JP7109885B2 - Charged particle radiation measurement method and charged particle radiation measurement device - Google Patents

Charged particle radiation measurement method and charged particle radiation measurement device Download PDF

Info

Publication number
JP7109885B2
JP7109885B2 JP2017036154A JP2017036154A JP7109885B2 JP 7109885 B2 JP7109885 B2 JP 7109885B2 JP 2017036154 A JP2017036154 A JP 2017036154A JP 2017036154 A JP2017036154 A JP 2017036154A JP 7109885 B2 JP7109885 B2 JP 7109885B2
Authority
JP
Japan
Prior art keywords
phosphor
radiation
charged particle
scintillator
phosphors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036154A
Other languages
Japanese (ja)
Other versions
JP2018141705A (en
Inventor
渉 加田
健太 三浦
修 花泉
鈴弥 山田
純一 須崎
基 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Gunma University NUC
Original Assignee
Denka Co Ltd
Gunma University NUC
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Gunma University NUC, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2017036154A priority Critical patent/JP7109885B2/en
Publication of JP2018141705A publication Critical patent/JP2018141705A/en
Application granted granted Critical
Publication of JP7109885B2 publication Critical patent/JP7109885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、荷電粒子放射線計測方法および荷電粒子放射線計測装置に関する。 The present invention relates to a charged particle radiation measuring method and a charged particle radiation measuring device.

重粒子線治療装置等の放射線発生装置を利用した高度医療や、関連加速器施設における基礎実験では、荷電粒子の照射量やエネルギーを高い照射密度の条件下で正確にかつ連続的に計測する必要がある。他方で、核分裂を利用した原子力発電所等の原子力施設での事故時や近年開発が進められている核融合炉の炉内環境では、高温・高環境負荷かつ高放射線照射の環境下に放射線計測機器を設置して計測を行う必要がある。 In advanced medical care using radiation generators such as heavy ion therapy equipment and basic experiments at related accelerator facilities, it is necessary to accurately and continuously measure the dose and energy of charged particles under conditions of high irradiation density. be. On the other hand, in the case of an accident at a nuclear facility such as a nuclear power plant that uses nuclear fission or in the reactor environment of a nuclear fusion reactor that has been developed in recent years, radiation measurement is required in an environment of high temperature, high environmental load, and high radiation exposure. It is necessary to install equipment and take measurements.

加速器施設から発生するイオンビームや原子力施設からの放射線は一般的に高密度であることに加え、計測場所が荷電粒子照射環境下でかつ周辺の環境が高温である場合が想定されるので、放射線計測機器はこうした環境下でも正確かつ長期的に計測可能な高い信頼性を有する必要がある。 Ion beams generated from accelerator facilities and radiation from nuclear facilities are generally of high density. Measuring instruments must be highly reliable and capable of accurate and long-term measurement even in such environments.

荷電粒子の照射量やエネルギーの計測には、シンチレータを用いたシンチレーション型検出器が用いられる。シンチレーション型検出器は、放射線を光に変換する発光材料を含む部分の耐性や発光効率が極めて重要である。なお、シンチレータとは、放射線が入射すると発光する物質であり、前述の放射線計測用途や重粒子線治療等の加速器施設の他に、陽電子消滅断層撮影(PET)装置や産業用途で利用される。従来のα線計測機器には、その発光効率から、ZnS:Ag,Cu等といった材料が広く利用されている(特許文献1、特許文献2または非特許文献1参照)。
特開2007-70496号公報 特開2010-127862号公報 Transactions of the Materials Research Society of Japan, 2013, Vol. 38, No. 3, p.443-446
A scintillation detector using a scintillator is used to measure the dose and energy of charged particles. For scintillation detectors, the durability and luminous efficiency of the part containing the luminescent material that converts radiation into light are extremely important. A scintillator is a substance that emits light when irradiated with radiation, and is used in positron annihilation tomography (PET) equipment and industrial applications in addition to the aforementioned radiation measurement applications and accelerator facilities such as heavy ion radiotherapy. Materials such as ZnS:Ag, Cu, etc. are widely used in conventional α-ray measuring instruments due to their luminous efficiency (see Patent Document 1, Patent Document 2, or Non-Patent Document 1).
Japanese Patent Application Laid-Open No. 2007-70496 JP 2010-127862 A Transactions of the Materials Research Society of Japan, 2013, Vol.38, No.3, p.443-446

しかしながら、従来のシンチレータ型荷電粒子(α線)検出器に広く用いられる既存のシンチレータ材料(ZnS:Ag,Cu)は、100℃程度の温度領域以上での利用は推奨されておらず、百数十度(℃)を越える高温環境下に長時間設置した場合には、荷電粒子による線量を長時間にわたり測定することができないとともに、測定された線量についても正確な計測ができないという問題があった。そのため、ZnS:Ag,Cu等の従来のシンチレータ材料は、高温環境下での使用が想定される原子力施設での放射線計測には材料特性が適していない。 However, existing scintillator materials (ZnS:Ag, Cu) widely used in conventional scintillator-type charged particle (α-ray) detectors are not recommended for use at temperatures above about 100°C. When installed in a high-temperature environment exceeding 10 degrees Celsius for a long time, there was a problem that the dose due to charged particles could not be measured for a long time, and the measured dose could not be measured accurately. . Therefore, conventional scintillator materials such as ZnS:Ag, Cu are not suitable for radiation measurement in nuclear facilities, which are expected to be used in high-temperature environments.

