JP7108349B1 - drill bit - Google Patents

drill bit Download PDF

Info

Publication number
JP7108349B1
JP7108349B1 JP2022044760A JP2022044760A JP7108349B1 JP 7108349 B1 JP7108349 B1 JP 7108349B1 JP 2022044760 A JP2022044760 A JP 2022044760A JP 2022044760 A JP2022044760 A JP 2022044760A JP 7108349 B1 JP7108349 B1 JP 7108349B1
Authority
JP
Japan
Prior art keywords
excavating
drill bit
drilling
tip
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022044760A
Other languages
Japanese (ja)
Other versions
JP2023138194A (en
Inventor
博幸 松原
正 佐野
Original Assignee
松原鉄工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松原鉄工株式会社 filed Critical 松原鉄工株式会社
Priority to JP2022044760A priority Critical patent/JP7108349B1/en
Application granted granted Critical
Publication of JP7108349B1 publication Critical patent/JP7108349B1/en
Publication of JP2023138194A publication Critical patent/JP2023138194A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】掘削効率の向上とドリルビットの長寿命化とを図ること【解決手段】先端側掘削部12は、外周端部領域12aに設けられ、面層12bの面を、外周端部領域の面F1と直角な垂線P1に対して、ドリルビット本体10の回転方向と逆方向に第一の傾斜角度αで傾斜された掘削部材12で構成されている。円筒側掘削部13は、上端部領域13aに設けられ、面層13bの面を、上端部領域の面と直角な垂線に対して、ドリルビット本体の回転方向と逆方向に第二の傾斜角度βで傾斜された掘削部材13で構成されている。円筒側掘削部の掘削部材の面層13bが、先端側掘削部の掘削部材の面層12bの近傍に設けられ、円筒側掘削部の掘削部材の面層13bの先端が、ドリルビット本体10の頭部10aの平面視で、先端側掘削部の掘削部材の面層12bの先端よりも、所定の距離だけ外部に突出している。【選択図】図2A tip side drilling portion (12) is provided in an outer peripheral end region (12a), and a surface of a surface layer (12b) is provided in the outer peripheral end region (12a). The drilling member 12 is tilted at a first tilt angle α in a direction opposite to the rotational direction of the drill bit body 10 with respect to a perpendicular line P1 perpendicular to the plane F1. The cylindrical side drilling portion 13 is provided in the upper end region 13a, and the surface of the surface layer 13b is inclined at a second angle of inclination in the direction opposite to the rotation direction of the drill bit body with respect to a perpendicular line perpendicular to the surface of the upper end region. It consists of a digging member 13 inclined at β. The surface layer 13b of the drilling member of the cylindrical side drilling portion is provided in the vicinity of the surface layer 12b of the drilling member of the tip side drilling portion, and the tip of the surface layer 13b of the drilling member of the cylindrical side drilling portion is located on the drill bit body 10. In a plan view of the head portion 10a, the head portion 10a protrudes outward by a predetermined distance from the tip of the surface layer 12b of the excavating member of the tip side excavating portion. [Selection drawing] Fig. 2

Description

本発明は、ドリルビットに関する。 The present invention relates to drill bits.

従来より、海底に存在する硬岩、例えば、花崗岩等の掘削を効率よく行うためにドリルビットの切削部材の配置に工夫を凝らした技術が存在する。 2. Description of the Related Art Conventionally, in order to efficiently excavate hard rock such as granite on the seabed, there is a technique in which the arrangement of cutting members of a drill bit is devised.

米国特許第4098362号明細書(特許文献1)には、ドリルビットのクラウンに取り付けられた複数の切削要素又はカッターを含む回転式ロックドリルビットが開示されている。この回転式ロックドリルビットでは、各切削要素は、-10度から-25度の間のすくい角でビットのクラウンに結合された多結晶ダイヤモンドの薄い平面層を含む。又、他の実施形態では、各切削要素は、ドリルクラウンの一端に取り付けられた細長いピンと、-10度から-25度の間のすくい角で配置されるように、ピンの自由端に結合された多結晶ダイヤモンドの薄層とを含む。これにより、カルタゴ大理石やバレ花崗岩等の岩石の掘削に要する特定のエネルギーを最小化することが出来るとしている。 US Pat. No. 4,098,362 discloses a rotary rock drill bit that includes a plurality of cutting elements or cutters attached to the crown of the drill bit. In this rotary rock drill bit, each cutting element includes a thin planar layer of polycrystalline diamond bonded to the crown of the bit at a rake angle of between -10 and -25 degrees. Also, in another embodiment, each cutting element is coupled to an elongated pin attached to one end of the drill crown and to the free end of the pin such that it is positioned at a rake angle of between -10 degrees and -25 degrees. and a thin layer of polycrystalline diamond. This minimizes the specific energy required to drill rocks such as Carthaginian marble and Valle granite.

又、特開平10-6228号公報(特許文献2)には、改善された研摩切削素子及びドリルビットが開示されている。このドリルビットの研摩切削素子は、研摩切削層と金属基体とを含み、これらの間の界面に接線チャンファを有し、この接線チャンファの平面が金属基体の円柱部の表面の平面に対して約5度から約85度の角度を形成している。これにより、研摩切削素子における内部残留応力に起因した破損及びスポーリングに対するダイヤモンド層の感受性を最小にすることが出来るとしている。 Also, Japanese Patent Application Laid-Open No. 10-6228 (Patent Document 2) discloses an improved abrasive cutting element and drill bit. The abrasive cutting element of the drill bit includes an abrasive cutting layer and a metal substrate having a tangential chamfer at the interface therebetween, the plane of the tangential chamfer being about the plane of the surface of the cylindrical portion of the metal substrate. It forms an angle of 5 degrees to about 85 degrees. This is said to minimize the susceptibility of the diamond layer to fracture and spalling due to internal residual stresses in the abrasive cutting element.

又、特表2001-515164号公報(特許文献3)には、部分的にダイヤモンド強化したドリルビットが開示されている。このドリルビットでは、ビットボデーと、ビットボデーに取り付けたダイヤモンド強化していないボタンの少なくとも1つの環状列と、ビットボデーにおいて未強化ボタンの半径方向外側に取り付けたダイヤモンド強化ボタンの少なくとも1つの環状列とを含む。未強化ボタンの少なくとも1つの列における未強化ボタンの全摩耗体積は、強化ボタンの最外環状列の全摩耗体積の75パーセントより大きく、未強化ボタンの列の1つにおける未強化ボタンの数は、強化ボタンの最外環状列における強化ボタンの数に少なくとも等しい。未強化ボタンの少なくともいくつかは、強化ボタンのいずれより大きい摩耗体積を有し、未強化ボタンの半径方向最外の列は、強化ボタンの隣接する列に関して軸方向前方に変位している。これにより、未強化ボタンの再成形が必要になる前に、著しい量の未強化ボタンの摩耗を生じさせることが可能となり、それにより時間及び費用において著しい節約をもたらすとしている。 Further, Japanese National Publication of International Patent Application No. 2001-515164 (Patent Document 3) discloses a drill bit partially reinforced with diamond. The drill bit comprises a bit body, at least one annular array of non-diamond reinforced buttons mounted on the bit body, and at least one annular array of diamond reinforced buttons mounted on the bit body radially outward of the unreinforced buttons. including. The total wear volume of the unreinforced buttons in at least one row of unreinforced buttons is greater than 75 percent of the total wear volume of the outermost annular row of reinforced buttons, and the number of unreinforced buttons in one of the rows of unreinforced buttons is , at least equal to the number of enhancement buttons in the outermost circular row of enhancement buttons. At least some of the unreinforced buttons have a greater wear volume than any of the reinforced buttons, and the radially outermost row of unreinforced buttons is axially forwardly displaced with respect to the adjacent row of reinforced buttons. This allows a significant amount of unreinforced button wear to occur before the unreinforced button needs to be remolded, thereby providing significant savings in time and money.

米国特許第4098362号明細書U.S. Pat. No. 4,098,362 特開平10-6228号公報JP-A-10-6228 特表2001-515164号公報Japanese Patent Publication No. 2001-515164

海底や地中の掘削に用いられるドリルビットの掘削部材は、通常、硬岩でも掘削することが出来るように、例えば、ダイヤモンドの薄い平面層を備えている。この掘削部材の平面層は、ドリルビットの回転により、硬岩からの強い衝撃を受け続けることから、容易に摩耗したり破砕したりする。一方、掘削部材の平面層は、少なくともダイヤモンドを原材料として構成していることから、掘削部材の単価が高く、一回、掘削部材の摩耗や破砕が生じると、全体として高価なドリルビットの買い替えに繋がる。そのため、ドリルビットの長寿命化に課題があった。 The drilling elements of drill bits used for drilling in the seabed or underground are usually provided with a thin planar layer of, for example, diamond, so that they can drill even in hard rock. The planar layer of the drilling member is easily worn or fractured due to continuous strong impacts from hard rock caused by the rotation of the drill bit. On the other hand, since the planar layer of the drilling member is composed of at least diamond as a raw material, the unit price of the drilling member is high. Connect. Therefore, there was a problem in extending the life of the drill bit.

ここで、特許文献1に記載の技術では、切削要素の角度により、衝撃に関係する特定のエネルギーの最小化を図ることが出来るものの、各切削要素の連携によるドリルビット全体の掘削効率の向上やドリルビットの長寿命化について記載が無い。 Here, in the technique described in Patent Document 1, although it is possible to minimize the specific energy related to the impact depending on the angle of the cutting element, the cooperation of each cutting element improves the drilling efficiency of the entire drill bit. There is no description about extending the life of the drill bit.

又、特許文献2に記載の技術では、ドリルビットの頭部の側面に半球状の研摩切削素子が設けられているものの、同様に、各研摩切削素子の連携に関する記載が無い。 Further, in the technique described in Patent Document 2, although hemispherical abrasive cutting elements are provided on the side surface of the head of the drill bit, there is no description of the cooperation of each abrasive cutting element.

更に、特許文献3に記載の技術では、未強化ボタンの環状列と強化ボタンの環状列との組み合わせにより、未強化ボタンの再成形が必要になる前に、未強化ボタンの摩耗を促進させるものの、各位置毎のボタンの連携に関する記載が無い。 Furthermore, in the technique described in Patent Document 3, the combination of the annular row of unreinforced buttons and the annular row of reinforced buttons promotes wear of the unreinforced buttons before they need to be remolded. , there is no description about cooperation of buttons for each position.

そこで、本発明は、前記課題を解決するためになされたものであり、各位置における掘削部材の掘削役割を明確化し、掘削負荷を分散させることで、ドリルビット全体の掘削効率の向上とドリルビットの長寿命化とを図ることが可能なドリルビットを提供することを目的とする。 Accordingly, the present invention has been made to solve the above-mentioned problems, and by clarifying the excavation role of the excavating member at each position and dispersing the excavation load, the excavation efficiency of the drill bit as a whole is improved and the drill bit is improved. It is an object of the present invention to provide a drill bit capable of extending the life of a drill bit.

