JP7105429B2 - Method and apparatus for inducing a hibernation-like state - Google Patents

Method and apparatus for inducing a hibernation-like state Download PDF

Info

Publication number
JP7105429B2
JP7105429B2 JP2021523537A JP2021523537A JP7105429B2 JP 7105429 B2 JP7105429 B2 JP 7105429B2 JP 2021523537 A JP2021523537 A JP 2021523537A JP 2021523537 A JP2021523537 A JP 2021523537A JP 7105429 B2 JP7105429 B2 JP 7105429B2
Authority
JP
Japan
Prior art keywords
qrfp
neurons
body temperature
mice
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021523537A
Other languages
Japanese (ja)
Other versions
JPWO2021066053A1 (en
Inventor
武 櫻井
徹 ▲高▼橋
玄志郎 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
University of Tsukuba NUC
Original Assignee
RIKEN Institute of Physical and Chemical Research
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, University of Tsukuba NUC filed Critical RIKEN Institute of Physical and Chemical Research
Publication of JPWO2021066053A1 publication Critical patent/JPWO2021066053A1/en
Priority to JP2022107088A priority Critical patent/JP2022165960A/en
Application granted granted Critical
Publication of JP7105429B2 publication Critical patent/JP7105429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0534Electrodes for deep brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36078Inducing or controlling sleep or relaxation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • A01K29/005Monitoring or measuring activity, e.g. detecting heat or mating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36121Production of neurotransmitters; Modulation of genes expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0833Measuring rate of oxygen consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0072Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with application of electrical currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0077Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with application of chemical or pharmacological stimulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/435Composition of exhalation partial O2 pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/50Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2250/00Specially adapted for animals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Neurology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Neurosurgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Environmental Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Pain & Pain Management (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Acoustics & Sound (AREA)
  • Genetics & Genomics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)

Description

本発明は、冬眠様状態を誘発する方法およびそのための装置を提供する。 The present invention provides a method and apparatus for inducing a hibernation-like state.

恒温動物、鳥類、哺乳類は、体内の体温(T)を周囲温度(T)より高い狭い範囲内に維持するために、熱産生のために体エネルギーの大部分を消費する。しかし、一部の哺乳類は、冬季の食糧不足を生き延びるために、積極的に体温を低下させ、冬眠として知られる状態をとる。動物は明らかな組織損傷なしに正常な状態に戻る1,2。マウスは冬眠しないが、基礎代謝の低下から恩恵を受けることができる場合、日内休眠として知られる短期の代謝低下状態を示す。冬眠と日内休眠の双方においてエネルギー消費の減少は主に体温の低下によって達成され、それは2つの主要な要素、すなわち理論的設定温度(TR)と熱生成の負のフィードバックゲイン(H)によって影響される。日内休眠中のマウスでは、TRは正常に近いままであるが、Hは正常の10分の1近くまで減少し、結果としてTRよりもかなり低いTBをもたらす。対照的に、冬眠ではTRとHの両方が有意に減少し、1日の休眠よりも効率的かつ外気温の変動に対応可能な代謝低下状態の維持を可能にする4,5。こうした積極的な代謝低下が中枢神経系によって調節されていることが多くの実験で確立されている。しかし、その神経機構は全く不明のままである。日々の休眠及び/又は冬眠のメカニズムの解明は、ヒトを含む非冬眠動物において人工的な冬眠様代謝低下状態を人為的に誘導する方法を開発するために必要なステップである1,7、さらには、未来における長距離宇宙探査においても有益であろう。ここでは、視床下部における新規の化学的に定義された神経細胞集団の興奮性操作が、マウスにおいて非常に長時間にわたる低代謝/低体温状態をもたらすことを見出した。この状態では、代謝率は3分の1以下に低下するが、麻酔状態とは異なり、マウスは周囲温度の変化に依然として反応する。さらに、マウスは明らかな異常なしにこの状態から自然に回復した。この発見は、冬眠のメカニズム、および人工冬眠様状態を誘導する方法の開発に重要な知見である。Warmotherms, birds, and mammals expend most of their body energy for heat production in order to maintain internal body temperature (T B ) within a narrow range above ambient temperature (T A ). However, some mammals actively cool down to survive winter food shortages, a state known as hibernation. Animals return to normal without obvious tissue damage 1,2 . Mice do not hibernate, but exhibit a short-term hypometabolic state known as diurnal diapause when they can benefit from a reduced basal metabolic rate. The reduction in energy expenditure in both hibernation and diurnal dormancy is primarily achieved by lowering body temperature, which is influenced by two major factors: the theoretical setpoint temperature (TR) and the negative feedback gain of heat production (H). be. In diapausing mice, TR remains close to normal, but H decreases to nearly 10-fold normal, resulting in a TB much lower than TR 3 . In contrast, both TR and H are significantly reduced in hibernation, allowing maintenance of a hypometabolic state more efficient than day-to-day hibernation and adaptable to fluctuations in ambient temperature 4,5 . A number of experiments have established that this aggressive metabolic depression is regulated by the central nervous system 6 . However, its neural mechanism remains completely unknown. Elucidation of the mechanisms of daily dormancy and/or hibernation is a necessary step to develop methods for artificially inducing a hibernation-like hypometabolic state in non-hibernating animals, including humans 1,7 , as well. will also be useful in long-range space exploration in the future. Here we find that excitatory manipulation of a novel, chemically defined neuronal population in the hypothalamus results in a very prolonged hypometabolic/hypothermic state in mice. In this state, the metabolic rate is reduced by more than a third, but unlike the anesthetized state, mice still respond to changes in ambient temperature. Moreover, mice spontaneously recovered from this condition without any apparent abnormalities. This discovery is an important finding for the development of hibernation mechanisms and methods for inducing an artificial hibernation-like state.

本発明は、冬眠様状態を誘発する方法およびそのための装置を提供する。 The present invention provides a method and apparatus for inducing a hibernation-like state.

本発明者らは、生きている非冬眠動物である対象の脳において、視床下部の前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)を含む領域内のピログルタミン化RFアミドペプチド(QRFP)遺伝子発現ニューロンに対して興奮性刺激を加えることによって、当該対象に冬眠様状態を誘導させることができることを見出した。 In the brain of living, non-hibernating animal subjects, we have demonstrated that the hypothalamic anteroventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) of the hypothalamus contain We have found that a hibernation-like state can be induced in the subject by applying an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP) gene-expressing neurons within the region.

本発明によれば、例えば、以下の発明が提供される。
(1)生きている対象の脳において、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンを刺激する装置であって、
電圧の発生を制御する制御信号を送信する制御部と、
前記制御部からの制御信号を受信して電圧を発生する電圧発生部と、
前記電圧発生部と近位で電気的に接続され、遠位に電気刺激電極を有する刺激プローブであって、脳表面からQRFP産生ニューロンにアクセスするために十分な長さを有し、前記電圧発生部からの電圧により遠位の電気刺激電極において電気刺激を発生させる刺激プローブと、
外気温計と、
深部体温計と、
呼気ガス中の酸素濃度を測定する呼気ガス分析部と、
測定された外気温と、深部体温および酸素濃度からなる群から選択される少なくとも1つの数値とを記録する記録部と、
を含む、装置。
(2)生きている対象の脳において、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンを刺激する装置であって、
QRFP産生ニューロン刺激性化合物の放出を制御する制御信号を送信する制御部と、
前記化合物の貯蔵部と、
前記制御部からの制御信号を受信して化合物の貯蔵部から前記化合物を貯蔵部から送出する化合物送出部と、
化合物放出口と放出口までの化合物の流路を備え、前記化合物をQRFP産生ニューロンにまで送達するガイドと、
外気温計と、
深部体温計と、
呼気ガス中の酸素濃度を測定する呼気ガス分析部と、
測定された外気温と、深部体温および酸素濃度からなる群から選択される少なくとも1つの数値とを記録する記録部と、
を含む、装置。
(3)前記記録部に記録された外気温と深部体温とから、対象が低体温状態であるかを決定する決定部をさらに含む、上記(1)または(2)に記載の装置。
(4)前記記録部に記録された外気温と、深部体温、および酸素濃度とから対象が低代謝状態であるか否かを決定する決定部をさらに含む、上記(1)~(3)のいずれかに記載の装置。
(5)前記記録部に記録された外気温と、深部体温、および酸素濃度とから、対象が冬眠様状態であるか否かを決定する決定部をさらに含む、上記(1)~(4)のいずれかに記載の装置。
(6)前記制御部が、対象が、低体温状態、低代謝状態、および冬眠様状態からなる群から選択されるいずれか1つの状態であると決定されるまで連続的にまたは間欠的にGRFP産生ニューロンを刺激するための制御信号を送信する、上記(3)~(5)のいずれかに記載の装置。
(7)ほ乳類の対象において体温の理論的設定温度を低下させる方法であって、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与えることを含む、方法。
(8)QRFP産生ニューロンが、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域のニューロンである、上記(7)に記載の方法。
(9)興奮性刺激が、化学的刺激、磁気的刺激および電気的刺激からなる群から選択される刺激である、上記(7)または(8)に記載の方法。
(10)前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域内に存在するピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与える物質をスクリーニングする方法であって、
被検化合物と前記QRFP産生ニューロンとを接触させることと、
前記QRFP産生ニューロンの興奮を測定することと、
前記QRFP産生ニューロンに興奮性刺激を与える被検化合物を選択することと、
を含む、方法。
(10a)前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域内に存在するピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに特異的に興奮性刺激を与える物質をスクリーニングする方法であって、
細胞にQRFP産生ニューロンに特異的に発現する受容体を発現させることと、
被検化合物と前記細胞とを接触させることと、
前記QRFP産生ニューロンの興奮を測定することと、
前記QRFP産生ニューロンに興奮性刺激を与える被検化合物を選択することと、
を含む、方法。
(10b)前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域内に存在するピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに特異的に興奮性刺激を与える物質を検査する方法であって、
ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンを提供することと、
被検化合物と前記細胞とを接触させることと、
前記QRFP産生ニューロンの興奮を測定することと、
前記被検化合物との接触前後のQRFP産生ニューロンの興奮を比較することにより、被検化合物が、前記QRFP産生ニューロンに興奮性刺激を与えるかを決定することと
を含む、方法。
(10c)前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域内に存在するピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに特異的に興奮性刺激を与える物質を検査する方法であって、
被検化合物を哺乳動物の前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与することと、
QRFP産生ニューロンの興奮(例えば、電位)を測定することと、
前記被検化合物との接触前後のQRFP産生ニューロンの興奮を比較することにより、被検化合物が、前記QRFP産生ニューロンに興奮性刺激を与えるかを決定することと
を含む、方法。
(10d)冬眠を誘発する被検化合物を検査する方法であって、
被検化合物を哺乳動物(例えば、非ヒト哺乳動物)の前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与することと、
前記哺乳動物が冬眠することを確認することと、
を含む、方法。
(10e)上記(10d)に記載の方法であって、
前記哺乳動物(例えば、非ヒト哺乳動物)の深部体温(例えば、腸内温度)と酸素消費量との相関関係から、酸素消費量が0であるとしたときの深部体温(理論的設定温度)とΔVO/ΔT(熱生成のフィードバックゲイン)とを推定することと、
理論的設定温度と熱生成の負のフィードバックゲインの両方が、被検化合物の投与によって投与前よりも低下したことは、前記哺乳動物が冬眠したこと示す、方法。
(10f)ヒトなどの哺乳動物において被検化合物が冬眠を誘発するか否かを試験する方法であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトの理論的設定温度の推定値と熱生成のフィードバックゲインの推定値、および投与される前の当該ヒトの理論的設定温度の推定値と熱生成のフィードバックゲインの推定値を提供することと、
前記被検化合物の投与の前の理論的設定温度の推定値と熱生成のフィードバックゲインの推定値と比較して、投与の後の理論的設定温度の推定値と熱生成のフィードバックゲインの推定値の両方が低下するかを確認することとを含み、
理論的設定温度の推定値と熱生成のフィードバックゲインの推定値が、投与前よりも投与後において低下したことは、前記哺乳動物が冬眠したこと示す、方法。
(10g)ヒトなどの哺乳動物において被検化合物が冬眠を誘発しているか否かを決定(予測、推定、計算科学的に算出)する方法であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトの理論的設定温度の推定値と熱生成のフィードバックゲインの推定値、および投与される前の当該ヒトの理論的設定温度の推定値と熱生成のフィードバックゲインの推定値を提供することと、
前記被検化合物の投与の前の理論的設定温度の推定値と熱生成のフィードバックゲインの推定値と比較して、投与の後の理論的設定温度の推定値と熱生成のフィードバックゲインの推定値の両方が低下するかを確認することとを含み、
理論的設定温度の推定値と熱生成のフィードバックゲインの推定値が、投与前よりも投与後において低下したことは、前記哺乳動物が冬眠したこと示す、方法。
(10h)ヒトなどの哺乳動物において被検化合物が冬眠を誘発しているか否かを決定(予測、推定、計算科学的に算出)する方法であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトなどの哺乳動物において、投与前および投与後のそれぞれにおいて、少なくとも2つの異なる周辺環境温度条件下において酸素消費量および深部体温を記録することと、
投与前および投与後のそれぞれにおいて、酸素消費量と深部体温との相関関係を推定することと、
推定された相関関係から、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定すること、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定することを含み、
深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下したことは、前記哺乳動物が冬眠したこと示す、方法。
(11)ヒトなどの哺乳動物において被検化合物が冬眠を誘発しているか否かを決定(検査、予測、推定、計算科学的に算出)する方法であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトなどの哺乳動物において、投与前および投与後のそれぞれにおいてそれぞれ少なくとも2つの異なる周辺環境温度条件下において記録された酸素消費量および深部体温を提供(または記録)することと、
投与前および投与後のそれぞれにおいて、酸素消費量と深部体温との相関関係を推定することと、
推定された相関関係から、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定すること、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定することを含み、
深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下したことは、前記哺乳動物が冬眠したこと示す、方法。
(12)冬眠を判定する装置であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトなどの哺乳動物において、投与前および投与後のそれぞれにおいてそれぞれ少なくとも2つの異なる周辺環境温度条件下において記録された酸素消費量および深部体温を記録する記録部と、
投与前および投与後のそれぞれにおいて、酸素消費量と深部体温との相関関係を推定し、推定された相関関係から、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定すること、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定する演算部とを備え、
深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下した場合に、前記哺乳動物が冬眠したと判定する判定部と
を備えた装置。
According to the present invention, for example, the following inventions are provided.
(1) in the brain of a living subject, within one or more regions selected from the group consisting of the anterior ventricular periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe); A device for stimulating pyroglutaminated RF amide peptide (QRFP)-producing neurons, comprising:
a control unit that transmits a control signal for controlling voltage generation;
a voltage generator that receives a control signal from the controller and generates a voltage;
a stimulation probe electrically connected proximally to said voltage generator and having an electrical stimulation electrode distally, said voltage generator having a length sufficient to access QRFP-producing neurons from the brain surface; a stimulation probe that generates electrical stimulation at a distal electrical stimulation electrode with a voltage from the body;
outside temperature gauge and
a core thermometer and
an exhaled gas analyzer for measuring oxygen concentration in exhaled gas;
a recording unit that records the measured outside temperature and at least one numerical value selected from the group consisting of core body temperature and oxygen concentration;
apparatus, including
(2) in the brain of a living subject, within one or more regions selected from the group consisting of the anterior ventricular periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe); A device for stimulating pyroglutaminated RF amide peptide (QRFP)-producing neurons, comprising:
a control unit that transmits a control signal that controls the release of the QRFP-producing neuron-stimulating compound;
a reservoir of said compound;
a compound delivery unit that receives a control signal from the control unit and delivers the compound from a compound storage unit;
a guide comprising a compound outlet and a channel for the compound to the outlet and delivering the compound to QRFP-producing neurons;
outside temperature gauge and
a core thermometer and
an exhaled gas analyzer for measuring oxygen concentration in exhaled gas;
a recording unit that records the measured outside temperature and at least one numerical value selected from the group consisting of core body temperature and oxygen concentration;
apparatus, including
(3) The apparatus according to (1) or (2) above, further comprising a determination unit that determines whether the subject is hypothermic based on the outside air temperature and core body temperature recorded in the recording unit.
(4) The above (1) to (3), further comprising a determination unit that determines whether the subject is in a hypometabolism state from the outside temperature, core body temperature, and oxygen concentration recorded in the recording unit. A device according to any one of the preceding claims.
(5) The above (1) to (4), further comprising a determination unit that determines whether the subject is in a hibernation-like state from the outside temperature, core body temperature, and oxygen concentration recorded in the recording unit. A device according to any of the preceding claims.
(6) GRFP continuously or intermittently until the control unit determines that the subject is in any one state selected from the group consisting of a hypothermic state, a hypometabolic state, and a hibernation-like state The device according to any one of (3) to (5) above, which transmits a control signal for stimulating a production neuron.
(7) A method of lowering the theoretical set point of body temperature in a mammalian subject, comprising providing an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons.
(8) the QRFP-producing neurons are neurons in one or more regions selected from the group consisting of the anterior ventral periventricular nucleus (AVPe), the medial preoptic area (MPA), and the periventricular nucleus (Pe); The method according to (7) above.
(9) The method according to (7) or (8) above, wherein the excitatory stimulus is a stimulus selected from the group consisting of chemical stimulation, magnetic stimulation and electrical stimulation.
(10) Excitatory stimulation of pyroglutaminated RF amide peptide (QRFP)-producing neurons present in the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA), and periventricular nucleus (Pe) A method of screening for a substance that provides
contacting the test compound with the QRFP-producing neurons;
measuring the excitation of the QRFP-producing neurons;
selecting a test compound that provides an excitatory stimulus to the QRFP-producing neurons;
A method, including
(10a) specifically to pyroglutaminated RF amide peptide (QRFP)-producing neurons located within the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) A method for screening a substance that provides an excitatory stimulus, comprising:
causing the cell to express a receptor specifically expressed in QRFP-producing neurons;
contacting the test compound with the cell;
measuring the excitation of the QRFP-producing neurons;
selecting a test compound that provides an excitatory stimulus to the QRFP-producing neurons;
A method, including
(10b) specifically to pyroglutaminated RF amide peptide (QRFP)-producing neurons located within the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) A method for testing a substance that provides an excitatory stimulus, comprising:
providing pyroglutaminated RF amide peptide (QRFP)-producing neurons;
contacting the test compound with the cell;
measuring the excitation of the QRFP-producing neurons;
determining whether a test compound provides an excitatory stimulus to the QRFP-producing neurons by comparing excitation of the QRFP-producing neurons before and after contact with the test compound.
(10c) specifically to pyroglutaminated RF amide peptide (QRFP)-producing neurons located within the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) A method for testing a substance that provides an excitatory stimulus, comprising:
administering a test compound to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) of a mammal;
measuring the excitation (e.g., potential) of QRFP-producing neurons;
determining whether a test compound provides an excitatory stimulus to the QRFP-producing neurons by comparing excitation of the QRFP-producing neurons before and after contact with the test compound.
(10d) A method of testing for a test compound that induces hibernation, comprising:
administering a test compound to regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) of a mammal (e.g., a non-human mammal);
confirming that the mammal hibernates;
A method, including
(10e) The method according to (10d) above,
From the correlation between the deep body temperature (e.g., intestinal temperature) and the oxygen consumption of the mammal (e.g., non-human mammal), the deep body temperature (theoretical set temperature) when the oxygen consumption is 0 and ΔVO 2 /ΔT B (heat production feedback gain);
A method wherein both the theoretical setpoint temperature and the negative feedback gain of heat production are reduced by administration of the test compound relative to pre-administration, indicating that the mammal has hibernated.
(10f) A method of testing whether a test compound induces hibernation in a mammal, such as a human, comprising:
Estimates of the theoretical setpoint temperature and heat production feedback in humans in whom test compounds were administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe). providing an estimate of the gain and an estimate of the theoretical setpoint temperature of the human prior to administration and an estimate of the heat production feedback gain;
An estimated theoretical set temperature and an estimated feedback gain of heat production after administration of said test compound compared to an estimated theoretical set temperature and an estimated feedback gain of heat production prior to administration of said test compound. and checking whether both of
A decrease in the estimated theoretical setpoint temperature and the estimated feedback gain of heat production after administration than before administration indicates that the mammal has hibernated.
(10g) A method for determining (predicting, estimating, computationally calculating) whether a test compound induces hibernation in a mammal such as a human, comprising:
Estimates of the theoretical setpoint temperature and heat production feedback in humans in whom test compounds were administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe). providing an estimate of the gain and an estimate of the theoretical setpoint temperature of the human prior to administration and an estimate of the heat production feedback gain;
An estimated theoretical set temperature and an estimated feedback gain of heat production after administration of said test compound compared to an estimated theoretical set temperature and an estimated feedback gain of heat production prior to administration of said test compound. and checking whether both of
A decrease in the estimated theoretical setpoint temperature and the estimated feedback gain of heat production after administration than before administration indicates that the mammal has hibernated.
(10h) A method for determining (predicting, estimating, computationally calculating) whether a test compound induces hibernation in a mammal such as a human, comprising:
In a mammal, such as a human, to which the test compound was administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe), pre- and post-administration, respectively recording oxygen consumption and core body temperature under at least two different ambient temperature conditions;
estimating the correlation between oxygen consumption and core body temperature before and after administration, respectively;
Determining from the estimated correlation whether the degree of decrease in oxygen consumption when core body temperature is decreased is decreased after administration compared to before administration, and when oxygen consumption is 0 determining whether the estimate of core body temperature, given the
The degree of decrease in oxygen consumption when core body temperature decreases is lower after administration than before administration, and the estimated value of core body temperature when assuming that oxygen consumption is 0 is The method, wherein the decrease after administration compared to before indicates that said mammal has hibernated.
(11) A method for determining whether a test compound induces hibernation in mammals such as humans (examination, prediction, estimation, computational scientific calculation),
In a mammal, such as a human, to which the test compound was administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe), pre- and post-administration, respectively providing (or recording) recorded oxygen consumption and core body temperature under at least two different ambient temperature conditions, respectively, in
estimating the correlation between oxygen consumption and core body temperature before and after administration, respectively;
Determining from the estimated correlation whether the degree of decrease in oxygen consumption when core body temperature is decreased is decreased after administration compared to before administration, and when oxygen consumption is 0 determining whether the estimate of core body temperature, given the
The degree of decrease in oxygen consumption when core body temperature decreases is lower after administration than before administration, and the estimated value of core body temperature when assuming that oxygen consumption is 0 is The method, wherein the decrease after administration compared to before indicates that said mammal has hibernated.
(12) A device for determining hibernation,
In a mammal, such as a human, to which the test compound was administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe), pre- and post-administration, respectively a recording unit that records oxygen consumption and core body temperature recorded under at least two different ambient temperature conditions, respectively, in
Before and after administration, the correlation between oxygen consumption and core body temperature was estimated. and whether the estimated core body temperature, assuming zero oxygen consumption, is reduced post-dosing compared to pre-dosing. and a calculation unit for determining
The degree of decrease in oxygen consumption when core body temperature decreases is lower after administration than before administration, and the estimated value of core body temperature when assuming that oxygen consumption is 0 is and a determination unit that determines that the mammal has hibernated if it is decreased post-administration compared to pre-administration.

