマーフィルムが金属層を含み、該金属層は前記第一のEVOHフィルム層に前記第一のEVOHフィルム層によって溶融結合されている、請求項1~13のいずれか一項に記載の空気より軽いビーヒクル。 14. The method of any one of claims 1-13, wherein the metallized polymer film comprises a metal layer, the metal layer being fusion bonded to the first EVOH film layer by the first EVOH film layer. A vehicle that is lighter than air. 前記耐候性層の厚さが10μmと20μmの間である、請求項1~14のいずれか一項に記載の空気より軽いビーヒクル。 A lighter-than-air vehicle according to any preceding claim, wherein the thickness of the weather resistant layer is between 10 and 20 µm. 前記積層体が、前記積層体の前記耐候性層に対して反対側の面で前記第二のEVOHフィルムに溶融結合した、金属化ガスバリア層を含む、請求項12に記載の空気より軽いビーヒクル。 13. The lighter-than-air vehicle of claim 12 , wherein said laminate includes a metallized gas barrier layer melt bonded to said second EVOH film on a side of said laminate opposite said weatherable layer. 前記金属化ガスバリア層が、前記第二のEVOHフィルムに溶融結合した金属化ポリマーフィルムを含み、前記金属化ポリマーフィルムの前記第二のEVOHフィルムに対して反対側の面に金属層を有する、請求項16に記載の空気より軽いビーヒクル。 4. The metallized gas barrier layer comprises a metallized polymer film melt bonded to the second EVOH film, and having a metal layer on the opposite side of the metallized polymer film to the second EVOH film. 17. The lighter-than-air vehicle of Claim 16. 前記金属化ポリマーフィルム層が、4μmと8μmの間の厚さを有するポリエチレンテレフタレート(PET)層である、請求項17に記載の空気より軽いビーヒクル。 18. A lighter-than-air vehicle according to claim 17, wherein said metallized polymer film layer is a polyethylene terephthalate (PET) layer having a thickness of between 4[mu]m and 8[mu]m. 前記積層体が90gsmと110gsmの間の重量を有する、請求項1~18のいずれか一項に記載の空気より軽いビーヒクル。 A lighter-than-air vehicle according to any preceding claim, wherein the laminate has a weight between 90gsm and 110gsm. 前記積層体のテナシティ対重量比が890kNm/kgより大きい、請求項1~19のいずれか一項に記載の空気より軽いビーヒクル。 A lighter-than-air vehicle according to any preceding claim, wherein the laminate has a tenacity to weight ratio greater than 890 kNm/kg. 請求項1~20のいずれか一項に記載の空気より軽いビーヒクルのための積層体材料の製造方法であって、補強繊維層と、該繊維層の一面に第一のEVOHフィルムを提供し、これらの層を溶融結合するために175℃と200℃の間の温度で一緒に熱プレスすることを含む、空気より軽いビーヒクルのための積層体材料の製造方法。 A method of manufacturing a laminate material for a lighter-than-air vehicle according to any one of claims 1 to 20, comprising providing a reinforcing fibrous layer and a first EVOH film on one side of said fibrous layer, A method of manufacturing a laminate material for lighter than air vehicles comprising hot pressing together at a temperature between 175°C and 200°C to melt bond the layers.
JP2019542798A 2016-10-24 2017-10-23 Lighter-than-air vehicle having a shell, laminate for such shell, method of making such laminate Active JP7110215B6 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662411764P 2016-10-24 2016-10-24
US62/411,764 2016-10-24
PCT/EP2017/077009 WO2018077806A1 (en) 2016-10-24 2017-10-23 A lighter-than-air vehicle with a hull, a laminate for such hull and a method of production of such laminate

Publications (5)

Publication Number Publication Date
JP2019533610A JP2019533610A (en) 2019-11-21
JP2019533610A5 JP2019533610A5 (en) 2020-12-03
JPWO2018077806A5 JPWO2018077806A5 (en) 2022-01-31
JP7110215B2 JP7110215B2 (en) 2022-08-01
JP7110215B6 true JP7110215B6 (en) 2022-08-15