本発明に係るドリルビットは、ドリルビット本体と、複数の掘削部材と、先端側掘削部と、円筒側掘削部と、を備える。ドリルビット本体は、長手方向の回転軸を有し、円筒状である。掘削部材は、前記ドリルビット本体の頭部に設けられ、面層を掘削刃として備える。先端側掘削部は、前記ドリルビット本体の頭部の先端平面のうち、外周端部領域に設けられ、前記面層の面を、前記外周端部領域の面と直角な垂線に対して、前記ドリルビット本体の回転方向と逆方向に、20度~50度の範囲内の第一の傾斜角度で傾斜された掘削部材で構成されており、当該掘削部材の側面を覆って固定する。円筒側掘削部は、前記ドリルビット本体の頭部の円筒側面のうち、上端部領域に設けられ、前記面層の面を、前記上端部領域の面と直角な垂線に対して、前記ドリルビット本体の回転方向と逆方向に、60度~90度の範囲内の第二の傾斜角度で傾斜された掘削部材で構成されており、当該掘削部材の側面を覆って固定し、当該掘削部材の面層が、前記先端側掘削部の掘削部材の面層の近傍に設けられ、当該掘削部材の面層の先端が、前記ドリルビット本体の頭部の平面視で、前記先端側掘削部の掘削部材の面層の先端よりも、所定の距離だけ外部に突出している。 A drill bit according to the present invention includes a drill bit body, a plurality of drilling members, a tip side drilling section, and a cylindrical side drilling section. The drill bit body has a longitudinal axis of rotation and is cylindrical. The drilling member is provided on the head of the drill bit body and has a face layer as a drilling edge. The tip-side drilling portion is provided in the outer peripheral end region of the tip plane of the head of the drill bit body, and the surface of the surface layer is aligned with a perpendicular line perpendicular to the surface of the outer peripheral end region. It consists of a drilling member inclined at a first angle of inclination within a range of 20 degrees to 50 degrees in a direction opposite to the direction of rotation of the drill bit body, and the side surface of the drilling member is covered and fixed. The cylindrical side drilling portion is provided in the upper end region of the cylindrical side surface of the head of the drill bit body, and the surface of the surface layer is aligned with the perpendicular line perpendicular to the surface of the upper end region of the drill bit. The excavating member is inclined at a second inclination angle within the range of 60 degrees to 90 degrees in the direction opposite to the rotation direction of the main body, and the side surface of the excavating member is covered and fixed to the excavating member. A surface layer is provided in the vicinity of the surface layer of the drilling member of the tip-side excavation section, and the tip of the surface layer of the drilling member is positioned to excavate the tip-side excavation section in a plan view of the head of the drill bit body. It protrudes outside by a predetermined distance from the tip of the surface layer of the member.

本発明によれば、各位置における掘削部材の掘削役割を明確化し、掘削負荷を分散させることで、ドリルビット全体の掘削効率の向上とドリルビットの長寿命化とを図ることが可能となる。 According to the present invention, by clarifying the excavation role of the excavating member at each position and distributing the excavation load, it is possible to improve the excavation efficiency of the entire drill bit and extend the life of the drill bit.

本発明の第一の実施形態に係るドリルビットの一例を示す側面視斜視図(図1A)と、平面視斜視図(図1B)と、である。They are a side view perspective view (FIG. 1A) and a plan view perspective view (FIG. 1B) showing an example of a drill bit according to a first embodiment of the present invention. 本発明の第一の実施形態に係るドリルビットの先端側掘削部の掘削部材と円筒側掘削部の掘削部材との位置関係の一例を示す側面図である。FIG. 4 is a side view showing an example of the positional relationship between the excavating member of the distal end side excavating portion and the excavating member of the cylindrical side excavating portion of the drill bit according to the first embodiment of the present invention; 本発明の第一の実施形態に係るドリルビットの先端側掘削部の掘削部材と円筒側掘削部の掘削部材との位置関係の一例を示す平面図である。FIG. 3 is a plan view showing an example of the positional relationship between the excavating member of the distal end side excavating portion and the excavating member of the cylindrical side excavating portion of the drill bit according to the first embodiment of the present invention. 本発明の第一の実施形態に係るドリルビットにおける先端側掘削部の掘削部材の掘削の一例を示す側面図(図4A)と、円筒側掘削部の掘削部材の掘削の一例を示す側面図(図4B)と、である。A side view ( FIG. 4A ) showing an example of excavation by the excavating member of the tip side excavating portion in the drill bit according to the first embodiment of the present invention, and a side view ( FIG. 4A ) showing an example of excavating by the excavating member of the cylindrical side excavating portion ( FIG. 4B) and . 本発明の第二の実施形態に係るドリルビット(なで肩型ドリルビット)の一例を示す平面図(図5A)と、断面図(図5B)と、である。FIG. 5A is a plan view (FIG. 5A) and a cross-sectional view (FIG. 5B) shows an example of a drill bit (sloping shoulder type drill bit) according to a second embodiment of the present invention. 本発明の第二の実施形態に係るドリルビット(いかり肩型ドリルビット)の一例を示す平面図(図6A)と、断面図(図6B)と、である。FIG. 6A is a plan view (FIG. 6A) and a cross-sectional view (FIG. 6B) shows an example of a drill bit (anchored shoulder type drill bit) according to a second embodiment of the present invention. 実施例1-2、比較例1の一例を示す斜視写真、平面写真、側面写真である。3 is a perspective photograph, a plane photograph, and a side photograph showing an example of Example 1-2 and Comparative Example 1. FIG. 実施例1-2における各回転数毎の力積の評価結果(図8A)と、実施例1-2における各回転数毎のエネルギーの評価結果(図8B)と、である。FIG. 8A shows an impulse evaluation result for each rotation speed in Example 1-2, and an energy evaluation result for each rotation speed in Example 1-2 (FIG. 8B). 実施例2の掘削後の岩石の掘削穴の写真である。2 is a photograph of a drilled hole in rock after drilling in Example 2. FIG. 実施例2-4の一例を示す斜視写真、平面写真、側面写真である。It is a perspective photograph, a plane photograph, and a side photograph showing an example of Example 2-4. 実施例1-4における各第一の傾斜角度毎の力積の評価結果(図11A)と、実施例1-4における各第一の傾斜角度毎のエネルギーの評価結果(図11B)と、である。Impulse evaluation results for each first tilt angle in Example 1-4 (FIG. 11A), and energy evaluation results for each first tilt angle in Example 1-4 (FIG. 11B). be. 実施例5の斜視図(図12A)と、平面図(図12B)と、である。FIG. 12A is a perspective view (FIG. 12A) and a plan view (FIG. 12B) of Example 5. FIG. 実施例6の斜視図(図13A)と、平面図(図13B)と、である。FIG. 13A is a perspective view (FIG. 13A) and a plan view (FIG. 13B) of Example 6. FIG. 実施例5-6の試作品の背面視斜視図(図14A)と、実施例5-6の掘削試験の様子を示す正面図(図14B)と、である。FIG. 14A is a rear perspective view of a prototype of Example 5-6, and a front view (FIG. 14B) showing an excavation test of Example 5-6. 実施例5-6における各回転数毎の掘削速度の評価結果である。It is an evaluation result of the excavation speed for each rotation speed in Example 5-6.

以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiment is an example that embodies the present invention, and is not intended to limit the technical scope of the present invention.

<本発明の第一の実施形態>
本発明の第一の実施形態に係るドリルビット1は、図1~図3に示すように、ドリルビット本体10と、複数の掘削部材11と、を備える。
<First embodiment of the present invention>
A drill bit 1 according to a first embodiment of the present invention comprises a drill bit body 10 and a plurality of drilling members 11, as shown in FIGS.

ドリルビット本体10は、長手方向の回転軸を有し、円筒状である。掘削部材11は、ドリルビット本体10の頭部10aに設けられ、面層を掘削刃として備えている。ここで、面層の構成に特に限定は無く、例えば、平面層や曲面層、半円球面層等を挙げることが出来る。 The drill bit body 10 has a longitudinal axis of rotation and is cylindrical. The drilling member 11 is provided on the head portion 10a of the drill bit body 10 and has a surface layer as a drilling edge. Here, the structure of the surface layer is not particularly limited, and examples thereof include a flat layer, a curved surface layer, a semicircular surface layer, and the like.

又、複数の掘削部材11は、先端側掘削部12と、円筒側掘削部13とを含む。先端側掘削部12は、ドリルビット本体10の頭部10aの先端平面のうち、外周端部領域12aに設けられ、面層12bの面を、外周端部領域12aの面F1と直角な垂線P1に対して、ドリルビット本体10の回転方向と逆方向に、20度~50度の範囲内の第一の傾斜角度αで傾斜された掘削部材12で構成されており、当該掘削部材の側面を覆って固定している。 Moreover, the plurality of excavating members 11 includes a tip-side excavating portion 12 and a cylindrical-side excavating portion 13 . The tip-side drilling portion 12 is provided in the outer peripheral end region 12a of the tip plane of the head portion 10a of the drill bit body 10, and the surface of the surface layer 12b is perpendicular to the plane F1 of the outer peripheral end region 12a. , the excavation member 12 is inclined at a first inclination angle α in the range of 20 degrees to 50 degrees in the direction opposite to the rotation direction of the drill bit body 10, and the side surface of the excavation member is covered and fixed.

ここでは、先端側掘削部12の掘削部材12の面層12bは平面層として構成している。又、外周端部領域12aとは、ドリルビット本体10の頭部10aの先端平面のうち、外周付近の端部領域を意味する。外周端部領域12aの面F1とは、先端側掘削部12の面層12bの近傍において外周端部領域12a上の所定の位置(点)における接線を構成する接平面を含む。図2では、先端側掘削部12の面層12bの近傍では、外周端部領域12aが平面であるため、その面F1は、外周端部領域12aの平面になるが、例えば、外周端部領域12aが曲面である場合は、その面F1は、先端側掘削部12の平面層12bの近傍において外周端部領域12a上の所定の位置における接線を構成する接平面になる。又、先端側掘削部12は、3つの掘削部材12で構成されている。 Here, the surface layer 12b of the excavating member 12 of the tip-side excavating portion 12 is configured as a planar layer. Further, the outer peripheral end region 12a means an end region near the outer periphery of the tip plane of the head 10a of the drill bit body 10. As shown in FIG. The surface F1 of the outer peripheral end region 12a includes a tangential plane forming a tangent line at a predetermined position (point) on the outer peripheral end region 12a in the vicinity of the surface layer 12b of the tip end side excavation portion 12 . In FIG. 2, in the vicinity of the surface layer 12b of the tip-side excavation portion 12, since the outer peripheral end region 12a is a flat surface, the surface F1 is a plane of the outer peripheral end region 12a. When 12a is a curved surface, the surface F1 becomes a tangential plane forming a tangent line at a predetermined position on the outer peripheral end region 12a in the vicinity of the planar layer 12b of the tip side excavation portion 12. Also, the tip side excavating section 12 is composed of three excavating members 12 .

更に、円筒側掘削部13は、ドリルビット本体10の頭部10aの円筒側面のうち、上端部領域13aに設けられ、面層13bの面を、上端部領域13aの面F2と直角な垂線P2に対して、ドリルビット本体10の回転方向と逆方向に、60度~90度の範囲内の第二の傾斜角度βで傾斜された掘削部材13で構成されている。 Further, the cylindrical side drilling portion 13 is provided in the upper end region 13a of the cylindrical side surface of the head portion 10a of the drill bit body 10, and the surface of the surface layer 13b is aligned with the perpendicular line P2 perpendicular to the plane F2 of the upper end region 13a. , the drilling member 13 is inclined at a second inclination angle β within the range of 60 to 90 degrees in the direction opposite to the rotational direction of the drill bit body 10 .

