JP7109947B2 - A plasma processing apparatus and an exhaust gas purification apparatus using the plasma processing apparatus. - Google Patents
A plasma processing apparatus and an exhaust gas purification apparatus using the plasma processing apparatus. Download PDFInfo
- Publication number
- JP7109947B2 JP7109947B2 JP2018050821A JP2018050821A JP7109947B2 JP 7109947 B2 JP7109947 B2 JP 7109947B2 JP 2018050821 A JP2018050821 A JP 2018050821A JP 2018050821 A JP2018050821 A JP 2018050821A JP 7109947 B2 JP7109947 B2 JP 7109947B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- exhaust gas
- plasma processing
- holes
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Plasma Technology (AREA)
Description
本発明は、プラズマ処理装置に係り、更に詳細には、内燃機関の排気経路内に設けられ、排気ガスを活性化するプラズマ処理装置及び該プラズマ処理装置を用いた排気ガス浄化装置に関する。 TECHNICAL FIELD The present invention relates to a plasma processing apparatus, and more particularly, to a plasma processing apparatus provided in an exhaust path of an internal combustion engine for activating exhaust gas, and an exhaust gas purifying apparatus using the plasma processing apparatus.
自動車等において使用される内燃機関から排出される排気ガスには、窒素酸化物(NOx)、未燃焼炭化水素(HC)、一酸化炭素(CO)などの有害物質が含まれており、これら有害物質の排出を低減させる必要がある。 Exhaust gases emitted from internal combustion engines used in automobiles and the like contain harmful substances such as nitrogen oxides (NOx), unburned hydrocarbons (HC), and carbon monoxide (CO). Substance emissions need to be reduced.
上記有害物質は排気浄化触媒により浄化されるが、上記排気浄化触媒の上流側でプラズマを発生させ、生成したラジカル種により排気ガスを活性化して浄化効率を向上させる方法が知られている。 The harmful substances are purified by the exhaust purification catalyst, and a method is known in which plasma is generated upstream of the exhaust purification catalyst and the generated radical species activate the exhaust gas to improve the purification efficiency.
特許文献1の特開2009-78266号公報には、複数の貫通孔を有する2枚の金属基板を、該貫通孔同士の位置が一致するように平行に配設し、該金属基板間に電圧を印可して放電を発生させ、金属基板に対して直角方向に流体を通過させる流体浄化装置が開示されている。
そして、上記流体浄化装置は、貫通孔同士の位置が一致しているため、流体を淀みなく通過させることができる旨が記載されている。
In Japanese Patent Laid-Open No. 2009-78266 of
Further, it is described that the fluid purifying device allows the fluid to pass through without stagnation because the positions of the through holes are aligned with each other.
しかしながら、排気ガスの活性化は、電極の放電面同士が対向した放電空間で行われるため、特許文献1に記載の流体浄化装置にあっては、排気ガスが上記放電空間内に拡散する必要があり、排気ガスの流量が多くなって流速が速くなると、排気ガスを充分活性化することができない。
However, since activation of the exhaust gas is performed in the discharge space where the discharge surfaces of the electrodes face each other, in the fluid purification device described in
つまり、2枚の金属基板の貫通孔同士が一致する位置に配置されていると、排気ガスが放電空間内を通らずに貫通孔をすり抜け、活性化されないまま流体浄化装置を通過し易くなる。 In other words, when the through holes of the two metal substrates are arranged at matching positions, the exhaust gas easily passes through the through holes without passing through the discharge space and passes through the fluid purification device without being activated.
また、排気ガスを拡散によって放電空間を通過させるには、排気ガスの流通方向に多くの放電空間を形成する必要があり、上記金属基板の数が多くなって圧力損失が大きくなってしまう。 In addition, in order to pass the exhaust gas through the discharge spaces by diffusion, it is necessary to form many discharge spaces in the direction of flow of the exhaust gas.