加えて、ZnS:Ag,Cu等は、高密度の放射線により発光強度が著しく劣化することが問題となっており、高頻度の交換が必要となっている。すなわち、加速器施設から発生する荷電粒子ビームなどのビームモニタ計測用途では、高密度のイオン流が想定され、既存のシンチレータ材料(ZnS:Ag,Cu)では発光量の減衰が著しく、例えば1平方センチメートルあたり1015個のイオン(以下、1015[ions/cm]のように表記する。)を超える積算量では交換が必要となる。また、これ以前の測定においても、発光量から照射線量を求めるには発光効率の劣化を勘案する必要があるため、正確な計測を行うことができないという問題があった。 In addition, ZnS:Ag, Cu, etc. have the problem that the emission intensity is significantly deteriorated by high-density radiation, and frequent replacement is required. That is, in beam monitor measurement applications such as charged particle beams generated from accelerator facilities, a high-density ion flow is assumed, and existing scintillator materials (ZnS: Ag, Cu) have a significant attenuation in the amount of emitted light. If the integrated amount exceeds 10 15 ions (hereinafter expressed as 10 15 [ions/cm 2 ]), replacement is required. Moreover, even in the previous measurements, it was necessary to take into consideration the deterioration of the luminous efficiency in obtaining the irradiation dose from the luminescence amount, so there was a problem that accurate measurement could not be performed.

このように、ZnS:Ag,Cu等の従来のシンチレータ材料は、原子力施設では放射線に起因する発光強度の劣化が放射線量測定に悪影響を及ぼし、信頼性の点で問題となるとともに、加速器施設やこれを利用した重粒子線治療施設などの医療用設備においても、高密度の荷電粒子照射に起因する発光強度の劣化によって高頻度の交換が必要となっている。よって、従来のシンチレータ材料を用いた放射線計測機器は、ビーム品質の性能低下や、交換手順から来る作業効率の劣化による加速器装置の運転効率の低下の点で、未だ問題点が残る。こうした問題点は、原子力施設で利用されるα線を計測対象とする放射線計測機器、重粒子線治療装置などの放射線発生装置を利用した先進医療装置設備や、その他の荷電粒子利用関連加速器施設における基礎・応用物理分野から、イオン注入装置のような小型加速機構を有する産業機器分野に至る様々な分野で、改善されることが求められている。 As described above, conventional scintillator materials such as ZnS:Ag, Cu have an adverse effect on radiation dosimetry due to deterioration of emission intensity caused by radiation in nuclear facilities, which poses a problem in terms of reliability. In medical equipment such as heavy ion radiotherapy facilities that utilize this technology, frequent replacement is required due to deterioration in emission intensity due to high-density charged particle irradiation. Therefore, conventional radiation measuring instruments using scintillator materials still have problems in terms of deterioration in performance of beam quality and deterioration in operating efficiency of the accelerator apparatus due to deterioration in work efficiency resulting from replacement procedures. These problems are related to radiation measuring equipment that measures α-rays used in nuclear facilities, advanced medical equipment that uses radiation generators such as heavy ion radiotherapy equipment, and other accelerator facilities that use charged particles. Improvements are required in various fields ranging from basic/applied physics to industrial equipment with compact acceleration mechanisms such as ion implanters.

本発明は、上記の背景に鑑みてなされたものであり、耐熱性及び放射線照射耐性の高い荷電粒子放射線計測方法、シンチレータおよび荷電粒子放射線計測装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a charged particle radiation measuring method, a scintillator, and a charged particle radiation measuring apparatus with high heat resistance and radiation resistance.

本発明は、窒化物蛍光体を主成分とする蛍光体を含むシンチレータを用いる荷電粒子放射線計測方法である。 The present invention is a charged particle radiation measurement method using a scintillator containing a phosphor whose main component is a nitride phosphor.

本発明は、窒化物蛍光体を主成分とする蛍光体を含むシンチレータである。 The present invention is a scintillator containing a phosphor whose main component is a nitride phosphor.

本発明は、窒化物蛍光体を主成分とする蛍光体を含むシンチレータと、シンチレータからの光を選択的に集光する光学部品と、光学部品が集光した光を読み取る計測部とを含む、荷電粒子放射線計測装置である。 The present invention includes a scintillator containing a phosphor mainly composed of a nitride phosphor, an optical component that selectively collects light from the scintillator, and a measurement unit that reads the light condensed by the optical component. It is a charged particle radiation measurement device.

本発明において、前記窒化物蛍光体は、CaAlSiN:Eu蛍光体(CASN蛍光体)、(Sr、Ca)AlSiN:Eu蛍光体(SCASN蛍光体)及び(Mg、Ca、Sr、Ba)Si:Eu蛍光体(258蛍光体)から選択される1種以上を含むことが好ましい。 In the present invention, the nitride phosphors are CaAlSiN 3 :Eu phosphor (CASN phosphor), (Sr, Ca)AlSiN 3 :Eu phosphor (SCASN phosphor) and (Mg, Ca, Sr, Ba) 2 It preferably contains one or more selected from Si 5 N 8 :Eu phosphors (258 phosphors).