ここで、円筒側掘削部13の掘削部材13の面層13bは平面層として構成している。又、上端部領域13aとは、ドリルビット本体10の頭部10aの円筒側面のうち、上方で、外周付近の端部領域を意味する。上端部領域13aの面F2とは、上述と同様に、円筒側掘削部13の面層13bの近傍において上端部領域13a上の所定の位置(点)における接線を構成する接平面を含む。図3では、上端部領域13aが平面であるため、その面F2は、上端部領域13aの平面になるが、例えば、上端部領域13aが曲面である場合は、その面F2は、円筒側掘削部13の平面層13bの近傍において上端部領域13a上の所定の位置における接線を構成する接平面になる。又、円筒側掘削部13は、先端側掘削部12の3つの掘削部材12に対応して、3つの掘削部材13で構成されており、当該掘削部材の側面を覆って固定している。 Here, the surface layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 is configured as a plane layer. The upper end region 13a means an upper end region of the cylindrical side surface of the head 10a of the drill bit body 10 near the outer periphery. The surface F2 of the upper end region 13a includes a tangent plane forming a tangent line at a predetermined position (point) on the upper end region 13a in the vicinity of the surface layer 13b of the cylindrical side excavation 13, as described above. In FIG. 3, since the upper end region 13a is flat, its surface F2 is the plane of the upper end region 13a. In the vicinity of the plane layer 13b of the portion 13, it becomes a tangent plane forming a tangent line at a predetermined position on the upper end region 13a. The cylindrical side excavating section 13 is composed of three excavating members 13 corresponding to the three excavating members 12 of the distal end side excavating section 12, and the side surfaces of the excavating members are covered and fixed.

又、円筒側掘削部13の掘削部材13の平面層13bが、先端側掘削部12の掘削部材12の平面層12bの近傍に設けられ、円筒側掘削部13の掘削部材13の平面層13bの先端13b1(刃先)が、ドリルビット本体10の頭部10aの平面視で、先端側掘削部12の掘削部材12の平面層12bの先端12b1(刃先)よりも、所定の距離dだけ外部に突出している。ここでは、平面視とは、ドリルビット本体10の頭部10aが進行する方向と逆方向から見た面を意味する。 Further, the plane layer 13b of the excavating member 13 of the cylindrical side excavating section 13 is provided in the vicinity of the plane layer 12b of the excavating member 12 of the tip side excavating section 12, and the plane layer 13b of the excavating member 13 of the cylindrical side excavating section 13 The tip 13b1 (cutting edge) of the head 10a of the drill bit body 10 is projected outward by a predetermined distance d from the tip 12b1 (cutting edge) of the flat layer 12b of the excavating member 12 of the tip-side excavating portion 12 in plan view. ing. Here, a plan view means a surface seen from a direction opposite to the direction in which the head portion 10a of the drill bit body 10 advances.

又、円筒側掘削部13の掘削部材13の平面層13bが、先端側掘削部12の掘削部材12の平面層12bの近傍に設けられるとは、円筒側掘削部13の掘削部材13の平面層13bが、先端側掘削部12の掘削部材12の平面層12bを中心として所定の距離の範囲内に存在することを意味し、例えば、図2では、円筒側掘削部13の掘削部材13の平面層13bは、先端側掘削部12の掘削部材12の平面層12bに対して、ドリルビット本体10の回転方向と逆方向の位置で、且つ、ドリルビット本体10の頭部10aの平面から側面に向かって斜めの位置に設けられている。これにより、各位置における掘削部材11の掘削役割を明確化し、掘削負荷を分散させることで、ドリルビット1全体の掘削効率の向上とドリルビット1の長寿命化とを図ることが可能となる。 Further, the fact that the plane layer 13b of the excavating member 13 of the cylindrical side excavating section 13 is provided in the vicinity of the plane layer 12b of the excavating member 12 of the distal end side excavating section 12 means that the plane layer of the excavating member 13 of the cylindrical side excavating section 13 is 13b exists within a predetermined distance from the plane layer 12b of the excavating member 12 of the distal end side excavating portion 12. For example, in FIG. The layer 13b is located at a position opposite to the rotational direction of the drill bit body 10 with respect to the planar layer 12b of the drilling member 12 of the tip-side drilling section 12, and extends from the plane of the head 10a of the drill bit body 10 to the side surface. It is provided at an oblique position. As a result, by clarifying the excavation role of the excavating member 11 at each position and distributing the excavation load, it is possible to improve the excavation efficiency of the drill bit 1 as a whole and extend the life of the drill bit 1.

即ち、ドリルビット10の頭部10aを回転させながら、岩石R(硬岩)に衝突させると、図4Aに示すように、先ず、先端側掘削部12の掘削部材12の平面層12bが岩石Rに衝突し、岩石Rを破壊して、掘削を開始する。つまり、先端側掘削部12の掘削部材12の平面層12bの先端12b1が岩石Rに衝突し、この先端側掘削部12の掘削部材12の平面層12bの先端12b1の軌跡まで掘削が行われる。この先端側掘削部12の掘削部材12の掘削は、破砕掘削に対応する。 That is, when the head portion 10a of the drill bit 10 is rotated and collided with the rock R (hard rock), the flat layer 12b of the drilling member 12 of the tip-side drilling portion 12 is first crushed by the rock R as shown in FIG. 4A. , destroying the rock R and starting excavation. That is, the tip 12b1 of the flat layer 12b of the excavating member 12 of the tip-side excavating portion 12 collides with the rock R, and excavation is performed up to the trajectory of the tip 12b1 of the flat layer 12b of the excavating member 12 of the tip-side excavating portion 12. The excavation of the excavating member 12 of the distal excavating portion 12 corresponds to crushing excavation.

ここで、先端側掘削部12の掘削部材12の平面層12bでは、第一の傾斜角度αが、20度~50度の範囲内であることで、効率的に岩石Rを掘削して、掘削部材12の平面層12bへの掘削負担を軽減することが可能である。尚、第一の傾斜角度αは、20度~45度の範囲内であると更に好ましい。 Here, in the flat layer 12b of the excavating member 12 of the distal end side excavating portion 12, the first inclination angle α is within the range of 20 degrees to 50 degrees, so that the rock R is efficiently excavated and excavated. It is possible to reduce the excavation burden on the planar layer 12b of the member 12. Further, it is more preferable that the first inclination angle α is within the range of 20 degrees to 45 degrees.

さて、先端側掘削部12の掘削部材12の平面層12bの掘削が進行すると、先端側掘削部12の掘削部材12の平面層12bの下方近傍(図4Aでは、上方近傍)に円筒側掘削部13の掘削部材13の平面層13bが設けられており、且つ、円筒側掘削部13の掘削部材13の平面層13bの先端13b1は、先端側掘削部12の掘削部材12の平面層12bの先端12b1よりも外部に突出していることから、次に、図4Bに示すように、円筒側掘削部13の掘削部材13の平面層13bが、岩石Rの掘削部分の側面に対して掘削を開始する。 Now, as the excavation of the flat layer 12b of the excavating member 12 of the distal end side excavating portion 12 progresses, the cylindrical side excavating portion is located in the vicinity of the lower portion of the planar layer 12b of the excavating member 12 of the distal end side excavating portion 12 (near the upper portion in FIG. 4A). The flat layer 13b of the excavating member 13 of 13 is provided, and the tip 13b1 of the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 is the tip of the flat layer 12b of the excavating member 12 of the tip side digging portion 12. 4B, the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 starts excavating the side surface of the excavated portion of the rock R. .

つまり、先端側掘削部12の掘削部材12がある程度掘削すると、円筒側掘削部13の掘削部材13が、先端側掘削部12の掘削部材12が掘削した掘削部分R1の側面R2に対して掘削することになる。ここで、円筒側掘削部13の掘削部材13の平面層13bの先端13b1が、掘削部分R1の側面R2に衝突を開始するため、円筒側掘削部13の掘削部材13の平面層13bの先端13b1の軌跡まで更に掘削が行われる。 In other words, when the excavating member 12 of the tip-side excavating portion 12 excavates to some extent, the excavating member 13 of the cylindrical-side excavating portion 13 excavates the side face R2 of the excavating portion R1 excavated by the excavating member 12 of the tip-side excavating portion 12. It will be. Here, since the tip 13b1 of the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 starts colliding with the side surface R2 of the excavating portion R1, the tip 13b1 of the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 Further excavation is performed to the trajectory of

ここで、円筒側掘削部13の掘削部材13の平面層13bでは、第二の傾斜角度βが、60度~90度の範囲内であることで、効率的に岩石Rを掘削して、掘削部材13の平面層13bへの掘削負担を軽減することが可能である。尚、第二の傾斜角度βが90度の場合は、例えば、円筒側掘削部13の掘削部材13が、ドーム状のボタンビット(ボタンチップビット)に該当する場合である。この場合は、図3に示すように、ボタンビットの曲面層13bの面のうち、最上面が、円筒側掘削部13の曲面層13bの近傍において上端部領域13aの上の所定の位置(ここでは、直下)における接線を構成する接平面F2となり、接平面F2と直角な垂線P2に対して、ドリルビット本体10の回転方向と逆方向に、90度に傾斜することになる。 Here, in the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13, the second inclination angle β is within the range of 60 degrees to 90 degrees, so that the rock R is efficiently excavated and excavated. It is possible to reduce the excavation burden on the planar layer 13b of the member 13. When the second inclination angle β is 90 degrees, for example, the excavating member 13 of the cylindrical side excavating portion 13 corresponds to a dome-shaped button bit (button chip bit). In this case, as shown in FIG. 3, the uppermost surface of the surfaces of the curved layer 13b of the button bit is located at a predetermined position above the upper end region 13a (here Then, the tangential plane F2 constitutes the tangential line at the bottom), and is inclined at 90 degrees in the direction opposite to the direction of rotation of the drill bit body 10 with respect to the perpendicular line P2 perpendicular to the tangential plane F2.

さて、従来、通常のドリルビットでは、例えば、先端側掘削部12の掘削部材12が、岩石Rの掘削部分R1及びその側面R2までも掘削するように構成されているが、その場合、先端側掘削部12の掘削部材12への掘削負担が増加し、掘削部材12の平面層12bの摩耗や破砕を引き起こしていた。 Now, conventionally, in a normal drill bit, for example, the drilling member 12 of the tip side drilling section 12 is configured to drill even the drilling portion R1 of the rock R and its side face R2. The excavation load on the excavating member 12 of the excavating part 12 increases, causing wear and crushing of the planar layer 12b of the excavating member 12 .