図1a~hは、視床下部体温とエネルギー消費量を低下させるQrfp-iCreニューロンの活性化に関する。図1aは、Qrfp-iCreマウスにおけるiCre陽性ニューロンの化学遺伝学的興奮に対する戦略を示す。Figures 1a-h relate to activation of Qrfp-iCre neurons that lower hypothalamic body temperature and energy expenditure. FIG. 1a shows a strategy for chemogenetic excitation of iCre-positive neurons in Qrfp-iCre mice. Qrfp‐iCreマウスにおけるiCre陽性細胞の化学的興奮は、赤外線サーモグラフィーにより測定した結果、低体温を誘発することがわかった。ヘテロ接合Rosa26dreaddm3(M3)および/またはRosa26dreaddm4(M4)対立遺伝子を有するヘテロ(Q‐het)またはホモ接合(Q‐ホモ)Qrfp‐iCreマウスを実験に供した。Chemical excitation of iCre-positive cells in Qrfp-iCre mice was found to induce hypothermia as measured by infrared thermography. Heterozygous (Q-het) or homozygous (Q-homo) Qrfp-iCre mice carrying heterozygous Rosa26 dreaddm3 (M3) and/or Rosa26 dreaddm4 (M4) alleles were subjected to experiments. Qrfp-iCreマウスにおけるQニューロンの分布。内側基底視床下部にAAV10-DIO-GFPを注射した後のGFPの発現によって描写される。スケールバー(水平画像)、500μm;挿入部分、100μm;冠状画像、200μm。Pe:脳室周囲核、AVPe:前室Pe、MPA:内側視索前野、LPO:外側視索前野、AHA:前視床下部、VMH:腹内側視床下部、LHA:外側視床下部、SON:視床上核、DMH:視床下部背内側部、TMN:結節乳頭核、MM:内側乳頭核、SCN:視交叉上核、VOLT:分界板の血管器官、TC:視索核、ARC:視索静脈、第3脳室視索核。Distribution of Q neurons in Qrfp-iCre mice. Depicted by the expression of GFP after injection of AAV10-DIO-GFP into the medial basal hypothalamus. Scale bar (horizontal image), 500 μm; inset, 100 μm; coronal image, 200 μm. Pe: periventricular nucleus, AVPe: anterior chamber Pe, MPA: medial preoptic area, LPO: lateral preoptic area, AHA: anterior hypothalamus, VMH: ventromedial hypothalamus, LHA: lateral hypothalamus, SON: suprathalamus Nucleus, DMH: dorsomedial hypothalamus, TMN: tuberomaminal nucleus, MM: medial mammary nucleus, SCN: suprachiasmatic nucleus, VOLT: vascular organ of the lamina septum, TC: optic nucleus, ARC: optic vein, No. 3-ventricular optic nucleus. Q-hM3Dマウスの表面体温を示す代表的な体温計測結果。0時間にCNOを腹腔内注射した。尾部の温度は0.5時間(矢印)に上昇することに注意。Representative thermometry results showing surface body temperature of Q-hM3D mice. CNO was injected intraperitoneally at 0 hours. Note the temperature rise in the tail at 0.5 hours (arrow). CNO IP90分後のQ‐hM3Dマウスからのスライス標本のFos免疫染色。スケールバー、100μm。Fos immunostaining of slices from Q-hM3D mice 90 minutes after CNO IP. Scale bar, 100 μm. Q‐hM3DマウスにおけるQニューロンの化学遺伝学的活性化による代謝分析の手順。Procedure for metabolic analysis by chemogenetic activation of Q neurons in Q-hM3D mice. DREADDによるCre陽性ニューロンの活性化後の低体温/代謝低下の経時的進行。紫色の系統、Q-hM3Dマウス;黄色の系統、Qrfp-iCreマウスに外側視床下部にAAV10-DIO-hM3Dq-mCherryを注射;黒色の系統、Qrfp-iCreマウスに内側基底視床下部にAAV-DIO-mCherryを注射(陰性対照)。Chronological progression of hypothermia/hypometabolism after activation of Cre-positive neurons by DREADD. purple strain, Q-hM3D mice; yellow strain, Qrfp-iCre mice injected with AAV10-DIO-hM3Dq-mCherry into the lateral hypothalamus; black strain, Qrfp-iCre mice injected with AAV-DIO- into the medial basolateral hypothalamus; Inject mCherry (negative control). Qニューロン誘発性代謝低下(QIH)は数日間持続し、CNO注入により再び誘導できる。bとgの線と陰影はそれぞれ各群の平均値と標準偏差を示す。Q neuron-induced hypometabolism (QIH) persists for several days and can be induced again by CNO infusion. Lines and shading in b and g indicate the mean and standard deviation of each group, respectively. 図2a~lは、Qニューロン投射の組織学的・機能的解析の結果を示す。図2aは、Qrfp-iCreマウスにAAV-DIO-GFPを注入することにより、QニューロンにおいてGFPを発現することにより描出されたQニューロンの軸索投射パターンを描出する戦略を示す。Figures 2a-l show the results of histological and functional analysis of Q neuron projections. FIG. 2a shows the strategy of injecting AAV-DIO-GFP into Qrfp-iCre mice to delineate the axonal projection pattern of Q neurons delineated by expressing GFP in Q neurons. AVPe、MPAおよびPe.スケールバーにおけるGFP陽性Qニューロンの分布、100μm。AVPe, MPA and Pe. Distribution of GFP-positive Q neurons in scale bar, 100 μm. Qニューロンから生じる軸索の分布。スケールバー、100μm。Distribution of axons arising from Q neurons. Scale bar, 100 μm. ScaleS法により脳を用いて撮影した画像のクロップ画像をScaleS法で明らかにし、AVPeのQニューロンとDMHの線維を示した。Cropped images of images taken with the brain using the ScaleS method were revealed by the ScaleS method, showing AVPe Q neurons and DMH fibers. Qニューロンの集団がQ-hM3DマウスにおいてVgatおよび/またはVglut2を発現することを示すin situハイブリダイゼーション解析。スケールバー、100μm。In situ hybridization analysis showing that populations of Q neurons express Vgat and/or Vglut2 in Q-hM3D mice. Scale bar, 100 μm. 図2eに示される長方形領域の高倍率画像。High magnification image of the rectangular area shown in Fig. 2e. 図2eにおける長方形領域の単一色画像。A single-color image of the rectangular area in Fig. 2e. Vgat、Vglut2またはその両方を発現するQニューロンを示す図2fに示す長方形領域1~3の高倍率画像。(1) VgatmCherry; (2) Vglt2mCherry; (3) VgatVglt2mCherryHigher magnification images of rectangular areas 1-3 shown in FIG. 2f showing Q neurons expressing Vgat, Vglut2 or both. (1) Vgat + mCherry + ; (2) Vglt2 + mCherry + ; (3) Vgat + Vglt2 + mCherry + . mCherry発現細胞(2匹のマウスから調製した4切片に数える)におけるVgat陽性ニューロンの割合(1997細胞中1291個)、Vglut2(1997細胞中359個)および(1997細胞中115個)。他のmCherry発現細胞は、VgatもVglut2も発現しない。Percentage of Vgat-positive neurons (1291 of 1997 cells), Vglut2 (359 of 1997 cells) and (115 of 1997 cells) in mCherry-expressing cells (counted in 4 sections prepared from 2 mice). Other mCherry-expressing cells express neither Vgat nor Vglut2. DMHおよびRPaにおけるQニューロンまたはその軸索の光発生的興奮のための戦略、スケールバー、100μm。Strategies for optogenetic excitation of Q neurons or their axons in DMH and RPa, scale bar, 100 μm. AVPe/MPA中のCre陽性細胞またはその軸索のDMHまたはRPaにおける光発生的励起中にサーモグラフィーカメラにより測定した体温の推移。光刺激の4ショットを青色の矢頭で示す。線と陰影はそれぞれ、各群の平均値と標準偏差を示す。下のパネルは、Qニューロン(AVPe/MPA)の興奮によって得られる代表的なサーモグラフィ画像を示す。尾部は、最初の光刺激(矢印)から5分後に熱放出を示すことに注意。Body temperature course measured by a thermographic camera during photogenic excitation in DMH or RPa of Cre-positive cells or their axons in AVPe/MPA. Four shots of light stimulation are indicated by blue arrowheads. Lines and shading indicate the mean and standard deviation for each group, respectively. The lower panel shows representative thermographic images obtained by excitation of Q neurons (AVPe/MPA). Note that the tail shows heat release 5 minutes after the first light stimulation (arrow). 光刺激4回目の照射30分後の推定T。Tsに対するDMH線維刺激の効果は、AVPe/MPAにおける細胞体の励起の効果とほぼ同等であることに留意されたい。骨盤、脳室周囲核;AVPe、前室Pe;VOLT、分界板の血管器官;MPA、視索前野内側;VLPO、視床下部腹外側野;PVN、視床下部傍室核;SON、視索上核;DMH、視床下部背内側部;TMN、結節乳頭体核;MM、内側乳頭核;LC、青斑核;PAG、中脳水道周囲灰白質;LPB、外側傍核;RVLM、室傍核;第3淡蒼球核;淡蒼球核;室。Estimated T S 30 minutes after the fourth light stimulation. Note that the effect of DMH fiber stimulation on Ts is roughly equivalent to that of cell body excitation in AVPe/MPA. Pelvis, periventricular nucleus; AVPe, anterior chamber Pe; VOLT, vascular organ of the septum septum; MPA, medial preoptic area; VLPO, ventrolateral hypothalamic area; PVN, hypothalamic paraventricular nucleus; MM, medial papillary nucleus; LC, locus coeruleus; PAG, periaqueductal gray matter; LPB, lateral paranucleus; RVLM, paraventricular nucleus; 3 globus pallidus; nucleus pallidus; chamber. Qニューロンが誘発する代謝低下は、体温の設定値の低下を伴う。種々のTにおけるQIHのTおよびVOの推移。QIHはCNO注射によりQ‐hM3Dマウスで誘導された。線と陰影は各群の平均値と標準偏差を示す。Q neuron-induced hypometabolism is accompanied by a reduction in body temperature set point. Evolution of TB and VO2 of QIH at various TA. QIH was induced in Q-hM3D mice by CNO injection. Lines and shading indicate the mean and standard deviation for each group. 正常およびQIH条件下の最小T (左)およびVO(右)。Minimum T B (left) and VO 2 (right) under normal and QIH conditions. 哺乳類における熱産生と損失経路の概略図。熱喪失はTとG因子でのTの差に比例する。熱産生は、H因子におけるTとTの差によって支配される。Schematic representation of heat production and loss pathways in mammals. Heat loss is proportional to the difference between T A and T B at the G factor. Thermogenesis is governed by the difference between T R and T A in factor H. 種々のTにおけるT‐TとVOの関係。曲線の傾きはGを示す。ドットは記録データであり、太い線は後部Gの中央値から描かれ、細い線は後部サンプルから無作為に選択された500のGから描かれた曲線である。Relationship between TB - TA and VO2 at various TA. The slope of the curve indicates G. Dots are recorded data, the thick line is drawn from the median posterior G and the thin line is the curve drawn from 500 Gs randomly selected from the posterior sample. 推定G(e)の後方分布とQIHから正常状態へのG(f)の差。Backward distribution of the estimated G(e) and the difference in G(f) from QIH to normal conditions. 推定G(e)の後方分布とQIHから正常状態へのG(f)の差。Backward distribution of the estimated G(e) and the difference in G(f) from QIH to normal conditions. 種々のTにおけるTとVOの関係。曲線の負の傾きはHを示し、x切片はTRを示す。点と線の説明は図3dを参照。Relationship between TB and VO2 at various TA . The negative slope of the curve indicates H and the x-intercept indicates TR. See Figure 3d for an explanation of the dots and lines. 推定H(h)の分布およびQIHから正常状態へのHの差(i)。Distribution of estimated H(h) and difference of H from QIH to normal state(i). 推定H(h)の分布およびQIHから正常状態へのHの差(i)。Distribution of estimated H(h) and difference of H from QIH to normal state(i). 推定TR(j)の分布およびQIHから正常状態(k)へのTRの差。Distribution of estimated TR (j) and difference in TR from QIH to normal (k). 推定TR(j)の分布およびQIHから正常状態(k)へのTRの差。Distribution of estimated TR (j) and difference in TR from QIH to normal (k). 個体内のQIHの代謝的移行。上段はQIH中の種々のTでの動物姿勢の推移を示す。第2列は第3列の時間拡大率であり、いずれも代表的な動物1匹の代謝推移を示す。マウスはT=28℃(B)でFIT中にカールアップ姿勢を示し、T=28℃(D)でQIH中に伸びた姿勢を示すことに注意。Tを12℃に下げたQIHの間でも、FIT(E)のように、動物はカールアップ姿勢をとり、動物が熱損失を避ける体勢をとっていたことを示す。Metabolic translocation of QIH within an individual. The upper row shows the transition of animal posture at various TAs during QIH . The second column is the time expansion rate of the third column, each showing the metabolic transition of one representative animal. Note that mice exhibit a curled-up posture during FIT at T A =28° C. (B) and an extended posture during QIH at T A =28° C. (D). Even during QIH when the TA was lowered to 12° C., as in FIT(E), the animals assumed a curled-up position, indicating that the animals were positioned to avoid heat loss. 図4a~gは、Qニューロンは、マウスにおいて絶食誘発性の休眠を誘導する役割を果たすことを示す。図4aは、Qニューロン機能を抑制するための戦略を示す。左パネル、実験手順。右パネル、抗GFP抗体による免疫染色により示されるAVPe/MPAにおけるTeTxLC-eYFPの発現。スケールバー、100μm。Figures 4a-g show that Q neurons play a role in inducing fasting-induced diapause in mice. Figure 4a shows a strategy for suppressing Q neuron function. Left panel, experimental procedure. Right panel, TeTxLC-eYFP expression in AVPe/MPA shown by immunostaining with anti-GFP antibody. Scale bar, 100 μm. FIT実験の概略図。Schematic of FIT experiment. 正常なFITは、QニューロンにおいてTeTxLCを発現することによって起こらなくなった。これらのマウスでは、代謝の急速な振動的低下はみられなかったことに注意されたい。Normal FIT was abolished by expressing TeTxLC in Q neurons. Note that these mice did not show a rapid oscillatory decline in metabolism. 24~36時間および36~48時間の最小VOを対照マウスとTeTxLCマウス間で比較した。Qニューロンの抑制は、FITで通常見られるVO減少を遮断した。対照群とTeTxLCマウスの間の最小VOの推定差は、24~36時間で[0.01,0.80]ml/g/h、36~48時間で[0.36,1.16]ml/g/hであった。TeTxLCマウスにおけるTとVOの小さいSDは、FIT中の振動変化を含む代謝の突然の変化にQニューロンが関与することを示す。“>”および“<”の符号は、推定最小値の差の89%HPDIまたはTeTxLCから対照マウスへの標準偏差のどちらが陰性または陽性であるかを示す。Minimum VO 2 at 24-36 h and 36-48 h were compared between control and TeTxLC mice. Inhibition of Q neurons blocked the VO2 reduction normally seen in FIT. Estimated differences in minimum VO2 between control and TeTxLC mice were [0.01, 0.80] ml/g/h at 24-36 hours and [0.36, 1.16] at 36-48 hours. ml/g/h. Small SDs of TB and VO2 in TeTxLC mice indicate that Q neurons are involved in abrupt changes in metabolism, including oscillatory changes during FIT. The “>” and “<” signs indicate whether the estimated minimum difference 89% HPDI or the standard deviation from TeTxLC to control mice is negative or positive. 対照、Qrfp-iCreヘテロマウスおよびホモマウスにおいてFITが誘導され、QRFPペプチドの欠失はFITに影響しないことが示された。FIT was induced in control, Qrfp-iCre heterozygous and homozygous mice, indicating that deletion of the QRFP peptide does not affect FIT. 組み換え型狂犬病ウイルスベクターを用いてQニューロンと単シナプスで接触する入力ニューロンを描出する手順。Procedure to delineate input neurons that make monosynaptic contacts with Q neurons using recombinant rabies virus vectors. Qニューロンの入力ニューロンの分布。矢印は出発細胞を示す。スケールバー、100μm。Distribution of input neurons of the Q neuron. Arrows indicate starting cells. Scale bar, 100 μm. 入力ニューロンを含む脳領域。スケールバー、100μm。Pe、脳室周囲核;AVPe、前脳室Pe;MPA、内側視索前野;VOLT、分界板の血管器官;MnPO、正中視索前野;VMPO、視索前野腹内側;VLPO、視床下部腹側野;PVN、視床下部傍室核;TC、塊茎;オプト、視索;ac、前交連;f、脳弓;3V、第3脳室。Brain regions containing input neurons. Scale bar, 100 μm. Pe, periventricular nucleus; AVPe, anterior ventricle Pe; MPA, medial preoptic area; VOLT, vascular organ of the septum; MnPO, median preoptic area; VMPO, ventromedial preoptic area; VLPO, ventral hypothalamus Field; PVN, hypothalamic paraventricular nucleus; TC, tuber; opto, optic; ac, anterior commissure; f, fornix; 3V, third ventricle. 図5は、第一の実施形態の装置の概略を示す。FIG. 5 shows a schematic of the apparatus of the first embodiment. 図6は、第一の実施形態の装置の概略を示す。FIG. 6 shows a schematic of the apparatus of the first embodiment. 図7は、第二の実施形態の装置の概略を示す。FIG. 7 shows a schematic of the apparatus of the second embodiment. 図8は、第一および第二の実施形態の装置の追加の構成の概略を示す。FIG. 8 shows a schematic of additional configurations of the apparatus of the first and second embodiments.

発明の具体的な説明Specific description of the invention

本明細書では、「対象」とは、ヒト、および非ヒト哺乳動物、例えば、ラット、サル、ゴリラ、チンパンジー、オランウータンおよびボノボなどの非ヒト霊長類を意味する。 As used herein, "subject" means humans and non-human mammals, for example non-human primates such as rats, monkeys, gorillas, chimpanzees, orangutans and bonobos.

本明細書では、「視床下部」とは、間脳に存在し、内分泌および自律機能の調節を行う中枢である。本明細書では、「Qニューロン」とは、視床下部の内側領域、すなわち、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)に存在する神経細胞であり、この神経細胞は、ピログルタミン化RFアミドペプチド(QRFP)を産生するものである。ピログルタミン化RFアミドペプチド(QRFP)は、GPR103受容体の内因性リガンドとして同定された神経ペプチドである。QRFPは、視床下部に強く発現しており、覚醒系を増強する効果を有することが明らかとなっているように、睡眠と覚醒の調節に関与していると考えられている。 As used herein, "hypothalamus" is the center located in the diencephalon and responsible for the regulation of endocrine and autonomic functions. As used herein, "Q-neurons" refer to nerves located in the medial regions of the hypothalamus, namely the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe) A neuronal cell that produces pyroglutaminated RF-amide peptide (QRFP). Pyroglutaminated RF-amide peptide (QRFP) is a neuropeptide identified as an endogenous ligand for the GPR103 receptor. QRFP is strongly expressed in the hypothalamus and is thought to be involved in the regulation of sleep and wakefulness, as it has been shown to have the effect of enhancing the wakefulness system.

本明細書では、「T」は対象の周囲環境温度(℃)を意味し、「T」は深部体温(℃)を意味し、「T」は理論的設定温度(℃)を意味する。「VO」は対象の酸素消費量を意味する。Tは、Tを変化させたときのTとVOとの相関関係を求め、VOがゼロであるときのTとして求められる体温である。Tは、外気温の影響を受ける体表の温度ではなく、体内の温度である。例えば、ヒトにおけるTは、直腸内、食道内、膀胱内、または肺動脈内血液温で規定されうる。熱生成の負のフィードバックゲイン(H)は、発熱効率を示し、H=ΔVO/ΔTにより求められる。As used herein, “T A ” means ambient temperature of the subject (° C.), “T B ” means core body temperature (° C.), and “T R ” means theoretical setpoint temperature (° C.). do. " VO2 " means oxygen consumption of a subject. T R is the body temperature determined as T B when VO 2 is zero by determining the correlation between T B and VO 2 when T A is varied. T B is the internal body temperature, not the body surface temperature, which is affected by the outside air temperature. For example, TB in humans can be defined by rectal, intraesophageal, intravesical, or intrapulmonary blood temperature. The heat generation negative feedback gain (H) indicates heat generation efficiency and is given by H=ΔVO 2 /ΔT B.

本明細書では、「冬眠」とは、哺乳動物で認められる低体温かつ低代謝状態である。「日内休眠」(daily torpor)とは、短期の低代謝状態である。冬眠と日内休眠とは、日内休眠では、Tの低下がほとんど無くHの低下が起こるのに対して、冬眠ではTとHの両方が有意に低下する点で異なる。本明細書では、「冬眠様状態」とは、Tの減少に伴ってTとHの両方が有意に低下した状態を意味する。本明細書では、「非冬眠動物」とは、冬季あるいは絶食時に冬眠をする生態を有しない動物をいう。As used herein, "hibernation" is a state of hypothermia and low metabolism found in mammals. "Daily torpor" is a short-term state of low metabolism. Hibernation and circadian dormancy differ in that circadian dormancy causes a decrease in H with little decrease in TR, whereas hibernation causes a significant decrease in both TR and H. As used herein, "hibernation-like state" means a state in which both TR and H are significantly decreased with decreasing TA . As used herein, the term "non-hibernating animal" refers to an animal that does not have a habit of hibernating in winter or during fasting.

本明細書では、「呼気」とは、対象が吐き出す息である。本明細書では、酸素濃度とは、体積当たりの酸素量を示す指標である。酸素濃度の単位は、例えば、%またはmmHgであり得る。本明細書では、「酸素消費量」(VO)は、呼気および吸気に含まれる酸素濃度から算出される時間当りの酸素消費量である。酸素消費量は、体重によって変動するため、単位体重当り(例えば、kg当り、およびg当り)に補正されて計算されることもある。As used herein, "exhaled breath" is breath exhaled by a subject. As used herein, the oxygen concentration is an index indicating the amount of oxygen per volume. The units of oxygen concentration can be, for example, % or mmHg. As used herein, "oxygen consumption" ( VO2) is the oxygen consumption per hour calculated from the oxygen concentration contained in exhaled and inspired air. Since oxygen consumption varies with body weight, it may be corrected and calculated per unit body weight (eg, per kg and per g).

本発明者らは、生きている非冬眠動物である対象の脳において、視床下部の前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに対して興奮性刺激を加えることによって、当該対象に冬眠様状態を誘導させることができることを見出した。 We found that in the brain of a living, non-hibernating animal subject, the hypothalamus consists of the anterior ventral periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe). It has been found that a hibernation-like state can be induced in the subject by applying an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons within one or more regions selected from the group.

従って、本発明によれば、生きている非冬眠動物である対象に冬眠様状態を誘発させる方法であって、視床下部の前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに対して興奮性刺激を加えることを含む方法が提供される。 Thus, according to the present invention, there is provided a method of inducing a hibernation-like state in a living non-hibernating animal subject, comprising: and periventricular nucleus (Pe).

興奮性刺激は、脳深部電極を用いて刺激すること、QRFP産生ニューロンの活性化剤を用いて刺激することによって引き起こすことができる。 Excitatory stimulation can be induced by stimulating with deep brain electrodes, stimulating with an activator of QRFP-producing neurons.

本発明によれば、生きている対象の脳において、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンを刺激する装置(以下では、「本発明の装置」ということがある)が提供される。
(A1)本発明の装置は、
電圧の発生を制御する制御信号を送信する制御部と、
前記制御部からの制御信号を受信して電圧を発生する電圧発生部と、
前記電圧発生部と近位で電気的に接続され、遠位に電気刺激電極を有する刺激プローブであって、脳表面からQRFP産生ニューロンにアクセスするために十分な長さを有し、前記電圧発生部からの電圧により遠位の電気刺激電極において電気刺激を発生させる刺激プローブと
を含み得る。これにより本発明の装置は、電気的にQRFP産生ニューロンに対して興奮性刺激を与えることができる。あるいは、電気的刺激の代わりに化学的刺激を与える観点で、(A2)本発明の装置は、
QRFP産生ニューロン刺激性化合物の放出を制御する制御信号を送信する制御部と、
前記化合物の貯蔵部と、
前記制御部からの制御信号を受信して化合物の貯蔵部から前記化合物を放出する化合物放出部と
を含み得る。
(B)本発明の装置は、
外気温計と、
深部体温計と、
呼気ガス中の酸素濃度を測定する呼気ガス分析部と、
測定された外気温と、深部体温および酸素濃度からなる群から選択される少なくとも1つの数値とを記録する記録部と、
をさらに含んでいてもよい。本発明の装置の(B)の構成において、上記対象が外気温(T)の減少に伴って、深部体温(T)が低下するかいなかを調べることができ、かつ、呼気ガス分析結果から対象の酸素消費量を求め、理論的設定温度(T)および熱生成の負のフィードバックゲイン(H)を求めることができる。これによって、本発明の装置は、対象が冬眠様状態を誘発したかいなかを決定することができる。
According to the present invention, in the brain of a living subject, one or more selected from the group consisting of the anterior ventricular periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe). A device (hereinafter sometimes referred to as the "device of the present invention") is provided for stimulating pyroglutaminated RF amide peptide (QRFP)-producing neurons in a region.
(A1) The device of the present invention is
a control unit that transmits a control signal for controlling voltage generation;
a voltage generator that receives a control signal from the controller and generates a voltage;
a stimulation probe electrically connected proximally to said voltage generator and having an electrical stimulation electrode distally, said voltage generator having a length sufficient to access QRFP-producing neurons from the brain surface; and a stimulation probe for generating electrical stimulation at a distal electrical stimulation electrode with voltage from the body. Thus, the device of the present invention can electrically provide excitatory stimulation to QRFP-producing neurons. Alternatively, from the viewpoint of giving chemical stimulation instead of electrical stimulation, (A2) the device of the present invention is
a control unit that transmits a control signal that controls the release of the QRFP-producing neuron-stimulating compound;
a reservoir of said compound;
and a compound release unit that receives a control signal from the control unit and releases the compound from the compound storage unit.
(B) the device of the present invention comprises:
outside temperature gauge and
a core thermometer and
an exhaled gas analyzer for measuring oxygen concentration in exhaled gas;
a recording unit that records the measured outside temperature and at least one numerical value selected from the group consisting of core body temperature and oxygen concentration;
may further include In the configuration (B) of the apparatus of the present invention, the subject can check whether the core body temperature (T B ) decreases as the outside temperature (T A ) decreases, and the exhaled gas analysis result , the theoretical set temperature (T R ) and heat production negative feedback gain (H) can be determined. This allows the device of the present invention to determine whether or not the subject has induced a hibernation-like state.

以下では、本発明の装置について具体的に説明する。
(第一の実施形態)
第一の実施形態では、本発明の装置は、上記(A1)の構成を有する。本発明の装置はこれにより、生きている対象の脳のQRFP産生ニューロンを電気的に刺激することにより、対象に冬眠様状態を誘発させる。以下では、図5および6を参照しながら第一の実施形態を説明する。
The device of the present invention will be specifically described below.
(First embodiment)
In a first embodiment, the device of the present invention has the configuration (A1) above. The device of the present invention thereby induces a hibernation-like state in a subject by electrically stimulating QRFP-producing neurons in the brain of a living subject. In the following, a first embodiment is described with reference to FIGS. 5 and 6. FIG.