本発明によれば、耐熱性及び放射線照射耐性の高い荷電粒子放射線計測方法、シンチレータおよび荷電粒子放射線計測装置を提供することができる。 According to the present invention, it is possible to provide a charged particle radiation measuring method, a scintillator, and a charged particle radiation measuring device with high heat resistance and radiation resistance.

本発明の一実施形態に係る放射線量測定装置の概略的な構成図であり、イオン照射時に発生するシンチレーション光を、(1)スペクトル、(2)発光強度、について測定するシステム概略図である。1 is a schematic configuration diagram of a radiation dosimetry device according to an embodiment of the present invention, and is a schematic diagram of a system for measuring (1) spectrum and (2) emission intensity of scintillation light generated during ion irradiation. 一実施形態の放射線量測定装置における波長計測結果の一例である。It is an example of the wavelength measurement result in the radiation dose measuring device of one embodiment. 放射線量測定装置の放射線耐性を高密度放射線により試験した結果の一例である。It is an example of the result of testing the radiation tolerance of the radiation dosimetry device with high-density radiation.

以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 An embodiment of the present invention will be described in detail below. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.

[荷電粒子放射線計測方法]
(蛍光体)
本実施形態に係る荷電粒子放射線計測方法は、窒化物蛍光体を主成分とする蛍光体を含むシンチレータを用いる。「主成分」とは、蛍光体中に85質量%以上、好ましくは95質量%以上含まれていることを意味している。
[Charged particle radiation measurement method]
(Phosphor)
The charged particle radiation measurement method according to the present embodiment uses a scintillator containing a phosphor whose main component is a nitride phosphor. "Main component" means that it is contained in the phosphor in an amount of 85% by mass or more, preferably 95% by mass or more.

窒化物蛍光体は、Be、Mg、Ca、Sr、Baからなる群から選ばれる少なくとも1種以上の元素と、C、Si、Ge、Sn、Ti、Zr、Hfからなる群から選ばれる少なくとも1種以上の元素と、Nとを含み、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Luからなる群から選ばれる少なくとも1種以上の元素により付活される蛍光体をいう。窒化物蛍光体は、さらに酸素が含まれる酸窒化物蛍光体であってもよい。窒化物蛍光体を主成分とする蛍光体を含有するので、耐熱性及び放射線照射耐性の高い荷電粒子放射線計測方法とすることができる。 The nitride phosphor contains at least one element selected from the group consisting of Be, Mg, Ca, Sr, and Ba and at least one element selected from the group consisting of C, Si, Ge, Sn, Ti, Zr, and Hf. and at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Lu. Phosphor that is activated. The nitride phosphor may be an oxynitride phosphor that further contains oxygen. Since the phosphor containing the nitride phosphor as a main component is contained, a charged particle radiation measurement method with high heat resistance and radiation resistance can be obtained.

窒化物蛍光体は、CaAlSiN:Eu蛍光体(CASN蛍光体)、(Sr、Ca)AlSiN:Eu蛍光体(SCASN蛍光体)、(Mg、Ca、Sr、Ba)Si:Eu蛍光体(258蛍光体)から選択される1種以上を含むことが好ましい。なお、「(Sr、Ca)」との表記は、Sr及びCaから選択される1種又は2種を含有する組成であることを意味しており、「(Mg、Ca、Sr、Ba)」との表記は、Mg、Ca、Sr及びBaから選択される1種又は2種以上を含有する組成であることを意味している。また、「:Eu」は、Euにより付活されたことを意味している。これらの窒化物蛍光体を含有する場合、ZnS:Ag,Cu蛍光体等の既存のシンチレータ材料と比較して、高温環境や高密度の放射線照射による窒化物蛍光体の劣化が極めて生じ難い。 Nitride phosphors include CaAlSiN 3 :Eu phosphor (CASN phosphor), (Sr, Ca)AlSiN 3 :Eu phosphor (SCASN phosphor), (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : It preferably contains one or more selected from Eu phosphors (258 phosphors). The notation "(Sr, Ca)" means a composition containing one or two selected from Sr and Ca, and "(Mg, Ca, Sr, Ba)" means that the composition contains one or more selected from Mg, Ca, Sr and Ba. Also, ":Eu" means activated by Eu. When these nitride phosphors are contained, compared with existing scintillator materials such as ZnS:Ag, Cu phosphors, deterioration of the nitride phosphors due to high-temperature environments and high-density radiation irradiation is extremely unlikely to occur.

窒化物蛍光体の形状は、特に限定されず、粉末、焼結体、単結晶、薄膜などの形状のものを用いることができる。粉末の場合、その大きさは、通常、平均一次粒子径として、0.1μm~100μmである。なお、平均一次粒子径は、レーザ回折/散乱式粒度分布測定装置により測定した値である。焼結体の場合、その大きさは、1μm~500μmとすることができる。 The shape of the nitride phosphor is not particularly limited, and shapes such as powder, sintered body, single crystal, and thin film can be used. In the case of powder, its size is usually 0.1 μm to 100 μm as an average primary particle size. The average primary particle size is a value measured with a laser diffraction/scattering particle size distribution analyzer. In the case of sintered bodies, the size can be from 1 μm to 500 μm.