本発明では、先端側掘削部12の掘削部材12に、岩石Rの最初の掘削部分R1の掘削を担当させ、続いて、円筒側掘削部13の掘削部材13に、岩石Rの掘削部分R1の側面R2の掘削を担当させている。これにより、ドリルビット本体10の頭部10aの先端平面における外周端部領域12aの掘削部材12と、頭部10aの円筒側面における上端部領域13aの掘削部材13の各位置における掘削部材の掘削役割を明確にして、掘削負荷を分散させることが可能となる。その結果、特定の位置の掘削部材に掘削負荷が集中することを回避して、ドリルビット1全体の掘削効率の向上とドリルビット1の長寿命化とを図ることが可能となる。このような構成では、一定のスラスト(N)(kgf)に対してドリルビット1全体の掘削速度を向上させるため、現場での掘削時間短縮にも寄与する。 In the present invention, the excavating member 12 of the tip side excavating section 12 is in charge of excavating the first excavating portion R1 of the rock R, and then the excavating member 13 of the cylindrical side excavating portion 13 is in charge of excavating the excavated portion R1 of the rock R. He is in charge of excavating the side surface R2. Thus, the excavating role of the excavating members at each position of the excavating member 12 in the outer peripheral end region 12a on the tip plane of the head 10a of the drill bit body 10 and the excavating member 13 in the upper end region 13a on the cylindrical side surface of the head 10a. can be clarified to disperse the excavation load. As a result, concentration of the drilling load on the drilling member at a specific position can be avoided, and the drilling efficiency of the entire drill bit 1 can be improved and the life of the drill bit 1 can be extended. With such a configuration, the drilling speed of the drill bit 1 as a whole is improved with respect to a constant thrust (N) (kgf), which contributes to shortening the drilling time at the site.

又、円筒側掘削部13の掘削部材13により、岩石Rの掘削部分R1の側面R2が集中的に掘削されることで、ドリルビット本体10の頭部10aの側面に対する掘削部分R1の側面R2からの衝突を軽減することが出来るため、掘削時にドリルビット1の頭部10を回転し続けても、頭部10の外周側面の軸ブレが生じない。これにより、岩石Rの掘削部分R1を綺麗に形成することが可能となる。 In addition, since the side surface R2 of the excavated portion R1 of the rock R is intensively excavated by the excavating member 13 of the cylindrical excavating portion 13, the side surface R2 of the excavated portion R1 with respect to the side surface of the head portion 10a of the drill bit body 10 Therefore, even if the head 10 of the drill bit 1 continues to rotate during drilling, the outer peripheral side surface of the head 10 does not shake. As a result, the excavated portion R1 of the rock R can be formed neatly.

又、先端側掘削部12と円筒側掘削部13の掘削部材12、13は、側面を覆って固定されている。これは、例えば、先端側掘削部12と円筒側掘削部13の掘削部材12、13が嵌る凹状の台座(溝部)(窪み)が設けられていることに相当する。これにより、ドリルビット本体10の頭部10aが回転して、掘削部材12、13の平面層12b、13bが岩石Rに強固に衝突したとしても、掘削部材12、13の側面を覆って固定することで、岩石Rに対する掘削部材12、13の固定強度を維持し、掘削部材12、13の脱落を確実に防止することが出来る。 Further, the excavating members 12 and 13 of the distal end side excavating portion 12 and the cylindrical side excavating portion 13 are fixed so as to cover the side surfaces thereof. For example, this corresponds to providing a recessed pedestal (groove) (hollow) in which the excavating members 12 and 13 of the tip-side excavating portion 12 and the cylindrical-side excavating portion 13 are fitted. As a result, even if the head 10a of the drill bit body 10 rotates and the flat layers 12b, 13b of the drilling members 12, 13 strongly collide with the rock R, the side surfaces of the drilling members 12, 13 are covered and fixed. As a result, the fixing strength of the excavating members 12 and 13 to the rock R can be maintained, and the dropping of the excavating members 12 and 13 can be reliably prevented.

ここで、ドリルビット本体10の構成に特に限定は無いが、例えば、図1A、図1B、図2A、図2B、図3A、図3Bに示すように、破砕した岩石Rを排出するための排出孔10bや排出溝10cを適宜設けても構わない。 Here, the configuration of the drill bit body 10 is not particularly limited, but for example, as shown in FIGS. Holes 10b and discharge grooves 10c may be provided as appropriate.

又、掘削部材11、12、13の構成に特に限定は無いが、例えば、平面層を有する円筒状の構成を挙げることが出来るが、その他に、球形状、半球形状、弾道形状、ドーム形状等を挙げることが出来る。又、平面層の構成は、例えば、多結晶ダイヤモンドの他に、超硬合金や耐摩耗性材料で構成される。 The construction of the excavating members 11, 12, and 13 is not particularly limited, but for example, a cylindrical construction having a flat layer can be mentioned. can be mentioned. The plane layer is composed of, for example, cemented carbide or wear-resistant material in addition to polycrystalline diamond.

又、掘削部材11、12、13の数に特に限定は無く、ドリルビット本体10のサイズや掘削対象に応じて適宜変更することが出来る。もちろん、先端側掘削部12と円筒側掘削部13の掘削部材12、13に加えて、他の掘削部材11を適宜配置しても構わない。 Further, the number of drilling members 11, 12, and 13 is not particularly limited, and can be appropriately changed according to the size of the drill bit body 10 and the object to be drilled. Of course, in addition to the excavating members 12 and 13 of the distal end side excavating portion 12 and the cylindrical side excavating portion 13, another excavating member 11 may be appropriately arranged.

又、掘削部材11、12、13の固定に特に限定は無いが、例えば、掘削部材11、12、13が円筒状に構成されている場合は、円筒が装着可能な円筒状の台座をドリルビット本体10の頭部10aに設けることで、掘削部材11、12、13の側面を覆って固定することが可能である。 There are no particular restrictions on how the excavating members 11, 12, and 13 are fixed. For example, when the excavating members 11, 12, and 13 are cylindrical, a cylindrical pedestal to which the cylinder can be attached is provided on the drill bit. By being provided on the head portion 10a of the main body 10, the side surfaces of the excavating members 11, 12, 13 can be covered and fixed.

ところで、掘削部材11、12、13の固定方法について、図2に示すように、先端側掘削部12と円筒側掘削部13を含む掘削部材11、12、13とのそれぞれは、予め設けられた凹状の台座10dに掘削部材11、12、13の側面から底面までを、ろう付けされることで、当該掘削部材11、12、13の側面を覆って固定されると好ましい。これにより、掘削部材11、12、13を強固にドリルビット本体10に固定させることが出来る。 By the way, regarding the fixing method of the excavating members 11, 12, 13, as shown in FIG. It is preferable that the sides of the excavating members 11, 12, 13 are covered and fixed by brazing the excavating members 11, 12, 13 from their side surfaces to their bottom surfaces to the recessed pedestal 10d. As a result, the drilling members 11, 12 and 13 can be firmly fixed to the drill bit body 10. As shown in FIG.

ここで、台座10dの凹部の寸法r1に特に限定は無いが、例えば、掘削部材11、12、13の直径寸法r2に対して所定の長さ(例えば、0.1mm~0.5mm)だけ長く構成し、台座10dの凹部にろうを入れた後に、掘削部材11、12、13の底面を押し込むことで、掘削部材11、12、13の側面から底面までをろうで満たして、掘削部材11、12、13を強固に固定させることが出来る。ろうの種類に特に限定は無いが、例えば、ニッケルろう、チタンろう、コバルトろう、銅ろう、錫ろう、銀ろう、又はこれらの組み合わせを挙げることが出来る。尚、掘削部材11、12、13を更に強固に固定させるために、例えば、台座10dの凹部の底面に、ろうが溜まる溝部10eを更に設けると好ましい。ここで、溝部10eの形状に特に限定は無いが、例えば、円柱状や円錐状、半球状等を挙げることが出来る。 Here, the dimension r1 of the recess of the pedestal 10d is not particularly limited, but for example, it is longer than the diameter dimension r2 of the excavating members 11, 12, 13 by a predetermined length (eg, 0.1 mm to 0.5 mm). After filling the recesses of the pedestal 10d with wax, the bottom surfaces of the excavating members 11, 12, and 13 are pushed in to fill the excavating members 11, 12, and 13 from the side surfaces to the bottom surfaces with the wax. 12 and 13 can be firmly fixed. There is no particular limitation on the type of brazing, but examples include nickel brazing, titanium brazing, cobalt brazing, copper brazing, tin brazing, silver brazing, and combinations thereof. In order to fix the excavating members 11, 12, and 13 more firmly, for example, it is preferable to further provide a groove portion 10e in which wax is accumulated in the bottom surface of the concave portion of the base 10d. Here, the shape of the groove portion 10e is not particularly limited.

又、先端側掘削部12と円筒側掘削部13の掘削部材12、13の配置に特に限定は無いが、例えば、先端側掘削部12の掘削部材12は、ドリルビット本体10の頭部10aの先端平面の中心から放射状に均等に配置され、円筒側掘削部13の掘削部材13は、ドリルビット本体10の頭部10aの円筒側面の外周面に周方向に均等に配置されているが、これに限定されない。 The arrangement of the excavating members 12 and 13 of the tip-side excavating portion 12 and the cylindrical-side excavating portion 13 is not particularly limited. The drilling members 13 of the cylindrical side drilling portion 13 are evenly arranged radially from the center of the tip plane, and are evenly arranged in the circumferential direction on the outer peripheral surface of the cylindrical side surface of the head 10a of the drill bit body 10. is not limited to

又、円筒側掘削部13の掘削部材13の平面層13bの先端13b1が、先端側掘削部12の掘削部材12の平面層12bの先端12b1に対して外部に突出している所定の距離dに特に限定は無いが、例えば、0.5mm~3.0mmの範囲内であると好ましい。これにより、先端側掘削部12の掘削部材12が掘削した掘削部分R1の側面R2が、直ぐに円筒側掘削部13の掘削部材13に衝突するため、先端側掘削部12の掘削から円筒側掘削部13の掘削に効率よく切り替えることが可能となり、ドリルビット1全体の掘削効率を更に向上させることが可能となる。 In addition, the tip 13b1 of the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 protrudes to the outside with respect to the tip 12b1 of the flat layer 12b of the excavating member 12 of the tip side excavating portion 12. Although not limited, it is preferably in the range of 0.5 mm to 3.0 mm, for example. As a result, the side face R2 of the excavation portion R1 excavated by the excavating member 12 of the distal end side excavating portion 12 immediately collides with the excavating member 13 of the cylindrical side excavating portion 13, so that the excavation of the distal end side excavating portion 12 is shifted from the excavation of the cylindrical side excavating portion. It is possible to efficiently switch to the drilling of No. 13, and it is possible to further improve the drilling efficiency of the drill bit 1 as a whole.

ここで、円筒側掘削部13の掘削部材13の平面層13bの位置は、先端側掘削部12の掘削部材12の平面層12bの位置に近接すればするほど、掘削負荷の分散に寄与するため好ましい。 Here, the closer the flat layer 13b of the excavating member 13 of the cylindrical side excavating portion 13 is to the position of the flat layer 12b of the excavating member 12 of the distal end side excavating portion 12, the more it contributes to the dispersion of the excavation load. preferable.

<本発明の第二の実施形態>
さて、本発明の第一の実施形態では、先端側掘削部12の掘削部材12が3つ、円筒側掘削部13の掘削部材13が3つの必要最小限で構成したが、これに限らず、他の構成であっても構わない。
<Second embodiment of the present invention>
Now, in the first embodiment of the present invention, three excavating members 12 of the distal end side excavating portion 12 and three excavating members 13 of the cylindrical side excavating portion 13 are configured as the minimum required, but not limited to this, Other configurations are possible.