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、排気ガスの流量に拘わらず確実に排気ガスを活性化でき、圧力損失の増加を防止できるプラズマ処理装置を提供することにある。 The present invention has been made in view of such problems of the prior art, and its object is to enable the exhaust gas to be reliably activated regardless of the flow rate of the exhaust gas, and to prevent an increase in pressure loss. It is an object of the present invention to provide a plasma processing apparatus capable of
本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、隣り合う板状電極の貫通孔を、排気ガスの流通方向において互いに重ならない位置に設けることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at achieving the above object, the inventors of the present invention found that the above object can be achieved by providing through-holes of adjacent plate-like electrodes at positions that do not overlap each other in the exhaust gas flow direction. , have completed the present invention.
即ち、本発明のプラズマ処理装置は、内燃機関の排気経路内に設けられた複数の板状電極と、上記板状電極間にプラズマが発生する電圧を印加する電源装置とを備える。
そして、上記複数の板状電極が、放電面を排気ガスの流通方向に対して垂直になる方向に向け、互いに正面同士になる位置に配置され、
上記複数の板状電極が、それぞれ、その板厚方向に貫通する貫通孔を有し、
隣り合う板状電極の貫通孔が、排気ガスの流通方向において互いに重ならない位置に設けられていることを特徴とする。
That is, the plasma processing apparatus of the present invention includes a plurality of plate-shaped electrodes provided in an exhaust passage of an internal combustion engine, and a power supply device for applying a voltage for generating plasma between the plate-shaped electrodes.
Then, the plurality of plate-like electrodes are arranged so that the discharge surfaces face each other in a direction perpendicular to the flow direction of the exhaust gas, and
each of the plurality of plate-like electrodes has a through-hole penetrating in the thickness direction thereof,
The through-holes of adjacent plate-like electrodes are provided at positions that do not overlap each other in the exhaust gas flow direction.
また、本発明の排気ガス浄化装置は、プラズマ処理装置と、該プラズマ処理装置の複数の板状電極の下流側に排気浄化触媒を備える。
そして、上記複数の板状電極が、それぞれ、その板厚方向に貫通する貫通孔を有し、
隣り合う板状電極の貫通孔が、排気ガスの流通方向において互いに重ならない位置に設けられ、
上記排気浄化触媒の直前に配置された隣り合う2つの板状電極の組み合わせが、
貫通孔の開口径が中心側よりも外側で大きい上流側の板状電極と、
該上流側の板状電極の貫通孔の平均開口径よりも小さい開口径の貫通孔を複数有し、かつ上記複数の貫通孔の合計開口面積が上流側の板状電極よりも大きい下流側の板状電極との組み合わせであることを特徴とする。
Further, the exhaust gas purifying device of the present invention includes a plasma processing device and an exhaust purifying catalyst downstream of the plurality of plate electrodes of the plasma processing device.
and each of the plurality of plate-like electrodes has a through-hole penetrating in its plate thickness direction,
The through-holes of adjacent plate-shaped electrodes are provided at positions that do not overlap each other in the exhaust gas flow direction,
A combination of two adjacent plate-shaped electrodes arranged immediately before the exhaust purification catalyst,
an upstream plate-shaped electrode having a through hole with a larger opening diameter on the outer side than on the center side;
a plurality of through-holes having an opening diameter smaller than the average opening diameter of the through-holes of the plate-like electrode on the upstream side, and a total opening area of the plurality of through-holes being larger than that of the plate-like electrode on the upstream side; It is characterized by being a combination with a plate-like electrode.
本発明によれば、隣り合う板状電極の貫通孔を、排気ガスの流通方向において互いに重ならない位置に設けることとしたため、排気ガスの活性化と圧力損失の増大防止とを両立できるプラズマ処理装置を提供することができる。 According to the present invention, the through-holes of adjacent plate-like electrodes are provided at positions that do not overlap with each other in the flow direction of the exhaust gas. Therefore, the plasma processing apparatus is capable of both activating the exhaust gas and preventing an increase in pressure loss. can be provided.