本発明の装置1は、
電圧の発生を制御する制御信号を送信する制御部10と、
前記制御部からの制御信号を受信して電圧を発生する電圧発生部20と、
前記電圧発生部と近位で電気的に接続され、遠位に電気刺激電極を有する刺激プローブであって、脳表面からQRFP産生ニューロンにアクセスするために十分な長さを有し、前記電圧発生部からの電圧により遠位の電気刺激電極40において電気刺激を発生させる刺激プローブ30と
を有する。
The device 1 of the present invention comprises:
a control unit 10 that transmits a control signal for controlling voltage generation;
a voltage generator 20 that receives a control signal from the controller and generates a voltage;
a stimulation probe electrically connected proximally to said voltage generator and having an electrical stimulation electrode distally, said voltage generator having a length sufficient to access QRFP-producing neurons from the brain surface; and a stimulation probe 30 for generating electrical stimulation at a distal electrical stimulation electrode 40 with voltage from the body.

本発明の装置1において、制御部10は、電圧発生を制御する制御信号を送信する。制御部10は、制御要素(マイクロプロセッサ、および電源または電池)を含み得る。制御信号は、1つの制御信号によって、1回または複数回の電圧発生を制御することができる。あるいは、この制御信号は複数回送信されて、複数回の電圧発生を制御することができる。制御信号は、1階の電圧刺激を加えることができるが、例えば、対象に冬眠様状態が誘発されるまで複数回の刺激を加えるように電圧発生を制御するものであってよい{但し、冬眠様状態の誘発後には、刺激を加えても、加えなくてもよい}。 In the device 1 of the present invention, the control section 10 transmits a control signal for controlling voltage generation. The control unit 10 may include control elements (microprocessor and power supply or battery). The control signals can control one or more voltage generations with one control signal. Alternatively, this control signal can be sent multiple times to control multiple voltage generations. The control signal can apply a first-order voltage stimulus, but may control voltage generation, for example, to apply multiple stimuli until a hibernation-like state is induced in the subject {however, hibernation A stimulus may or may not be added after induction of the like state}.

本発明の装置1において、電圧発生部20は、制御部10と配線15により電気的に連結されており、制御部10からの制御信号を受信して電圧を発生することができる。電圧は、例えば、0~5ボルト(V)の電圧であり得、例えば、0.lボルト単位で変動させることができる。電圧は、例えば、パルスとすることができ、パルス幅を例えば数十μ秒とすることができ、刺激頻度を例えば数十~数百ppsとすることができる。電圧は、例えば、1ボルトから開始し、効果が認められるまで高めるように調整されてもよい。 In the device 1 of the present invention, the voltage generator 20 is electrically connected to the controller 10 by the wiring 15, and can receive a control signal from the controller 10 and generate a voltage. The voltage can be, for example, a voltage between 0 and 5 volts (V), eg, 0.5 volts (V). It can be varied in l volts. The voltage can be pulsed, for example, with a pulse width of, for example, tens of microseconds, and a stimulation frequency of, for example, tens to hundreds of pps. The voltage may be adjusted, for example, starting at 1 volt and increasing until an effect is observed.

制御部10と電圧発生部20とは、配線15によって連結されている例が記載されたが、本発明の装置1においては、制御部10と電圧発生部20とは、配線15の代わりに、図2に示されるように、制御部10が備える制御信号送信部11と電圧発生部が備える制御信号受信部21との間で無線的に通信可能とされてもよい。この態様では、電圧発生部20は、電池20aを有していることができる。電池20aは、非接触方式で充電可能であり得る。非接触方式で充電が可能な場合には、電池20aは、体内に存在する場合であっても、体外から充電することが可能である。 Although an example in which the control unit 10 and the voltage generation unit 20 are connected by the wiring 15 has been described, in the device 1 of the present invention, the control unit 10 and the voltage generation unit 20 are connected by As shown in FIG. 2, wireless communication may be enabled between the control signal transmitter 11 included in the controller 10 and the control signal receiver 21 included in the voltage generator. In this aspect, the voltage generator 20 can have a battery 20a. Battery 20a may be chargeable in a contactless manner. If the battery 20a can be charged in a non-contact manner, the battery 20a can be charged from the outside of the body even if it exists inside the body.

電圧発生部20は、当該電圧発生部20が発生した電圧をエクステンションケーブル25を介して刺激プローブ30および先端に存在する刺激電極40に伝える。刺激プローブ30の遠位(すなわち、先端)は、刺激電極40を有しており、刺激電極40は、脳の組織に対して電圧を付与することができる。 The voltage generator 20 transmits the voltage generated by the voltage generator 20 to the stimulation probe 30 and the stimulation electrode 40 present at the tip through the extension cable 25 . The distal (ie, tip) of the stimulation probe 30 has a stimulation electrode 40 that can apply a voltage to brain tissue.

刺激プローブ30は、刺激電極40を正確にQRFP産生ニューロンに到達させるために定位脳手術によって脳内に挿入されうる。定位脳手術で頭部を計測用フレームで固定し、CTスキャンまたはMRIにより決定した電極を挿入する位置に1mm以下の精度で電極を挿入する手術である。定位脳手術の観点で、刺激プローブ30は、脳深部にむけて穿刺する時に曲げや伸張の生じない程度に堅い材質で形成される(例えば、タングステン等の堅い材質)。刺激プローブ30は、特に限定されないが例えば、1μmから1mm、または1mmから2.5mm程度の直径を有しうる。刺激プローブ30は、遠位に刺激電極40を1以上(例えば、2つ、3つまたは4つ)有する。刺激電極40は、刺激プローブ30の長軸方向に1~5mm程度の長さとすることができる。刺激プローブ30が刺激電極40を複数有する場合、刺激電極40は、特に限定されないが例えば、1mm~1.5mm程度の間隔で配置され得る。刺激電極40の各々は、一つの制御信号によって一括して制御されてもよいし、好ましくは、各々が個別の制御信号によって別々に制御されることができる。各々が個別の制御信号によって別々に制御されることによって、電極の挿入位置との関係で最適な電極に選択的に電圧を生じさせて脳を刺激することが可能となる。 The stimulation probe 30 can be inserted into the brain by stereotactic neurosurgery to precisely reach the QRFP-producing neurons with the stimulation electrodes 40 . In stereotaxic brain surgery, the head is fixed in a measurement frame, and electrodes are inserted into positions determined by CT scan or MRI with an accuracy of 1 mm or less. From the viewpoint of stereotaxic brain surgery, the stimulation probe 30 is made of a hard material (for example, a hard material such as tungsten) to the extent that it does not bend or stretch when puncturing deep into the brain. The stimulation probe 30 may have a diameter of, but not limited to, approximately 1 μm to 1 mm, or approximately 1 mm to 2.5 mm. Stimulation probe 30 has one or more (eg, two, three, or four) stimulation electrodes 40 distally. The stimulation electrode 40 can have a length of about 1-5 mm in the long axis direction of the stimulation probe 30 . When the stimulation probe 30 has a plurality of stimulation electrodes 40, the stimulation electrodes 40 can be arranged at intervals of about 1 mm to 1.5 mm, although not particularly limited. Each of the stimulation electrodes 40 may be collectively controlled by a single control signal, or preferably each may be separately controlled by individual control signals. By separately controlling each by an individual control signal, it is possible to selectively generate a voltage to the optimum electrode in relation to the insertion position of the electrode to stimulate the brain.

本発明の装置1は、対象に冬眠様状態を誘発させるものであり、ポータブルである必要は無い。ここでポータブルとは、対象と共に対象が位置する場所の足場(例えば、地面、乗り物に乗っている場合には乗り物の床)に対して対象が移動するのと一緒に移動することを意味する。従って、本発明の装置は、設置場所に固定されたものであり得る。本発明の装置は、電源に接続されていることができるから、例えば、電池や充電池を有しないことがあり得る。 The device 1 of the present invention induces a hibernation-like state in a subject and need not be portable. Portable here means moving with the object relative to the footing where the object is located (eg, the ground, or the floor of the vehicle if in a vehicle). Thus, the device of the invention can be fixed in place. Since the device of the invention can be connected to a power source, it can, for example, have no batteries or rechargeable batteries.

(第二の実施形態)
第一の実施形態では、脳深部を電気刺激する装置が開示されたが、第二の実施形態では、脳深部を化学的に刺激する装置に関する。以下では、図7を参照しながら、第二の実施形態を説明する。
(Second embodiment)
While the first embodiment disclosed a device for electrical stimulation of the deep brain, the second embodiment relates to a device for chemical stimulation of the deep brain. A second embodiment will be described below with reference to FIG.

第二の実施態様においては、本発明の装置100は、
QRFP産生ニューロン刺激性化合物の放出を制御する制御信号を送信する制御部110と、
前記化合物の貯蔵部125と、
前記制御部からの制御信号を受信して化合物の貯蔵部125から前記化合物を送出する化合物送出部120と、
化合物放出口140と放出口140までの化合物の流路を備え、前記化合物をQRFP産生ニューロンにまで送達するガイド130と、
を有する。本発明の装置100においては、制御部110は化合物送出部120と配線115を通じて電気的に接続されている。化合物送出部120は、制御部110から制御信号を受信し、その制御信号に応じて貯蔵部125に蓄積された化合物を貯蔵部125から流路126および流路121、およびガイド130を通じて化合物放出口140から脳内へ放出する。化合物は溶媒に溶解した溶液の形態であってよく、化合物送出部120による送液機構によって化合物放出口140へ送液され得る。化合物の貯蔵部125は、外部から化合物を導入する化合物導入口125aを有していてもよい。化合物導入口125aは、化合物を化合物貯蔵庫に供給することができる。化合物貯蔵部125は、体外に露出していてもよい。但し、化合物貯蔵部125が体外に露出する場合には、化合物貯蔵部125は無菌条件下で維持される。制御部110は、化合物送出部120に対して、例えば、1回の化合物送出につき、1μL~100μLの送液を行うように制御信号を送信する。
In a second embodiment, the device 100 of the invention comprises
a control unit 110 that transmits a control signal that controls the release of the QRFP-producing neuron-stimulating compound;
a reservoir 125 of said compound;
a compound delivery unit 120 that receives a control signal from the control unit and delivers the compound from a compound storage unit 125;
a guide 130 comprising a compound outlet 140 and a channel for the compound to the outlet 140 and delivering the compound to QRFP-producing neurons;
have In the device 100 of the present invention, the control section 110 is electrically connected to the compound delivery section 120 through the wiring 115 . Compound delivery unit 120 receives a control signal from control unit 110, and in response to the control signal, releases the compound accumulated in storage unit 125 from storage unit 125 through channel 126, channel 121, and guide 130 to the compound outlet. Released from 140 into the brain. The compound may be in the form of a solution dissolved in a solvent, and may be delivered to the compound outlet 140 by the liquid delivery mechanism of the compound delivery section 120 . The compound storage unit 125 may have a compound introduction port 125a for introducing a compound from the outside. Compound inlet 125a can supply compound to the compound reservoir. Compound reservoir 125 may be exposed to the outside of the body. However, when compound reservoir 125 is exposed to the outside of the body, compound reservoir 125 is maintained under sterile conditions. The control unit 110 transmits a control signal to the compound delivery unit 120 so that, for example, 1 μL to 100 μL of liquid is delivered per compound delivery.

ガイド130は、化合物放出口140を正確にQRFP産生ニューロンに到達させるために定位脳手術によって脳内に挿入されうる。定位脳手術で頭部を計測用フレームで固定し、CTスキャンまたはMRIにより決定した電極を挿入する位置に1mm以下の精度で電極を挿入する手術である。定位脳手術の観点で、ガイド130は、脳深部にむけて穿刺する時に曲げや伸張の生じない程度に堅い材質で形成される(例えば、タングステン等の堅い材質)。刺激プローブ30は、例えば、1mmから2.5mm程度の直径を有しうる。 The guide 130 can be inserted into the brain by stereotactic neurosurgery to direct the compound outlet 140 precisely to the QRFP-producing neurons. In stereotaxic brain surgery, the head is fixed in a measurement frame, and electrodes are inserted into positions determined by CT scan or MRI with an accuracy of 1 mm or less. From the viewpoint of stereotactic brain surgery, the guide 130 is made of a hard material (for example, a hard material such as tungsten) that does not bend or stretch when the guide is punctured into the deep part of the brain. Stimulation probe 30 may, for example, have a diameter on the order of 1 mm to 2.5 mm.

本発明の装置100は、対象に冬眠様状態を誘発させるものであり、ポータブルである必要は無い。ここでポータブルとは、対象と共に対象が位置する場所の足場(例えば、地面、乗り物に乗っている場合には乗り物の床)に対して対象が移動するのと一緒に移動することを意味する。従って、本発明の装置は、設置場所(例えば、対象が横たわるベッドまたはベッドが配置された床)に固定されたものであり得る。本発明の装置は、電源に接続されていることができるから、例えば、電池や充電池を有しないことがあり得る。 The device 100 of the present invention induces a hibernation-like state in a subject and need not be portable. Portable here means moving with the object relative to the footing where the object is located (eg, the ground, or the floor of the vehicle if in a vehicle). Thus, the device of the present invention may be fixed to the installation site (eg, the bed on which the subject lies or the floor on which the bed is arranged). Since the device of the invention can be connected to a power source, it can, for example, have no batteries or rechargeable batteries.

(追加の構成)
第一の実施形態の装置1および第二の実施形態の装置100は、(B)の構成:
外気温計50と、
体温計60と、
呼気ガス中の酸素濃度を測定する呼気ガス分析部70と、
測定された外気温と、体温および酸素濃度からなる群から選択される少なくとも1つの数値とを記録する記録部80と
をさらに有し得る{ここで、体温計は、好ましくは、対象の深部体温を測定する深部体温計であり得る}。上記(B)は、例えば図8に示されるように、制御部10または制御部110が備えていてもよい{ここで、図8中では描画が省略されているが、制御部10および110はそれぞれ、第一の実施形態および第2の実施形態において説明したように、有線または無線で電圧発生部20に接続されている}。対象において冬眠様状態を誘発させる際には、外気温(または対象の周囲温度)(T)を低下させると共に、対象の深部体温(T)と代謝を低下させる。従って、外気温(または対象の周囲温度)を計測する外気温計と、体温計(好ましくは、深部体温計)を備えることにより、本発明の装置は、対象の体温(好ましくは、深部体温)と外気温との関係をモニターすることが可能となる。
(additional configuration)
The device 1 of the first embodiment and the device 100 of the second embodiment have the configuration (B):
an outside temperature gauge 50;
a thermometer 60;
an exhaled gas analyzer 70 for measuring oxygen concentration in exhaled gas;
It may further have a recording unit 80 that records the measured outside air temperature and at least one numerical value selected from the group consisting of body temperature and oxygen concentration {here, the thermometer preferably measures the core body temperature of the subject. It can be a core thermometer that measures}. The above (B) may be provided in the control unit 10 or the control unit 110, for example, as shown in FIG. Each of them is connected to the voltage generator 20 by wire or wirelessly as described in the first embodiment and the second embodiment}. In inducing a hibernation-like state in a subject, the ambient temperature (or ambient temperature of the subject) (T A ) is lowered, as well as the subject's core body temperature (T B ) and metabolism. Accordingly, by providing an ambient temperature gauge for measuring the ambient temperature (or the target's ambient temperature) and a thermometer (preferably, a core thermometer), the device of the present invention can measure the target's body temperature (preferably, the core temperature) It becomes possible to monitor the relationship with temperature.

また、本発明の装置は、呼気ガス中の酸素濃度を測定する呼気ガス分析部70を備えることによって、対象による酸素消費量(VO)を推定することができ、酸素消費量(VO)から対象の代謝状態を推定することができる。In addition, the apparatus of the present invention can estimate the oxygen consumption ( VO 2 ) by the subject by providing the breath gas analyzer 70 for measuring the oxygen concentration in the breath gas. can be used to estimate the metabolic state of a subject.

また、深部体温(T)と酸素消費量(VO)とから、体温の理論的設定温度(T)と熱生成のフィードバックゲイン(H)を推定することも可能となる。体温の理論的設定温度(T)は、外気温(または対象の周囲温度)(T)を変化(例えば低下)させながら、深部体温(T)と酸素消費量(VO)との関係を求め、酸素消費量(VO)が0であるときの深部体温(T)の推定値として求められる。深部体温(T)と酸素消費量(VO)との関係は、例えば、線形回帰により求め得る。また、熱生成のフィードバックゲイン(H)は、H=ΔVO/ΔTとして求めることができる。Also, from core body temperature (T B ) and oxygen consumption (VO 2 ), it is possible to estimate the theoretical set temperature of body temperature (T R ) and feedback gain of heat production (H). The theoretical setpoint temperature of body temperature (T R ) is the variation of core body temperature (T B ) and oxygen consumption (VO 2 ) while changing (e.g., decreasing) the ambient temperature (or subject's ambient temperature) (T A ). A relationship is determined and determined as an estimate of core body temperature (T B ) when oxygen consumption (VO 2 ) is zero. The relationship between core body temperature (T B ) and oxygen consumption (VO 2 ) can be determined, for example, by linear regression. Also, the heat generation feedback gain (H) can be determined as H=ΔVO 2 /ΔT B.

本発明の装置は、測定された外気温と、体温(好ましくは、深部体温)および酸素濃度からなる群から選択される少なくとも1つの数値とを記録する記録部80を更に備え得る。本発明の装置は、呼気ガス中の酸素濃度から対象の酸素消費量を決定する酸素消費量の決定部90をさらに有しうる。本発明の装置は、体温の理論的設定温度(T)と熱生成のフィードバックゲイン(H)を推定する推定部91をさらに有しうる。本発明の装置は、体温の理論的設定温度(T)と熱生成のフィードバックゲイン(H)から対象が冬眠様状態を誘発したか否かを決定する決定部92をさらに有しうる。本発明の装置は、冬眠様状態を誘発したか否かについての情報の出力部93をさらに有しうる。出力部93としては、例えば、当該情報を表示するディスプレイおよび/または当該情報を印刷するプリンタが挙げられる。冬眠様状態を誘発したか否かについての情報としては、冬眠様状態を誘発したとの情報、および冬眠様状態を誘発していないとの情報が挙げられ、出力部93にて出力され得る。The device of the present invention may further include a recording unit 80 that records the measured outside air temperature and at least one numerical value selected from the group consisting of body temperature (preferably core body temperature) and oxygen concentration. The apparatus of the present invention may further comprise an oxygen consumption determiner 90 for determining the subject's oxygen consumption from the oxygen concentration in the exhaled gas. The apparatus of the present invention may further comprise an estimator 91 for estimating the theoretical set temperature of body temperature (T R ) and the feedback gain of heat production (H). The apparatus of the present invention may further comprise a determination unit 92 for determining whether the subject has induced a hibernation-like state from the theoretical set temperature of body temperature (T R ) and the feedback gain of heat production (H). The device of the present invention may further comprise an output 93 of information as to whether a hibernation-like state has been induced. Examples of the output unit 93 include a display that displays the information and/or a printer that prints the information. Information as to whether or not the hibernation-like state has been induced includes information that the hibernation-like state has been induced and information that the hibernation-like state has not been induced, and can be output by the output unit 93 .

(第三の実施態様)
本発明によれば、
冬眠を判定する装置であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトなどの哺乳動物において、投与前および投与後のそれぞれにおいてそれぞれ少なくとも2つの異なる周辺環境温度(T)条件下において記録された酸素消費量(VO)および深部体温(T)を記録する記録部と、
投与前および投与後のそれぞれにおいて、酸素消費量と深部体温との相関関係を推定し、推定された相関関係から、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定し、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定する演算部とを備え、
深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下した場合に、前記哺乳動物が冬眠したと判定する判定部と
を備えた装置
が提供される。
(Third embodiment)
According to the invention,
A device for determining hibernation, comprising:
In a mammal, such as a human, to which the test compound was administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe), before and after administration, respectively a recorder for recording oxygen consumption (VO2) and core body temperature ( TB ) recorded under at least two different ambient temperature (T A ) conditions, respectively, at
Before and after administration, the correlation between oxygen consumption and core body temperature was estimated. and whether the estimate of core body temperature, assuming zero oxygen consumption, is reduced post-dosing compared to pre-dosing. and a computing unit that determines
When the core body temperature decreases, the degree of decrease in oxygen consumption decreases after administration compared to before administration, and the estimated value of core body temperature when the oxygen consumption is assumed to be 0 is and a determination unit that determines that the mammal has hibernated if it is decreased after administration compared to before.

記録部は、少なくとも2つの異なる周辺環境温度(T)条件下において記録された酸素消費量(VO)および深部体温(T)を記録する。記録部は、1つのTに対して1つのVOおよびTを対応付けて格納する。記録された酸素消費量(VO)および深部体温(T)は、記録部から読み出され、演算部に送信されて、演算部において酸素消費量と深部体温との相関関係が推定される。ある態様では、相関関係は、線型的である。相関関係が推定された後で、演算部は、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定し、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定する。判定部は、演算部における決定に基づいて、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下した場合に、前記哺乳動物が冬眠したと判定することができる。判定部は、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下しないか、または、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下しない場合には、当該哺乳動物が冬眠したとは判定しないことができる(または冬眠していないと判定することができる)。The recorder records oxygen consumption (VO 2 ) and core body temperature (T B ) recorded under at least two different ambient ambient temperature (T A ) conditions. The recording unit associates and stores one VO 2 and one TB with one TA . The recorded oxygen consumption (VO 2 ) and core body temperature (T B ) are read from the recording unit and transmitted to the computing unit, where the correlation between oxygen consumption and core body temperature is estimated. . In one aspect, the correlation is linear. After the correlation is estimated, the computing unit determines whether the degree of decrease in oxygen consumption when core body temperature is decreased is decreased after administration compared to before administration, and Determine whether the estimate of core body temperature, assuming zero consumption, is lower after dosing compared to before dosing. Based on the determination by the calculation unit, the determination unit determines that the degree of decrease in oxygen consumption when the core body temperature decreases is lower after administration than before administration, and the oxygen consumption is 0. It can be determined that the mammal has hibernated when the hypothetical estimate of core body temperature is reduced after administration compared to before administration. The determination unit determines whether the degree of decrease in oxygen consumption when the core body temperature decreases does not decrease after administration compared to before administration, or the core body temperature when the oxygen consumption is assumed to be 0. If the estimated value does not decrease after administration compared to before administration, it can be determined that the mammal has not hibernated (or it can be determined that it has not hibernated).

本発明の第三の実施態様における冬眠を判定する装置は、深部体温計および呼気ガス中の酸素濃度を測定する呼気ガス分析部をさらに備えていてもよい。第三の実施形態における装置は、判定部から冬眠に関する判定の情報を受け取り、情報を出力する出力部をさらに備えていてもよい。情報の出力部は、ディスプレイなどのユーザーインターフェースであり得、USBメモリおよびSDカードなどの不揮発性メモリへの記録装置であり得、外部への無線通信のための情報送信装置であり得、またはプリンタなどの紙等の媒体への印刷装置であり得る。 The device for determining hibernation in the third embodiment of the present invention may further comprise a deep body thermometer and an expired gas analyzer for measuring oxygen concentration in expired gas. The device according to the third embodiment may further include an output unit that receives information on determination regarding hibernation from the determination unit and outputs the information. The information output unit can be a user interface such as a display, can be a recording device to a non-volatile memory such as a USB memory and an SD card, can be an information transmission device for wireless communication to the outside, or can be a printer It can be a printing device for media such as paper.

第一の実施形態または第二の実施形態の装置は、第三の実施態様における冬眠を判定する装置をさらに含んでいてもよい。 The apparatus of the first embodiment or the second embodiment may further include the apparatus for determining hibernation of the third embodiment.

(本発明の刺激方法)
本発明によれば、対象において、体温の理論的設定温度および/または熱生成のフィードバックゲインを低下させる方法が提供される。本発明によれば、対象に冬眠様状態を誘発させる方法が提供される。
本発明の方法によれば、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与えることを含む。本発明によればまた、対象において、熱生成のフィードバックゲインを低下させる方法であって、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与えることを含む、方法が提供される。本発明によればまた、対象において、体温の理論的設定温度および熱生成のフィードバックゲインを低下させる方法であって、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与えることを含む、方法が提供される。本発明によればまた、対象において冬眠様状態を誘発させる方法であって、薬物などを用いてピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与えることを含む、方法が提供される。
(Stimulation method of the present invention)
According to the present invention, a method is provided for reducing the theoretical set point of body temperature and/or the feedback gain of heat production in a subject. According to the invention, a method of inducing a hibernation-like state in a subject is provided.
According to the method of the invention, it comprises providing an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons. The present invention also provides a method of reducing the feedback gain of heat production in a subject comprising providing an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons. Also in accordance with the present invention is a method of reducing the theoretical set point of body temperature and the feedback gain of heat production in a subject, comprising providing an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons. , a method is provided. The present invention also provides a method of inducing a hibernation-like state in a subject, the method comprising providing an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons using a drug or the like. be.