これらの窒化物蛍光体は、白色LED用として製造、市販されているものを粒度調整、焼結して得ることができる。 These nitride phosphors can be obtained by adjusting the particle size and sintering commercially available products manufactured for white LEDs.

蛍光体は、上記窒化物蛍光体以外のその他の蛍光体を含んでいてもよい。その他の蛍光体としては、α-Sialon:Eu、β-Sialon:Eu等を挙げることができる。 The phosphor may contain phosphors other than the nitride phosphor. Other phosphors include α-Sialon:Eu and β-Sialon:Eu.

(荷電粒子放射線)
本実施形態で計測可能な荷電粒子放射線は、α線、β線、陽子線並びに重粒子線のいずれであってもよい。特に、高温環境や高密度の放射線照射が行われる環境下に存在する荷電粒子放射線についても、その照射量やエネルギーを正確かつ長期的に計測することができる。
(charged particle radiation)
The charged particle radiation measurable in this embodiment may be any of α-rays, β-rays, proton beams and heavy particle beams. In particular, it is possible to accurately and long-term measure the dose and energy of charged particle radiation that exists in a high-temperature environment or an environment in which high-density irradiation is performed.

[荷電粒子放射線計測装置]
本実施形態に係る荷電粒子放射線計測装置(以下、「放射線計測装置」ともいう。)は、窒化物蛍光体を主成分とする蛍光体を含むシンチレータと、シンチレータからの光を選択的に集光する光学部品と、光学部品が集光した光(放射線に起因する光)を読み取る計測部とを含む。
[Charged particle radiation measuring device]
A charged particle radiation measuring device (hereinafter also referred to as a "radiation measuring device") according to the present embodiment includes a scintillator containing a phosphor mainly composed of a nitride phosphor, and selectively condensing light from the scintillator. and a measurement unit for reading light condensed by the optical component (light caused by radiation).

(シンチレータ)
シンチレータは、窒化物蛍光体を主成分とする蛍光体を含む。窒化物蛍光体、及び窒化物蛍光体を主成分とする蛍光体については、上記のとおりであるからここでは記載を省略する。放射線-光変換材料である新規シンチレータ材料として、窒化物蛍光体を主成分とする蛍光体を用いることにより、シンチレータ材料と、これを保持固定する機構部品ならびにシンチレータからの光を選択的に集光する光学部品と、放射線起因の光を読み取る計測部とで構成された、耐熱性及び放射線照射耐性の高い放射線計測装置を提供することができる。
(scintillator)
The scintillator contains a phosphor whose main component is a nitride phosphor. Nitride phosphors and phosphors containing nitride phosphors as a main component are as described above, and are not described here. As a new scintillator material, which is a radiation-to-light conversion material, by using a phosphor whose main component is a nitride phosphor, the light from the scintillator material, the mechanical parts that hold and fix it, and the scintillator are selectively focused. It is possible to provide a radiation measuring device having high heat resistance and radiation irradiation resistance, which is composed of an optical component that performs measurement and a measurement unit that reads radiation-induced light.

シンチレータの作製方法は、特に限定されず、例えば、窒化物蛍光体を主成分とする蛍光体を、水ガラス、有機溶剤、樹脂等に分散させた後、該分散液を炭素、樹脂(ポリイミド、ポリカーボネート等)製の板上に均一に塗布したり、樹脂シート中に固定させたりすることで行うことができる。シンチレータの厚みは、10μm~3000μmとすることが好ましく、より好ましくは50μm~500μmである。この範囲とすることで、高価な窒化物蛍光体の使用量を抑えながら効率よく放射線の計測を行うことができる。 The method for producing the scintillator is not particularly limited. For example, a phosphor containing a nitride phosphor as a main component is dispersed in water glass, an organic solvent, a resin, or the like, and then the dispersion is mixed with carbon, resin (polyimide, It can be carried out by uniformly applying it on a plate made of polycarbonate, etc., or fixing it in a resin sheet. The thickness of the scintillator is preferably 10 μm to 3000 μm, more preferably 50 μm to 500 μm. With this range, it is possible to efficiently measure radiation while suppressing the amount of the expensive nitride phosphor used.

シンチレータを構成する窒化物蛍光体の組成によって発光波長の調整が可能であり、これにより、計測機器の読み取り効率を改善することができる。本実施形態における放射線計測装置では、耐熱性及び放射線照射耐性の高い窒化物蛍光体から放射線に起因して発生する発光のスペクトルを、光センサにおける量子効率が高い波長をピーク波長(例えば、500nm~800nm)とするように調整することが好ましい。例えば、窒化物蛍光体の組成を調整することで、発光波長を上記範囲に調整することができる。 The emission wavelength can be adjusted by the composition of the nitride phosphor constituting the scintillator, thereby improving the reading efficiency of the measuring instrument. In the radiation measuring apparatus according to the present embodiment, the spectrum of light emitted from the nitride phosphor with high heat resistance and radiation resistance due to radiation is measured with a peak wavelength (for example, 500 nm to 800 nm). For example, the emission wavelength can be adjusted within the above range by adjusting the composition of the nitride phosphor.