<プラズマ処理装置>
本発明のプラズマ処理装置について詳細に説明する。
上記プラズマ処理装置1は、図1に示すように、内燃機関4の排気経路3内に設けられた複数の板状電極11と、上記板状電極間にプラズマが発生する電圧を印加する電源装置12とを備える。
<Plasma processing device>
A plasma processing apparatus of the present invention will be described in detail.
As shown in FIG. 1, the
上記板状電極11は、金属基板の表面が誘電体で覆われその板厚方向に貫通孔111を有しており、複数の板状電極が、図1中、矢印で示す排気ガスの流通方向に対して放電面が垂直方向になるように一定の間隔を開け、互いに正面同士になる位置に配置される。すなわち、板状電極は放電面同士が所定間隔で対向する位置に配置される。
The plate-
そして、隣り合う板状電極間に放電開始電圧以上の交流電圧をかけて、放電面同士が対向した放電空間13に誘電体バリア放電を生じさせ、プラズマにより上記放電空間13を通過する排気ガスを活性化する。
Then, an alternating voltage equal to or higher than the discharge start voltage is applied between the adjacent plate-shaped electrodes to generate a dielectric barrier discharge in the
上記板状電極に設けられた貫通孔の配置の一例を図2,3に示す。
図2は、板状電極を排気経路の上流側から見たときの貫通孔の配置を示す図であり、図2中、上流側の貫通孔111aを実線で、下流側の貫通孔111bを点線で示している。
図3は、図2中のA-A’線に沿った断面図である。
2 and 3 show an example of the layout of the through holes provided in the plate-like electrode.
FIG. 2 is a diagram showing the arrangement of the through holes when the plate electrode is viewed from the upstream side of the exhaust path. In FIG. is shown.
FIG. 3 is a cross-sectional view taken along line AA' in FIG.
本発明のプラズマ処理装置は、図2、図3に示すように、隣り合う板状電極11の貫通孔111が、図3中、太い矢印で示す排気ガスの流通方向において、互いに重ならない位置に設けられている。上記プラズマ処理装置1を通過する排気ガスは、図3中、細い矢印で示すように、必ず放電空間13を通過するため確実に排気ガスを活性化できる。
In the plasma processing apparatus of the present invention, as shown in FIGS. 2 and 3, the through
したがって、排気ガスの流量が増加しても排気経路3内に設ける板状電極11の数を増やす必要がなく、プラズマ処理装置1全体で圧力損失が増加せず、排気ガスの活性化と圧力損失の増大防止とを両立できる。
Therefore, even if the flow rate of the exhaust gas increases, there is no need to increase the number of the plate-
上記板状電極11は、隣り合う板状電極の一方の板状電極11aが、他方の板状電極11bに設けられた貫通孔111bの中心から等距離の位置に複数の貫通孔111aを有し、該複数の貫通孔111aが互いに等間隔に配置されていることが好ましい。
In the plate-
図4に、上記の関係で配置された貫通孔の例を示す。
図4中、一方の板状電極の貫通孔を点線で、他方の板状電極の貫通孔を実線で示した。
また、一方の板状電極に設けられた貫通孔からの中心間距離を実線で、他方の電極に設けられた貫通孔間の中心間距離を点線で示した。
FIG. 4 shows an example of through holes arranged in the above relationship.
In FIG. 4, the through-holes of one plate-like electrode are indicated by dotted lines, and the through-holes of the other plate-like electrode are indicated by solid lines.
Further, the center-to-center distance from the through-hole provided in one plate-like electrode is indicated by a solid line, and the center-to-center distance between the through-holes provided to the other electrode is indicated by a dotted line.
上流側の板状電極の貫通孔を通過した排気ガスは、下流側の板状電極に当たり電極面に沿ってあらゆる方向に向かって流れる。 Exhaust gas that has passed through the through-holes of the plate-shaped electrode on the upstream side hits the plate-shaped electrode on the downstream side and flows in all directions along the electrode surface.