本発明の方法において、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンは、例えば、本発明の装置を用いて刺激されうる。本発明の方法においては、QRFP産生ニューロンに対して電圧を負荷してこれによってQRFP産生ニューロンを刺激することができる。本発明の方法においてはまた、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロン特異的に、例えば、DREADD法を用いて受容体(例えば、hM3Dq)を発現させ、当該受容体に対するリガンド(例えば、クロザピン-N-オキシド(CNO))を投与することによって、QRFP産生ニューロンに対して刺激を加えることができる。hM3Dqは、QRFPプロモーターに作動可能に連結したhM3Dqをコードする遺伝子を有するウイルス(例えば、アデノウイルス、アデノ随伴ウイルス等)を対象のQRFP産生ニューロンに感染させることによってQRFP産生ニューロンに発現させることができる。CNOは、例えば、本発明の装置によって脳に投与することができる。 In the methods of the invention, pyroglutaminated RF-amide peptide (QRFP)-producing neurons can be stimulated, for example, using the device of the invention. In the method of the present invention, the QRFP-producing neurons can be stimulated by applying a voltage to the QRFP-producing neurons. In the method of the present invention, a receptor (e.g., hM3Dq) is expressed specifically using pyroglutaminated RF amide peptide (QRFP)-producing neurons, for example, using the DREADD method, and a ligand for the receptor (e.g., clozapine QRFP-producing neurons can be stimulated by administering -N-oxide (CNO). hM3Dq can be expressed in QRFP-producing neurons by infecting the QRFP-producing neurons of a subject with a virus (e.g., adenovirus, adeno-associated virus, etc.) having a gene encoding hM3Dq operably linked to the QRFP promoter. . CNO can be administered to the brain, for example, by the device of the invention.

本発明の方法において、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンは、当該ニューロンの活性化剤を用いて刺激することもできる。活性化剤は、QRFPニューロンを用いてスクリーニングするか、または、QRFPニューロンに発現する受容体を強制発現させた培養細胞をもちいて探索可能である。ニューロンの活性化剤は、アプリケーターを用いてQRFP産生ニューロンに局所投与してもよい。QRFP産生ニューロン特異的な活性化剤は、脳室内投与、および髄腔内投与、並びに静脈投与などの全身投与による投与してもよい。 In the methods of the invention, pyroglutaminated RF amide peptide (QRFP)-producing neurons can also be stimulated with activators of these neurons. Activators can be screened using QRFP neurons or searched using cultured cells in which receptors expressed in QRFP neurons are forced to express. Neuronal activators may be administered locally to QRFP-producing neurons using an applicator. QRFP-producing neuron-specific activators may be administered by systemic administration, such as intracerebroventricular and intrathecal and intravenous administration.

本発明の方法は、外気温を低下させることをさらに含んでいてもよい。これにより、対象のTを低下させることができる。冬眠様状態においてTが低下すると低代謝状態となり、エネルギー消費を低下させて生命維持することが可能となると考えられる。The method of the invention may further comprise reducing the ambient temperature. This can reduce the TB of the target. It is thought that a decrease in TB in a hibernation-like state leads to a hypometabolism state, which makes it possible to maintain life by reducing energy consumption.

本発明の方法は、対象の深部体温(T)を測定することをさらに含み得る。本発明の方法は、対象の呼気の酸素濃度を測定することをさらに含み得る。The methods of the invention may further comprise measuring the core body temperature (T B ) of the subject. The method of the present invention may further comprise measuring oxygen concentration in exhaled breath of the subject.

本発明の方法は、対象の酸素消費量(VO)を推定することをさらに含み得る。対象の酸素消費量(VO)は、例えば、吸気と呼気の酸素濃度の差から推定することができる。Methods of the invention may further comprise estimating the subject's oxygen consumption (VO 2 ). A subject's oxygen consumption (VO 2 ) can be estimated, for example, from the difference in inspired and expired oxygen concentrations.

本発明の方法は、被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトなどの哺乳動物において、投与前および投与後のそれぞれにおいてそれぞれ少なくとも2つの異なる周辺環境温度条件下において記録された酸素消費量および深部体温を提供(または記録)することと、
投与前および投与後のそれぞれにおいて、酸素消費量と深部体温との相関関係を推定することと、
推定された相関関係から、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定すること、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定することを含み、
深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下したことは、前記哺乳動物が冬眠したこと示す、方法であり得る。
この態様において、本発明の方法は、対象の体温の理論的設定温度(T)を推定することをさらに含み得る。理論的設定温度(T)は、外気温(または対象の周囲温度)(T)を変化(例えば低下)させながら、深部体温(T)と酸素消費量(VO)との関係を求め、酸素消費量(VO)が0であるときの深部体温(T)の推定値として求められる。深部体温(T)と酸素消費量(VO)との関係は、例えば、線形回帰により求め得る。
The method of the present invention is a method of administering a test compound in a mammal, such as a human, to the regions of the anterior ventral periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe). providing (or recording) recorded oxygen consumption and core body temperature under at least two different ambient temperature conditions before and after administration, respectively;
estimating the correlation between oxygen consumption and core body temperature before and after administration, respectively;
Determining from the estimated correlation whether the degree of decrease in oxygen consumption when core body temperature is decreased is decreased after administration compared to before administration, and when oxygen consumption is 0 determining whether the estimate of core body temperature, assuming that the
When the core body temperature decreases, the degree of decrease in oxygen consumption decreases after administration compared to before administration, and the estimated value of core body temperature when the oxygen consumption is assumed to be 0 is A decrease after administration compared to before can be a method of indicating that said mammal has hibernated.
In this aspect, the method of the invention may further comprise estimating a theoretical set point (T R ) for the subject's body temperature. The theoretical setpoint temperature (T R ) is the relationship between core body temperature (T B ) and oxygen consumption (VO 2 ) while varying (e.g., decreasing) the ambient temperature (or subject's ambient temperature) (T A ). and taken as an estimate of core body temperature (T B ) when oxygen consumption (VO 2 ) is zero. The relationship between core body temperature (T B ) and oxygen consumption (VO 2 ) can be determined, for example, by linear regression.

本発明の方法は、対象の熱生成のフィードバックゲイン(H)を推定することをさらに含み得る。熱生成のフィードバックゲイン(H)は、H=ΔVO/ΔTとして求めることができる。The method of the present invention may further comprise estimating the subject's heat production feedback gain (H). The heat generation feedback gain (H) can be determined as H=ΔVO 2 /ΔT B.

本発明の方法は、対象が冬眠様状態か否かを決定することをさらに含み得る。対象が冬眠様状態か否かは、外気温を低下させたときに、体温の理論的設定温度(T)と熱生成のフィードバックゲイン(H)が共に低下するか否かによって決定することができる。外気温を低下させたときに、体温の理論的設定温度(T)と熱生成のフィードバックゲイン(H)が共に低下した場合には、対象が冬眠様状態であると決定することができる。
冬眠様状態は、生体の代謝を低下させることにより、生命保護機能を向上させる点で有益であり得る。
Methods of the invention may further comprise determining whether the subject is in a hibernation-like state. Whether or not a subject is in a hibernation-like state can be determined by whether both the theoretical setpoint temperature of body temperature (T R ) and the feedback gain of heat production (H) decrease when the ambient temperature is decreased. can. A subject can be determined to be in a hibernation-like state if both the theoretical setpoint temperature of body temperature (T R ) and the feedback gain of heat production (H) decrease when the ambient temperature is decreased.
A hibernation-like state can be beneficial in improving life-preserving functions by slowing down the body's metabolism.

(本発明のスクリーニング系)
本発明によれば、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域内に存在するピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与える物質をスクリーニングする方法であって、
被検化合物と単離した前記QRFP産生ニューロンとを接触させることと、
前記QRFP産生ニューロンの興奮を測定することと、
前記QRFP産生ニューロンに興奮性刺激を与える被検化合物を選択することと、
を含む、方法が提供される。方法は、インビトロの方法であり得る。
(Screening system of the present invention)
According to the present invention, pyroglutaminated RF amide peptide (QRFP)-producing neurons present in the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe). A method for screening a substance that provides an excitatory stimulus, comprising:
contacting the isolated QRFP-producing neurons with a test compound;
measuring the excitation of the QRFP-producing neurons;
selecting a test compound that provides an excitatory stimulus to the QRFP-producing neurons;
A method is provided, comprising: The method can be an in vitro method.

QRFP産生ニューロンの興奮は、電気的に測定することができる。ニューロンの興奮の電気的測定は、例えば、常法を用いて電気生理学的手法により膜電位の脱分極を指標として測定することができる。膜電位は、例えば、微小電極法などの神経レコーディング法やパッチクランプ法により測定することができ、または膜電位測定用蛍光プローブを用いて計測してもよい。膜電位測定用蛍光プローブとしては、特に限定されないが、4-(4-(ジデシルアミノ)スチリル)-N-メチルピリジニウムイオダイド(4-Di-10-ASP)、ビス-(1,3-ジブチルバルビツール酸トリメチンオキソノール(DiSBAC2(3))、3,3’-ジプロピルチアジカルボシアニンイオダイド(DiSC3(5))、5,5’,6,6’-テトラクロロ-1,1’,3,3’、-テトラエチルベンズイミダゾリルカルボシアニンイオダイド(JC-1)およびローダミン123が挙げられる。また、ニューロンの興奮は、化学的に測定することもできる。ニューロンが興奮する際には、細胞内カルシウム濃度が上昇する。例えば、ニューロンの興奮は、カルシウム濃度インジケーターを用いて測定することができる。カルシウム濃度インジケーターとしては、1-[6-アミノ-2-(5-カルボキシ-2-オキサゾリル)-5-ベンゾフラニルオキシ]-2-(2-アミノ-5-メチルフェノキシ)エタン-N,N,N’,N’-テトラ酢酸,ペンタアセトキシメチルエステル(Fura 2-AM)など様々なプローブが知られ、本発明で用いることができる。 The excitation of QRFP-producing neurons can be measured electrically. Electrical measurement of neuronal excitation can be performed, for example, by an electrophysiological technique using a conventional method, using membrane potential depolarization as an indicator. Membrane potential can be measured, for example, by a nerve recording method such as a microelectrode method or a patch clamp method, or may be measured using a fluorescent probe for measuring membrane potential. The fluorescent probe for membrane potential measurement is not particularly limited, but 4-(4-(didecylamino)styryl)-N-methylpyridinium iodide (4-Di-10-ASP), bis-(1,3-dibutylbarbi trimethine oxonol turic acid (DiSBAC2(3)), 3,3′-dipropylthiadicarbocyanine iodide (DiSC3(5)), 5,5′,6,6′-tetrachloro-1,1′ , 3,3′,-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and rhodamine 123. Neuronal excitation can also be measured chemically. Intracellular calcium concentration is increased.For example, neuronal excitation can be measured using a calcium concentration indicator.As a calcium concentration indicator, 1-[6-amino-2-(5-carboxy-2-oxazolyl )-5-benzofuranyloxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N′,N′-tetraacetic acid, pentaacetoxymethyl ester (Fura 2-AM) and various Probes are known and can be used in the present invention.

QRFP産生ニューロンは、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域内に存在するニューロンであり、株化されたニューロンとすることができる。株化されたニューロンとしては、ニューロンがQRFPを産生する株を選択することによって得られた株を用いることができる。ニューロンがQRFPを産生するか否かは、QRFPに対する抗体を用いて常法によって確認することができる。 QRFP-producing neurons are neurons present in the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA), and periventricular nucleus (Pe), and can be regarded as established neurons. can. As the established neuron strain, a strain obtained by selecting a strain in which neurons produce QRFP can be used. Whether a neuron produces QRFP can be confirmed by a conventional method using an antibody against QRFP.

(本発明の冬眠の判定方法)
本発明の冬眠の判定方法は、対象において、冬眠を誘導する薬または誘導すると期待される薬、もしくは誘導する可能性のある薬の効果を分析する。対象が冬眠様状態に入った場合には、それを維持する、または解除することができる。対象が冬眠状態に入らない場合には、さらなる処置をする、または処置を中断することができる。
本発明の冬眠の判定方法は、計算科学的な方法であり得る。本発明の冬眠の判定方法は、医療行為を含まないことができる。
(Method for judging hibernation of the present invention)
The method for determining hibernation of the present invention analyzes the effect of a drug that induces, is expected to induce, or has the potential to induce hibernation in a subject. If the subject enters a hibernation-like state, it can be maintained or released. If the subject does not enter hibernation, further treatment can be given or treatment can be discontinued.
The hibernation determination method of the present invention can be a computational scientific method. The hibernation determination method of the present invention may not include medical procedures.

本発明の冬眠の判定方法は、
ヒトなどの哺乳動物において被検化合物が冬眠を誘発しているか否かまたはその可能性を決定(検査、予測、推定、計算機科学的に決定)する方法であって、
被検化合物が前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)の領域に投与されたヒトなどの哺乳動物において、投与前および投与後のそれぞれにおいてそれぞれ少なくとも2つの異なる周辺環境温度条件下において記録された酸素消費量および深部体温を提供(または記録)することと、
投与前および投与後のそれぞれにおいて、酸素消費量と深部体温との相関関係を推定することと、
推定された相関関係から、深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下するか否かを決定すること、および、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下するか否かを決定することを含み、
深部体温が低下したときの酸素消費量の低下の程度が、投与前と比較して投与後において低下し、かつ、酸素消費量が0であると仮定したときの深部体温の推定値が、投与前と比較して投与後において低下したことは、前記哺乳動物が冬眠したこと示す、方法
であり得る。哺乳動物は、非ヒト哺乳動物であり得る。
The method for determining hibernation of the present invention comprises:
A method for determining whether or not a test compound induces hibernation in a mammal such as a human or the possibility thereof (examination, prediction, estimation, computer scientific determination), comprising:
In a mammal, such as a human, to which the test compound was administered to the regions of the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and periventricular nucleus (Pe), before and after administration, respectively providing (or recording) recorded oxygen consumption and core body temperature under at least two different ambient temperature conditions, respectively, in
estimating the correlation between oxygen consumption and core body temperature before and after administration, respectively;
Determining from the estimated correlation whether the degree of decrease in oxygen consumption when core body temperature is decreased is decreased after administration compared to before administration, and when oxygen consumption is 0 determining whether the estimate of core body temperature, given the
When the core body temperature decreases, the degree of decrease in oxygen consumption decreases after administration compared to before administration, and the estimated value of core body temperature when the oxygen consumption is assumed to be 0 is A decrease after administration compared to before can be a method of indicating that said mammal has hibernated. A mammal can be a non-human mammal.

異なる周辺環境温度条件の設定は、温度制御部(例えば、第一の実施形態または第二の実施形態の装置)により行うことができる。酸素消費量および深部体温はそれぞれ、呼気ガス分析装置および深部体温計により求められ得る。呼気ガス分析装置および深部体温計は、第一の実施形態または第二の実施形態の装置が備えるものを用いることができる。 Setting of different ambient environmental temperature conditions can be performed by the temperature control unit (for example, the apparatus of the first embodiment or the second embodiment). Oxygen consumption and core body temperature can be determined by a breath gas analyzer and core thermometer, respectively. As the breath gas analyzer and core thermometer, those provided in the device of the first embodiment or the second embodiment can be used.

[実験の手法]
(1)動物
動物実験はすべて、国際総合睡眠医学研究所(IIIS)、筑波大学、理研バイオシステムズダイナミクス研究センター(BDR)において、動物実験ガイドラインに従って実施した。各機関の動物実験委員会の承認を得たので、NIHのガイドラインに従った。休眠誘発実験を除き、マウスに自由に摂餌及び水を与え、T22℃、相対湿度50%、12時間の明期/12時間の暗期周期で維持した。体重34g以上のマウスは再現性のあるFITを示さないことが判明したため、休眠実験では34g以上の重いマウスを除外した。
[Experimental method]
(1) Animals All animal experiments were performed in accordance with animal experiment guidelines at the International Institute of Sleep Medicine (IIIS), University of Tsukuba, and RIKEN Biosystems Dynamics Research Center (BDR). NIH guidelines were followed as approval was obtained from the respective institutional Animal Care and Use Committees. Mice were fed and watered ad libitum, except for diapause induction experiments, and were maintained at a T A of 22° C., 50% relative humidity, and a 12 h light/12 h dark cycle. Mice weighing >34 g were found not to exhibit reproducible FIT, so heavy mice >34 g were excluded from diapause experiments.

Qrfp‐iCreマウスを、C57BL/6N胚性幹細胞における相同的組換えおよび8細胞期胚(ICR)における移植によって作製した。標的化ベクターは、Qrfp遺伝子のエクソン2におけるprepro-Qrfp配列の全コード領域をiCreおよびpgk-Neoカセットで置換して、内因性QrfpプロモーターがiCreの発現を促進するように設計された。キメラマウスをC57BL/6J雌(Jackson Labs)と交配した。pgk-Neoカセットを、少なくとも10回C57BL/6Jマウスに戻し交配したFLP66マウスと交配することにより削除した。最初に、ヘテロ接合体との交配ヘテロ接合体からのF1ハイブリッドを作製した。これらのマウスをC57BL/6Jマウスに少なくとも8回戻し交配した。 Qrfp-iCre mice were generated by homologous recombination in C57BL/6N embryonic stem cells and transplantation in 8-cell stage embryos (ICR). A targeting vector was designed to replace the entire coding region of the prepro-Qrfp sequence in exon 2 of the Qrfp gene with the iCre and pgk-Neo cassettes so that the endogenous Qrfp promoter drives iCre expression. Chimeric mice were bred to C57BL/6J females (Jackson Labs). The pgk-Neo cassette was deleted by mating FLP66 mice that were backcrossed to C57BL/6J mice at least 10 times. First, F1 hybrids from mating heterozygotes with heterozygotes were made. These mice were backcrossed to C57BL/6J mice at least 8 times.

Rosa26dreaddm3およびRosa26dreaddm4マウスを、C57BL/6N胚性幹細胞における相同組換えによって作製し、その後、上記のQrfp-iCreマウスにおけるのと同じ手順を行った。Rosa26 dreaddm3 and Rosa26 dreaddm4 mice were generated by homologous recombination in C57BL/6N embryonic stem cells, followed by the same procedure as in Qrfp-iCre mice above.

(2)ウイルス
AAVは、先に述べた33ように、三重トランスフェクション、ヘルパーフリー法を用いて作製した。最終精製ウイルスを-80℃で保存した。組換えAAVベクターの力価を定量PCRにより測定した。AAV10- EF1α-DIO-TVA-mCherry, 4 x1013; AAV10-CAG-DIO-RG, 1x1013; AAV10- EF1α-DIO-hM3Dq-mCherry, 1.64 x1012; AAV10- EF1α-DIO-mCherry, 1.44 x1012; AAV10-EF1α-DIO-SSFO-EYFP, 1.35 x1012; AAV2/9-hsyn-DIO-TeTxLC-GFP, 6.24 x1014; AAV2/9-hsyn-DIO-GFP, 4 x1012ゲノムコピー/ml。既に報告されている方法により、組換え狂犬病ベクターが作製された22,34。SADΔG-GFP(EnvA)の力価は4.2×10感染単位/mlであった。
(2) Virus AAV was produced using a triple transfection, helper -free method as previously described33. The final purified virus was stored at -80°C. Recombinant AAV vector titers were determined by quantitative PCR. AAV 10 -EF1α-DIO-TVA-mCherry, 4×10 13 ; AAV 10 -CAG-DIO-RG, 1×10 13 ; AAV 10 -EF1α-DIO-hM3Dq-mCherry, 1.64× 10 12 ; AAV 2/9 -hsyn-DIO-TeTxLC-GFP, 6.24 x 10 14 ; AAV 2/9 - mCherry, 1.44 x 10 12 ; hsyn-DIO-GFP, 4×10 12 genome copies/ml. Recombinant rabies vectors have been generated by previously reported methods 22,34 . The titer of SADΔG-GFP(EnvA) was 4.2×10 8 infectious units/ml.

(3)手術
AAVベクターの注射のために、雄Qrfp‐iCreヘテロ接合性マウス(8~12週齢)をイソフルランで麻酔し、定位フレーム(David Kopf Instruments)に置いた。
(3) Surgery For injection of AAV vectors, male Qrfp-iCre heterozygous mice (8-12 weeks old) were anesthetized with isoflurane and placed in a stereotaxic frame (David Kopf Instruments).

化学遺伝学的操作のために、Qrfp‐iCreマウスにAAV10‐EF1α‐DIO‐hM3Dq‐mCherryを、0.1μm/分の速度でハミルトン注射針を用い、視床下部(MB注射用、前後方向(AP)、-0.46mm;内側外側方向(ML)、±0.25mm;背腹方向(DV)、-5.75mm;各部位0.50μl;LH注射;AP、-1.00mm;ML、±1.00mm;DV、-5.00mm;各部位0.30μl)に注射した。注射後10分間針を留めた。For chemical genetic manipulation, Qrfp-iCre mice were injected with AAV 10 -EF1α-DIO-hM3Dq-mCherry at a rate of 0.1 μm/min using a Hamilton needle and hypothalamic (for MB injection, anteroposterior ( medial lateral (ML), ±0.25 mm; dorsoventral (DV), −5.75 mm; 0.50 μl each site; LH injection; AP, −1.00 mm; ±1.00 mm; DV, −5.00 mm; 0.30 μl each site). The needle was held for 10 minutes after injection.

光遺伝学的操作のために、AVPe(AP、0.38mm;ML、0.25mm;DV、ブレグマから-5.50mm)にAAV10‐EF1α‐DIO‐SSFO‐EYFPを片側注入した。その後、AVPe上方の両側に(AP:0.38mm、ML:±0.25mm、DV:-5.20mm)、DMHの両側に(AP:-1.70mm、ML:±0.25mm、DV:-4.75mm)またはRPaの片側(AP:-6.00mm、ML:0.00mm、DV:-5.50mm)に光ファイバーを移植した(図2j)。注射後の個々のケージで少なくとも2週間の回復期間後、マウスを赤外線熱イメージング実験にかけた。行動データは、これらのウイルスがQニューロンに特異的に標的化され、光ファイバーインプラントが正確に配置された場合にのみ含めた。 For optogenetic manipulation, AVPe (AP, 0.38 mm; ML, 0.25 mm; DV, −5.50 mm from bregma) was unilaterally injected with AAV10-EF1α-DIO-SSFO-EYFP. Then, on both sides above the AVPe (AP: 0.38 mm, ML: ±0.25 mm, DV: -5.20 mm) and on both sides of the DMH (AP: -1.70 mm, ML: ±0.25 mm, DV: −4.75 mm) or on one side of RPa (AP: −6.00 mm, ML: 0.00 mm, DV: −5.50 mm) (Fig. 2j). After a recovery period of at least 2 weeks in individual cages post-injection, mice were subjected to infrared thermal imaging experiments. Behavioral data were included only when these viruses were specifically targeted to Q neurons and the fiber optic implants were precisely placed.

(4)生物学的シグナルの記録
サーモグラフィー解析のために、マウスを実験ケージ(25×15×10cm)に入れ、ケージ床の30cm上に置いた赤外線熱画像化カメラ(InfReC R500EX;NIPPON AVIONICS)を用いてモニターした。表面温度を明確に検出するために、実験開始の1日前に、背毛を毛刈り機で除去した。DREADDおよび光発生実験のサーもグラムをそれぞれ0.5Hzおよび1Hzで収集し、InfReC Analyzer NS9500プロフェッショナルソフトウェア(NIPPON AVIONICS)で分析した。1つのフレームの最高温度を動物のTとして用いた(図1d)。
(4) Recording biological signals For thermographic analysis, mice were placed in experimental cages (25 x 15 x 10 cm) and an infrared thermal imaging camera (InfReC R500EX; NIPPON AVIONICS) placed 30 cm above the cage floor. monitored using One day before the start of the experiment, the dorsal hair was removed with a shear for clear detection of the surface temperature. Thermograms of DREADD and light generation experiments were collected at 0.5 Hz and 1 Hz, respectively, and analyzed with the InfReC Analyzer NS9500 professional software (NIPPON AVIONICS). The maximum temperature of one frame was used as the animal's TS (Fig. 1d).

深部体温、酸素消費量、EEG、ECG、呼吸パターンを記録するため、各動物を温度調節チャンバー(HC-100、Shin FactoryまたはLP-400P-AR、株式会社日本医化器械製作所)に収容した。T(腹腔内温度)を連続的に記録するために、テレメトリー温度センサー(TA11TA-F10、DSI)を、記録の少なくとも7日前に全身吸入麻酔下で動物の腹腔に埋め込んだ。動物のVOと二酸化炭素排出率(VCO)を、呼吸ガス分析器(ARCO‐2000質量分析計、ARCOシステム)で連続的に記録した。VCO/VO比から呼吸係数を算出した。Each animal was housed in a temperature-controlled chamber (HC-100, Shin Factory or LP-400P-AR, Nihon Ika Kikai Seisakusho Co., Ltd.) to record core body temperature, oxygen consumption, EEG, ECG, and respiratory patterns. For continuous recording of T B (intraperitoneal temperature), a telemetry temperature sensor (TA11TA-F10, DSI) was implanted in the peritoneal cavity of animals under general inhalation anesthesia at least 7 days prior to recording. Animals' VO2 and carbon dioxide excretion rate ( VCO2) were recorded continuously with a respiratory gas analyzer (ARCO-2000 mass spectrometer, ARCO Systems). The respiratory index was calculated from the VCO2 /VO2 ratio.