Family

ID=60327272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542798A Active JP7110215B6 (en) 2016-10-24 2017-10-23 Lighter-than-air vehicle having a shell, laminate for such shell, method of making such laminate

Country Status (28)

Country Link
US (1) US11285707B2 (en)
EP (1) EP3529146B1 (en)
JP (1) JP7110215B6 (en)
KR (1) KR102431137B1 (en)
CN (1) CN109963779B (en)
AU (1) AU2017351564B2 (en)
BR (1) BR112019008047B1 (en)
CA (1) CA3041392C (en)
CL (1) CL2019001067A1 (en)
CO (1) CO2019004050A2 (en)
DK (1) DK3529146T3 (en)
EA (1) EA036839B1 (en)
ES (1) ES2870528T3 (en)
HR (1) HRP20210760T1 (en)
IL (1) IL266137B (en)
MX (1) MX2019004716A (en)
MY (1) MY193212A (en)
NZ (1) NZ753704A (en)
PE (1) PE20191141A1 (en)
PH (1) PH12019500857A1 (en)
PT (1) PT3529146T (en)
RS (1) RS61824B1 (en)
SG (1) SG11201903319TA (en)
SI (1) SI3529146T1 (en)
TN (1) TN2019000128A1 (en)
UA (1) UA124471C2 (en)
WO (1) WO2018077806A1 (en)
ZA (1) ZA201903039B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019387317B2 (en) 2018-11-26 2023-12-07 Sceye Sa Graphene-oxide grafted pbo (zylon®) fibers; method for production and applications to airship hulls and lighter than air vehicles
CN113564937B (en) * 2021-07-23 2023-07-21 中国乐凯集团有限公司 Polyurethane composition for capsule material, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239605A (en) 2000-02-29 2001-09-04 Kuraray Co Ltd Laminated sheet
US20010041486A1 (en) 1998-12-07 2001-11-15 Lockheed Martin Corporation Flexible wall material for use in an inflatable structure
JP2002200684A (en) 2000-10-31 2002-07-16 Fuji Heavy Ind Ltd Composite film
JP2004276614A (en) 2003-03-14 2004-10-07 Lockheed Martin Corp Vehicle lighter than air
JP2007320313A (en) 2006-05-30 2007-12-13 Lockheed Martin Corp Weight-reduced flexible laminated material for lighter-than-air vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3688000T2 (en) * 1985-05-16 1993-10-21 Chemfab Corp Flexible composite laminates containing a fluoropolymer.
US5082721A (en) * 1989-02-16 1992-01-21 Smith Novis W Jr Fabrics for protective garment or cover
US6074722A (en) 1994-09-30 2000-06-13 Lockheed Martin Corporation Flexible material for use in an inflatable structure
MY113596A (en) 1995-04-11 2002-04-30 Daicel Chem Barrier composite films and method of producing the same
US20030228821A1 (en) * 2002-06-06 2003-12-11 Reiyao Zhu Fire-retardant fabric with improved tear, cut, and abrasion resistance
US7713890B2 (en) * 2005-08-23 2010-05-11 Milliken & Company Flexible sheet-like composites
ATE505324T1 (en) 2005-09-21 2011-04-15 Lockheed Corp METALLIC, FLEXIBLE LAMINATE MATERIAL FOR LIGHTER THAN AIR VEHICLES
US8399080B2 (en) 2006-06-07 2013-03-19 Toray Plastics (America), Inc. Lighter than air balloon made from a biaxially oriented polyester film
CA2685360A1 (en) 2007-04-28 2008-11-06 Kamal Alavi Flexible multi-layer material, preferably for an inflatable balloon casing, and method for the production of an inflatable casing
US8152093B2 (en) 2008-04-18 2012-04-10 Lockheed Martin Corporation Laminate structure with electronic devices and method
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
DE102012006416A1 (en) * 2011-12-09 2013-06-13 Maria Soell High Technology Films Gmbh Metal-layer-free multilayer film with a low basis weight
FR2993284B1 (en) 2012-07-12 2015-02-20 Cie Chomarat TEXTILE REINFORCING COMPLEX FOR COMPOSITE PARTS, AND COMPOSITE COMPONENTS INTEGRATING SUCH COMPLEX
CA2935744A1 (en) * 2014-01-27 2015-07-30 E. I. Du Pont De Nemours And Company Light weight trauma reducing body armor
CN104742469A (en) * 2015-03-18 2015-07-01 东莞前沿技术研究院 Capsule material composite layer and aerostat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041486A1 (en) 1998-12-07 2001-11-15 Lockheed Martin Corporation Flexible wall material for use in an inflatable structure
JP2001239605A (en) 2000-02-29 2001-09-04 Kuraray Co Ltd Laminated sheet
JP2002200684A (en) 2000-10-31 2002-07-16 Fuji Heavy Ind Ltd Composite film
JP2004276614A (en) 2003-03-14 2004-10-07 Lockheed Martin Corp Vehicle lighter than air
JP2007320313A (en) 2006-05-30 2007-12-13 Lockheed Martin Corp Weight-reduced flexible laminated material for lighter-than-air vehicle