例えば、本発明の第二の実施形態に係るドリルビット(なで肩型ドリルビットと称する)では、図5に示すように、先端側掘削部12の掘削部材12は、ドリルビット本体10の頭部10aの先端平面の中心から放射状に均等に4つ配置されている。ここで、ドリルビット本体10の頭部10aの外周端領域12aの角部はR形状に構成され、先端側掘削部12の掘削部材12は、外周端領域12aのR形状の部分(ショルダー部分)(角部分)に配置されている。又、円筒側掘削部13の掘削部材13は、ドリルビット本体10の頭部10aの円筒側面の外周面に周方向に均等に4つ配置されている。図5では、先端側掘削部12の掘削部材12と円筒側掘削部13の掘削部材13とは、それぞれ4つずつ配置しているが、ドリルビットの構成に応じて、4つ以上配置しても良い。 For example, in the drill bit according to the second embodiment of the present invention (referred to as a sloping shoulder drill bit), as shown in FIG. 4 are evenly arranged radially from the center of the tip plane. Here, the corners of the outer peripheral end region 12a of the head portion 10a of the drill bit body 10 are formed in an R shape, and the excavating member 12 of the distal end side drilling portion 12 is formed in the R-shaped portion (shoulder portion) of the outer peripheral end region 12a. (corner part). Further, four drilling members 13 of the cylindrical side drilling portion 13 are evenly arranged in the circumferential direction on the outer peripheral surface of the cylindrical side surface of the head portion 10a of the drill bit body 10 . In FIG. 5, four drilling members 12 of the distal end side drilling section 12 and four drilling members 13 of the cylindrical side drilling section 13 are arranged, but four or more may be arranged according to the configuration of the drill bit. Also good.

ここで、円筒側掘削部13の掘削部材13の平面層13bが、先端側掘削部12の掘削部材12の平面層12bの直下の近傍に設けられ、円筒側掘削部13の掘削部材13の平面層13bの先端13b1が、ドリルビット本体10の頭部10aの平面視で、先端側掘削部12の掘削部材12の平面層12bの先端12b1よりも、所定の距離dだけ外部に突出している。 Here, the plane layer 13b of the excavating member 13 of the cylindrical side excavating section 13 is provided in the vicinity of the plane layer 12b of the excavating member 12 of the distal end side excavating section 12, and the plane of the excavating member 13 of the cylindrical side excavating section 13 is provided. A tip 13b1 of the layer 13b protrudes outward by a predetermined distance d from the tip 12b1 of the flat layer 12b of the excavating member 12 of the tip-side excavating portion 12 in a plan view of the head 10a of the drill bit body 10 .

ここで、本発明の第二の実施形態では、更に複数の掘削部材11をドリルビット本体10の頭部10aの先端平面や円筒側面に配置しているが、各位置における掘削部材11の掘削役割を明確化し、掘削負荷を分散させるために、下記のような構成を採用している。 Here, in the second embodiment of the present invention, a plurality of excavating members 11 are further arranged on the tip plane and the cylindrical side surface of the head portion 10a of the drill bit body 10, but the excavating role of the excavating member 11 at each position In order to clarify and disperse the excavation load, the following configuration is adopted.

例えば、複数の掘削部材11、12が、ドリルビット本体10の頭部10aの先端平面に設けられる場合、ドリルビット本体10の頭部10aが回転すると、複数の掘削部材11、12の平面層のそれぞれが、ドリルビット本体10の頭部10aの半径方向に部分的に重なって、複数の掘削部材11、12の平面層がドリルビット本体10の頭部10aの先端平面の全体を覆うように構成されている。これにより、ドリルビット本体10の頭部10aの回転により、複数の掘削部材11、12の平面層が岩石に満遍なく衝突させることが可能となり、特定の位置の掘削部材11、12に掘削負荷が集中することを回避することが可能となる。 For example, when the plurality of drilling members 11 and 12 are provided on the tip plane of the head portion 10a of the drill bit body 10, when the head portion 10a of the drill bit body 10 rotates, the plane layers of the plurality of drilling members 11 and 12 are formed. Each is partially overlapped in the radial direction of the head 10a of the drill bit body 10 so that the planar layers of the plurality of drilling members 11 and 12 cover the entire tip plane of the head 10a of the drill bit body 10. It is As a result, by rotating the head portion 10a of the drill bit body 10, the planar layers of the plurality of excavating members 11 and 12 can evenly collide with the rock, and the excavating load is concentrated on the excavating members 11 and 12 at specific positions. can be avoided.

又、複数の掘削部材11、12、13の数は、ドリルビット本体10の頭部10aの半径方向に行くに従い、増加するように構成されている。これにより、ドリルビット本体10の頭部10aの半径方向に行く程、ドリルビット本体10の頭部10aの回転速度(周速)は速くなるものの、ドリルビット本体10の頭部10aの半径方向に行くに従い、複数の掘削部材11、12、13の数が増加するため、ドリルビット本体10の頭部10aの半径方向の特定の位置における複数の掘削部材11、12、13の掘削負荷を分散させることが可能となる。これにより、特定の位置における複数の掘削部材11、12、13の平面層が岩石に満遍なく衝突させることが可能となり、特定の位置の掘削部材11、12、13に掘削負荷が集中することを回避することが可能となる。 Also, the number of the plurality of excavating members 11, 12, 13 is configured to increase along the radial direction of the head portion 10a of the drill bit body 10. As shown in FIG. As a result, the rotational speed (peripheral speed) of the head 10a of the drill bit body 10 increases as it goes radially of the head 10a of the drill bit body 10. Since the number of the plurality of drilling members 11, 12, 13 increases along the way, the drilling load of the plurality of drilling members 11, 12, 13 at a specific position in the radial direction of the head 10a of the drill bit body 10 is distributed. becomes possible. As a result, the planar layers of the plurality of excavating members 11, 12, 13 at specific positions can be made to evenly collide with the rock, avoiding concentration of the excavating load on the excavating members 11, 12, 13 at specific positions. It becomes possible to

又、掘削部材11、12、13の平面層の先端の高さは、ドリルビット本体10の頭部10aの中心に行くに従い、低くなるように構成されている。例えば、ドリルビット本体10の頭部10aの平面の中央領域に設けられる第一の掘削部材11aの平面層11a1の先端11a2は、ドリルビット本体10の頭部10aの中心に近い第二の掘削部材11bの平面層11b1の先端11b2よりも、所定の高さhだけ高く構成されている。つまり、中心側の第二の掘削部材11bの平面層11b1の先端11b2は、外周端部側の第一の掘削部材11aの平面層11a1の先端11a2よりも低く構成されている。これにより、ドリルビット10の頭部10aを回転させながら、岩石Rに衝突させると、第一の掘削部材11aの平面層11a1が、先ず、岩石Rを破壊し、次に、第二の掘削部材11bの平面層11b1が、第一の掘削部材11aが掘削した掘削部分の次の部分(ドリルビット10の頭部10aの中央領域に近い部分)を順次掘削する。このように、ドリルビット本体10の頭部10aの平面に配置される複数の掘削部材11の平面層の先端を、ドリルビット本体10の頭部10aの中心に行くに従い、段階的に低くすることで(ドリルビット本体10の頭部10aの外周に近づくに従って、段階的に高くすることで)、位置における掘削部材11の掘削役割を明確化し、掘削負荷を分散させることが出来るのである。 Further, the height of the tips of the planar layers of the drilling members 11, 12 and 13 is configured to decrease toward the center of the head portion 10a of the drill bit body 10. As shown in FIG. For example, the tip 11a2 of the planar layer 11a1 of the first drilling member 11a provided in the central region of the plane of the head 10a of the drill bit body 10 is closer to the center of the head 10a of the drill bit body 10 than the second drilling member. The tip 11b2 of the planar layer 11b1 of 11b is higher than the tip 11b2 by a predetermined height h. That is, the tip 11b2 of the planar layer 11b1 of the second excavating member 11b on the center side is lower than the tip 11a2 of the planar layer 11a1 of the first excavating member 11a on the outer peripheral end side. As a result, when the head 10a of the drill bit 10 is rotated and collided with the rock R, the flat layer 11a1 of the first drilling member 11a first breaks the rock R, and then the second drilling member The flat layer 11b1 of 11b sequentially excavates the next portion of the excavated portion excavated by the first excavating member 11a (the portion near the central region of the head portion 10a of the drill bit 10). In this way, the tips of the planar layers of the plurality of drilling members 11 arranged on the plane of the head 10a of the drill bit body 10 are lowered stepwise toward the center of the head 10a of the drill bit body 10. (By increasing the height step by step as the outer circumference of the head 10a of the drill bit body 10 is approached), the excavating role of the excavating member 11 at each position can be clarified and the excavating load can be distributed.

ここで、第一の掘削部材11aと第二の掘削部材11bの配置に特に限定は無いが、例えば、図5に示すように、平面視において、先端側掘削部12の掘削部材12と、円筒側掘削部13の掘削部材13との配置で構成される延長線上に沿って設けられている。又、円筒側掘削部13の掘削部材13の下方の延長線上には、平面層の先端が、当該掘削部材13の平面層13bの先端13b1よりも所定の距離だけ外部に突出する他の掘削部材が設けられている。 Here, the arrangement of the first excavating member 11a and the second excavating member 11b is not particularly limited. For example, as shown in FIG. It is provided along an extension line formed by the arrangement of the side excavating portion 13 and the excavating member 13 . Further, on the extended line below the excavating member 13 of the cylindrical side excavating portion 13, there is another excavating member in which the tip of the flat layer protrudes outward by a predetermined distance from the tip 13b1 of the flat layer 13b of the excavating member 13. is provided.

又、他の構成として、本発明の第二の実施形態に係るドリルビット(いかり肩型ドリルビットと称する)では、図6に示すように、第一の掘削部材11aの平面層11a1の先端11a2は、第二の掘削部材11bの平面層11b1の先端11b2よりも所定の高さhだけ高く構成され、更に、先端側掘削部12の掘削部材12の平面層12bの先端12b1が、第一の掘削部材11aの平面層11a1の先端11a2よりも所定の高さiだけ高く構成されている。このように、ドリルビット本体10の頭部10aの半径方向に沿って配置された掘削部材の平面層の先端を、ドリルビット本体10の頭部10aの中心に行くに従い、段階的に低くすることで(ドリルビット本体10の頭部10aの外周に近づくに従って、段階的に高くすることで)、更に、掘削負荷を分散させることが出来る。 As another configuration, in the drill bit according to the second embodiment of the present invention (referred to as an anchor shoulder type drill bit), as shown in FIG. , the tip 11b2 of the planar layer 11b1 of the second excavating member 11b is higher than the tip 11b2 by a predetermined height h, and the tip 12b1 of the planar layer 12b of the excavating member 12 of the tip-side excavating portion 12 is located above the first excavating portion. The tip 11a2 of the planar layer 11a1 of the member 11a is higher than the tip 11a2 by a predetermined height i. In this way, the tip of the planar layer of the drilling member arranged along the radial direction of the head 10a of the drill bit body 10 is lowered stepwise toward the center of the head 10a of the drill bit body 10. (By increasing the height stepwise as the outer circumference of the head 10a of the drill bit body 10 is approached), the excavation load can be further dispersed.