EEGおよびECGは、埋め込み型遠隔測定送信器(F20-EETまたはHD-X02、DSI)によって記録した。EEG記録のために、テレメトリー送信機のワイヤに2本のステンレス鋼スクリュー(直径1mm)をはんだ付けし、全身麻酔下で皮質の頭蓋(AP、1.00mm;右、ブレグマまたはラムダから1.50mm)に挿入した。送信機からの他の2本のワイヤーを胸腔の表面に置き、ECGを記録した。少なくとも10日間は手術から回復させた。EEG/ECGデータ収集システムは、送信器、アナログデジタル変換器、およびソフトウェアPonemah Physiology Platform(バージョン6.30、DSI)を備えた記録コンピュータで構成された。サンプリング速度はEEGとECGの両方で500Hzであり、データをレビューのためにASCII形式に変換した。心拍数は波形の目視により評価した。 EEG and ECG were recorded by an implantable telemetry transmitter (F20-EET or HD-X02, DSI). For EEG recording, two stainless steel screws (1 mm diameter) were soldered to the wires of the telemetry transmitter and cranial cortex (AP, 1.00 mm; right, 1.50 mm from bregma or lambda) under general anesthesia. ). Two other wires from the transmitter were placed on the surface of the thoracic cavity and the ECG was recorded. Allow at least 10 days to recover from surgery. The EEG/ECG data acquisition system consisted of a transmitter, an analog-to-digital converter, and a recording computer with software Ponemah Physiology Platform (version 6.30, DSI). The sampling rate was 500 Hz for both EEG and ECG and the data were converted to ASCII format for review. Heart rate was evaluated by visual observation of waveforms.

呼吸流は非侵襲的呼吸流記録システム35により記録した。具体的には、マウスを、少なくとも0.3L/minの気流を有する代謝チャンバー(TMC-1213-PMMA、Minamiderika Shokai)に入れた。チャンバーを圧力センサ(PMD-8203-3G、Biotex)に接続し、チャンバーの外側と内側の圧力差を検出した。動物が呼吸している場合、外から内への圧力差は吸気時に大きくなり、呼気時には小さくなる35。センサからのアナログ信号出力を250HzでAD変換器(NI-9205、National Instruments)によりデジタル化し、Biotex社が開発したデータロギングソフトウェアによりコンピュータに保存した。Respiratory flow was recorded by a non-invasive respiratory flow recording system 35 . Specifically, mice were placed in a metabolic chamber (TMC-1213-PMMA, Minamiderika Shokai) with an airflow of at least 0.3 L/min. The chamber was connected to a pressure sensor (PMD-8203-3G, Biotex) to detect the pressure difference between the outside and inside of the chamber. When an animal is breathing, the outside-to-inside pressure difference is greater during inspiration and less during expiration 35 . The analog signal output from the sensor was digitized at 250 Hz by an AD converter (NI-9205, National Instruments) and stored in a computer by data logging software developed by Biotex.

(5)FIT誘導
日内休眠(torpor)の誘発実験は、少なくとも3日間、動物の代謝を記録するように設計された。記録開始前日(0日)に動物をチャンバーに導入した。食餌と水は自由に摂取できた。Tは0日目に示したように設定し、実験中一定に維持した。マウスに移植したテレメトリー温度センサーをチャンバーに入れる前に電源を入れた。標準的な実験デザインは以下の通りであった。第2日、ZT-0に、日内休眠(torpor)を誘発するために食物を除去した。24時間後、3日目、ZT-0で各動物に食餌を戻した。
(5) FIT Induction Induction experiments of circadian dormancy (torpor) were designed to record the animal's metabolism for at least 3 days. Animals were introduced into the chambers the day before the start of recording (day 0). Food and water were available ad libitum. TA was set as indicated on day 0 and kept constant throughout the experiment. The telemetry temperature sensor implanted in the mouse was turned on before entering the chamber. The standard experimental design was as follows. On day 2, ZT-0, food was removed to induce diurnal torpor. After 24 hours, on day 3, each animal was returned to food at ZT-0.

(6)薬剤投与中の代謝の記録
DREADDアゴニストであるCNO(クロザピンN-オキシド、Abcam、ab141704)を100μg/mLの用量で生理食塩水に溶解し、-20℃で凍結した。CNO溶液を現場で解凍し、マウスに1mg/kgの用量で溶液を腹腔内投与した。アデノシンA1受容体アゴニストであるCHA(N-シクロヘキシルアデノシン、Sigma-Aldrich、C9901)を250μg/mLの濃度で生理食塩水に溶解し、マウスに2.5mg/kgの用量で腹腔内投与した。
(6) Recording metabolism during drug administration The DREADD agonist CNO (clozapine N-oxide, Abcam, ab141704) was dissolved in saline at a dose of 100 μg/mL and frozen at -20°C. The CNO solution was thawed on site and mice were administered the solution intraperitoneally at a dose of 1 mg/kg. CHA (N 6 -cyclohexyladenosine, Sigma-Aldrich, C9901), an adenosine A1 receptor agonist, was dissolved in saline at a concentration of 250 μg/mL and intraperitoneally administered to mice at a dose of 2.5 mg/kg.

(7)全身麻酔中の代謝の記録
上述のT、VOおよびビデオ記録(「生物学的シグナルの記録」を参照)に加えて、代謝チャンバーの入口を吸入麻酔器の出口(NARCOBIT-E、株式会社夏目製作所)に直接接続した。1%のイソフルランをT=28℃で30分間与え、その後90分間のT=12℃とした。実験後、動物をホットプレート上で加温し、回復を確認した。
(7) Metabolic recordings during general anesthesia In addition to the T B , VO 2 and video recordings described above (see 'Recording of biological signals'), the entrance of the metabolic chamber was the exit of the inhalation anesthesia machine (NARCOBIT-E). , Natsume Seisakusho Co., Ltd.). 1% isoflurane was given at T A =28° C. for 30 minutes followed by T A =12° C. for 90 minutes. After the experiment, the animals were warmed on a hotplate and checked for recovery.

(8)免疫組織化学的染色
マウスをイソフルランで深く麻酔し、水中の10%スクロースで経心的に潅流し、続いて0.1Mリン酸緩衝液pH7.4中の氷冷した4%パラホルムアルデヒド(4%PFA)で潅流し、脳を除去した。脳を4%PFA中、4℃で一晩後固定し、0.1Mリン酸緩衝生理食塩水pH7.4(PBS)中、30%ショ糖中、4℃で一晩インキュベートし、クライオモルド中のTissue-Tek O.C.T. 化合物(Sakura)に浸漬し、切片化するまで-80℃で凍結した。クライオスタット(CM1860、Leica)を用い、50μm毎に4つの等しいシリーズに冠状にスライスし、氷冷PBSを充填した6ウェルプレートに収集し、室温(RT)で3回PBSで洗浄した。特に断りのない限り、軌道振盪機上で穏やかに振盪しながら、以下のインキュベーション工程を実施した。脳切片を、PBS中1%Triton X-100中で室温で1時間インキュベートした。0.3% Triton X-100-処理PBS(ブロック溶液)中の10% Blocking One(NACALAI TESQUE)で切片を振盪することなく室温で1時間ブロックした。切片をブロッキング溶液(希釈液および各抗体の種類を下記に示す)で希釈した1次抗体中で4℃で一晩インキュベートし、次いで3回洗浄し、2次抗体と共に4℃で一晩インキュベートし、PBSで洗浄し、次いでマウントし、DAPIを含むHardSet Antifade Mounting Medium(VECTASHIELD)を用いてカバーガラスをかぶせた。
(8) Immunohistochemical staining Mice were deeply anesthetized with isoflurane and transcardially perfused with 10% sucrose in water, followed by ice-cold 4% paraformaldehyde in 0.1 M phosphate buffer pH 7.4. (4% PFA) and the brain was removed. Brains were post-fixed in 4% PFA overnight at 4°C, incubated in 0.1 M phosphate-buffered saline pH 7.4 (PBS) in 30% sucrose overnight at 4°C, and placed in a cryomold. of Tissue-Tek O.; C. T. They were immersed in compound (Sakura) and frozen at −80° C. until sectioning. Using a cryostat (CM1860, Leica), cells were coronal sliced into 4 equal series every 50 μm, collected in a 6-well plate filled with ice-cold PBS, and washed 3 times with PBS at room temperature (RT). The following incubation steps were performed with gentle shaking on an orbital shaker unless otherwise noted. Brain slices were incubated in 1% Triton X-100 in PBS for 1 hour at room temperature. Sections were blocked with 10% Blocking One (NACALAI TESQUE) in 0.3% Triton X-100-treated PBS (blocking solution) for 1 hour at room temperature without shaking. Sections were incubated overnight at 4°C in primary antibody diluted in blocking solution (diluent and type of each antibody listed below), then washed three times and incubated with secondary antibody overnight at 4°C. , PBS, then mounted and coverslipped with HardSet Antifade Mounting Medium containing DAPI (VECTASHIELD).

本研究で用いた最初の抗体は、ウサギ抗cFos(1:4000、ABE457、Millipore)、ヤギ抗mCherry(1:15000、AB0040-200、SICGEN)、ラット抗GFP(1:5000、04404-84、NACALAI TESQUE)、マウス抗TH(1:1000、sc-25269、Santa Cruz Biotechnology)、マウス抗オレキシンA(1:200、sc-80263、Santa Cruz Biotechnology)、およびウサギ抗MCH(1:2000, M8440, SIGMA)であった。2次抗体は以下のとおりである。Alexa Fluor 488ロバ抗ラット、488ロバ抗ウサギ、594ロバ抗ウサギ、594ロバ抗ヤギ、647ロバ抗マウス、および647ロバ抗ウサギ(1:1000、Invitrogen)。Nissl染色のために、切片をNeuroTrace 435/455 Blue Flue Fluorescent Nissl Stain(1:500、N-21479、Invitrogen)で2次抗体工程中に対比染色し、FluorSave Reagent(Millipore)を用いてカバーガラスをかぶせた。脳領域は、Paxinos and Franklin36によるマウス脳マップを用いて決定した。The initial antibodies used in this study were rabbit anti-cFos (1:4000, ABE457, Millipore), goat anti-mCherry (1:15000, AB0040-200, SICGEN), rat anti-GFP (1:5000, 04404-84, NACALAI TESQUE), mouse anti-TH (1:1000, sc-25269, Santa Cruz Biotechnology), mouse anti-orexin A (1:200, sc-80263, Santa Cruz Biotechnology), and rabbit anti-MCH (1:2000, M8440, SIGMA). Secondary antibodies are as follows. Alexa Fluor 488 donkey anti-rat, 488 donkey anti-rabbit, 594 donkey anti-rabbit, 594 donkey anti-goat, 647 donkey anti-mouse, and 647 donkey anti-rabbit (1:1000, Invitrogen). For Nissl staining, sections were counterstained with NeuroTrace 435/455 Blue Flue Fluorescent Nissl Stain (1:500, N-21479, Invitrogen) during the secondary antibody step and coverslips were blotted with FluorSave Reagent (Millipore). covered. Brain regions were determined using mouse brain maps by Paxinos and Franklin36.

(9)in situハイブリダイゼーション
蛍光in situハイブリダイゼーションは、RNAscope Fluorescent Multiplex Kit(Advanced Cell Diagnostics)を用いて、RNAscope Fluorescent Multiplex in situハイブリダイゼーション用に設計されたプローブ(ACDBio RNAscope Probe-Mm-Qrfp#4643411、mCherry#43201、Mm-Slc32a1#319191、Mm-Slc17a6#319171)を用いて実施した。脳を切開し、直ちにドライアイス上で2-メチルブタン中で凍結し、-80℃で凍結包埋培地中に保存した。切断に先立ち、脳をクライオスタット中で-16℃に1時間冷却した。クライオスタット(Leica CM1860UV)を用いて脳を20μmの切片に冠状切片に切断し、Superfrost Plus Microscope slides(Fisherbrand)にマウントした。前処理法およびRNAscope Fluorescent Multiplex Assayは、RNAsope Assay Guide(それぞれ文書番号320513および320293)に準じて正確に実施した。
(9) In situ hybridization Fluorescence in situ hybridization is performed using RNAscope Fluorescent Multiplex Kit (Advanced Cell Diagnostics), using a probe designed for RNAscope Fluorescent Multiplex in situ hybridization (ACDBio RNAscope 6-M3-Mr4Prob4 #1 #1 , mCherry#43201, Mm-Slc32a1#319191, Mm-Slc17a6#319171). Brains were dissected, immediately frozen in 2-methylbutane on dry ice, and stored in freezing embedding medium at -80°C. Brains were cooled to -16°C in a cryostat for 1 hour prior to sectioning. Brains were cut coronally into 20 μm sections using a cryostat (Leica CM1860UV) and mounted on Superfrost Plus Microscope slides (Fisherbrand). The pretreatment method and RNAscope Fluorescent Multiplex Assay were performed exactly according to the RNAsope Assay Guide (document numbers 320513 and 320293, respectively).

(10)Qニューロンの逆行性追跡
雄のQrfp‐iCreマウス(10~12週齢)に下記のウイルスを注射した。AAV10-DIO-TVA-mCherryおよびAAV10-DIO-RGを送達して、TVA-mCherryおよびRGをMB領域のQニューロンに発現させた(手順および座標については上記参照)。2週間後、SADΔG‐GFP(EnvA)を同じ部位に注射した。Leica TCS SP8レーザ共焦点顕微鏡とZeiss Axio Zoom.V16をそれぞれ用いて、全脳切片でスターターニューロンと入力(単一GFP陽性)ニューロンを検出した。
(10) Retrograde tracking of Q neurons Male Qrfp-iCre mice (10-12 weeks old) were injected with the following viruses. AAV 10 -DIO-TVA-mCherry and AAV 10 -DIO-RG were delivered to express TVA-mCherry and RG in Q neurons in the MB region (see above for procedures and coordinates). Two weeks later, SADΔG-GFP(EnvA) was injected at the same site. A Leica TCS SP8 laser confocal microscope and a Zeiss Axio Zoom. V16 was used to detect starter and input (single GFP-positive) neurons in whole brain sections, respectively.

(11)血液化学検査
麻酔下のマウスから25ゲージ針を用いて左室穿刺により血液を採取した。採取した血液は氷上に2時間以上保存しなかった。サンプルを2,000Gで10分間4℃で遠心分離し、上清を収集し、-30℃で凍結した。FUJIFILM Wako Pure Chemical Corporationに凍結血清検体を送付し、Na(mEq/L)、K(mEq/L)、Cl(mEq/L)、AST(IU/L)、ALT(IU/L)、LDH(IU/L)、CK(IU/L)、GLU(mg/dL)および総ケトン体(μmol/L)濃度を測定した。
(11) Blood Chemistry Test Blood was collected from anesthetized mice by left ventricular puncture using a 25 gauge needle. The collected blood was not stored on ice for more than 2 hours. Samples were centrifuged at 2,000G for 10 minutes at 4°C and the supernatant was collected and frozen at -30°C. Frozen serum samples were sent to FUJIFILM Wako Pure Chemical Corporation and analyzed for Na (mEq/L), K (mEq/L), Cl (mEq/L), AST (IU/L), ALT (IU/L), LDH ( IU/L), CK (IU/L), GLU (mg/dL) and total ketone body (μmol/L) concentrations were measured.

(12)電気生理学的分析
マウスはイソフルラン(Pfizer)による深麻酔下で断頭した。脳を抽出し、以下の(mM)を含む氷冷切削溶液中で冷却した:125mMの塩化コリン、25mMのNaHCO、10mMのD(+)-グルコース、7mMのMgCl、2.5mMのKCl、1.25mMのNaHPO、およびO(95%)とCO(5%)でバブルした0.5mMのCaCl。視床下部を含む水平脳スライス(250μm厚)をビブラトーム(VT1200S、Leica)で調製し、以下の(mM)を含む人工CSF(ACSF)中で室温で1時間維持した:125 mMのNaCl、26 mMのNaHCO、10 mMのD(+)-グルコース、2.5 mMのKCl、2 mMのCaCl、をO(95%)とCO(5%)でバブルした1 mMのMgSO。電極(5~8MΩ)を、以下の(mM)を含む内部溶液で充填した:125 mMのK-グルコナート、10 mMのHEPES、10 mMのホスホクレアチン、0.05 mMのトルブタミド、4 mMのNaCl、4 mMのATP、2 mMのMgCl、0.4 mMのGTP、および0.2 mMのEGTA、pH7.3、KOHで調整)。hM3Dq-mCherry発現ニューロンの発火を30℃の温度で電流-クランプモードで記録した。CNO(1μM)を浴中適用し、効果を調べた。MultiClamp 700B増幅器、Digidata 1440A A/D変換器およびClampex 10.3ソフトウェア(Molecular Devices)の組み合わせを用いて、膜電圧およびデータ取得を制御した。
(12) Electrophysiological analysis Mice were decapitated under deep anesthesia with isoflurane (Pfizer). Brains were extracted and chilled in ice-cold cutting solution containing (mM): 125 mM choline chloride, 25 mM NaHCO3 , 10 mM D(+)-glucose, 7 mM MgCl2, 2.5 mM KCl. , 1.25 mM NaH2PO4 , and 0.5 mM CaCl2 bubbled with O2 (95%) and CO2 ( 5 %). Horizontal brain slices (250 μm thick) containing the hypothalamus were prepared with a vibratome (VT1200S, Leica) and maintained for 1 hour at room temperature in artificial CSF (ACSF) containing (mM): 125 mM NaCl, 26 mM NaHCO 3 , 10 mM D(+)-glucose, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgSO 4 bubbled with O 2 (95%) and CO 2 (5%). Electrodes (5-8 MΩ) were filled with an internal solution containing (in mM): 125 mM K-gluconate, 10 mM HEPES, 10 mM phosphocreatine, 0.05 mM tolbutamide, 4 mM NaCl. , 4 mM ATP, 2 mM MgCl2, 0.4 mM GTP, and 0.2 mM EGTA, pH 7.3, adjusted with KOH). Firing of hM3Dq-mCherry expressing neurons was recorded in current-clamp mode at a temperature of 30°C. CNO (1 μM) was applied in bath and the effect was investigated. A combination of a MultiClamp 700B amplifier, Digidata 1440A A/D converter and Clampex 10.3 software (Molecular Devices) was used to control membrane voltage and data acquisition.

(13)透明なマウス脳の3Dイメージング
透明なマウス脳を、既に述べたように37、ScaleS法により作製した。尿素結晶(和光純薬工業、217-00615)、D(-)-ソルビトール(和光純薬工業、199-14731)、メチル-β-シクロデキストリン(東京化学工業、M1356)、γ-シクロデキストリン(和光純薬工業、037-10643)、N-アセチル-L-ヒドロキシプロリン(Skin Essential Actives、台湾)、ジメチルスルホキシド(DMSO)(和光純薬工業、043-07216)、グリセロール(Sigma, G9012)およびTriton X-100(Nacalai Tesque, 35501-15)を用いてスケール溶液を作製した。AAV‐DIO‐GFPを注射したQrfp‐iCreマウスの脳を固定し、ScaleSで透明化した。画像はレーザー共焦点顕微鏡(オリンパス、XLSLPN25XGMP(NA 1.00,WD:8mm)(RI:1.41~1.52))で得られた。
(13) 3D Imaging of Clear Mouse Brain Clear mouse brains were prepared by the ScaleS method as previously described 37 . Urea crystals (Wako Pure Chemical Industries, 217-00615), D(-)-sorbitol (Wako Pure Chemical Industries, 199-14731), methyl-β-cyclodextrin (Tokyo Chemical Industry, M1356), γ-cyclodextrin (Japanese Ko Pure Chemical Industries, 037-10643), N-Acetyl-L-Hydroxyproline (Skin Essential Actives, Taiwan), Dimethylsulfoxide (DMSO) (Wako Pure Chemical Industries, 043-07216), Glycerol (Sigma, G9012) and Triton X -100 (Nacalai Tesque, 35501-15) was used to make the scale solution. Brains of Qrfp-iCre mice injected with AAV-DIO-GFP were fixed and cleared with ScaleS. Images were obtained with a laser confocal microscope (Olympus, XLSLPN25XGMP (NA 1.00, WD: 8 mm) (RI: 1.41-1.52)).

(14)統計解析
本研究では、ベイズ統計学を適用して、発明者らの仮説および実験結果を評価した。発明者らは、仮説の構造を表すパラメーターを有する統計モデルを設計し、実験結果にモデルをフィットさせた。ベイズ推論はパラメータの尤度分布と事前確率分布からモデルパラメータの事後確率分布を推定する。事後分布は、モデルが実験結果から仮説をどのように説明できるかに関する情報を提供する。ベイズモデルはすべてのタイプの不確実性を明示的に含むことができ、従って、それは観測におけるノイズに関するデータを扱うことができるか、または、それは広い範囲の不確実性を有する可能性のある少数の試料からの情報を十分に利用することができる。さらに、これは階層モデルを用いて、異なる数のサンプルを持つ複数のグループの複数の層を扱うことができる。ベイズ推論のこれらの利点はすべて、動物実験でよく見られる問題に対処するのに適している。モデルフィッティングは、Rのバージョン3.5239のRStanライブラリー38を有するStanのバージョン2.18.0で実行されるように、適応バリアントである非Uターンサンプラーを有するHamiltonian Monte Carloを用いて実施した。トレースプロットの検査、

Figure 0007105429000001
(14) Statistical Analysis In this study, we applied Bayesian statistics to evaluate our hypotheses and experimental results. We designed a statistical model with parameters representing the hypothetical structure and fitted the model to the experimental results. Bayesian inference estimates the posterior probability distribution of model parameters from the likelihood distribution and prior probability distribution of the parameters. The posterior distribution provides information about how the model can explain the hypothesis from the experimental results. A Bayesian model can explicitly include all types of uncertainty, so it can handle data about noise in the observations, or it can handle a few of samples can be fully utilized. In addition, it uses a hierarchical model and can handle multiple layers of multiple groups with different numbers of samples. All of these advantages of Bayesian inference make it well-suited to address problems commonly encountered in animal experiments. Model fitting was performed using Hamiltonian Monte Carlo with non-U-turn sampler, adaptive variant, as run in version 2.18.0 of Stan with RStan library 38 in version 3.5239 of R. did. inspecting trace plots,
Figure 0007105429000001

および有効サンプル数の推定により収束を評価した。モデルの事前確率密度関数は弱い情報性と保守性とで定義され、以下の節で規定されている。統計モデルの設計の基本原理と技術は、Statistical Rethinkingという本40に基づいている。解析に用いたモデルおよびデータのソースコードはいずれも、https://briefcase.riken.jp/public/JjtgwAnqQ81AgyIから入手できる。(評価のために、パスワード「qih」で保護され、公表される予定である)。and estimated convergence by estimating the number of valid samples. The prior probability density function of the model is defined with weak informationality and conservativeness and is specified in the following sections. The basic principles and techniques for designing statistical models are based on the book Statistical Rethinking40 . Both the model and the data source code used for the analysis are available at https://briefcase. liken. Available from jp/public/JjtgwAnqQ81AgyI. (Will be protected with password 'qih' and made public for evaluation).

Qrfp-iCreマウスの体重を、所定の年齢および系統で状態空間階層モデル(コードフォルダQRFP_KO_BW)によりモデル化した。各群の動物;野生型(n = 9)、ヘテロ接合型(n = 9)、およびホモ接合型(n = 10)のQrfp-iCreマウスを、個体を同定せずに各ケージで飼育した。体重の観察不能なベースラインを時間変数Bt,sと定義し、ここで、tを時点とし、系統の指標(野生型、ヘテロ、およびホモQrfp-iCreマウスについてそれぞれ1、2、および3)をトレンドηおよび総時点Tで表すと、観察された状態Yt,iは、以下のように対数正規分布による観察誤差をモデル化することによって記述することができる。Body weight of Qrfp-iCre mice was modeled by a state-space hierarchical model (code folder QRFP_KO_BW) at a given age and strain. Animals in each group; wild-type (n = 9), heterozygous (n = 9), and homozygous (n = 10) Qrfp-iCre mice were housed in each cage without individual identification. Unobservable baseline body weight was defined as the time variable B t,s , where t is the time point and strain index (1, 2, and 3 for wild-type, heterozygous, and homozygous Qrfp-iCre mice, respectively). with a trend η t , s and a total time T, the observed state Y t,i can be described by modeling the observation error with a lognormal distribution as follows:

Figure 0007105429000002
Figure 0007105429000002

標準の半正規分布から引用したσ1とσ2を除くすべてのパラメータに均一な事前確率密度関数を適用した。 A uniform prior probability density function was applied to all parameters except σ1 and σ2, which are drawn from standard half-normal distributions.

脳スライスにおけるQrfp陽性ニューロンのスパイク頻度は、ニューロンがCNOによって活性化されたときのスパイク頻度の差をパラメータ化することによりモデル化した(コードフォルダPatch_M3_CNO)。スライスの総数がKであり、i番目のスライスのコントロールおよびCNO投与記録の観察されたスパイク頻度がそれぞれBおよびCである場合、Bは観察誤差を伴うβBASEによってモデル化され、Cは観察誤差を伴うβBASEおよびβCNOの合計によってモデル化される。スパイキング頻度は正の実数であるため、誤差は対数正規分布によってモデル化することができ、従って、BおよびCは以下のように記述することができる。The spike frequency of Qrfp-positive neurons in brain slices was modeled by parameterizing the difference in spike frequency when neurons were activated by CNO (code folder Patch_M3_CNO). If the total number of slices is K and the observed spike frequencies of control and CNO-dosing recordings in the i-th slice are B i and C i , respectively, then B i is modeled by β BASE with observational error and C i is modeled by the sum of β BASE and β CNO with observation error. Since the spiking frequency is a positive real number, the error can be modeled by a lognormal distribution, so B i and C i can be written as

Figure 0007105429000003
Figure 0007105429000003

すべてのσを標準的な半正規分布からサンプリングした。 All σ were sampled from a standard semi-normal distribution.