(光学部品)
光学部品は、シンチレータからの光を選択的に集光する。光学部品としては、特定の波長の光を集光することができる部品であれば特に限定されず、例えば200nm~950nmの波長を選択的に集光することができる、試験に使用した例では分光器(例えば、浜松ホトニクス社製、装置名:PMA-11、スペクトラ・コープ社製、装置名:SolidLambdaCCD)等を挙げることができる。
(optical parts)
The optical component selectively collects light from the scintillator. The optical component is not particularly limited as long as it can collect light of a specific wavelength. device (for example, manufactured by Hamamatsu Photonics, device name: PMA-11; manufactured by Spectra Corp., device name: SolidLambdaCCD).

(計測部)
計測部は、光学部品が集光した光を読み込むことで、放射線に起因する光を読み取る。計測部は、通常、測定スペクトルデータを解析する機能を備えた計算端末と、必要に応じて光検出器の出力をデジタルデータとして取り込むためのA/D変換機構等で構成される。光学部品が集光した光は、放射線に起因する光である。
(Measuring part)
The measurement unit reads the light caused by the radiation by reading the light condensed by the optical component. The measurement unit is usually composed of a computing terminal having a function of analyzing measured spectrum data, and an A/D conversion mechanism or the like for taking in the output of the photodetector as digital data as necessary. The light collected by the optical component is the light resulting from the radiation.

図1は、放射線計測装置を示す概略的な構成図の一例である。この放射線計測装置は、加速器施設からの放射線(プロトンマイクロビーム)を1次の放射線として用いている。放射線がシンチレータ(シンチレータ・ターゲット)に入射するとシンチレータが発光する。光学部品は、シンチレータからの光を選択的に集光する。図1では、光学部品として200nm~950nmの波長を選択的に集光する分光器を用いる場合の例を示している。計測部(光子計数部)は、光学部品が集光した放射線に起因する光を、計算端末等を用いて読み取り、必要に応じて出力する。 FIG. 1 is an example of a schematic configuration diagram showing a radiation measuring device. This radiation measuring apparatus uses radiation (proton microbeam) from an accelerator facility as primary radiation. When radiation strikes a scintillator (scintillator target), the scintillator emits light. The optical component selectively collects light from the scintillator. FIG. 1 shows an example in which a spectroscope that selectively collects light with a wavelength of 200 nm to 950 nm is used as an optical component. A measuring unit (photon counting unit) reads light resulting from the radiation condensed by the optical component using a computing terminal or the like, and outputs it as necessary.

放射線計測装置のより具体的な構成は、粉末、焼結体、単結晶、薄膜などの形状を有する窒化物蛍光体を保持固定するホルダ他の機構部品、放射線起因のシンチレータからの光を選択的に集光する光学部品、1次の放射線に起因する光子を読み取るカメラ機器、アバランシェフォトダイオード(Avalanche Photo-Diode: APD)、光電子増倍管(Photomultiplier: PMT)、CCD素子、フォトダイオード(Photodiode: PD)などの計測部を組み合わせた構成とすることができる。 A more specific configuration of the radiation measuring device is a mechanical part such as a holder that holds and fixes nitride phosphors in the form of powder, sintered body, single crystal, thin film, etc.; Optical parts for focusing light, camera equipment for reading photons caused by primary radiation, Avalanche Photo-Diode (APD), Photomultiplier (PMT), CCD element, Photodiode: PD), etc. can be combined.

環境放射線などのα線は、放射線の発生源が1点ではなく、シンチレータ材料を囲む形で四方から発生するが、この場合もシンチレータ材料とこれに付随する機構部品、光学部品、計測部は、図1と同様の構成としてもよい。 α-rays such as environmental radiation do not originate from one point, but are generated from four sides surrounding the scintillator material. A configuration similar to that of FIG. 1 may be used.

機構部品、光学部品、ならびに計測部は、測定対象に適した幾何学的構造、配置を行う必要があるため、その構造は目的に応じて種々の形態をとってよい。計測部は1次元、2次元の計測機器を用いることで、観察様式を変更可能である。 Since the mechanical parts, optical parts, and measuring section need to have a geometric structure and arrangement suitable for the object to be measured, the structure may take various forms depending on the purpose. The measurement unit can change the observation mode by using a one-dimensional or two-dimensional measuring device.

本実施形態に係る放射線計測装置によれば、放射線発生装置以外の放射線源による放射線の計測についても、放射線計測装置の構造は異なるものの、基本的には同一の構成素子により、高温・高負荷環境においての荷電粒子計測が可能である。 According to the radiation measuring device according to the present embodiment, although the structure of the radiation measuring device is different, basically the same constituent elements can be used to measure radiation from a radiation source other than the radiation generator. It is possible to measure charged particles at

従来の計測機器は、利用される部材の耐熱性能が問題となるが、本実施形態で用いる窒化物蛍光体は、高温まで構造変化は起こりにくいため、構造材料ならびに光学部品、計測部と組み合わせて、従来よりも高い放射線耐性を有した放射線計測機器の動作温度範囲を改善させることが可能である。これにより、通常の放射能汚染検査を目的としたα線計測機器の高寿命化や、高温耐性を必要とする原子力施設内部他でのα線計測用の放射線計測機器が実現することができる。 Conventional measuring instruments have a problem with the heat resistance of the members used, but the nitride phosphor used in this embodiment does not easily change structurally even at high temperatures. Therefore, it is possible to improve the operating temperature range of the radiation measuring instrument with higher radiation tolerance than before. As a result, it is possible to extend the life of alpha-ray measuring equipment for the purpose of normal radioactive contamination inspection, and realize radiation measuring equipment for alpha-ray measurement inside nuclear facilities and other places that require high temperature resistance.