ここで、先端側掘削部の掘削部材12の平面層12bは、円筒側掘削部の掘削部材13の平面層13bの直上の近傍に設けられているが、ここでも、ドリルビット本体10の頭部10aの外周端部12aはR形状に構成され、先端側掘削部の掘削部材12以外の第三の掘削部材11cは、先端側掘削部の掘削部材12が設けられる位置以外で、外周端部12aのR形状の部分に配置されている。このように、外周端部12aのR形状の部分に設けられる掘削部材は、先端側掘削部の掘削部材12以外に設けても構わない。 Here, the flat layer 12b of the drilling member 12 of the tip side drilling section is provided in the vicinity of the plane layer 13b of the drilling member 13 of the cylindrical side drilling section. An outer peripheral end portion 12a of 10a is configured in an R shape, and a third excavating member 11c other than the excavating member 12 of the tip-side excavating portion is provided at a position other than the position where the excavating member 12 of the tip-side excavating portion is provided. is arranged in the R-shaped portion of the In this manner, the excavating member provided in the R-shaped portion of the outer peripheral end portion 12a may be provided in addition to the excavating member 12 in the tip side excavating portion.

尚、図5、図6に示す本発明の第二の実施形態には、適宜、排出孔や排出溝が設けられる。排出孔や排出溝は、岩石の破砕後の砂利や石を外部に排出させるために設けられるものであり、排出孔の数や孔径、排出溝の数や幅、深さは、例えば、砂利や石が排出される流量や方向を加味して、ドリルビット本体10の頭部10aに適宜設けられる。 The second embodiment of the present invention shown in FIGS. 5 and 6 is appropriately provided with discharge holes and discharge grooves. The discharge holes and discharge grooves are provided to discharge gravel and stones after crushing rocks to the outside. The head 10a of the drill bit body 10 is provided as appropriate, taking into consideration the flow rate and direction in which stones are discharged.

又、ドリルビット本体10の頭部10aの形状について、本発明の第一の実施形態では、円筒状であったが、本発明の第二の実施形態のなで肩型ドリルビットのように、外周端部領域12aのショルダー部分を丸くした半球状に構成しても良いし、本発明の第二の実施形態のいかり肩型ドリルビットのように、外周端部領域12aのショルダー部分を丸くするとともに、ドリルビット本体10の頭部10aの中心を低くして窪ませた形状に構成しても構わない。 Further, in the first embodiment of the present invention, the shape of the head portion 10a of the drill bit main body 10 was cylindrical, but as in the sloping shoulder type drill bit of the second embodiment of the present invention, the head portion 10a is shaped like the outer peripheral end. The shoulder portion of the outer peripheral end region 12a may be rounded to form a hemispherical shape, or like the anchor shoulder type drill bit of the second embodiment of the present invention, the shoulder portion of the outer peripheral end region 12a may be rounded and the drill The center of the head portion 10a of the bit body 10 may be lowered to form a hollow shape.

ここで、本発明の第二の実施形態について、更に、他の構成に変更しても良い。例えば、円筒側掘削部の掘削部材13をボタンビット(超硬合金ボタン)に構成して、超硬合金ボタンが、ドリルビット本体10の回転と同時に岩石Rに打撃を与えることで、軸ブレを防止しても良い。又、円筒側掘削部の掘削部材13とは別に、頭部10aの円筒側面に超硬合金ボタンを設けて、軸ブレを防止しても良い。超硬合金ボタンの数に特に限定は無く、適宜設計される。又、超硬合金ボタンの設置位置に特に限定は無く、例えば、円筒側掘削部の掘削部材13の位置と同様の位置や頭部10aの回転軸に沿った位置を挙げることが出来る。 Here, the second embodiment of the present invention may be further modified to other configurations. For example, the drilling member 13 of the cylindrical side drilling portion is configured as a button bit (a cemented carbide button), and the cemented carbide button strikes the rock R at the same time as the drill bit body 10 rotates, thereby reducing axial vibration. You can prevent it. Further, apart from the excavating member 13 of the cylindrical side excavating portion, a cemented carbide button may be provided on the cylindrical side surface of the head portion 10a to prevent shaft shaking. The number of cemented carbide buttons is not particularly limited and is designed as appropriate. Moreover, there is no particular limitation on the installation position of the cemented carbide button.

又、例えば、頭部10aの円筒側面に、頭部10aの回転軸に沿った長尺状の超硬合金ガイドパッドを設けて、軸ブレを防止しても良い。超硬合金ガイドパッドの数に特に限定は無く、適宜設計される。又、超硬合金ガイドパッドの設置位置に特に限定は無く、例えば、頭部10aの円筒側面の下方位置を挙げることが出来る。 Further, for example, an elongated cemented carbide guide pad along the rotation axis of the head portion 10a may be provided on the cylindrical side surface of the head portion 10a to prevent shaft deflection. The number of cemented carbide guide pads is not particularly limited and is designed as appropriate. Moreover, there is no particular limitation on the installation position of the cemented carbide guide pad.

又、複数の掘削部材11、12、13について、平面層の角部を丸くして、エッジ部にR面を形成することで、掘削時の割れを防止しても良い。 Further, for the plurality of excavating members 11, 12, and 13, the corners of the planar layers may be rounded and the edges may be rounded to prevent cracking during excavation.

又、頭部10aの先端平面の外周端部領域12aのショルダー部分の回転速度は極めて速いため、回転速度の増加に伴って、掘削部材11、12が必要となる。そのため、外周端部領域12aのショルダー部分に設けられる掘削部材11、12は、他の部分と比較して数を増加するように構成しても良い。 Further, since the rotational speed of the shoulder portion of the outer peripheral end region 12a of the tip plane of the head 10a is extremely high, excavating members 11 and 12 are required as the rotational speed increases. Therefore, the number of excavating members 11 and 12 provided in the shoulder portion of the outer peripheral end region 12a may be increased compared to the other portions.

又、頭部10aの先端平面の中心付近の回転速度はほぼ0になることから、中心付近に設けられた掘削部材11の掘削は、非常に不利に働く。そこで、中心付近の掘削部材11について、平面層の角部を丸くしたり、中心付近に補助的に超硬合金ボタンを設けたりすることで、掘削時の割れを防止しても良い。 In addition, since the rotation speed near the center of the tip plane of the head 10a is almost zero, excavation by the excavating member 11 provided near the center works very disadvantageously. Therefore, the excavating member 11 near the center may be prevented from cracking during excavation by rounding the corners of the planar layer or providing a supplementary cemented carbide button near the center.

又、掘削時の頭部10aの高温加熱に対応するために、頭部10aに清水を補給するように構成しても良い。又、頭部10aの回転の際に、頭部10aの動バランスを調整するために、頭部10aの円筒側面に重りを適宜設けたり穴を適宜設けたりして、軸ブレを防止するように構成しても良い。 Also, in order to cope with high temperature heating of the head 10a during excavation, the head 10a may be replenished with fresh water. Further, in order to adjust the dynamic balance of the head 10a when the head 10a rotates, a weight or a hole is appropriately provided on the cylindrical side surface of the head 10a so as to prevent shaft shake. may be configured.

以下、実施例、比較例によって本発明を具体的に説明するが、本発明はこれにより限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

<ドリルビットの評価方法、評価結果>
図1~図3に示すドリルビット1を試作品として作成した。ここで、図7に示すように、先端側掘削部12における掘削部材12の平面層12bの第一の傾斜角度αを0度としたドリルビットを比較例1とし、第一の傾斜角度αを20度としたドリルビットを実施例1とし、第一の傾斜角度αを40度にしたドリルビットを実施例2とした。ここで、ドリルビット本体10の円筒の直径を61.00mmとし、先端側掘削部12の掘削部材12の平面層12bと円筒側掘削部13における掘削部材13の平面層13bの直径を、それぞれ13.44mmとし、第二の傾斜角度βを70度にした。又、所定の距離dは、1.41mmに設定した。
<Drill bit evaluation method and evaluation results>
A drill bit 1 shown in FIGS. 1 to 3 was produced as a prototype. Here, as shown in FIG. 7, a drill bit in which the first inclination angle α of the flat layer 12b of the excavating member 12 in the distal end side excavation portion 12 is set to 0 degrees is taken as Comparative Example 1, and the first inclination angle α is set to Example 1 is a drill bit of 20 degrees, and Example 2 is a drill bit of 40 degrees. Here, the diameter of the cylinder of the drill bit body 10 is assumed to be 61.00 mm, and the diameter of the plane layer 12b of the drilling member 12 of the distal end side drilling section 12 and the plane layer 13b of the drilling member 13 of the cylindrical side drilling section 13 are set to 13 mm. .44 mm and the second tilt angle β was 70 degrees. Also, the predetermined distance d was set to 1.41 mm.

この試作品を市販の大型穴明機の回転接続部に接続し、回転数を100rpm、260rpm、360rpmのそれぞれに設定した。又、掘削対象岩石は、花崗岩を含む硬岩を対象とした。岩石に市販の小型圧縮型ロードセルを設置して、ドリルビットが岩石に衝突して掘削した際に、このロードセルからスラスト(最大押付力)(N)を測定した。又、掘削開始から掘削完了までの掘削時間を測定し、スラスト(N)と掘削時間(sec)とを乗算した力積(N・sec=1/1000KN・sec)を算出し、掘削負担を確認した。又、掘削距離(m)を掘削時間(sec)で除算した掘削速度(m/sec)を算出し、力積(N・s)と掘削速度(m/sec)とを乗算した掘削時のエネルギー(J)を算出し、更に、掘削エネルギー負担を確認した。 This prototype was connected to a rotating connection part of a commercially available large drilling machine, and the rotation speeds were set to 100 rpm, 260 rpm, and 360 rpm, respectively. The rocks to be excavated were hard rocks including granite. A commercially available compact compression load cell was installed on the rock, and the thrust (maximum pressing force) (N) was measured from this load cell when the drill bit collided with the rock and drilled. Also, the excavation time from the start of excavation to the completion of excavation is measured, and the impulse (N·sec = 1/1000 KN·sec) is calculated by multiplying the thrust (N) and the excavation time (sec) to confirm the excavation burden. did. Also, the excavation speed (m/sec) is calculated by dividing the excavation distance (m) by the excavation time (sec), and the energy during excavation is calculated by multiplying the impulse (N·s) by the excavation speed (m/sec). (J) was calculated, and the excavation energy burden was confirmed.

図8Aには、実施例1-2における各回転数毎の力積の評価結果を示す。ここで、比較例1では、第一の傾斜角度αが0であるため、そもそも先端側掘削部12の掘削部材12としての掘削能力が無く、岩石の掘削が上手く行かず、掘削を断念した。一方、図8Aに示すように、実施例1-2では、回転数が100rpmから360rpmまで高くなる程、力積が低くなり、掘削負担が軽減されていることが理解される。更に、実施例2では、いずれの回転数であっても、著しく力積が低くなり、更に、掘削負担が低減されたことが分かった。 FIG. 8A shows evaluation results of the impulse for each rotation speed in Example 1-2. Here, in Comparative Example 1, since the first inclination angle α was 0, the excavation member 12 of the tip end side excavation portion 12 did not have an excavation capability in the first place. On the other hand, as shown in FIG. 8A, in Example 1-2, as the number of rotations increases from 100 rpm to 360 rpm, the impulse decreases and the excavation burden is reduced. Furthermore, in Example 2, it was found that the impulse was remarkably reduced at any number of rotations, and the excavation burden was reduced.