光刺激動物のTを階層的多層モデルでモデル化した(図21、コードフォルダSSFO_Opto)。4群の動物をこの実験に含めた。Tを1Hzで記録し、10秒毎に中央値を10秒毎に保存し、更なる分析を行った。第1光刺激後115~125分に記録したTをすべて解析に含めた。Kが動物の総数であり、Yがiに属するマウスjの関心時間中のTである場合、Yは、尺度パラメータσERRORのCauchy分布でモデル化された観察ノイズを伴う、グローバル平均パラメータβ、群パラメータβGROUP、および個々のマウスパラメータβMOUSEの合計として表すことができる。The TS of photostimulated animals was modeled with a hierarchical multi-layer model (Fig. 21, code folder SSFO_Opto). Four groups of animals were included in this experiment. TS was recorded at 1 Hz and median values were saved every 10 seconds for further analysis. All T s recorded 115-125 minutes after the first photostimulation were included in the analysis. Where K is the total number of animals and Y is the TS during the time of interest for mouse j belonging to i, Y is the global mean parameter β , the group parameter β GROUP , and the individual mouse parameter β MOUSE .

Figure 0007105429000004
Figure 0007105429000004

すべてのσを標準的な半正規分布からサンプリングした。Tの群間差を、σMOUSEの標準偏差で正規分布ノイズを有するβおよびβGROUPの合計である事後分布から各群の平均Tを推定して比較した。All σ were sampled from a standard semi-normal distribution. Between-group differences in TS were compared by estimating the mean TS of each group from the posterior distribution, which is the sum of β and β GROUP with normally distributed noise at the standard deviation of σ MOUSE .

QIHおよび通常の条件下での体温調節系を評価するために、動物の熱損失および熱生産を階層的多層モデル(図3c-k、コードフォルダQIH_GTRH)で記述した。2つの代謝条件、すなわち正常およびQIHにおける3つのパラメータG、TおよびHを、種々のTにおける動物の代謝的に安定な状態から推定した。詳細な方法は先に述べた。要するに、制御可能なパラメータTと観測可能なパラメータTとVOから成る線形モデルを、正規分布ノイズを有する予測因子としてTを用い、TとVOの両方についての実験結果に適合させた。次に、各モデルの傾きと切片係数の事後分布を用いて、G、T、およびHを推定した。この分析では、ノイズの標準偏差の事前確率密度関数は標準的な半正規分布であり、他のパラメータは負の値に起因する均一な分布を使用したTの切片係数を除いて均一な分布の正の領域を用いた。To assess the thermoregulatory system under QIH and normal conditions, animal heat loss and heat production were described in a hierarchical multilayer model (Fig. 3c-k, code folder QIH_GTRH). Three parameters G, TR and H in two metabolic conditions, normal and QIH , were estimated from the metabolically stable state of animals at different TA . The detailed method was previously described 3 . In short, a linear model consisting of controllable and observable parameters TB and VO2 was fitted to experimental results for both TB and VO2 , using TA as a predictor with normally distributed noise. let me The posterior distributions of the slope and intercept coefficients of each model were then used to estimate G, T R , and H. In this analysis, the prior probability density function of the standard deviation of the noise has a standard semi-normal distribution, and the other parameters have a uniform distribution except for the intercept coefficient of TB using a uniform distribution due to negative values. used the positive area of .

Q‐TeTxLCマウスにおける代謝の概日変化は、記録された値をL期およびD期にクラスター化することにより代謝をモデリングすることにより解析した(コードフォルダTeTxLC_LD)。特に、Yが第j相のi群の観察されたTである場合、Yは基礎代謝(L相代謝)とD相間の差の和として表すことができ、正規分布の観察ノイズは次のようになる。Circadian changes in metabolism in Q-TeTxLC mice were analyzed by modeling metabolism by clustering recorded values into L and D phases (code folder TeTxLC_LD). In particular, if Y is the observed TB of group i in phase j, then Y can be expressed as the sum of the differences between basal metabolism (L-phase metabolism) and D-phase, with a normally distributed observation noise of become.

Figure 0007105429000005
Figure 0007105429000005

すべてのσを標準的な半正規分布からサンプリングした。VOのモデリングでは、VOは正の実数のみを想定しているため、観測誤差を対数正規分布としてモデル化した以外は、基本的なモデル構造はTモデリングと同一であった。
Q-TeTxLCマウスにおけるFIT中の代謝は、階層的多層モデル(図4d、コードフォルダTeTxLC_FIT)でモデル化した。セクションjにおけるあるグループiの最小値Yは、グループβ0[i]の平均代謝と差異パラメータβ1[i,j]の合計として表すことができる。
All σ were sampled from a standard semi-normal distribution. In modeling VO2, the basic model structure was identical to TB modeling, except that observation errors were modeled as log-normal distributions, since VO2 assumes only positive real numbers.
Metabolism during FIT in Q-TeTxLC mice was modeled with a hierarchical multilayer model (Fig. 4d, code folder TeTxLC_FIT). The minimum value Y for a group i in section j can be expressed as the sum of the group β 0[i] 's mean metabolism and the difference parameter β 1[i,j] .

Figure 0007105429000006
Figure 0007105429000006

代謝の分散をモデリングするために、観察された値Yの予測因子としてマウスの同一性を含めた。このようにして、あるセクション(SECTION)の所定のグループのYは正規分布としてモデル化され、この正規分布は、マウス依存の平均αMOUSEとグループおよびセクション依存のパラメータβGROUP,SECTIONを平均として、σGROUP,SECTIONを標準偏差として用いた。Mouse identity was included as a predictor of observed Y values to model metabolic variance. In this way, Y for a given group of a SECTION is modeled as a normal distribution, which averages the mouse-dependent mean α MOUSE and the group- and section-dependent parameters β GROUP,SECTION as: σ GROUP, SECTION was used as standard deviation.

Figure 0007105429000007
Figure 0007105429000007

式(22)~(24)および(28)~(30)の全σを標準の半正規分布からサンプリングした。これらのモデルは、T、VO、およびRQのモデリングに用いられた。これらのモデルのYでさえ、理論的には負の実数を受け入れることができ、後者はうまく収束したため、このモデルをVOとRQにも適用した。All σ in equations (22)-(24) and (28)-(30) were sampled from a standard semi-normal distribution. These models were used to model T B , VO 2 and RQ. Even Y in these models could theoretically accept negative real numbers, and the latter converged well, so we also applied this model to VO2 and RQ.

[実験と結果] [Experiment and results]

実施例1:化学的に定義された視床下部ニューロン集団による代謝低下の誘発
視床下部神経ペプチドであるピログルタミン化RFアミドペプチド(QRFP)は、もともと新しいRF‐アミドペプチドを発見することを目的としたバイオインフォマティクスアプローチを通して発見された9,10。Qrfpペプチドはまた、オーファンG-タンパク質結合受容体hGPR103の内因性リガンドとしてラット脳から同定および精製された11。prepro‐Qrfp mRNAは視床下部にのみ局在し、脳室周囲核(Pe)、視床下部外側野(LHA)、および灰白隆起(TC)11に分布する。Qrfpは、食物摂取、交感神経調節、および不安に関係するとされてきた11,12。発明者らは、Qrfp遺伝子にコドン改良Creリコンビナーゼ(iCre)をノックインしたマウス(Qrfp-iCreマウス)を作製した。発明者らは、iCre発現ニューロンにのみhM3Dq-mCherryを発現するマウス(Qrfp-iCre;Rosa26dreaddm3 マウス)を得るために、CAG-hM3Dq-mCherryをRosa26遺伝子座に上流のfloxed転写停止エレメントを挿入したRosa26ddreadm3 マウスと交配した。Qrfp‐iCre;Rosa26dreaddm3マウスを用いた興奮性化学遺伝学的実験中に、これらのマウスは運動活性の顕著な低下を示し、最終的にクロザピン‐N‐オキシド(CNO)の腹腔内(IP)注射から約30分後に始まる重度で持続的な不動状態となった。これらのマウスの姿勢は日内休眠(tropor)中に観察された姿勢と類似していることに気づいたので、Qrfp‐iCreマウスにおけるiCre陽性細胞の活性化は日内休眠(tropor)様状態を誘発し、不動性と低いTを特徴とすると最初に仮説した(後述するように、ここで誘導された低体温は日内休眠ではなく、冬眠様状態であることが明らかとなっている)。この仮説を評価するために、サーモグラフィーカメラを用いて表面体温(T)を測定し、Qrfp‐iCre;Rosa26dreaddm3マウスにおけるCNO誘発性不動状態が、顕著で持続性の低体温を伴うことを見出した(図1b)。Tの減少はCNO投与の約5分後から始まり、ほぼ12時間持続した。その後、マウスは外部からの再加温なしに低体温状態から自発的に回復した。
Example 1: Induction of hypometabolism by a chemically defined population of hypothalamic neurons The hypothalamic neuropeptide pyroglutaminated RF-amide peptide (QRFP) was originally aimed at discovering new RF-amide peptides. discovered through bioinformatics approaches 9,10 . A Qrfp peptide was also identified and purified from rat brain as an endogenous ligand for the orphan G-protein coupled receptor hGPR103 11 . The prepro-Qrfp mRNA is localized only to the hypothalamus and is distributed in the periventricular nucleus (Pe), lateral hypothalamic area (LHA), and ridge gray (TC) 11 . Qrfp has been implicated in food intake, sympathetic modulation, and anxiety 11,12 . The inventors generated mice in which codon-improving Cre recombinase (iCre) was knocked into the Qrfp gene (Qrfp-iCre mice). We inserted CAG-hM3Dq-mCherry into the Rosa26 locus with an upstream floxed transcription stop element to obtain mice expressing hM3Dq-mCherry only in iCre-expressing neurons (Qrfp-iCre; Rosa26 dreaddm3 mice). Crossed with Rosa26 ddreadm3 mice. During excitatory chemogenetic experiments with Qrfp-iCre;Rosa26 dreaddm3 mice, these mice exhibited markedly reduced motor activity and, ultimately, intraperitoneal (IP) administration of clozapine-N-oxide (CNO). Severe and persistent immobility began approximately 30 minutes after injection. We noticed that the posture of these mice was similar to that observed during tropor, suggesting that activation of iCre-positive cells in Qrfp-iCre mice induced a tropor-like state. , was first hypothesized to be characterized by immobility and low TB (as discussed below, the hypothermia induced here has been shown to be a hibernation-like state rather than diurnal dormancy). To test this hypothesis, we measured surface body temperature (T S ) using a thermographic camera and found that CNO-induced immobility in Qrfp-iCre;Rosa26 dreaddm3 mice was accompanied by marked and persistent hypothermia. (Fig. 1b). The decrease in TS began approximately 5 minutes after CNO administration and persisted for approximately 12 hours. Mice then spontaneously recovered from hypothermia without external rewarming.

対照的に、Qrfp-iCre;Rosa26dreaddm4マウスのiCre陽性ニューロンにおけるhM4Diの活性化を介した抑制性DREADD操作は、Tに対していかなる効果も示さなかった(図1b)。重要なことは、Qrfp-iCre;Rosa26dreadm3マウスにおけるiCre陽性ニューロンのhM3Dq介在性活性化は、両対立遺伝子においてprepro-Qrfp配列が完全にiCreに置換されたホモ接合性Qrfp-iCreマウスにおいてさえ、重度の低体温を誘発したことである(図1b)。このことは、Qrfpペプチド自体は低体温を誘導するために必須ではないことを示唆する。むしろ、低体温の程度はQrfpノックアウト(Qrfp‐iCreホモ接合体)マウスでより顕著であり、内因性Qrfp自体が低体温に対抗する可能性を示唆する。これは、Qrfpが中枢投与時に交感神経の流出を増加させ、心拍数および血圧を上昇させるという発明者らの以前の観察11と一致する。In contrast, inhibitory DREADD manipulation via activation of hM4Di in iCre-positive neurons of Qrfp-iCre;Rosa26 dreaddm4 mice did not show any effect on T S (Fig. 1b). Importantly, hM3Dq-mediated activation of iCre-positive neurons in Qrfp-iCre;Rosa26 dreadm3 mice was suppressed even in homozygous Qrfp-iCre mice in which the prepro-Qrfp sequences were completely replaced by iCre in both alleles. It induced severe hypothermia (Fig. 1b). This suggests that the Qrfp peptide itself is not essential for inducing hypothermia. Rather, the extent of hypothermia was more pronounced in Qrfp knockout (Qrfp-iCre homozygous) mice, suggesting that endogenous Qrfp itself may counteract hypothermia. This is consistent with our previous observations11 that Qrfp increases sympathetic outflow and increases heart rate and blood pressure upon central administration.

そこで、低体温誘導ニューロンの化学マーカーとしてQrfpを同定した。次に、iCre陽性ニューロンは視床下部にのみ観察されるが、Qrfp-iCreマウスのいくつかの離散した視床下部領域に分布しているので、低体温を誘導する視床下部領域の同定を試みた。2つの異なる定位座標;内側基底(MB)注射または側方(LH)注射(方法を参照)を用いて、flip-excision(FLEX)スイッチ13を有するCre活性化AAVベクターをQrfp‐iCreマウスの視床下部に注入することにより、視床下部の外側と内側の領域のiCre陽性ニューロンを別々に操作した。Cre依存性AAVベクターのMB注入により、視床下部の内側領域、すなわち前腹側脳室周囲核(AVPe)、内側視索前野(MPA)およびPeにおけるiCre陽性ニューロンの特定の遺伝子を発現させることができたが、LHAでは発現することができなかった(図1c)。マルチカラー蛍光in situハイブリダイゼーション分析により、これらの領域の大部分のmCherry陽性細胞がQrfp mRNAを発現することが確認された。Qrfp-iCreマウスにAAV10-EF1a-DIO-hM3Dq-mCherryをMB注入してこの領域にhM3Dqを発現させた後、これらのマウスから作成した視床下部スライスを用いて電気生理学的研究を実施し、CNOの浴中適用がmCherry陽性ニューロンを強く興奮させたことを確認した。これらのマウスにCNOをIP注入すると、Qrfp-iCre;Rosa26dreaddm3マウスで観察される重度の不動状態よりも深く長く続く低体温症を引き起こすことがわかった(図1b、図1d)。非常に低いT状態(30℃未満)は48時間以上続いた(図1d)。抗Fosおよび抗mCherry抗体を用いた免疫染色により、AVPe、MPAおよびPeにおいて多数のmCherryおよびFos二重陽性ニューロンが明らかにされ、CNOによるこれらのニューロンのin vivoでの興奮が確認された(図1e)。Therefore, Qrfp was identified as a chemical marker of hypothermia-induced neurons. Since iCre-positive neurons are only observed in the hypothalamus but are distributed in several discrete hypothalamic regions in Qrfp-iCre mice, we next attempted to identify hypothermic-inducing hypothalamic regions. Cre-activating AAV vectors with flip-excision (FLEX) switch 13 were injected into the thalamus of Qrfp-iCre mice using two different stereotaxic coordinates; medial-basal (MB) or lateral (LH) injection (see Methods). iCre-positive neurons in the lateral and medial regions of the hypothalamus were separately manipulated by injecting into the hypothalamus. MB injection of Cre-dependent AAV vectors can express specific genes in iCre-positive neurons in the medial regions of the hypothalamus: the anterior ventral periventricular nucleus (AVPe), medial preoptic area (MPA) and Pe. It could, but could not be expressed in LHA (Fig. 1c). Multicolor fluorescence in situ hybridization analysis confirmed that the majority of mCherry-positive cells in these regions expressed Qrfp mRNA. After MB injection of Qrfp-iCre mice with AAV 10 -EF1a-DIO-hM3Dq-mCherry to express hM3Dq in this region, electrophysiological studies were performed using hypothalamic slices made from these mice, We confirmed that bath application of CNO strongly excited mCherry-positive neurons. IP injection of CNO into these mice was found to cause deeper and longer lasting hypothermia than the severe immobility observed in Qrfp-iCre;Rosa26 dreaddm3 mice (Fig. 1b, 1d). A very low TB state (below 30 °C) persisted for more than 48 h (Fig. 1d). Immunostaining with anti-Fos and anti-mCherry antibodies revealed numerous mCherry and Fos double-positive neurons in AVPe, MPA and Pe, confirming the in vivo excitation of these neurons by CNO (Fig. 1e).

これらの観察から、Qrfp‐iCreマウスのAVPe/MPAおよびPeにおけるiCre陽性ニューロン(これらのニューロンを静止誘発ニューロンまたはQニューロンと後述する)は主に誘導低体温状態の原因であると結論した。以下の実験において、発明者らは、特に明記しない限り、低体温の誘導のために、AAV10-EF1a-DIO-hM3Dq-mCherry(Q-hM3Dマウスと呼ばれる)のMB注射を伴うQrfp-iCreマウスを基本的に使用した。From these observations, we concluded that iCre-positive neurons in the AVPe/MPA and Pe of Qrfp-iCre mice (these neurons are referred to below as quiescence-induced neurons or Q neurons) are primarily responsible for the induced hypothermic state. In the following experiments, we used Qrfp-iCre mice with MB injection of AAV 10 -EF1a-DIO-hM3Dq-mCherry (referred to as Q-hM3D mice) for induction of hypothermia, unless otherwise stated. was basically used.

誘導低体温状態をさらに解析するために、Q‐hM3Dマウスの腹腔内に遠隔測定温度センサーを移植し、呼吸ガス分析により代謝を連続的に分析した(図1f)。本研究は、Q‐hM3DマウスにおけるCNO誘発低体温状態が、O消費速度(VO:酸素消費量)の著しい低下(図1g)を伴い、CNO投与後のTと共にTが同時に減少することを確認した。対照的に、AAV10-EF1a-DIO-hM3Dq-mCherryのLH注射によるQrfp-iCreマウスの視床下部外側領域(LHAおよびTC)のiCre陽性ニューロンの興奮性DREADD操作は、低体温を誘発しなかった(図1g)。To further analyze the induced hypothermic state, Q-hM3D mice were implanted with telemetric temperature sensors intraperitoneally and metabolism was continuously analyzed by respiratory gas analysis (Fig. 1f). The present study demonstrated that CNO-induced hypothermia in Q-hM3D mice was accompanied by a marked decrease in the rate of O2 consumption (VO2:oxygen consumption) ( Fig . 1g), with a concomitant decrease in TB with TS after CNO administration. Confirmed to do. In contrast, excitatory DREADD manipulation of iCre-positive neurons in the lateral hypothalamic area (LHA and TC) of Qrfp-iCre mice by LH injection of AAV 10 -EF1a-DIO-hM3Dq-mCherry did not induce hypothermia. (Fig. 1g).

Qニューロン誘発低体温/低代謝(QIH)状態の間に、心拍数は著しく減少した(CNO注射の2時間前と2時間後、それぞれ758拍/分と215拍/分)(n=3の平均)。呼吸数は333呼吸/分から検出不可能な状態にまで減少した(1回換気量は検出限界未満)。これらのタイミングで、VOは3.60から1.17ml/g/hrに減少した。QIH中、マウスは非常に低い振幅脳波(EEG)を示し、これは高振幅徐波を特徴とする非急速眼球運動睡眠で観察されるものとは明らかに異なっていた。血清化学データは、血糖値がQIH中に低下することを示唆し、これはおそらく交感神経緊張の低下による糖新生の低下によるものと思われる。これらの観察はさらに、多くの身体機能がQIH中のTとVOの減少と共にロバストに減少することを示唆する。During the Q neuron-induced hypothermia/hypometabolism (QIH) state, heart rate was markedly decreased (758 beats/min and 215 beats/min, 2 h before and 2 h after CNO injection, respectively) (n=3). average). Respiratory rate decreased from 333 breaths/min to undetectable (tidal volume below detection limit). At these timings, VO2 decreased from 3.60 to 1.17 ml/g/hr. During QIH, mice exhibited very low amplitude electroencephalograms (EEGs), distinct from those observed in non-rapid eye movement sleep characterized by high amplitude slow waves. Serum chemistry data suggest that blood glucose levels drop during QIH, presumably due to reduced gluconeogenesis due to reduced sympathetic tone. These observations further suggest that many physical functions are robustly reduced with decreases in TB and VO2 during QIH .

DREADDを介する効果は通常、CNO注射後数時間しか持続しないが、Q‐hM3DマウスにおけるDREADD誘発QIHは非常に長く持続した。驚いたことに、T=20℃では、30℃未満のTのQIHは、CNOを1回投与(1mg/kg)しただけで48時間以上持続し、VOが完全に正常に回復するのに約1週間かかった(図1h)。QIHからの回復後、マウスは健康であり、正常に振る舞うようであった。QIHは、同じマウスに反復CNO注射後に再現可能であり、この操作の可逆性を示した(図1h)。Although DREADD-mediated effects usually last only a few hours after CNO injection, DREADD-induced QIH in Q-hM3D mice persisted much longer. Surprisingly, at T A =20° C., the QIH of T B below 30° C. persisted for more than 48 h after a single dose of CNO (1 mg/kg), with complete return of VO 2 to normal. It took about a week to complete (Fig. 1h). After recovery from QIH, mice were healthy and appeared to behave normally. QIH was reproducible after repeated CNO injections in the same mice, indicating the reversibility of this manipulation (Fig. 1h).

実施例2:Qニューロンは視床下部背内側に作用してQIHを誘導する
QIHを誘導する機構を明らかにするために、Qニューロンの軸索投射を解析した。Qrfp-iCreマウスにAAV10-EF1a-DIO-GFPを注射してQニューロンに特異的にGFPを発現させた後(図2a、b)、MPA、VOLT、室傍核(PVN)、視索上核(SON)、視床下部背内側(DMH)、LHA、結節乳頭核(TMN)、内側乳頭核(MM)、中脳水道周囲灰白質(PAG)、外側結合腕傍核(LPB)、青斑核(LLC)、延髄吻側腹外側野(RVLM)、および淡蒼縫線核(RPa)(体温調節調節および交感神経制御に関わる領域)におけるGFP陽性線維を観察した(図2c)14。発明者らは、DMHが特に豊富な投射を受けたことを見出した。ScaleS法で明らかになった脳の解析から、QニューロンとDMHへの投射の位置がさらに示唆された(図2d)。
次に、Qニューロンの三重カラーin situハイブリダイゼーションを用いて、これらのQニューロンが抑制性か興奮性かを確認した。CNO注射がQ‐hM3DマウスにおいてQIHを効果的に誘導することを確認した後、これらのマウスをin situハイブリダイゼーション組織化学的検査に供した。興奮性および抑制性マーカーであるmCherryをコードする転写産物、小胞性グルタミン酸トランスポーター2(Vglut2)および小胞性GABAトランスポーター(Vgat)をコードするプローブを用いた。われわれは、Qニューロンの約2/3がVgat陽性であり、約2/5がVglut2陽性であることを見出した(図2e-i)。
Example 2: Q neurons act on the dorsomedial hypothalamus to induce QIH To clarify the mechanism of QIH induction, the axonal projection of Q neurons was analyzed. After Qrfp-iCre mice were injected with AAV 10 -EF1a-DIO-GFP to express GFP specifically in Q neurons (Fig. 2a,b), MPA, VOLT, paraventricular nucleus (PVN), supraoptic Nucleus (SON), dorsomedial hypothalamus (DMH), LHA, tuberomaminal nucleus (TMN), medial mammary nucleus (MM), periaqueductal gray matter (PAG), lateral parabrachial nucleus (LPB), locus coeruleus We observed GFP-positive fibers in the nucleus (LLC), rostral ventrolateral medulla (RVLM), and nucleus pallidum (RPa), a region involved in thermoregulatory regulation and sympathetic control (Fig. 2c) 14 . The inventors found that DMH received a particularly abundant projection. Analysis of the brain revealed by the ScaleS method further suggested the location of Q neurons and projections to the DMH (Fig. 2d).
Next, triple-color in situ hybridization of Q neurons was used to confirm whether these Q neurons were inhibitory or excitatory. After confirming that CNO injection effectively induces QIH in Q-hM3D mice, these mice were subjected to in situ hybridization histochemistry. Probes encoding transcripts encoding the excitatory and inhibitory markers mCherry, vesicular glutamate transporter 2 (Vglut2) and vesicular GABA transporter (Vgat) were used. We found that approximately 2/3 of Q neurons were Vgat positive and approximately 2/5 were Vglut2 positive (Fig. 2e-i).