隣り合う一方の板状電極の貫通孔111aが、他方の板状電極に設けられた貫通孔111bに対して図4に示すように配置されていることで、一方の板状電極の貫通孔111aを通過した排気ガスが滞ることなく流れ、放電空間13を通る排気ガスが均等化されて排気ガスの活性化効率が向上する。
The through-
上記プラズマ処理装置は、外側の貫通孔111の開口径が中心側の貫通孔111の開口径よりも大きい板状電極を含むことが好ましい。
図5に外側の貫通孔の開口径が中心側の貫通孔の開口径よりも大きい板状電極の例を示す。
The plasma processing apparatus preferably includes a plate-like electrode in which the outer through-
FIG. 5 shows an example of a plate-like electrode in which the opening diameter of the outer through-holes is larger than the opening diameter of the central through-holes.
排気経路3内を流れる排気ガスは、排気ガスの流通方向に対して垂直方向に流速分布を有する。具体的には、排気経路の壁面に近い外側では排気経路の壁面に曳ずられて流速が遅くなり、中心側ほど流速が速くなる。
The exhaust gas flowing through the
本発明のプラズマ処理装置1は、上記板状電極11が排気ガスの流通方向に対して垂直に配置されており、中心側の貫通孔の開口径が小さいことで、中心側を流れる排気ガスの流量が制限され、大きな開口径を有する外側の貫通孔を通過するようになる。
In the
したがって、排気ガスの流通方向に対して垂直方向の流速分布が均等化され、排気ガスの活性化効率が向上する。 Therefore, the flow velocity distribution in the direction perpendicular to the flow direction of the exhaust gas is made uniform, and the activation efficiency of the exhaust gas is improved.
上記板状電極としては、表面に誘電体層を有する金属基板を使用できる。
上記金属基板としては、導電性を有する材料であれば、特に制限はなく、例えば、ステンレス鋼(SUS)や銅などを使用することができる。
A metal substrate having a dielectric layer on its surface can be used as the plate-shaped electrode.
The metal substrate is not particularly limited as long as it is a conductive material, and for example, stainless steel (SUS), copper, or the like can be used.
また、上記誘電体としては、酸化物セラミックを使用することができ、例えば、アルミナ(Al2O3)やジルコニア(ZrO2)、シリカ(SiO2)、イットリア(Y2O3)、チタン酸バリウム(BaTiO3)等の単純酸化物や複合酸化物などの酸化物を挙げることができる。 As the dielectric, oxide ceramics can be used, such as alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), yttria (Y 2 O 3 ), titanate. Examples include simple oxides such as barium (BaTiO 3 ) and oxides such as composite oxides.
また、上記貫通孔の形状は、角がなければ、直線と曲線で形成されているもよいが、円形や楕円形など、曲線のみで形成されていることが好ましい。貫通孔の形状が円形であることで、均一な誘電バリア放電を長期間発生できる。 Further, the shape of the through-hole may be straight lines and curved lines as long as there are no corners, but it is preferable that the through holes are formed only by curved lines such as a circle or an ellipse. A uniform dielectric barrier discharge can be generated for a long period of time because the shape of the through-hole is circular.
<排気ガス浄化装置>
次に、本発明の排気ガス浄化装置について詳細に説明する。
上記排気ガス浄化装置は、上記プラズマ処理装置1と排気浄化触媒2とを備え、上記排気浄化触媒2が、複数の板状電極11の下流に配置されている。
<Exhaust gas purification device>
Next, the exhaust gas purifier of the present invention will be described in detail.