(用途)
本実施形態に係る荷電粒子放射線計測方法および荷電粒子放射線計測装置は、イ)原子力施設で利用されるα線を計測対象とする放射線計測機器のうち、シンチレーション方式により計測を行うもの、ロ)重粒子線や陽子線の治療装置などの放射線発生装置(加速器)におけるビーム品質計測用のビームモニタ・放射線測定器、ハ)その他の荷電粒子利用関連加速器施設、ならびに産業用イオン注入装置のような小型加速機構を有する産業機器におけるビーム品質計測装置等に利用することができる。
(Application)
The charged particle radiation measuring method and the charged particle radiation measuring device according to the present embodiment are: (a) radiation measuring equipment that measures α-rays used in nuclear facilities and that performs measurement by a scintillation method; Beam monitors and radiation detectors for beam quality measurement in radiation generators (accelerators) such as particle beam and proton beam therapy equipment, c) Other accelerator facilities related to charged particle utilization, and compact equipment such as industrial ion implanters It can be used for a beam quality measuring device or the like in industrial equipment having an acceleration mechanism.

以上のように、本実施形態に係る荷電粒子放射線計測方法および荷電粒子放射線計測装置によれば、従来の荷電粒子放射線計測機器の利用が困難な数百度(℃)程度の温度や集束荷電粒子照射環境等の高い放射線照射量の条件において、その状況に関わらず荷電粒子の照射量を計測し、また従来よりも長寿命に利用できる放射線測定器を提供することができる。 As described above, according to the charged particle radiation measurement method and the charged particle radiation measurement device according to the present embodiment, the temperature of about several hundred degrees (° C.) and the focused charged particle irradiation are difficult to use with the conventional charged particle radiation measurement equipment. It is possible to provide a radiation measuring device that can measure the dose of charged particles regardless of the conditions of high radiation dose such as the environment and that can be used for a longer life than before.

以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
(実施例1)
CaAlSiN:Eu粉末(デンカ株式会社製RE-650XMDグレード、CaAlSiN、平均粒子径:15μm)を水ガラスに分散させて炭素製の板上に塗膜厚み100μm以下で塗布して均一に固定させ、シンチレータを作製した。このシンチレータを図1に示すような放射線計測装置に取り付けて荷電粒子の照射試験を行った。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the interpretation of the present invention is not limited by these examples.
(Example 1)
CaAlSiN 3 : Eu powder (RE-650XMD grade manufactured by Denka Co., Ltd., CaAlSiN 3 , average particle size: 15 μm) is dispersed in water glass and applied to a carbon plate in a coating thickness of 100 μm or less to uniformly fix. , produced a scintillator. This scintillator was attached to a radiation measuring apparatus as shown in FIG. 1, and a charged particle irradiation test was conducted.

隣接する加速器施設から3MeVのH(プロトン)集束イオンビームを局所的(50μm×50μm)なターゲットへ照射密度0.02μA/mmで連続的に照射した。 A local (50 μm×50 μm) target was continuously irradiated with a 3 MeV H + (proton) focused ion beam from an adjacent accelerator facility at an irradiation density of 0.02 μA/mm 2 .

(比較例1)
上記のCaAlSiN:Eu粉末に替えてZnS:Ag蛍光体粉末を用いた以外は、実施例1と同様の条件で荷電粒子の照射試験を行った。
(Comparative example 1)
A charged particle irradiation test was performed under the same conditions as in Example 1, except that the CaAlSiN 3 :Eu powder was replaced with a ZnS:Ag phosphor powder.

図2に、実施例1と比較例1の試験開始時におけるスペクトル及び発光強度の計測結果を示す。同一の照射量下において、試験開始時には、CaAlSiN:Eu蛍光体を用いた実施例1では、ZnS:Agを用いた比較例1よりも長波長側に同程度の発光強度の荷電粒子励起発光が観察された。CaAlSiN:Eu蛍光体の発光波長は、ZnS:Agの発光波長と比較して光センサの量子効率が高い点で有利である。 FIG. 2 shows the measurement results of the spectrum and emission intensity at the start of the test of Example 1 and Comparative Example 1. As shown in FIG. Under the same irradiation dose, at the start of the test, in Example 1 using the CaAlSiN 3 :Eu phosphor, charged-particle-excited luminescence with a comparable emission intensity on the longer wavelength side than Comparative Example 1 using ZnS:Ag. was observed. The CaAlSiN 3 :Eu phosphor emission wavelength has the advantage of a higher quantum efficiency of the photosensor compared to that of ZnS:Ag.