Qニューロンによる豊富な投射を含む領域(図2c)の中で、我々はDMHに焦点を当てた。なぜなら、熱産生促進ニューロンは以前にDMHで同定されたからである15。DMHへのQニューロンの軸索投射の機能を明らかにするために、光遺伝学的アプローチを用いた。Qrfp-iCreマウス(Q-SSFOマウス)にAAV10-DIO-SSFO-eYFPを注入することにより、Qニューロンで安定化したstep function opsin (SSFO)16を発現させた(図2j)。SSFOはAVPe,MPAおよびPeで発現することを確認した。Tに対する光遺伝学的興奮の効果を確認するために、まず、Qニューロンの多くの細胞体が見出されるAVPe/MPAに光ファイバーを移植し(図2j)、光パルス(1秒幅の光パルス)を印加することによりSSFO陽性細胞体の光発生的興奮をマウスにかけた。この状態では、Qニューロンの光遺伝学的興奮が急速に強い低体温を誘発し、約20分続いた(図2k)。Qニューロンを30分ごとに4回繰り返し興奮させると、T(22℃)と同程度に低いTを伴う著明な低体温になった。興奮後のAVPe/MPAのSSFO‐eYFP陽性細胞では多くのFos陽性ニューロンが同定された(図2j)。光遺伝学的に誘発されたQIHは、QニューロンのhM3Dq介在性の薬理遺伝学的興奮によって誘発されるQIHよりも明らかに短時間持続し(図2k)、このことは、遺伝子発現プロフィールの変化を導くQニューロンにおけるGq介在性の代謝調節性シグナル伝達がQIHの長期持続性を作り出す役割を果たしている可能性を示唆している。Among the regions containing abundant projections by Q neurons (Fig. 2c), we focused on the DMH. This is because thermogenic neurons were previously identified in DMH 15 . An optogenetic approach was used to clarify the function of Q-neuron axonal projections to the DMH. Injection of AAV 10 -DIO-SSFO-eYFP into Qrfp-iCre mice (Q-SSFO mice) resulted in expression of stabilized step function opsin (SSFO) 16 in Q neurons (Fig. 2j). SSFO was confirmed to be expressed in AVPe, MPA and Pe. To confirm the effect of optogenetic excitation on TS , we first implanted an optical fiber into AVPe/MPA, where many somata of Q neurons are found (Fig. ) to induce photogenic excitation of SSFO-positive cell bodies in mice. In this state, optogenetic excitation of Q neurons rapidly induced strong hypothermia lasting approximately 20 min (Fig. 2k). Repeated excitation of Q neurons every 30 min for four times resulted in profound hypothermia with T S as low as T A (22° C.). Many Fos-positive neurons were identified in SSFO-eYFP-positive cells of AVPe/MPA after excitation (Fig. 2j). Optogenetic-evoked QIH was apparently shorter-lasting than QIH induced by hM3Dq-mediated pharmacogenetic excitation of Q neurons (Fig. 2k), indicating changes in gene expression profiles. suggest that Gq-mediated metabotropic signaling in Q neurons leading to Q may play a role in creating long-term persistence of QIH.

次に、Q‐SSFOマウスの両側にDMHに光ファイバーを移植し、光刺激を軸索線維に適用した。この操作は効果的にTを減少させたが、AVPe/MPAの細胞体刺激によって誘導されるものよりわずかに弱かった(図2k,l)。対照として、RPaは褐色脂肪組織制御を介する熱産生のための交感神経性運動前ニューロンを含むことが知られている17ため、RPaにおけるQニューロン線維の光刺激の影響も検討した。また、Tに対するRPaにおけるQニューロン線維の光発生的興奮の微妙な作用も観察された(図2k,l)。これらの結果から、Qニューロンは主にDMHに作用し、RPaに対してはより小さい程度で作用し、QIHを誘導すると仮定した。Q-SSFO mice were then bilaterally implanted with optical fibers in the DMH and light stimulation was applied to the axonal fibers. This manipulation effectively reduced TS , but slightly weaker than that induced by somatic stimulation of AVPe/MPA (Fig. 2k, l). As a control, we also examined the effects of light stimulation of Q neuron fibers in RPa, as RPa is known to contain sympathetic premotor neurons for heat production via brown adipose tissue regulation. We also observed subtle effects of photogenetic excitation of Q neuron fibers in RPa on TS (Fig. 2k,l). From these results, we hypothesized that Q neurons act primarily on DMH and to a lesser extent on RPa, inducing QIH.

実施例3:理論的設定温度はQIH中に低下する
QIH誘発直後にマウス尾部の温度上昇が観察され、Qニューロンの光遺伝学的または薬理遺伝学的興奮によって誘発されたことから、Tの減少中に末梢血管が拡張して熱を放出することが示唆された(図1d、図2k)。Tの増加を伴わない末梢血管拡張は、冬眠動物の冬眠状態で見られるように、理論体温設定値(T)を正常状態より低い値に再設定されていることを示唆する。これを評価するために、QIH中のマウスの体温調節系の特徴分析を行った。動物が外部仕事を持たず、代謝が安定している条件下では、複数の周囲温度(T)下で、TおよびVOから熱コンダクタンス(G)、HおよびTを推定することができる。Q‐hM3Dマウスを調製し、種々のT(8、12、16、20、24、28および32℃)下でQIH中にTおよびVOを記録した(図3a)。生理食塩水またはCNOのIP注射後の11時間平均TおよびVOを比較した。QIH中、動物は対応する対照と比較して、全てのTで低いTとVOを示した(図3b)。熱産生システムが適切に機能しているとき、すなわち、TがTより高く、体温調節システムがVOを増加させてTに到達しようとしているとき(図3c)、Tが増加するとTは増加し、VOは減少する。TとVOはそれぞれ異なるTで最小値を示し、Tでは16~24℃の範囲の協調した熱生成特性のみを示した(図3b)。したがって、QIH中のT=16、20、および24℃の代謝データを用いてさらに分析した。まず、T-TとVOの関係からGを推定した(図3d)。Gの89%の最高後部密度間隔(HPDI)は、正常及びQIH条件下でそれぞれ[0.212,0.221]ml/g/hr/℃及び[0.182,0.220]ml/g/hr/℃(図3e;以下89%HPDIは2つの数字で四角括弧で示す)であった。量的に、両Gの差の後方分布(ΔG)は[-0.0040,0.0348]ml/g/hr/℃(図3f)であり、0を含んでおり、正常条件下とQIH条件下のGが区別できないことを示唆している。これは通常の条件よりも低いGを示す日内休眠(torpor)とは異なっていた。第二に、TとVOからHとTを推定した(図3g)。Hは正常状態で[3.43、8.72]ml/g/hr/℃、QIHで[0.181、0.369]ml/g/hr/℃(図3h)であり、各中央値で95.3%の減少であった。差の事後分布(ΔH)は[3.17,8.48]ml/g/hr/℃(図3i)であり、陽性であり、これらの条件が異なる確率が89%以上であることが示唆された。このH低下は、空腹時誘発日内休眠(FIT)時のH低下と類似していた。特に、
は正常状態で[36.04、36.60]℃、QIHで[26.83、29.13]℃と推定された(図3j)。Tの差は各中央値で8.41℃であり、差の後方分布(ΔT)は[7.18,9.57]℃であり、QIH中のTの低下を明確に示している(図3k)。FITにおける非常に小さな理論的設定温度シフトを考慮すると、この観察は、QIHと冬眠の間の類似性、ならびにQIHと日内休眠(torpor)の間の差を強調する。
Example 3: Theoretical Set Temperature Decreases During QIH An increase in temperature in the mouse tail was observed immediately after QIH induction and was induced by optogenetic or pharmacogenetic excitation of Q neurons, suggesting that TB It was suggested that peripheral vessels dilate and release heat during depletion (Fig. 1d, Fig. 2k). A telangiectasia without an increase in T B suggests a resetting of the theoretical body temperature set point (T R ) below normal, as seen in the hibernating state of hibernating animals. To assess this, a characterization of the mouse thermoregulatory system during QIH was performed. Thermal conductance ( G ), H and TR can be estimated from T B and VO2 under multiple ambient temperatures (T A ) under conditions where the animal has no external work and metabolism is stable. Can 3 . Q-hM3D mice were prepared and T B and VO 2 were recorded during QIH under different T A (8, 12, 16, 20, 24, 28 and 32° C.) (FIG. 3a). We compared the 11 h mean TB and VO2 after IP injection of saline or CNO. During QIH , animals showed lower TB and VO2 at all TAs compared to matched controls (Fig. 3b). When the heat production system is functioning properly, i.e., when TR is higher than TB and the thermoregulatory system is increasing VO2 to reach TR ( Fig . 3c), increasing TA TB increases and VO2 decreases. T B and VO 2 each exhibited a minimum at different T A , with only coordinated heat production properties in the range of 16–24 ° C (Fig. 3b). Therefore, metabolic data for T A =16, 20, and 24° C. during QIH were used for further analysis. First, G was estimated from the relationship between T B −T A and VO 2 (Fig. 3d). The 89% highest posterior density interval (HPDI) of G was [0.212, 0.221] ml/g/hr/°C and [0.182, 0.220] ml/g under normal and QIH conditions, respectively. /hr/°C (Fig. 3e; below 89% HPDI is shown in square brackets with two numbers). Quantitatively, the posterior distribution (ΔG) of the difference between both Gs was [−0.0040, 0.0348] ml/g/hr/°C (Fig. 3f), including 0, between normal conditions and QIH. This suggests that G under the condition is indistinguishable. This was in contrast to diurnal dormancy (torpor), which exhibits a lower G than normal conditions 3 . Second, we estimated H and TR from TB and VO2 ( Fig . 3g). H was [3.43, 8.72] ml/g/hr/°C in normal state and [0.181, 0.369] ml/g/hr/°C in QIH (Fig. 3h), and each median was a decrease of 95.3%. The posterior distribution of the difference (ΔH) was [3.17, 8.48] ml/g/hr/°C (Fig. 3i) and was positive, suggesting that the probability of these conditions being different is 89% or greater. was done. This H-drop was similar to that during fasting-induced diapause (FIT) 3 . especially,
TR was estimated to be [36.04, 36.60 ] °C in normal conditions and [26.83, 29.13] °C in QIH (Fig. 3j). The difference in T R was 8.41° C. at each median and the rear distribution of the difference (ΔT R ) was [7.18, 9.57]° C., clearly demonstrating the drop in T R during QIH. (Fig. 3k). Given the very small theoretical setpoint shift of 3 in FIT, this observation highlights the similarities between QIH and hibernation, as well as the differences between QIH and diurnal torpor.

冬眠の顕著な特徴であるQIH中のT減少の証拠をさらに提供するために、QIH中にTが動的に変化したとき、個々のマウス内の姿勢と代謝の間の関係を観察した(n=4、図3lにおける1匹の代表データ、および他の3匹のデータ)。冬眠動物におけるようなQIHの非常に安定で長期にわたる低代謝状態は、これをマウスで調べることを可能にした。Q-hM3DマウスをT=28℃に設定し、FITを誘導した(図3lのAおよびB)。24時間の回復の後、QIHはCNO投与により誘導された(図3lのC、D、E、およびF)。興味深いことに、T=28℃で、マウスはQIH中に伸びた姿勢を示したが、この姿勢は通常高温環境に暴露された動物で見られるものである(図3lのD)。これは、T=28℃でのFIT中に観察される典型的な座位姿勢とは明らかに異なっていた(図3lのB)。この行動観察はさらに、TがFITおよび正常状態よりもQIHで低いことを示している。さらに、Tを12℃に下げたところ、日内休眠(torpor)に似た座位(図3lのE)に戻り、震えが始まった。これらの結果は、QIH中、Tは低下するが、身体機能および行動はTの変化に適応するために依然として調節されることを強く支持する。To provide further evidence for TR reduction during QIH , a hallmark of hibernation, we observed the relationship between posture and metabolism within individual mice when TA was dynamically altered during QIH. (n=4, 1 representative data in Fig. 3l and 3 other data). The highly stable and prolonged hypometabolic state of QIH as in hibernating animals allowed it to be examined in mice. Q-hM3D mice were set at T A =28° C. to induce FIT (FIG. 3l A and B). After 24 hours of recovery, QIH was induced by CNO administration (Fig. 3l C, D, E, and F). Interestingly, at T A =28° C., mice exhibited an extended posture during QIH, which is normally seen in animals exposed to high temperature environments (FIG. 3lD). This was clearly different from the typical sitting posture observed during FIT at T A =28° C. (FIG. 3lB). This behavioral observation further indicates that TR is lower in QIH than in FIT and normal conditions. Furthermore, when the T A was lowered to 12° C., the mice returned to a sitting position resembling circadian dormancy (torpor) (E in FIG. 3l) and shivering began. These results strongly support that during QIH , TR declines, but physical function and behavior are still modulated to accommodate changes in TA .

動物は冬眠中は代謝率が低いが、Tに反応してその代謝は活発に調節されていることがよく知られている。同様に、QIHでは、16℃以下のTに曝露された動物は、20℃または28℃のTに曝露された動物と比較して、かなり大きなVOを示した(図3b)。実際、これは、Tを一定のレベルに下げた場合に代謝増加を示した冬眠動物に関する以前の報告18と類似している。QIHのこの活発な代謝低下の特徴は、個々の動物でも確認された(図3l)。QIH中のマウスの行動および代謝反応は、身体機能がTを狭い範囲に維持しようとしている正常な状態で観察されたものとは全く異なっていた。It is well known that animals have a low metabolic rate during hibernation, but their metabolism is actively regulated in response to TA . Similarly, in QIH , animals exposed to TAs below 16 °C exhibited significantly greater VO2 compared with animals exposed to TAs at 20 ° C or 28 °C ( Fig . 3b). In fact, this is similar to previous reports18 of hibernating animals that showed increased metabolism when TA was lowered to a certain level. This active hypometabolism feature of QIH was also confirmed in individual animals (Fig. 3l). The behavioral and metabolic responses of mice during QIH were quite different from those observed under normal conditions where body functions attempt to maintain TB within a narrow range.

QIH中の代謝機能を麻酔状態と比較するために、発明者らは複数T下で全身麻酔中の代謝転移を記録した。予想通り、麻酔下の動物は低いTに曝露しても、VOの増加も姿勢の変化も示さなかった。また、低体温状態を誘発するために用いられているアデノシンA1ARアゴニスト(6)N-シクロヘキシルアデノシン(CHA)の全身送達によって誘導される代謝状態も調べた19。野生型マウスへのCHA(2.5mg/kg)のIP注射は低体温/低代謝状態を効果的に誘導したが、マウスはVOの増加または行動(姿勢と震え)のいずれかによって低T(12℃)に反応しなかった。20℃でのTは、QIHよりもCHA誘発性低体温で高い傾向があったが、TとVOはCHA誘発性低体温でさらに減少した。一方、Tを12℃に設定した場合、これらのパラメータはQIHで増加した(図3b)。これらの観察は、QIHが全身麻酔またはCHA誘発受動的低体温とは完全に異なり、それはTの調節系を遮断することによって低体温状態を誘発することを示している。To compare metabolic function during QIH to the anesthetic state, we recorded metabolic transitions during general anesthesia under multiple TA . As expected, anesthetized animals showed no increase in VO2 or change in posture when exposed to low TA . We also investigated the metabolic state induced by systemic delivery of the adenosine A1AR agonist (6) N-cyclohexyladenosine (CHA), which has been used to induce hypothermia 19 . Although IP injection of CHA (2.5 mg/kg) into wild-type mice effectively induced hypothermia/ hypometabolic state, mice were induced to have low T by either increased VO2 or behavior (posture and shivering). A (12° C.) did not react. TB at 20°C tended to be higher in CHA-induced hypothermia than in QIH , while TB and VO2 were further decreased in CHA-induced hypothermia. On the other hand, these parameters increased with QIH when TA was set at 12 ° C (Fig. 3b). These observations indicate that QIH is completely different from general anesthesia or CHA-induced passive hypothermia, which induces a hypothermic state by blocking the regulatory system of TB .

実施例4:Qニューロンは正常な絶食誘発性の日内休眠(torpor)に関与している
QIHは日内休眠(torpor)よりも冬眠に似ているが、日内休眠(torpor)は冬眠の軽い状態と考えられることがあるため、Qニューロンが日内休眠(torpor)にも関与しているかどうかを検討した。また、共通または類似のメカニズムが冬眠および日内休眠(torpor)を誘導する役割を果たしているかもしれない20。日内休眠(torpor)におけるQニューロンの役割を調べるため、Qrfp-iCreマウス(Q-TeTxLCマウス)にAAV2/9-hSyn-DIO-TeTxLC-eYFPを注入することによりQニューロンに特異的に破傷風毒素軽鎖(TeTxLC)を発現させ、QニューロンのSNARE複合体介在性神経伝達の遮断がFITに影響を及ぼすかどうかを調べた(図4b)。AAV2/9‐hSyn‐DIO‐TeTxLC‐eYFPとAAV10‐EF1a‐DIO‐hM3Dq‐mCherryの同時注入はTに対するCNOの作用を完全に消失させ、SNARE複合体の遮断がQニューロンのQIH誘導能を消失させることを示唆した。われわれは、すべてのQ-TeTxLCマウスにおいて、FITの正常な構造が崩壊することを見出した。絶食中のこれらのマウスでは、代謝の急速な振動変動は見られなかった(図4c,d)。このことは、Qニューロンの機能がFIT中のTの急速な低下を誘発するために必要であることを示唆する。興味深いことに、これらのマウスで観察されたTの漸減は、FIT中にQニューロン非依存性の代謝低下機構が存在することを意味する。加えて、Q‐TeTxLCマウスは対照マウスよりもTの概日変動が少なく、Tの概日調節におけるQニューロンの主要な役割を示唆した。特に、QRFPペプチドを欠くホモ接合のQrfp-iCreマウスは、正常なFITを示した(図4e)。これらの観察は、Qニューロンは日内休眠(torpor)を誘導する必須の構成要素であり、日内休眠(torpor)における体温の急速なシフトに重要な役割を果たしているが、QRFPは果たしていないことを示唆する。
Example 4: Q neurons are involved in normal fasting-induced circadian dormancy (torpor). Because of this possibility, we investigated whether Q neurons are also involved in circadian dormancy (torpor). A common or similar mechanism may also play a role in inducing hibernation and diurnal dormancy (torpor) 20 . To investigate the role of Q neurons in circadian dormancy (torpor), Qrfp-iCre mice (Q-TeTxLC mice) were injected with AAV 2/9 -hSyn-DIO-TeTxLC-eYFP to tetanus toxin specifically in Q neurons. We expressed the light chain (TeTxLC) and examined whether blockade of SNARE complex-mediated neurotransmission in Q neurons affected FIT (Fig. 4b). Co-injection of AAV2 / 9-hSyn-DIO-TeTxLC-eYFP and AAV10 - EF1a-DIO-hM3Dq-mCherry completely abolished the effects of CNO on TB , suggesting that blockade of the SNARE complex induces QIH in Q neurons. suggesting that the ability is lost. We found that the normal structure of FIT was disrupted in all Q-TeTxLC mice. No rapid oscillatory changes in metabolism were seen in these fasted mice (Fig. 4c,d). This suggests that Q neuron function is required to induce a rapid drop in TB during FIT. Interestingly, the gradual decline in TB observed in these mice implies the existence of a Q neuron-independent hypometabolic mechanism during FIT. In addition, Q-TeTxLC mice had less circadian variation in TB than control mice, suggesting a major role for Q neurons in circadian regulation of TB . Notably, homozygous Qrfp-iCre mice lacking the QRFP peptide showed normal FIT (Fig. 4e). These observations suggest that Q neurons, but not QRFP, are essential components in inducing circadian torpor and play an important role in the rapid shift in body temperature during circadian torpor. do.

Qニューロンの活性を調節するニューロンのメカニズムを解明するために、われわれは、組換え型仮性型狂犬病ウイルスベクター(SADΔG(EnvA))媒介性ラベリング21(図4f)によってQニューロンと直接シナプス接触する上流ニューロン集団を同定した。Qrfp‐iCreマウスのCre活性化AAVベクター22を用いてQニューロンにおいてTVA‐mCherryおよび狂犬病糖蛋白質(RG)を発現させた後、SADΔG‐GFP(EnvA)を同じ部位に注入した。TVA-mCherryおよびGFPに対して二重陽性であるスターター細胞がAVPe/MPAおよびPeに認められた(図4g)。正中視索前核(MnPO)、PVNおよびMPAにおいて、Qニューロン(GFPは陽性だがmCherryは陰性)に直接シナプス入力する入力ニューロンを同定した(図4h)。入力ニューロンはAVPe/Peの内部および周囲にも観察され、Qニューロンの機能を調節する局所介在ニューロンの存在、およびQニューロンがAVPe/MPAおよびPe内の介在ニューロンと微小回路を構成する可能性を示唆した。これらの観察は、Qニューロンが視床下部内領域から比較的まばらな直接入力を受けることを示唆する。FITは絶食により誘導されるので、Qニューロンは負のエネルギーバランスをモニターすることが期待される。PVHのニューロンはARCから豊富な入力を受けることが示されている23ため、PVHからQニューロンへの入力は栄養状態に関する情報を伝達する役割を果たしている可能性がある。PVH入力は視交叉上核(SCN)からの概日情報を伝達することもある。To elucidate the neuronal mechanisms regulating the activity of Q neurons, we investigated the upstream of direct synaptic contact with Q neurons by recombinant pseudorabies virus vector (SADΔG(EnvA))-mediated labeling 21 (Fig. 4f). Neuronal populations were identified. After expression of TVA-mCherry and rabies glycoprotein (RG) in Q neurons using Cre-activated AAV vector 22 in Qrfp-iCre mice, SADΔG-GFP (EnvA) was injected at the same site. Starter cells that were double positive for TVA-mCherry and GFP were found in AVPe/MPA and Pe (Fig. 4g). Input neurons with direct synaptic input to Q neurons (positive for GFP but negative for mCherry) were identified in the median preoptic nucleus (MnPO), PVN and MPA (Fig. 4h). Input neurons were also observed in and around AVPe/Pe, suggesting the existence of local interneurons that modulate the function of Q neurons and the possibility that Q neurons form microcircuits with interneurons within AVPe/MPA and Pe. suggested. These observations suggest that Q neurons receive relatively sparse direct input from the intrahypothalamic region. Since FIT is induced by fasting, Q neurons are expected to monitor negative energy balance. Since PVH neurons have been shown to receive abundant inputs from the ARC 23 , inputs from PVH to Q neurons may play a role in conveying information about trophic status. PVH input may also convey circadian information from the suprachiasmatic nucleus (SCN).

MPAはTの調節に関与している24,25ので、QニューロンとMPA間の相互相互作用は体温調節に重要な役割を果たしている可能性がある。VMPOには入力ニューロンも含まれている。以前の研究では、視索前野腹内側核(VMPO)の温感受性ニューロンがBDNFとPACAP二重陽性ニューロンとして同定された。これらの細胞の興奮も低体温を誘発した26。この効果はQニューロンの興奮によって誘導されるものよりはるかに小さいが、VMPOPACAP/BDNFニューロンとQニューロンの機能的相互作用が存在する可能性がある。また、POAにおけるTRPM2陽性細胞のDREADD励起は低体温を誘導することが示された。TRPM2は、AVPe/MPAおよびQニューロンへの入力ニューロンを含む領域を含むPOAで遍在的に高発現されるので、TRPM2誘導低体温は、Qニューロンの直接的および/または間接的活性化によって誘導される可能性がある27Since MPA is involved in the regulation of TB 24,25 , the mutual interaction between Q neurons and MPA may play an important role in thermoregulation. VMPO also contains input neurons. Previous studies identified temperature-sensitive neurons in the ventromedial preoptic nucleus (VMPO) as BDNF and PACAP double-positive neurons. Excitability of these cells also induced hypothermia 26 . Although this effect is much smaller than that induced by Q neuron excitation, there may be a functional interaction of VMPO PACAP/BDNF neurons and Q neurons. It was also shown that DREADD excitation of TRPM2-positive cells in POA induces hypothermia. Since TRPM2 is ubiquitously highly expressed in the POA, including the AVPe/MPA and areas containing input neurons to Q neurons, TRPM2-induced hypothermia is induced by direct and/or indirect activation of Q neurons. 27

Qニューロンは第3脳室(3V)に沿って局在し、これらのニューロンの樹状突起は3Vの上衣および脳室周囲器官に近い領域に沿って伸びるため(図1c)、タニサイトおよび上衣細胞によって放出される体液性因子、脳脊髄液中の因子、または毛細血管も感知する可能性がある。 Because Q neurons are localized along the third ventricle (3V) and the dendrites of these neurons extend along the ependymal and periventricular organ-proximal regions of the 3V (Fig. 1c), tanisites and ependymal Humoral factors released by cells, factors in cerebrospinal fluid, or capillaries may also be sensed.

[考察]
ここでは、マウスにおける特定の化学的(=Qrfpを発現する)および組織的(AVPe/MPA)特徴を有する新規視床下部ニューロン集団の存在を示し、この集団の興奮は冬眠と非常に類似した能動的代謝低下を誘発する。この状態であるQIHは、冬眠と2つの主要な性質を共有している。1つはTの減少であり、もう1つは活発に調節される低代謝である。QIHの間、マウスは外界環境に従って身体機能を活発に調節する。心拍数の減少、呼吸の弱さ、低電位脳波などの他の多くの生理学的パラメータは、QIHと冬眠との類似性を示唆する29。Fos発現解析により、ジュウサンセンジリス30において3V付近の細胞が冬眠中に活性化されることが以前の研究で示された。この活性化パターンはQニューロンが局在する領域と非常によく似ており、冬眠神経もまたQニューロンを利用して冬眠を誘導する可能性を示唆している。
[Discussion]
Here we show the existence of a novel hypothalamic neuron population with specific chemical (=Qrfp-expressing) and histological (AVPe/MPA) characteristics in mice, and the excitation of this population is highly similar to hibernation. Induce hypometabolism. This state, QIH, shares two main properties with hibernation. One is reduced TR and the other is actively regulated hypometabolism . During QIH, mice actively regulate their bodily functions according to the external environment. A number of other physiological parameters such as slowed heart rate, weak breathing, and low voltage electroencephalograms suggest similarities between QIH and hibernation 29 . Fos expression analysis showed in a previous study that cells around 3V were activated during hibernation in S. centilis 30 . This activation pattern is very similar to the region where Q neurons are localized, suggesting that hibernating neurons may also use Q neurons to induce hibernation.