Also Published As

Publication number Publication date
CL2019001067A1 (en) 2019-09-13
ZA201903039B (en) 2020-02-26
ES2870528T3 (en) 2021-10-27
SI3529146T1 (en) 2021-08-31
UA124471C2 (en) 2021-09-22
DK3529146T3 (en) 2023-03-13
CA3041392C (en) 2023-08-08
MY193212A (en) 2022-09-26
US11285707B2 (en) 2022-03-29
PE20191141A1 (en) 2019-09-02
EA201990896A1 (en) 2019-10-31
PT3529146T (en) 2021-05-18
CN109963779A (en) 2019-07-02
IL266137A (en) 2019-06-30
BR112019008047A2 (en) 2019-07-02
TN2019000128A1 (en) 2020-10-05
KR20190083335A (en) 2019-07-11
US20200307169A1 (en) 2020-10-01
CN109963779B (en) 2022-03-04
RS61824B1 (en) 2021-06-30
SG11201903319TA (en) 2019-05-30
KR102431137B1 (en) 2022-08-12
JP2019533610A (en) 2019-11-21
BR112019008047B1 (en) 2023-04-11
NZ753704A (en) 2022-07-01
AU2017351564B2 (en) 2022-08-25
EP3529146B1 (en) 2021-02-17
JP7110215B2 (en) 2022-08-01
CO2019004050A2 (en) 2019-07-10
EA036839B1 (en) 2020-12-25
HRP20210760T1 (en) 2021-08-20
AU2017351564A1 (en) 2019-05-30
CA3041392A1 (en) 2018-05-03
WO2018077806A1 (en) 2018-05-03
IL266137B (en) 2022-07-01
MX2019004716A (en) 2019-09-18
PH12019500857A1 (en) 2019-12-02
EP3529146A1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
US20070281570A1 (en) Reduced weight flexible laminate material for lighter-than-air vehicles
US8524621B2 (en) Metallized flexible laminate material for lighter-than-air vehicles
JP7110215B6 (en) Lighter-than-air vehicle having a shell, laminate for such shell, method of making such laminate
CA2453255C (en) Flexible wall material for use in an inflatable structure
AU716786B2 (en) Flexible material for use in an inflatable structure
Vallabh et al. Ultra-lightweight fiber-reinforced envelope material for high-altitude airship
CN111016363A (en) Rubbing-resistant flexible composite material
Seyam et al. Textile laminates for high-altitude airship hull materials–a review
WO2018120742A1 (en) Capsule body material, capsule body, aerostat, and preparation method for capsule body material
DK179553B1 (en) A lighter-than-air vehicle with a hull, a laminate for such hull and a method of production of such laminate
US8003185B2 (en) Splice seam
JP7056029B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material
Li Evaluation of laminated hull material for high altitude airship
JPWO2018077806A5 (en) Vehicles that are lighter than air with an outer shell, laminates for such outer shells, methods of manufacturing such laminates
KR20040095378A (en) A high strength membranous material for industrial use
Ugale Evaluation of components of high altitude stratospheric airship
TH1901002495A (en) Lighter-than-air aircraft with body wraps Overlay layer for torso cover and the method of producing such stacked layers
JP2003311864A (en) Composite film
Reuter et al. The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211206

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7110215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150