図8Bには、実施例1-2における各回転数毎のエネルギーの評価結果を示す。図8Bに示すように、実施例1-2では、回転数が100rpmから360rpmまで高くなる程、エネルギーが低くなり、掘削負担が軽減されていることが理解される。更に、実施例2では、実施例1と比較して、いずれの回転数であっても、低いエネルギーを示しており、掘削負荷の分散が上手く行ったことが分かった。 FIG. 8B shows the evaluation results of the energy for each rotational speed in Example 1-2. As shown in FIG. 8B, in Example 1-2, as the number of rotations increases from 100 rpm to 360 rpm, the energy decreases and the excavation burden is reduced. Furthermore, in Example 2, compared with Example 1, lower energy was exhibited regardless of the number of revolutions, and it was found that the excavation load was well distributed.

図9には、実施例2の掘削後の岩石の掘削穴の写真を示す。図9に示すように、掘削穴の底面には、約0.5mmの段差が出来ている。これは、正に、円筒側掘削部13における掘削部材13の平面層13bの先端13b1が、先端側掘削部12における掘削部材12の平面層12bの先端12b1よりも所定の距離dだけ突出して出っ張っていたからである。尚、実施例1-2では、掘削時にドリルビットの頭部を回転し続けても、頭部の外周側面の軸ブレが生じなかった。これも、円筒側掘削部13における掘削部材13の平面層13bの掘削が、ドリルビット全体の掘削の安定に寄与していると考えられる。 FIG. 9 shows a photograph of the drilled hole in the rock after drilling in Example 2. As shown in FIG. 9, the bottom of the excavated hole has a step of about 0.5 mm. This is precisely because the tip 13b1 of the flat layer 13b of the excavating member 13 in the cylindrical side excavating portion 13 protrudes from the tip 12b1 of the flat layer 12b of the excavating member 12 in the tip side digging portion 12 by a predetermined distance d. because he was Incidentally, in Example 1-2, even if the head of the drill bit continued to rotate during drilling, there was no axial deflection of the outer peripheral side surface of the head. It is considered that the excavation of the planar layer 13b of the excavating member 13 in the cylindrical-side excavating portion 13 contributes to the stable excavation of the drill bit as a whole.

次に、上述した試作品について、第一の傾斜角度αを変更したドリルビット1を作成した。図10に示すように、第一の傾斜角度αを40度にしたドリルビットの実施例2に対して、第一の傾斜角度αを50度としたドリルビットを実施例3とし、第一の傾斜角度αを30度にしたドリルビットを実施例4とした。ここで、ドリルビット本体10の円筒の直径と、先端側掘削部12の掘削部材12の平面層12bと円筒側掘削部13における掘削部材13の平面層13bの直径と、第二の傾斜角度βと、所定の距離dとは、上述と同様である。 Next, the drill bit 1 was produced by changing the first inclination angle α for the above prototype. As shown in FIG. 10, in contrast to Example 2 of the drill bit having the first inclination angle α of 40 degrees, the drill bit of Example 3 having the first inclination angle α of 50 degrees was used. A drill bit with an inclination angle α of 30 degrees was used as Example 4. Here, the diameter of the cylinder of the drill bit body 10, the diameter of the plane layer 12b of the drilling member 12 of the tip-side drilling section 12, the diameter of the plane layer 13b of the drilling member 13 of the cylindrical-side drilling section 13, and the second inclination angle β and the predetermined distance d are the same as described above.

実施例2-4の試作品を大型穴明機の回転接続部に接続し、回転数を100rpm、260rpm、360rpmのそれぞれに設定し、掘削対象岩石を、花崗岩を含む岩石に設定し、上述と同様に、スラスト(最大押付力)(N)と、掘削時間(sec)と、掘削速度(m/sec)とを測定し、これらの測定値から、力積(N・sec=1/1000KN・sec))と、掘削時のエネルギー(J)とを算出した。 The prototype of Example 2-4 was connected to the rotary connection part of a large drilling machine, the rotation speed was set to 100 rpm, 260 rpm, and 360 rpm, respectively, and the rock to be excavated was set to rock containing granite, and the above-mentioned Similarly, the thrust (maximum pressing force) (N), excavation time (sec), and excavation speed (m/sec) were measured, and from these measured values, the impulse (N sec = 1/1000 KN sec)) and the energy (J) at the time of excavation were calculated.

図11Aには、実施例1-4における各第一の傾斜角度α毎の力積の評価結果を示す。図11Aに示すように、第一の傾斜角度αが、20度~45度の範囲内である場合、回転数が100rpmから260rpm、360rpmと増加する程、力積が低下し、掘削負担が軽減されていることが理解される。 FIG. 11A shows evaluation results of the impulse for each first tilt angle α in Examples 1-4. As shown in FIG. 11A, when the first inclination angle α is in the range of 20 degrees to 45 degrees, the more the rotation speed increases from 100 rpm to 260 rpm and 360 rpm, the more the impulse decreases and the excavation load is reduced. It is understood that

図11Bには、実施例1-4における各第一の傾斜角度α毎のエネルギーの評価結果を示す。図11Bに示すように、第一の傾斜角度αが、20度~45度の範囲内である場合、回転数が100rpmから260rpm、360rpmと増加する程、エネルギーが低下し、掘削負荷の分散が進んでいることが理解される。 FIG. 11B shows the energy evaluation results for each first tilt angle α in Example 1-4. As shown in FIG. 11B, when the first inclination angle α is in the range of 20 degrees to 45 degrees, the energy decreases and the excavation load is dispersed as the rotational speed increases from 100 rpm to 260 rpm and 360 rpm. It is understood that progress is being made.

次に、図5、図6に示すドリルビット1を、スケールアップした試作品として作成した。ここで、図12A、図12Bには、図5で示すなで肩型ドリルビットを3D-CADで構成し、実施例5とした。なで肩型ドリルビット1では、上述のように、先端側掘削部の掘削部材12が、頭部10aの先端平面の中心から放射状に均等に4つ配置され、円筒側掘削部の掘削部材13が、頭部10aの円筒側面の外周面に周方向に均等に4つ配置され、先端側掘削部の掘削部材12の直下に設けられている。先端側掘削部の掘削部材12から、頭部10aの先端平面の中心に向かって、第一の掘削部材11aと第二の掘削部材11bとが設けられる。頭部10aの直径は、150mmであり、頭部10aの長さは、約270mmであり、掘削部材の数は29個である。 Next, the drill bit 1 shown in FIGS. 5 and 6 was produced as a scaled-up prototype. Here, in FIGS. 12A and 12B, the shoulder-shaped drill bit shown in FIG. In the sloping shoulder type drill bit 1, as described above, the four drilling members 12 of the tip side drilling portion are arranged radially evenly from the center of the tip plane of the head 10a, and the drilling members 13 of the cylindrical side drilling portion are Four of them are evenly arranged in the circumferential direction on the outer peripheral surface of the cylindrical side surface of the head portion 10a, and are provided directly below the excavating member 12 of the tip side excavating portion. A first digging member 11a and a second digging member 11b are provided from the digging member 12 of the tip side digging portion toward the center of the tip plane of the head 10a. The diameter of the head 10a is 150 mm, the length of the head 10a is about 270 mm and the number of digging members is 29.

その他の掘削部材11は、頭部10aが回転すると、複数の掘削部材11、12、13の平面層のそれぞれが、頭部10aの半径方向に部分的に重なって、複数の掘削部材11、12、13の平面層が頭部10aの先端平面の全体を覆うように構成されている。又、複数の掘削部材11、12が、頭部10aの先端平面に設けられる場合、複数の掘削部材11、12の数は、頭部10aの半径方向に行くに従い、増加するように構成されている。又、円筒側掘削部の掘削部材13の直下にも、掘削部材11が設けられている。 The other drilling members 11 are such that when the head 10a rotates, each planar layer of the plurality of drilling members 11, 12, 13 partially overlaps in the radial direction of the head 10a such that the plurality of drilling members 11, 12 , 13 are configured to cover the entire tip plane of the head 10a. Also, when the plurality of excavating members 11 and 12 are provided on the tip plane of the head 10a, the number of the plurality of excavating members 11 and 12 is configured to increase along the radial direction of the head 10a. there is An excavating member 11 is also provided directly below the excavating member 13 of the cylindrical side excavating portion.

又、図13A、図13Bには、図6に示すいかり肩型ドリルビットを3D-CADで構成し、実施例6とした。いかり肩型ドリルビット1では、上述のなで肩型ドリルビット1と同様に、先端側掘削部の掘削部材12と、円筒側掘削部の掘削部材13とが設けられる。その他に、複数の掘削部材11も設けられ、頭部10aの先端平面に設けられる複数の掘削部材11、12では、掘削部材11、12の平面層の先端の高さは、頭部10aの中心に行くに従い、低くなるように構成されている。又、円筒側掘削部の掘削部材13の直下にも、掘削部材11が設けられている。 13A and 13B, the anchor shoulder type drill bit shown in FIG. The dovetail shoulder drill bit 1 is provided with a drilling member 12 for the tip side drilling portion and a drilling member 13 for the cylindrical side drilling portion, as in the stroke shoulder drill bit 1 described above. In addition, a plurality of excavating members 11 are also provided, and in the plurality of excavating members 11 and 12 provided on the tip plane of the head 10a, the height of the tip of the planar layer of the excavating members 11 and 12 is the center of the head 10a. It is configured so that it becomes lower as it goes to. An excavating member 11 is also provided directly below the excavating member 13 of the cylindrical side excavating portion.

図14Aに示すように、この試作品を陸上掘削試験場へ搬送し、図14Bに示すように、この試験品を市販の大型穴明機の回転接続部に接続し、回転数を60rpm、120rpm、180rpmのそれぞれに設定した。又、掘削対象岩石は、600mm×600mm×600mmの花崗岩(御影石)の岩石を対象とした。掘削条件は、回転数60rpmで下穴を100mm~150mmの深さまで掘削した後に、約500mmの深さまで本掘削を連続して行った。掘削深さが進行すると、回転数を増加させるとともに、スラスト(kgf)を増加させた上で、各回転数毎に掘削時間(min)を測定し、掘削速度(cm/min)を測定した。回転数が60rpmの時は、スラストは1,800kgf~1,900kgfとし、回転数が120rpmの時は、スラストは2,700kgf~3,000kgfとし、回転数が180rpmの時は、スラストは3,500kgf~3,600kgfとした。 As shown in FIG. 14A, this prototype was transported to a land drilling test site, and as shown in FIG. Each was set at 180 rpm. The rock to be excavated was a granite (granite) rock of 600 mm×600 mm×600 mm. As for the excavation conditions, after excavating a pilot hole to a depth of 100 mm to 150 mm at a rotation speed of 60 rpm, main excavation was continuously performed to a depth of about 500 mm. As the excavation depth progressed, the rotation speed was increased and the thrust (kgf) was increased, and the excavation time (min) was measured at each rotation speed to measure the excavation speed (cm/min). When the rotation speed is 60 rpm, the thrust is 1,800 kgf-1,900 kgf, when the rotation speed is 120 rpm, the thrust is 2,700-3,000 kgf, and when the rotation speed is 180 rpm, the thrust is 3. 500 kgf to 3,600 kgf.