マウスが冬眠様の状態(=QIH)に入ることができたことは、非常に驚くべきことである。げっ歯類、イヌ亜目、さらには霊長類を含む遠縁の哺乳類には冬眠する能力があるので、冬眠の神経機構は広範囲の哺乳類種で保存されているが、これらの系は非冬眠動物では正常な状態では動員されないと仮定することは理にかなっている。Qrfp遺伝子はヒトでも保存されているので、Qニューロンが興奮すると活性の低代謝状態を示す可能性も推測できる。本研究では、DMHがQニューロンの主要なエフェクター部位であることも確認した。DMHにおけるQIH誘発ニューロンを同定する今後の研究は、QIHのメカニズムをさらに明らかにするであろう。Qニューロンは本研究で同定された他の領域にも作用する可能性がある。例えば、SONは最近、全身麻酔および睡眠において重要な役割を果たすことが報告された32It is very surprising that mice were able to enter a hibernation-like state (=QIH). Because distantly related mammals, including rodents, canines, and even primates, have the ability to hibernate, the neural mechanisms of hibernation are conserved in a wide range of mammalian species, but these systems are absent in non-hibernating animals. It is reasonable to assume that under normal conditions they are not recruited. Since the Qrfp gene is also conserved in humans, it is speculated that excitation of Q neurons may exhibit an active hypometabolic state. In this study, we also confirmed that DMH is the major effector site of Q neurons. Future studies identifying QIH-inducing neurons in DMH will further clarify the mechanism of QIH. Q neurons may also act on other regions identified in this study. For example, SON was recently reported to play an important role in general anesthesia and sleep 32 .

また、Qニューロンはマウスの絶食誘発の日内休眠(torpor)に必要であることを見出した。しかし、Fos染色またはファイバー測光法(データは示さず)によって、マウスの絶食中のQニューロン活性の増加を検出することは繰り返しできず、Qニューロンの低レベルの活性化が日内休眠(torpor)における低体温を誘導するのに十分である可能性を示唆した。 We also found that Q neurons are required for fasting-induced circadian dormancy (torpor) in mice. However, by Fos staining or fiber photometry (data not shown), we were unable to repeatably detect an increase in Q-neuron activity during fasting in mice, suggesting that low-level activation of Q-neurons is associated with diapause (torpor). suggested that it might be sufficient to induce hypothermia.

本研究で示された非冬眠動物における誘導冬眠は、活発な代謝低下のニューロン機構を理解するための有望な前進であり、各組織が冬眠様代謝低下状態をどのように採用するかを検討するための方法を提供する。さらに、Qニューロンを選択的に興奮させる方法の将来の発展に伴い、QIHは、心臓発作または脳卒中後の全身組織損傷を減少させる可能性のある、または臓器移植の保存に有用な、医学において大きな利点であるヒトにおける合成冬眠の臨床応用を可能にする方法の開発のための新しいアプローチを提供するであろう。 Induced hibernation in non-hibernating animals demonstrated in this study is a promising step forward for understanding the neuronal mechanisms of active hypometabolism and how different tissues adopt a hibernation-like hypometabolic state. provide a method for Furthermore, with the future development of methods to selectively excite Q neurons, QIH will be of great interest in medicine with the potential to reduce systemic tissue damage after a heart attack or stroke, or useful for organ transplant preservation. It would provide a new approach for the development of methods that would enable the clinical application of synthetic hibernation in humans, which is an advantage.

参考文献
1. Bouma, H. R. et al. Induction of torpor: Mimicking natural metabolic suppression for biomedical applications. J. Cell. Physiol. 227, 12851290 (2012).
2. Geiser, F. Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor. Annu. Rev. Physiol. 66, 239274 (2004).
3. Sunagawa, G. A. & Takahashi, M. Hypometabolism during Daily Torpor in Mice is Dominated by Reduction in the Sensitivity of the Thermoregulatory System. Sci. Rep. 6, 37011 (2016).
4. Florant, G. L. & Heller, H. C. CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). Am. J. Physiol. 232, R203-8 (1977).
5. Heller, H. C. & Colliver, G. W. CNS regulation of body temperature during hibernation. Am. J. Physiol. 227, 5839 (1974).
6. Iliff, B. W. & Swoap, S. J. Central adenosine receptor signaling is necessary for daily torpor in mice. AJP Regul. Integr. Comp. Physiol. 303, R477R484 (2012).
7. Melvin, R. G. & Andrews, M. T. Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol. Metab. 20, 490498 (2009).
8. Griko, Y. & Regan, M. D. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. Life Sci. Sp. Res. 16, 101107 (2018).
9. Fukusumi, S. et al. A New Peptidic Ligand and Its Receptor Regulating Adrenal Function in Rats. J. Biol. Chem. 278, 4638746395 (2003).
10. Chartrel, N. et al. Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc. Natl. Acad. Sci. 100, 1524715252 (2003).
11. Takayasu, S. et al. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci U S A 103, 74387443 (2006).
12. Okamoto, K. et al. QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior. PLoS One 11, e0164716 (2016).
13. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 702530 (2008).
14. Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Integr. Comp. Physiol. 301, R1207R1228 (2011).
15. Zhao, Z.-D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. U. S. A. 114, 20422047 (2017).
16. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171 (2011).
17. Morrison, S. F. Central control of body temperature. F1000Research 5, (2016).
18. Ortmann, S. & Heldmaier, G. Regulation of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R698-704 (2000).
19. Tupone, D., Madden, C. J. & Morrison, S. F. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J. Neurosci. 33, 1451225 (2013).
20. Heldmaier, G., Ortmann, S. & Elvert, R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317329 (2004).
21. Wickersham, I. R. et al. Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. Neuron 53, 639647 (2007).
22. Saito, Y. C. et al. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J. Neurosci. 38, 63666378 (2018).
23. Andermann, M. L. & Lowell, B. B. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 95, 757778 (2017).
24. Wang, T. A. et al. Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron 114 (2019). doi:10.1016/j.neuron.2019.04.035
25. Tan, C. L. & Knight, Z. A. Review Regulation of Body Temperature by the Nervous System. Neuron 98, 3148 (2018).
26. Tan, C. L. et al. Warm-Sensitive Neurons that Control Body Temperature. Cell 167, (2016).
27. Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science (80-. ). 353, 13931398 (2016).
28. Oomura, Y. et al. A new brain glucosensor and its physiological significance. Am. J. Clin. Nutr. 55, 278S-282S (1992).
29. Walker, J. M., Glotzbach, S. F., Berger, R. J. & Heller, H. C. Sleep and hibernation in ground squirrels (Citellus spp): electrophysiological observations. Am. J. Physiol. Integr. Comp. Physiol. 233, R213R221 (1977).
30. Bratincsak, A. et al. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel. J. Comp. Neurol. 505, 44358 (2007).
31. Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. Hibernation in a tropical primate. Nature 429, 825826 (2004).
32. Jiang-Xie, L.-F. et al. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 113 (2019). doi:10.1016/j.neuron.2019.03.033
33. Mieda, M. et al. Cellular clocks in AVP neurons of the scn are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85, 11031116 (2015).
34. Osakada, F. & Callaway, E. M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583601 (2013).
35. Sunagawa, G. A. et al. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene. Cell Rep. 14, 662677 (2016).
36. Keith, B.J., Franklin & Paxinos, G. The mouse brain in stereotaxic coordinates. (Academic Press, 2007).
37. Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 15181529 (2015).
38. Stan Development Team. RStan: the R interface to Stan. (2018).
39. R Core Team. R: A language and environment for statistical computing. (2017).
40. McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. (CRC Press, 2016).

References 1. Bouma, H.; R. et al. Induction of Torpor: Mimicking natural metabolic suppression for biomedical applications. J. Cell. Physiol. 227, 12851290 (2012).
2. Geiser, F.; Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor. Annu. Rev. Physiol. 66, 239274 (2004).
3. Sunagawa, G.; A. & Takahashi, M.; Hypometabolism during Daily Torpor in Mice is Dominated by Reduction in the Sensitivity of the Thermoregulatory System. Sci. Rep. 6, 37011 (2016).
4. Florant, G.; L. & Heller, H.; C. CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). Am. J. Physiol. 232, R203-8 (1977).
5. Heller, H.; C. & Colliver, G.; W. CNS regulation of body temperature during hibernation. Am. J. Physiol. 227, 5839 (1974).
6. Iliff, B. W. & Swoap, S. J. Central adenosine receptor signaling necessity for daily reports in mice. AJP Regul. Integr. Comp. Physiol. 303, R477R484 (2012).
7. Melvin, R.; G. & Andrews, M. T. Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol. Metab. 20, 490498 (2009).
8. Griko, Y.; & Regan, M. D. Synthetic Torpor: A method for safely and practically transporting experimental animals above spaceflight missions to deep space. Life Sci. Sp. Res. 16, 101107 (2018).
9. Fukusumi, S.; et al. A New Peptidic Ligand and Its Receptor Regulating Adrenal Function in Rats. J. Biol. Chem. 278, 4638746395 (2003).
10. Chartrell, N.; et al. Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexogenic activity. Proc. Natl. Acad. Sci. 100, 1524715252 (2003).
11. Takayasu, S.; et al. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc Natl Acad Sci USA 103, 74387443 (2006).
12. Okamoto, K.; et al. QRFP - Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety - Like Behavior. PLoS One 11, e0164716 (2016).
13. Atasoy, D. , Aponte, Y.; , Su, H.; H. & Sternson, S. M. A FLEX switch targets Channel rhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 702530 (2008).
14. Nakamura, K.; Central circuits for body temperature regulation and fever. Am. J. Physiol. Integr. Comp. Physiol. 301, R1207R1228 (2011).
15. Zhao, Z.; -D. et al. A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. U.S.A. S. A. 114, 20422047 (2017).
16. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171 (2011).
17. Morrison, S.; F. Central control of body temperature. F1000 Research 5, (2016).
18. Ortmann, S.; & Heldmaier, G.; Regulations of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R698-704 (2000).
19. Tupone, D. , Madden, C.I. J. & Morrison, S.; F. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J. Neurosci. 33, 1451225 (2013).
20. Heldmaier, G.; , Ortmann, S.; & Elvert, R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317329 (2004).
21. Wickersham, I.; R. et al. Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. Neuron 53, 639647 (2007).
22. Saito, Y.; C. et al. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J. Neurosci. 38, 63666378 (2018).
23. Andermann, M.; L. & Lowell, B. B. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 95, 757778 (2017).
24. Wang, T. A. et al. Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron 114 (2019). doi: 10.1016/j. neuron. 2019.04.035
25. Tan, C. L. & Knight, Z. A. Review Regulation of Body Temperature by the Nervous System. Neuron 98, 3148 (2018).
26. Tan, C. L. et al. Warm-Sensitive Neurons that Control Body Temperature. Cell 167, (2016).
27. Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science (80-.). 353, 13931398 (2016).
28. Oomura, Y.; et al. A new brain glucosensor and its physical significance. Am. J. Clin. Nutr. 55, 278S-282S (1992).
29. Walker,J. M. , Glotzbach, S.; F. , Berger, R. J. & Heller, H.; C. Sleep and hibernation in ground squirrels (Citellus spp): electrophysiological observations. Am. J. Physiol. Integr. Comp. Physiol. 233, R213R221 (1977).
30. Bratincsak, A.; et al. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation out in thirteen-lined ground squirrel. J. Comp. Neurol. 505, 44358 (2007).
31. Dausmann, K.; H. , Glos,J. , Ganzhorn, J.; U.S.A. & Heldmaier, G.; Hibernation in a tropical primate. Nature 429, 825826 (2004).
32. Jiang-Xie, L.; -F. et al. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 113 (2019). doi: 10.1016/j. neuron. 2019.03.033
33. Mieda, M.; et al. Cellular clocks in AVP neurons of the scn are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85, 11031116 (2015).
34. Osakada, F.; & Callaway, E. M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583601 (2013).
35. Sunagawa, G.; A. et al. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene. Cell Rep. 14, 662677 (2016).
36. Keith, B.; J. , Franklin & Paxinos, G.; The mouse brain in stereotaxic coordinates. (Academic Press, 2007).
37. Hama, H. et al. Scale S: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 15181529 (2015).
38. Stan Development Team. RStan: the R interface to Stan. (2018).
39. R Core Team. R: A language and environment for statistical computing. (2017).
40. McElreath, R.; Statistical Rethinking: A Bayesian Course with Examples in R and Stan. (CRC Press, 2016).

Claims (10)

生きている対象の脳において、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンを刺激する装置であって、
電圧の発生を制御する制御信号を送信する制御部と、
前記制御部からの制御信号を受信して電圧を発生する電圧発生部と、
前記電圧発生部と近位で電気的に接続され、遠位に電気刺激電極を有する刺激プローブであって、脳表面からQRFP産生ニューロンにアクセスするために十分な長さを有し、前記電圧発生部からの電圧により遠位の電気刺激電極において電気刺激を発生させる刺激プローブと、
を含む、装置。
Pyroglutamylation in one or more regions selected from the group consisting of the anterior ventral periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe) in the brain of a living subject. A device for stimulating RF amide peptide (QRFP)-producing neurons, comprising:
a control unit that transmits a control signal for controlling voltage generation;
a voltage generator that receives a control signal from the controller and generates a voltage;
a stimulation probe electrically connected proximally to said voltage generator and having an electrical stimulation electrode distally, said voltage generator having a length sufficient to access QRFP-producing neurons from the brain surface; a stimulation probe that generates electrical stimulation at a distal electrical stimulation electrode with a voltage from the body;
apparatus, including
生きている対象の脳において、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域内のピログルタミン化RFアミドペプチド(QRFP)産生ニューロンを刺激する装置であって、
QRFP産生ニューロン刺激性化合物の放出を制御する制御信号を送信する制御部と、
前記化合物の貯蔵部と、
前記制御部からの制御信号を受信して化合物の貯蔵部から前記化合物を貯蔵部から送出する化合物送出部と、
化合物放出口と放出口までの化合物の流路を備え、前記化合物をQRFP産生ニューロンにまで送達するガイドと、
を含む、装置。
Pyroglutamylation in one or more regions selected from the group consisting of the anterior ventral periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe) in the brain of a living subject. A device for stimulating RF amide peptide (QRFP)-producing neurons, comprising:
a control unit that transmits a control signal that controls the release of the QRFP-producing neuron-stimulating compound;
a reservoir of said compound;
a compound delivery unit that receives a control signal from the control unit and delivers the compound from a compound storage unit;
a guide comprising a compound outlet and a channel for the compound to the outlet and delivering the compound to QRFP-producing neurons;
apparatus, including
外気温計と、
深部体温計と、
呼気ガス中の酸素濃度を測定する呼気ガス分析部と、
測定された外気温と、深部体温および酸素濃度からなる群から選択される少なくとも1つの数値とを記録する記録部とをさらに含む、請求項1または2に記載の装置。
outside temperature gauge and
a core thermometer and
an exhaled gas analyzer for measuring oxygen concentration in exhaled gas;
3. The device according to claim 1 or 2, further comprising a recording unit for recording the measured ambient temperature and at least one numerical value selected from the group consisting of core body temperature and oxygen concentration.
前記記録部は、少なくとも外気温と深部体温を記録するものであり、
前記記録部に記録された外気温と深部体温とから、対象が低体温状態であるかを決定する決定部をさらに含む、請求項3に記載の装置。
The recording unit records at least an outside temperature and a core body temperature,
4. The apparatus of claim 3, further comprising a determination unit that determines whether the subject is hypothermic from the ambient temperature and core body temperature recorded in the recording unit.
前記記録部は、少なくとも外気温と深部体温と酸素濃度を記録するものであり、
前記記録部に記録された外気温と、深部体温、および酸素濃度とから対象が低代謝状態であるか否かを決定する決定部をさらに含む、請求項3に記載の装置。
The recording unit records at least an outside temperature, a core body temperature and an oxygen concentration,
4. The apparatus of claim 3, further comprising a determination unit that determines whether the subject is in a hypometabolism state from the ambient temperature, core body temperature, and oxygen concentration recorded in the recording unit.
前記記録部は、少なくとも外気温と深部体温と酸素濃度を記録するものであり、
前記記録部に記録された外気温と、深部体温、および酸素濃度とから、対象が冬眠様状態であるか否かを決定する決定部をさらに含む、請求項3に記載の装置。
The recording unit records at least an outside temperature, a core body temperature and an oxygen concentration,
4. The apparatus according to claim 3, further comprising a determination unit that determines whether the subject is in a hibernation-like state from the ambient temperature, core body temperature, and oxygen concentration recorded in the recording unit.
前記制御部が、対象が、低体温状態、低代謝状態、および冬眠様状態からなる群から選択されるいずれか1つの状態であると決定されるまで連続的にまたは間欠的にQRFP産生ニューロンを刺激するための制御信号を送信する、請求項4~6のいずれか一項に記載の装置。 The control unit continuously or intermittently activates QRFP-producing neurons until it is determined that the subject is in any one state selected from the group consisting of a hypothermic state, a hypometabolic state, and a hibernation-like state. A device according to any one of claims 4 to 6, which transmits a control signal to stimulate. 非ヒトほ乳類の対象において体温の理論的設定温度を低下させる方法であって、ピログルタミン化RFアミドペプチド(QRFP)産生ニューロンに興奮性刺激を与えることを含む、方法。 A method of lowering the theoretical setpoint temperature of body temperature in a non-human mammalian subject, the method comprising providing an excitatory stimulus to pyroglutaminated RF amide peptide (QRFP)-producing neurons. QRFP産生ニューロンが、前腹側脳室周囲核(AVPe)、内側視索前野(MPA)および脳室周囲核(Pe)からなる群から選択される1以上の領域のニューロンである、請求項8に記載の方法。 8. The QRFP-producing neurons are neurons of one or more regions selected from the group consisting of the anterior ventral periventricular nucleus (AVPe), the medial preoptic area (MPA) and the periventricular nucleus (Pe). The method described in . 興奮性刺激が、化学的刺激、磁気的刺激および電気的刺激からなる群から選択される刺激である、請求項8または9に記載の方法。

10. The method of claim 8 or 9, wherein the excitatory stimulus is a stimulus selected from the group consisting of chemical, magnetic and electrical stimulation.

JP2021523537A 2019-09-30 2020-09-30 Method and apparatus for inducing a hibernation-like state Active JP7105429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022107088A JP2022165960A (en) 2019-09-30 2022-07-01 Method for inducing hibernation-like state and apparatus for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019178611 2019-09-30
JP2019178611 2019-09-30
PCT/JP2020/037268 WO2021066053A1 (en) 2019-09-30 2020-09-30 Method for inducing hibernation-like state and device therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022107088A Division JP2022165960A (en) 2019-09-30 2022-07-01 Method for inducing hibernation-like state and apparatus for the same

Publications (2)

Publication Number Publication Date
JPWO2021066053A1 JPWO2021066053A1 (en) 2021-12-09
JP7105429B2 true JP7105429B2 (en) 2022-07-25

Family

ID=75336970

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021523537A Active JP7105429B2 (en) 2019-09-30 2020-09-30 Method and apparatus for inducing a hibernation-like state
JP2022107088A Pending JP2022165960A (en) 2019-09-30 2022-07-01 Method for inducing hibernation-like state and apparatus for the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022107088A Pending JP2022165960A (en) 2019-09-30 2022-07-01 Method for inducing hibernation-like state and apparatus for the same

Country Status (3)

Country Link
US (1) US20220323761A1 (en)
JP (2) JP7105429B2 (en)
WO (1) WO2021066053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004500A1 (en) * 2022-06-29 2024-01-04 Okinawa Institute Of Science And Technology School Corporation Utilization of a hibernation-like state in neurological diseases

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102368A1 (en) 2002-11-27 2004-05-27 Katz Laurence M. Methods of treating cerebral ischemia
US20070048731A1 (en) 2005-05-20 2007-03-01 Neurosilicon High throughput use-dependent assay based on stimulation of cells on a silicon surface
JP2012508635A (en) 2008-11-12 2012-04-12 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ (イーピーエフエル) Micromachined nerve stimulation device
JP2014500716A (en) 2010-11-05 2014-01-16 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Photo-activated chimeric opsin and method of use thereof
US20140039450A1 (en) 2010-10-06 2014-02-06 Isis Innovation Ltd. Method and Apparatus for Treating Respiratory Disease
US20150238513A1 (en) 2014-02-27 2015-08-27 University Of Alaska Fairbanks Methods and compositions for the treatment of ischemic injury to tissue using therapeutic hypothermia
US20160144185A1 (en) 2014-11-25 2016-05-26 Medtronic Bakken Research Center B.V. System for neurostimulation and/or neurorecording
WO2017195901A1 (en) 2016-05-13 2017-11-16 国立大学法人 東京大学 Obesity-related disease therapeutic agent by hepatic secretory metabolic regulator inhibitory action
WO2019177142A1 (en) 2018-03-16 2019-09-19 脳科学香料株式会社 Prophylactic or therapeutic agent for hypoxic injury, ischaemia-reperfusion injury and inflammation, cell protection agent for transplantation, and bio-preservation agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182601B2 (en) * 1993-11-01 2001-07-03 ポーラテクニクス・リミテッド Tissue type recognition method and apparatus therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102368A1 (en) 2002-11-27 2004-05-27 Katz Laurence M. Methods of treating cerebral ischemia
US20070048731A1 (en) 2005-05-20 2007-03-01 Neurosilicon High throughput use-dependent assay based on stimulation of cells on a silicon surface
JP2012508635A (en) 2008-11-12 2012-04-12 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ (イーピーエフエル) Micromachined nerve stimulation device
US20140039450A1 (en) 2010-10-06 2014-02-06 Isis Innovation Ltd. Method and Apparatus for Treating Respiratory Disease
JP2014500716A (en) 2010-11-05 2014-01-16 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Photo-activated chimeric opsin and method of use thereof
US20150238513A1 (en) 2014-02-27 2015-08-27 University Of Alaska Fairbanks Methods and compositions for the treatment of ischemic injury to tissue using therapeutic hypothermia
US20160144185A1 (en) 2014-11-25 2016-05-26 Medtronic Bakken Research Center B.V. System for neurostimulation and/or neurorecording
WO2017195901A1 (en) 2016-05-13 2017-11-16 国立大学法人 東京大学 Obesity-related disease therapeutic agent by hepatic secretory metabolic regulator inhibitory action
WO2019177142A1 (en) 2018-03-16 2019-09-19 脳科学香料株式会社 Prophylactic or therapeutic agent for hypoxic injury, ischaemia-reperfusion injury and inflammation, cell protection agent for transplantation, and bio-preservation agent

Also Published As

Publication number Publication date
JPWO2021066053A1 (en) 2021-12-09
JP2022165960A (en) 2022-11-01
US20220323761A1 (en) 2022-10-13
WO2021066053A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
Takahashi et al. A discrete neuronal circuit induces a hibernation-like state in rodents
Jego et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus
Kang et al. In vivo expression of a light-activatable potassium channel using unnatural amino acids
Wu et al. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding
Feng et al. Regulation of bitter taste responses by tumor necrosis factor
US20190377045A1 (en) Optogenetic Magnetic Resonance Imaging
EP2635346B1 (en) Optogenetic control of reward-related behaviors
Yeh et al. Respiratory network stability and modulatory response to substance P require Nalcn
Paternostro et al. Age-associated cardiac dysfunction in Drosophila melanogaster
Qian et al. Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration
Piñol et al. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei
Sadagurski et al. IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action
Revill et al. Dbx1 precursor cells are a source of inspiratory XII premotoneurons
Iceman et al. Medullary serotonin neurons are CO2 sensitive in situ
Ransdell et al. Loss of Navβ4-mediated regulation of sodium currents in adult Purkinje neurons disrupts firing and impairs motor coordination and balance
Franconville et al. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo
Molosh et al. Changes in central sodium and not osmolarity or lactate induce panic-like responses in a model of panic disorder
JP2022165960A (en) Method for inducing hibernation-like state and apparatus for the same
Kim et al. A discrete parasubthalamic nucleus subpopulation plays a critical role in appetite suppression
Broadhead et al. A common role for astrocytes in rhythmic behaviours?
Liu et al. Hypothalamic Grb10 enhances leptin signalling and promotes weight loss
Li et al. TRPV1-lineage somatosensory fibers communicate with taste neurons in the mouse parabrachial nucleus
Tu et al. Anoctamin 4 channel currents activate glucose-inhibited neurons in the mouse ventromedial hypothalamus during hypoglycemia
Dai et al. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice
WO2022210833A1 (en) Method and device for inducing hypometabolic state in subject with disease

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220701

R150 Certificate of patent or registration of utility model

Ref document number: 7105429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150