図3に、放射線計測機器の実施例1と比較例1における高密度照射試験の結果を示す。横軸方向に照射時間を示し、縦軸方向に同一の放射線照射強度における発光強度を示す。照射時間から、以下の式Iを用いて荷電粒子の照射量を計測することができる。
照射量(ions/cm2)=照射密度(μA/mm2)×照射時間(sec)÷1.602×1015)・・・I
FIG. 3 shows the results of the high-density irradiation test in Example 1 and Comparative Example 1 of the radiation measuring instrument. The horizontal axis indicates the irradiation time, and the vertical axis indicates the emission intensity at the same radiation irradiation intensity. From the irradiation time, the dose of charged particles can be measured using Equation I below.
Irradiation dose (ions/cm 2 ) = Irradiation density (μA/mm 2 ) x Irradiation time (sec) ÷ 1.602 x 10 15 ) I

図3から明らかなように、照射時間の増加による荷電粒子の照射量の増加とともにZnS:Agを用いた比較例1の発光強度は著しく減衰した。一方、CaAlSiN:Eu蛍光体を用いた実施例1の場合は、発光強度の減衰が見られず高密度照射により蛍光特性が劣化しないことが確認できた。 As is clear from FIG. 3, the luminous intensity of Comparative Example 1 using ZnS:Ag significantly attenuated as the irradiation amount of charged particles increased with an increase in irradiation time. On the other hand, in the case of Example 1 using the CaAlSiN 3 :Eu phosphor, no attenuation of the emission intensity was observed, confirming that the high-density irradiation did not deteriorate the fluorescence characteristics.

以上の結果より、本発明の窒化物蛍光体を利用する荷電粒子放射線計測方法は、耐熱性及び放射線照射耐性の高い放射線測定器に十分使用可能であることがわかる。よって、CASN蛍光体を利用した放射線測定器の計測部の出力から、発光強度からの放射線の照射強度や照射量の測定が長時間に渡って可能である。 From the above results, it can be seen that the charged particle radiation measurement method using the nitride phosphor of the present invention can be sufficiently used for radiation measuring instruments with high heat resistance and radiation resistance. Therefore, it is possible to measure the irradiation intensity and irradiation amount of radiation from the emission intensity over a long period of time from the output of the measurement unit of the radiation measuring device using the CASN phosphor.

本例では加速器施設からの放射線を放射線源とするため、計測時間が数時間程度の著しい加速試験となっているが、環境放射線などのα線ではこれらは数年単位の劣化に対しても耐性が高いことを意味している。また荷電粒子が局所的に加熱し続ける条件下でもCASN系窒化物はその蛍光特性を維持するため、数百度(℃)程度の高温環境下でも利用可能である。 In this example, the radiation from the accelerator facility is used as the radiation source, so the measurement time is remarkably accelerated and the test takes several hours. means high. CASN-based nitrides maintain their fluorescent properties even under conditions where charged particles continue to locally heat them, so they can be used in high-temperature environments of several hundred degrees (° C.).

Claims (3)

窒化物蛍光体を85質量%以上含む蛍光体を含むシンチレータを用い、
窒化物蛍光体が、CaAlSiN:Eu蛍光体(CASN蛍光体)、(Sr、Ca)AlSiN:Eu蛍光体(SCASN蛍光体)及び(Mg、Ca、Sr、Ba)Si:Eu蛍光体(258蛍光体)から選択される1種以上を含む、荷電粒子放射線計測方法。
Using a scintillator containing a phosphor containing 85% by mass or more of a nitride phosphor,
The nitride phosphors are CaAlSiN 3 :Eu phosphor (CASN phosphor), (Sr, Ca)AlSiN 3 :Eu phosphor (SCASN phosphor) and (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : A charged particle radiation measurement method including one or more selected from Eu phosphors (258 phosphors).
窒化物蛍光体を85質量%以上含む蛍光体を含み、
窒化物蛍光体が、CaAlSiN:Eu蛍光体(CASN蛍光体)、(Sr、Ca)AlSiN:Eu蛍光体(SCASN蛍光体)及び(Mg、Ca、Sr、Ba)Si:Eu蛍光体(258蛍光体)から選択される1種以上を含む、荷電粒子放射線計測用のシンチレータ。
including a phosphor containing 85% by mass or more of a nitride phosphor,
The nitride phosphors are CaAlSiN 3 :Eu phosphor (CASN phosphor), (Sr, Ca)AlSiN 3 :Eu phosphor (SCASN phosphor) and (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : A scintillator for charged particle radiation measurement , containing one or more selected from Eu phosphors (258 phosphors).
窒化物蛍光体を85質量%以上含む蛍光体を含むシンチレータと、
シンチレータからの光を選択的に集光する光学部品と、
光学部品が集光した光を読み取る計測部と、を含み、
窒化物蛍光体が、CaAlSiN:Eu蛍光体(CASN蛍光体)、(Sr、Ca)AlSiN:Eu蛍光体(SCASN蛍光体)及び(Mg、Ca、Sr、Ba)Si:Eu蛍光体(258蛍光体)から選択される1種以上を含む、荷電粒子放射線計測装置。
a scintillator containing a phosphor containing 85% by mass or more of a nitride phosphor;
an optical component that selectively collects light from the scintillator;
a measurement unit that reads the light condensed by the optical component,
The nitride phosphors are CaAlSiN 3 :Eu phosphor (CASN phosphor), (Sr, Ca)AlSiN 3 :Eu phosphor (SCASN phosphor) and (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : A charged particle radiation measurement device containing one or more selected from Eu phosphors (258 phosphors).
JP2017036154A 2017-02-28 2017-02-28 Charged particle radiation measurement method and charged particle radiation measurement device Active JP7109885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036154A JP7109885B2 (en) 2017-02-28 2017-02-28 Charged particle radiation measurement method and charged particle radiation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036154A JP7109885B2 (en) 2017-02-28 2017-02-28 Charged particle radiation measurement method and charged particle radiation measurement device