図15には、実施例5-6における各回転数毎の掘削速度の評価結果を示す。図15に示すように、実施例5-6では、回転数が増加する程、掘削速度が増加し、掘削負荷が軽減された結果、掘削効率が向上していることが理解される。ここで、実施例5-6では、回転数が120pmになると、掘削速度が4cm/minを超えている。一方、ドリルビットの硬岩用の要求特性として、回転数が60rpm~120rpmで掘削速度が約4cm/minと考えられている。従って、実施例5-6の掘削速度は、驚くべきことに、回転数が120pmになると、硬岩用の要求特性の掘削速度よりも著しく向上しており、実施例5-6の掘削効率は、硬岩用の要求特性を十分満たしていることが分かった。 FIG. 15 shows the evaluation results of the excavation speed for each rotational speed in Example 5-6. As shown in FIG. 15, in Example 5-6, as the number of rotations increases, the excavation speed increases and the excavation load is reduced, resulting in improved excavation efficiency. Here, in Example 5-6, the excavation speed exceeds 4 cm/min when the number of revolutions reaches 120 pm. On the other hand, it is considered that the required characteristics of a drill bit for hard rock are a rotation speed of 60 rpm to 120 rpm and a drilling speed of about 4 cm/min. Surprisingly, therefore, the drilling speed of Example 5-6 is significantly improved at a rotational speed of 120 pm, compared to the required drilling speed for hard rock, and the drilling efficiency of Example 5-6 is , was found to sufficiently satisfy the required properties for hard rock.

このように、各位置における掘削部材11の掘削役割を明確化し、掘削負荷を分散させることで、ドリルビット1全体の掘削効率が向上したことが分かった。又、力積やエネルギーの低下具合から、ドリルビット1の長寿命化にもつながると確信している。 Thus, it was found that the drilling efficiency of the drill bit 1 as a whole was improved by clarifying the drilling role of the drilling member 11 at each position and dispersing the drilling load. In addition, it is believed that the life of the drill bit 1 will be extended due to the reduction in impulse and energy.

以上のように、本発明に係るドリルビットは、海底探索はもちろん、鉱業、石油、ガス、建設、温泉掘削等のドリルビットに有用であり、各位置における掘削部材の掘削役割を明確化し、掘削負荷を分散させることで、ドリルビット全体の掘削効率の向上とドリルビットの長寿命化とを図ることが可能なドリルビットとして有効である。 As described above, the drill bit according to the present invention is useful not only for submarine exploration but also for mining, oil, gas, construction, and hot spring drilling. By distributing the load, it is effective as a drill bit capable of improving the drilling efficiency of the entire drill bit and extending the life of the drill bit.

1 ドリルビット
10 ドリルビット本体
11 掘削部材
12 先端側掘削部
13 円筒側掘削部
REFERENCE SIGNS LIST 1 drill bit 10 drill bit body 11 drilling member 12 tip side drilling section 13 cylindrical side drilling section

Claims (3)

長手方向の回転軸を有し、円筒状のドリルビット本体と、
前記ドリルビット本体の頭部に設けられ、面層を掘削刃として備える複数の掘削部材と、
前記ドリルビット本体の頭部の先端平面のうち、外周端部領域に設けられ、前記面層の面を、前記外周端部領域の面と直角な垂線に対して、前記ドリルビット本体の回転方向と逆方向に、20度~45度の範囲内の第一の傾斜角度で傾斜された掘削部材で構成されており、当該掘削部材の側面を覆って固定する先端側掘削部と、
前記ドリルビット本体の頭部の円筒側面のうち、上端部領域に設けられ、前記面層の面を、前記上端部領域の面と直角な垂線に対して、前記ドリルビット本体の回転方向と逆方向に、60度~90度の範囲内の第二の傾斜角度で傾斜された掘削部材で構成されており、当該掘削部材の側面を覆って固定し、当該掘削部材の面層が、前記先端側掘削部の掘削部材の面層の近傍に設けられ、当該掘削部材の面層の先端が、前記ドリルビット本体の頭部の平面視で、前記先端側掘削部の掘削部材の面層の先端よりも、0.5mm~3.0mmの範囲内の距離だけ外部に突出している円筒側掘削部と、
を備え
前記先端側掘削部と前記円筒側掘削部とのそれぞれは、予め設けられた凹状の台座に前記掘削部材の側面から底面までを、ろう付けされることで、当該掘削部材の側面を覆って固定される、
ドリルビット。
a cylindrical drill bit body having a longitudinal axis of rotation;
a plurality of drilling members provided on the head of the drill bit body and having surface layers as drilling blades;
In the tip plane of the head of the drill bit body, the surface of the surface layer provided in the outer peripheral end region is aligned in the direction of rotation of the drill bit body with respect to a perpendicular line perpendicular to the surface of the outer peripheral end region. and in the opposite direction, 20 degrees~45 degreesa tip side excavating portion configured by an excavating member inclined at a first inclination angle within the range of and fixed to cover the side surface of the excavating member;
Among the cylindrical side surfaces of the head of the drill bit body, the surface layer is provided in the upper end region, and the surface of the surface layer is positioned in the direction opposite to the direction of rotation of the drill bit body with respect to a perpendicular line perpendicular to the surface of the upper end region. a drilling member inclined at a second angle of inclination in the range of 60 degrees to 90 degrees in the direction of the drilling member and fixed over the side surface of the drilling member, the face layer of the drilling member being aligned with the tip Provided in the vicinity of the surface layer of the excavating member of the side excavating section, the tip of the surface layer of the excavating member is the tip of the surface layer of the excavating member of the tip-side excavating section in a plan view of the head of the drill bit body. than, within the range of 0.5 mm to 3.0 mma cylindrical side excavation projecting outwardly a distance;
equipped with ,
Each of the tip side excavation portion and the cylindrical side excavation portion is fixed by covering the side surface of the excavation member by brazing from the side surface to the bottom surface of the excavation member to a recessed pedestal provided in advance. to be
drill bit.
前記台座の凹部の寸法は、前記掘削部材の直径寸法に対して、0.1mm~0.5mmの長さだけ長く構成し、前記台座の凹部にろうを入れた後に、前記掘削部材の底面を押し込むことで、前記掘削部材の側面から底面までをろうで満たす、
請求項1に記載のドリルビット。
The dimension of the recess of the pedestal is longer than the diameter dimension of the excavating member by a length of 0.1 mm to 0.5 mm. filling the drilling member from the side to the bottom with wax by pressing;
A drill bit according to claim 1.
前記台座の凹部の底面に、ろうが溜まる溝部を更に設け、
前記台座の凹部にろうを入れた後に、前記掘削部材の底面を押し込むことで、前記掘削部材の側面から底面までをろうで満たす、
請求項1に記載のドリルビット。
A groove portion in which wax is accumulated is further provided on the bottom surface of the recessed portion of the pedestal,
After filling the recess of the pedestal with wax, the bottom surface of the excavating member is pushed in to fill the excavating member from the side surface to the bottom surface with the wax.
A drill bit according to claim 1.
JP2022044760A 2022-03-19 2022-03-19 drill bit Active JP7108349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044760A JP7108349B1 (en) 2022-03-19 2022-03-19 drill bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044760A JP7108349B1 (en) 2022-03-19 2022-03-19 drill bit

Publications (2)

Publication Number Publication Date
JP7108349B1 true JP7108349B1 (en) 2022-07-28
JP2023138194A JP2023138194A (en) 2023-10-02

Family

ID=82610417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044760A Active JP7108349B1 (en) 2022-03-19 2022-03-19 drill bit

Country Status (1)

Country Link
JP (1) JP7108349B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115481A (en) 2000-10-11 2002-04-19 Kokudo Kiso:Kk Excavation ring of casing tube
JP2006266007A (en) 2005-03-25 2006-10-05 Mitsubishi Materials Corp Excavating bit and cutting-edge tip
JP2015105471A (en) 2013-11-28 2015-06-08 国立研究開発法人産業技術総合研究所 Pdc cutter and pdc drill bit for pit drilling
US20160168917A1 (en) 2014-12-12 2016-06-16 Smith International, Inc. Cutting element with varied substrate length

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858671A (en) * 1973-04-23 1975-01-07 Kennametal Inc Excavating tool
US4098362A (en) * 1976-11-30 1978-07-04 General Electric Company Rotary drill bit and method for making same
JPS59210186A (en) * 1983-05-13 1984-11-28 旭ダイヤモンド工業株式会社 Boring bit and production thereof
GB8505244D0 (en) * 1985-02-28 1985-04-03 Nl Petroleum Prod Rotary drill bits
JPS63108489U (en) * 1986-12-27 1988-07-13
JPS6398359U (en) * 1987-11-06 1988-06-25
JP2543575Y2 (en) * 1989-03-06 1997-08-06 三菱マテリアル株式会社 Lock bit
JP3067236B2 (en) * 1991-04-03 2000-07-17 三菱マテリアル株式会社 Drilling tool
JPH05149074A (en) * 1991-12-02 1993-06-15 Wako:Kk Ring bit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115481A (en) 2000-10-11 2002-04-19 Kokudo Kiso:Kk Excavation ring of casing tube
JP2006266007A (en) 2005-03-25 2006-10-05 Mitsubishi Materials Corp Excavating bit and cutting-edge tip
JP2015105471A (en) 2013-11-28 2015-06-08 国立研究開発法人産業技術総合研究所 Pdc cutter and pdc drill bit for pit drilling
US20160168917A1 (en) 2014-12-12 2016-06-16 Smith International, Inc. Cutting element with varied substrate length

Also Published As

Publication number Publication date
JP2023138194A (en) 2023-10-02

Similar Documents

Publication Publication Date Title
US10851594B2 (en) Kerfing hybrid drill bit and other downhole cutting tools
CA2505710C (en) Shaped cutter surface
US8033616B2 (en) Braze thickness control
CN104995369B (en) Scroll-diced device with bottom support
RU2532026C2 (en) Superabrasive cutters with slots on cutting surface and drilling bits and tools provided with them
US7798257B2 (en) Shaped cutter surface
US8833492B2 (en) Cutters for fixed cutter bits
EP1288432B1 (en) Drill bit with PDC cutters with different backrake angles
US7373998B2 (en) Cutting element with improved cutter to blade transition
GB2393982A (en) Apparatus and method offering improved gage trimmer protection
US7726419B2 (en) Drill bit, system, and method for drilling a borehole in an earth formation
US20080156545A1 (en) Method, System, and Apparatus of Cutting Earthen Formations and the like
CN104364460A (en) Gage cutter protection for drilling bits
CN110359852A (en) Combined type diamond bit with fixed buffer structure
US7270199B2 (en) Cutting element with a non-shear stress relieving substrate interface
JP7108349B1 (en) drill bit
JP6154018B2 (en) Pick tool assembly and method of using the same
US8418784B2 (en) Central cutting region of a drilling head assembly
CN208137860U (en) Combined type diamond bit with fixed buffer structure
JP4706639B2 (en) Drilling tools
JPH07293173A (en) Rock bit
US20230064436A1 (en) Cutter geometry utilizing spherical cutouts
JPS622106B2 (en)
JPS5858517B2 (en) wing bit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220708

R150 Certificate of patent or registration of utility model

Ref document number: 7108349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150