The exhaust gas purifying device includes the
上記排気ガス浄化装置は、上記排気浄化触媒2の直前に配置された隣り合う2つの板状電極の組み合わせが、次の組み合わせであることが好ましい。
貫通孔111aの開口径が中心側よりも外側で大きい上流側の板状電極11aと、
該上流側の板状電極の貫通孔111aの平均開口径よりも小さい開口径の貫通孔111bを複数有し、かつ上記複数の貫通孔111bの合計開口面積が上流側の板状電極よりも大きい下流側の板状電極11bとの組み合わせであることが好ましい。
上記組み合わせの例を図6に示す。図6中、上流側の板状電極11aの貫通孔111aを実線、下流側の板状電極11bの貫通孔111bを点線で示した。
In the exhaust gas purifying device, it is preferable that the two adjacent plate-like electrodes arranged in front of the
the plate-shaped
A plurality of through-
An example of the above combination is shown in FIG. In FIG. 6, the through-
上流側の板状電極と下流側の板状電極との組み合わせが上記組み合わせであることで、上流側の板状電極11aにより排気経路内流れる排気ガスの排気ガスの流通方向に対して垂直方向の流速分布が均一化され、上流側の板状電極11aと下流側の板状電極11bとの間に形成される放電空間13で排気ガスが活性化される。
Since the combination of the plate-shaped electrode on the upstream side and the plate-shaped electrode on the downstream side is the combination described above, the plate-shaped
そして、下流側の板状電極に設けられた複数の貫通孔111bが、小さくかつ均一な開口径を有し、それらが均等に配置されて貫通孔の合計開口径が大きいため、排気ガスが滑らかに流れて下流側の板状電極により排気ガスの流速分布が変化し難く、均等な流速分布を保ったまま排気浄化触媒に流すことができる。
The plurality of through-
したがって、排気浄化触媒内を流れる排気ガスの流速が、排気ガスの流通方向に対して垂直方向で均等化して排気ガスの浄化効率が向上する。 Therefore, the flow velocity of the exhaust gas flowing through the exhaust purification catalyst is made uniform in the direction perpendicular to the flow direction of the exhaust gas, and the purification efficiency of the exhaust gas is improved.
上記排気ガス浄化触媒としては、排気ガスの浄化機能を有するものであれば、特に限定されるものではない。具体的には、貴金属などの触媒成分をハニカム担体などの一体構造型担体に担持したものを適用することができる。
上記触媒成分としては、特に限定されるものではないが、自動車の排気ガスの浄化用には、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)などの貴金属が好適である。
The exhaust gas purifying catalyst is not particularly limited as long as it has an exhaust gas purifying function. Specifically, it is possible to apply a catalyst component such as a noble metal supported on a monolithic carrier such as a honeycomb carrier.
The catalyst component is not particularly limited, but noble metals such as platinum (Pt), palladium (Pd), rhodium (Rh), and iridium (Ir) are suitable for purifying automobile exhaust gas. be.
以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.
2枚の板状電極の貫通孔の位置関係が図7のようになるように配置し、上記板状電極に電力を供給して炭化水素転化率を測定した。図7中、一方の板状電極の貫通孔を実線で、他方の板状電極の貫通孔を点線で示した。測定結果を図8に示す。 Two plate-shaped electrodes were arranged so that the positional relationship of the through-holes was as shown in FIG. 7, power was supplied to the plate-shaped electrodes, and the hydrocarbon conversion rate was measured. In FIG. 7, the through-holes of one plate-like electrode are indicated by solid lines, and the through-holes of the other plate-like electrode are indicated by dotted lines. FIG. 8 shows the measurement results.
図8より貫通孔が互いに重ならない位置に設けられた実施例1は、貫通孔が重なった比較例1に比して電源出力の増加に対する炭化水素転化率の上昇が大きく、高効率で排気ガスを浄化できることがわかる。 From FIG. 8, Example 1, in which the through holes are provided at positions that do not overlap each other, has a large increase in hydrocarbon conversion rate with respect to an increase in power output compared to Comparative Example 1, in which the through holes overlap, and is highly efficient. can be purified.
なお、板状電極や各板状電極に設けられる貫通孔の数、大きさあるいは形状は活性化する排気ガスの流量、流速、圧力損失等の条件に応じて適宜変更可能であり、上記実施例に記載及び図示した形態に限定されるものではない。 The plate-like electrodes and the number, size, or shape of the through holes provided in each plate-like electrode can be appropriately changed according to conditions such as the flow rate, flow velocity, and pressure loss of the exhaust gas to be activated. is not limited to the forms described and illustrated in .