Publications (2)

Publication Number Publication Date
JP2018141705A JP2018141705A (en) 2018-09-13
JP7109885B2 true JP7109885B2 (en) 2022-08-01

Family

ID=63526594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036154A Active JP7109885B2 (en) 2017-02-28 2017-02-28 Charged particle radiation measurement method and charged particle radiation measurement device

Country Status (1)

Country Link
JP (1) JP7109885B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255374A (en) 2000-03-10 2001-09-21 Toshiba Corp alpha beta DISCRIMINATING-TYPE RADIATION DETECTOR
JP2007009095A (en) 2005-07-01 2007-01-18 National Institute For Materials Science Far-ultraviolet high-luminescent light-emitting high-purity hexagonal boron nitride single crystal powder and its manufacturing method
WO2010110457A1 (en) 2009-03-26 2010-09-30 独立行政法人物質・材料研究機構 Phosphor, method for producing same, light-emitting device, and image display apparatus
JP2015166423A (en) 2014-03-04 2015-09-24 パナソニック株式会社 Fluophor and light-emitting device using the same
JP2016202901A (en) 2015-04-21 2016-12-08 東芝メディカルシステムズ株式会社 Detector device and x-ray ct device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255374A (en) 2000-03-10 2001-09-21 Toshiba Corp alpha beta DISCRIMINATING-TYPE RADIATION DETECTOR
JP2007009095A (en) 2005-07-01 2007-01-18 National Institute For Materials Science Far-ultraviolet high-luminescent light-emitting high-purity hexagonal boron nitride single crystal powder and its manufacturing method
WO2010110457A1 (en) 2009-03-26 2010-09-30 独立行政法人物質・材料研究機構 Phosphor, method for producing same, light-emitting device, and image display apparatus
JP2015166423A (en) 2014-03-04 2015-09-24 パナソニック株式会社 Fluophor and light-emitting device using the same
JP2016202901A (en) 2015-04-21 2016-12-08 東芝メディカルシステムズ株式会社 Detector device and x-ray ct device

Also Published As

Publication number Publication date
JP2018141705A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
RU2487373C2 (en) Radiation-sensitive detector with scintillator in composite resin
Boyarintsev et al. Study of radiation-resistant gel bases for composite detectors
Li et al. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single crystals
Valais et al. Luminescence efficiency of Gd/sub 2/SiO/sub 5: Ce scintillator under X-ray excitation
US10533130B2 (en) Charged particle radiation measuring method and charged particle radiation measuring device
Saatsakis et al. Luminescence efficiency of CaF2: Eu single crystals: Temperature dependence
Pekur et al. Investigation of gamma-ray sensitivity of YAG: Ce based scintillation structures
Tous et al. Single crystal scintillator plates used for light weight material X-ray radiography
JP7109885B2 (en) Charged particle radiation measurement method and charged particle radiation measurement device
JP6343785B2 (en) Neutron scintillator
Michail et al. Light Emission Efficiency of ${\rm Gd} _ {2}{\rm O} _ {2}{\rm S}\!\!\!:\!\!\!{\rm Eu} $(GOS: Eu) Powder Screens Under X-Ray Mammography Conditions
US11493648B2 (en) Radiation monitor and method for measuring radiation
Linardatos et al. Cerium Bromide Single‐Crystal X‐Ray Detection and Spectral Compatibility Assessment with Various Optical Sensors
CN111579567A (en) Quantitative detection and comprehensive evaluation method of novel X-ray imaging scintillator material
US11390803B2 (en) Scintillator and method for manufacturing the same
Taheri et al. Scintillation and optical behavior of GaN nanowires in the presence of low-energy X-ray photons: A Geant4 simulation
Watanabe Detectors Using Radiation Induced Luminescence
Lindström Radioluminescence: A simple model for fluorescent layers-analysis and applications
Sangwaranatee et al. The photon nonproportional responses of CaMoO4 and GAGG: Ce scintillation materials
DeHaven et al. Quantum dots microstructured optical fiber for x-ray detection
Winch et al. Segmented scintillators for megavolt radiography
Linardatos et al. Luminescence Efficiency of Cerium Bromide Single Crystal under X-ray Radiation. Crystals 2022, 12, 909
Yanagida Ionizing Radiation Induced Luminescence
Wang et al. Micro-columnar CsBr: Eu storage phosphor for high-efficiency high energy photon radiography panels
Seferis et al. Light emission efficiency of Lu2O3: Eu nanophosphor scintillating screen under x-ray radiographic conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7109885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150