1 プラズマ処理装置
11 板状電極
111 貫通孔
12 電源装置
13 放電空間
2 排気浄化触媒
3 排気経路
4 内燃機関
REFERENCE SIGNS
Claims (4)
上記複数の板状電極が、放電面を排気ガスの流通方向に対して垂直になる方向に向け、互いに正面同士になる位置に配置され、
上記複数の板状電極が、それぞれ、その板厚方向に貫通する貫通孔を有し、
隣り合う板状電極のすべての貫通孔が、排気ガスの流通方向において互いに重ならない位置に設けられていることを特徴とするプラズマ処理装置。 A plasma processing apparatus comprising: a plurality of plate electrodes provided in an exhaust path of an internal combustion engine;
The plurality of plate-shaped electrodes are arranged in front of each other with the discharge surfaces oriented in a direction perpendicular to the flow direction of the exhaust gas,
each of the plurality of plate-like electrodes has a through-hole penetrating in the thickness direction thereof,
1. A plasma processing apparatus, wherein all through-holes of adjacent plate-like electrodes are provided at positions that do not overlap with each other in the flow direction of exhaust gas.
上記複数の貫通孔が、互いに等間隔に配置されていることを特徴とする請求項1に記載のプラズマ処理装置。 one of the adjacent plate-shaped electrodes has a plurality of through-holes equidistant from the center of the through-hole provided in the other plate-shaped electrode;
2. The plasma processing apparatus according to claim 1, wherein said plurality of through holes are arranged at regular intervals.
上記板状電極の下流側に排気浄化触媒と、を備える排気ガス浄化装置であって、
上記プラズマ処理装置が請求項1~3のいずれか1つの項に記載されたプラズマ処理装置であり、
上記排気浄化触媒の直前に配置された隣り合う2つの板状電極の組み合わせが、
貫通孔の開口径が中心側よりも外側で大きい上流側の板状電極と、
該上流側の板状電極の貫通孔の平均開口径よりも小さい開口径の貫通孔を複数有し、かつ上記複数の貫通孔の合計開口面積が上流側の板状電極よりも大きい下流側の板状電極との組み合わせであることを特徴とする排気ガス浄化装置。 A plasma processing apparatus having a plurality of plate electrodes in an exhaust path of an internal combustion engine and generating plasma between the electrodes;
An exhaust gas purification device comprising an exhaust purification catalyst on the downstream side of the plate-shaped electrode,
The plasma processing apparatus is the plasma processing apparatus according to any one of claims 1 to 3 ,
A combination of two adjacent plate-shaped electrodes arranged immediately before the exhaust purification catalyst,
an upstream plate-shaped electrode having a through hole with a larger opening diameter on the outer side than on the center side;
a plurality of through-holes having an opening diameter smaller than the average opening diameter of the through-holes of the plate-like electrode on the upstream side, and a total opening area of the plurality of through-holes being larger than that of the plate-like electrode on the upstream side; An exhaust gas purification device characterized by being a combination with a plate-like electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018050821A JP7109947B2 (en) | 2018-03-19 | 2018-03-19 | A plasma processing apparatus and an exhaust gas purification apparatus using the plasma processing apparatus. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018050821A JP7109947B2 (en) | 2018-03-19 | 2018-03-19 | A plasma processing apparatus and an exhaust gas purification apparatus using the plasma processing apparatus. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019163701A JP2019163701A (en) | 2019-09-26 |
JP7109947B2 true JP7109947B2 (en) | 2022-08-01 |
Family
ID=68065926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018050821A Active JP7109947B2 (en) | 2018-03-19 | 2018-03-19 | A plasma processing apparatus and an exhaust gas purification apparatus using the plasma processing apparatus. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7109947B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003290623A (en) | 2002-03-29 | 2003-10-14 | Yamaha Corp | Creeping discharge electrode, gas treatment apparatus using the same and gas treatment method |
JP2007227375A (en) | 2006-02-17 | 2007-09-06 | Hanyang Univ Industry-Univ Cooperation Foundation | Long-distance plasma generator |
WO2012063857A1 (en) | 2010-11-09 | 2012-05-18 | 株式会社サムスン横浜研究所 | Plasma generator, and plasma generating method |
JP2013168489A (en) | 2012-02-15 | 2013-08-29 | Toshiba Corp | Plasma processing device and semiconductor device manufacturing method |
JP2016195960A (en) | 2015-04-02 | 2016-11-24 | 日産自動車株式会社 | Exhaust gas purification system and plasma treatment apparatus |
JP2017187013A (en) | 2016-04-01 | 2017-10-12 | 日産自動車株式会社 | Exhaust emission control device, control method for exhaust emission control device and plasma processing device |
-
2018
- 2018-03-19 JP JP2018050821A patent/JP7109947B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003290623A (en) | 2002-03-29 | 2003-10-14 | Yamaha Corp | Creeping discharge electrode, gas treatment apparatus using the same and gas treatment method |
JP2007227375A (en) | 2006-02-17 | 2007-09-06 | Hanyang Univ Industry-Univ Cooperation Foundation | Long-distance plasma generator |
WO2012063857A1 (en) | 2010-11-09 | 2012-05-18 | 株式会社サムスン横浜研究所 | Plasma generator, and plasma generating method |
JP2013168489A (en) | 2012-02-15 | 2013-08-29 | Toshiba Corp | Plasma processing device and semiconductor device manufacturing method |
JP2016195960A (en) | 2015-04-02 | 2016-11-24 | 日産自動車株式会社 | Exhaust gas purification system and plasma treatment apparatus |
JP2017187013A (en) | 2016-04-01 | 2017-10-12 | 日産自動車株式会社 | Exhaust emission control device, control method for exhaust emission control device and plasma processing device |
Also Published As
Publication number | Publication date |
---|---|
JP2019163701A (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7635824B2 (en) | Plasma generating electrode, plasma generation device, and exhaust gas purifying device | |
US10357744B2 (en) | Exhaust gas purification device | |
WO2017175574A1 (en) | Exhaust gas purification device | |
JP4104627B2 (en) | Plasma generating electrode, plasma generating apparatus, and exhaust gas purification apparatus | |
GB2546164A (en) | Gasoline particulate filter | |
JP4448094B2 (en) | Plasma generating electrode, plasma reactor, and exhaust gas purification device | |
JP2007258090A (en) | Plasma generation electrode, plasma reactor, and exhaust gas clarification device | |
WO2016056573A1 (en) | Exhaust gas purification device | |
JP6468488B2 (en) | Exhaust gas purification apparatus and plasma processing apparatus | |
JP2008240698A (en) | Exhaust emission control device | |
JP7109947B2 (en) | A plasma processing apparatus and an exhaust gas purification apparatus using the plasma processing apparatus. | |
JP4763059B2 (en) | Plasma generator and apparatus, and method for manufacturing plasma generator | |
EP3318735B1 (en) | Plasma generating electrode, electrode panel, and plasma reactor | |
US10562013B2 (en) | Oxidation catalyst for diesel engines | |
JP6729244B2 (en) | Exhaust gas purifying apparatus and method for controlling exhaust gas purifying apparatus | |
Okubo et al. | Soot incineration of diesel particulate filter using honeycomb nonthermal plasma | |
Yamamoto et al. | Nonthermal plasma regeneration of diesel particulate filter | |
JP6712507B2 (en) | Plasma reactor | |
JP5379656B2 (en) | Exhaust purification device | |
JP2021193278A (en) | Exhaust emission control device | |
JP2009107883A (en) | Plasma generator and plasma generating apparatus | |
JP6949311B2 (en) | Exhaust gas purification device | |
JP2012246776A (en) | Exhaust emission control device and use method thereof | |
JP2014100631A (en) | Consecutive catalyst for exhaust gas purification | |
JP2019157716A (en) | Plasma reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7109947 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |