JP7102531B2 - コンピュータ断層撮影血管造影における解剖学的構造のセグメンテーションのための方法、コンピュータ・プログラム、コンピュータ可読記憶媒体、および装置 - Google Patents
コンピュータ断層撮影血管造影における解剖学的構造のセグメンテーションのための方法、コンピュータ・プログラム、コンピュータ可読記憶媒体、および装置 Download PDFInfo
- Publication number
- JP7102531B2 JP7102531B2 JP2020538806A JP2020538806A JP7102531B2 JP 7102531 B2 JP7102531 B2 JP 7102531B2 JP 2020538806 A JP2020538806 A JP 2020538806A JP 2020538806 A JP2020538806 A JP 2020538806A JP 7102531 B2 JP7102531 B2 JP 7102531B2
- Authority
- JP
- Japan
- Prior art keywords
- segmentation
- computer
- image
- anatomical structures
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000011218 segmentation Effects 0.000 title claims description 115
- 238000000034 method Methods 0.000 title claims description 53
- 210000003484 anatomy Anatomy 0.000 title claims description 41
- 238000004590 computer program Methods 0.000 title claims description 13
- 238000002583 angiography Methods 0.000 title claims description 5
- 238000012549 training Methods 0.000 claims description 21
- 238000012805 post-processing Methods 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 17
- 238000007781 pre-processing Methods 0.000 claims description 16
- 210000001147 pulmonary artery Anatomy 0.000 claims description 14
- 238000013135 deep learning Methods 0.000 claims description 13
- 238000009499 grossing Methods 0.000 claims description 12
- 210000000709 aorta Anatomy 0.000 claims description 10
- 210000002376 aorta thoracic Anatomy 0.000 claims description 9
- 238000002591 computed tomography Methods 0.000 claims description 8
- 210000000988 bone and bone Anatomy 0.000 claims description 5
- 210000005240 left ventricle Anatomy 0.000 claims description 5
- 230000002861 ventricular Effects 0.000 claims description 5
- 210000005246 left atrium Anatomy 0.000 claims description 4
- 210000003205 muscle Anatomy 0.000 claims description 4
- 210000005245 right atrium Anatomy 0.000 claims description 4
- 210000005241 right ventricle Anatomy 0.000 claims description 4
- 210000003462 vein Anatomy 0.000 claims 2
- 238000012545 processing Methods 0.000 description 44
- 238000013528 artificial neural network Methods 0.000 description 31
- 230000007246 mechanism Effects 0.000 description 28
- 238000013527 convolutional neural network Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 19
- 230000000747 cardiac effect Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 11
- 230000000007 visual effect Effects 0.000 description 9
- 210000000056 organ Anatomy 0.000 description 8
- 210000000038 chest Anatomy 0.000 description 7
- 238000009877 rendering Methods 0.000 description 7
- 238000003709 image segmentation Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000001367 artery Anatomy 0.000 description 4
- 210000005242 cardiac chamber Anatomy 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 230000013016 learning Effects 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000002790 cross-validation Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000007500 overflow downdraw method Methods 0.000 description 3
- 210000000115 thoracic cavity Anatomy 0.000 description 3
- 238000012952 Resampling Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000002251 Dissecting Aneurysm Diseases 0.000 description 1
- 208000010378 Pulmonary Embolism Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 206010002895 aortic dissection Diseases 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000000339 bright-field microscopy Methods 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 208000026758 coronary atherosclerosis Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000006496 vascular abnormality Effects 0.000 description 1
- 210000002620 vena cava superior Anatomy 0.000 description 1
- 230000031836 visual learning Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/404—Angiography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Databases & Information Systems (AREA)
- Quality & Reliability (AREA)
- Biodiversity & Conservation Biology (AREA)
- Pathology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Description
を確立することによって、解剖学的構造iのセグメンテーション・マスク画像Fiを見いだすことを目標とするセグメンテーションの問題を考える。式中、
は、i番目のセグメント化された前景のj番目のボクセルであり、
がi番目のグラウンド・トゥルース構造内にあるグラウンド・トゥルースを条件とし、適用例では1<i<16である。セグメンテーションとグラウンド・トゥルースの間の全体的なDSCを、i番目のセグメンテーションのj番目のボクセルで微分して、以下の勾配を求める。
Claims (11)
- コンピュータ断層撮影血管造影(CTA)における解剖学的構造のセグメンテーションのための方法であって、
プロセッサが、
(a)複数の解剖学的構造のそれぞれについて、1組のCTAの画像と前記画像の手動セグメンテーションとを収集することと、
(b)同じ視野(FOV)を共有するように前記画像を前処理することと、
(c)前記画像と前記手動セグメンテーションの両方を使用してディープ・ラーニング・セグメンテーション・ネットワークを訓練することであって、前記複数の解剖学的構造すべてについてのダイス・スコアの合計であるマルチダイス・スコアから損失を決定し、各ダイス・スコアは前記複数の解剖学的構造のうちの1つについての前記手動セグメンテーションと前記ディープ・ラーニング・セグメンテーション・ネットワークの出力との間の類似度として計算される、訓練することと、
(d)訓練された前記ディープ・ラーニング・セグメンテーション・ネットワーク上で、前処理がされた所与の画像をテストし、それによって前記所与の画像のセグメント化された出力を取得することと、
(e)前記所与の画像の前記セグメント化された出力に対して後処理を実行することと
を実行する、方法。 - 前記画像を前処理することが、前記所与の画像の前記セグメント化された出力をダウンサンプリングすることを含む、請求項1に記載の方法。
- 後処理を実行することが、前記所与の画像の前記セグメント化された出力に対してアップサンプリングを実行することを含む、請求項2に記載の方法。
- 後処理を実行することが、前記所与の画像の前記セグメント化された出力に対して平滑化を実行することを含む、請求項2または3に記載の方法。
- 前記ディープ・ラーニング・セグメンテーション・ネットワークが、マルチラベル・ネットワークに拡張され、
- 前記所与の画像の前記セグメント化された出力が、前記複数の解剖学的構造についてセグメント化される、請求項1から5のいずれか一項に記載の方法。
- 複数の解剖学的構造が、上行大動脈、下行大動脈、大動脈弓、大動脈根、左肺動脈、右肺動脈、肺動脈幹、椎骨、左心房、右心房、左心室、右心室、左心室筋、および上大静脈、下大静脈のうちの少なくとも1つを含む、請求項1から6のいずれか一項に記載の方法。
- 前記画像を前処理することが、患者間の強度変動を排除するために前記画像の強度を均一化することを含む、請求項1から7のいずれか一項に記載の方法。
- 請求項1から8のいずれか一項に記載の方法における各ステップをプロセッサに実行させる、コンピュータ・プログラム。
- 請求項1から8のいずれか一項に記載の方法における各ステップをプロセッサに実行させるためのコンピュータ・プログラムを格納した、コンピュータ可読記憶媒体。
- 少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに結合され、コンピュータ・プログラムを有するメモリと
を備える装置であって、前記コンピュータ・プログラムが、前記少なくとも1つのプロセッサに、請求項1から8のいずれか一項に記載の方法における各ステップを実行させる、装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862627306P | 2018-02-07 | 2018-02-07 | |
US62/627,306 | 2018-02-07 | ||
US15/963,442 US10896508B2 (en) | 2018-02-07 | 2018-04-26 | System for segmentation of anatomical structures in cardiac CTA using fully convolutional neural networks |
US15/963,442 | 2018-04-26 | ||
PCT/IB2019/050377 WO2019155306A1 (en) | 2018-02-07 | 2019-01-17 | A system for segmentation of anatomical structures in cardiac cta using fully convolutional neural networks |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021513697A JP2021513697A (ja) | 2021-05-27 |
JP2021513697A5 JP2021513697A5 (ja) | 2021-07-29 |
JP7102531B2 true JP7102531B2 (ja) | 2022-07-19 |
Family
ID=67476883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020538806A Active JP7102531B2 (ja) | 2018-02-07 | 2019-01-17 | コンピュータ断層撮影血管造影における解剖学的構造のセグメンテーションのための方法、コンピュータ・プログラム、コンピュータ可読記憶媒体、および装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10896508B2 (ja) |
JP (1) | JP7102531B2 (ja) |
CN (1) | CN111557020B (ja) |
DE (1) | DE112019000708T5 (ja) |
GB (1) | GB2583682B (ja) |
WO (1) | WO2019155306A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011085341A1 (en) | 2010-01-11 | 2011-07-14 | Waters Technologies Corporation | Static and dynamic seals |
US20220121902A1 (en) * | 2019-02-06 | 2022-04-21 | Oxford University Innovation Limited | Method and apparatus for quality prediction |
JP7387340B2 (ja) * | 2019-08-30 | 2023-11-28 | 株式会社 資生堂 | 生体構造識別装置、生体構造識別方法及び生体構造識別用コンピュータプログラム |
CN110555836A (zh) * | 2019-09-05 | 2019-12-10 | 李肯立 | 一种超声图像中胎儿标准切面的自动识别方法和系统 |
EP3813016A1 (en) * | 2019-10-25 | 2021-04-28 | RaySearch Laboratories AB | System and method for segmentation of images |
CN112365504A (zh) * | 2019-10-29 | 2021-02-12 | 杭州脉流科技有限公司 | Ct左心室分割方法、装置、设备和存储介质 |
CN110874860B (zh) * | 2019-11-21 | 2023-04-25 | 哈尔滨工业大学 | 基于混合损失函数的对称监督模型的目标提取方法 |
CN111028217A (zh) * | 2019-12-10 | 2020-04-17 | 南京航空航天大学 | 一种基于全卷积神经网络的图像裂缝分割方法 |
CN111062963B (zh) * | 2019-12-16 | 2024-03-26 | 上海联影医疗科技股份有限公司 | 一种血管提取方法、系统、设备及存储介质 |
CN111340813B (zh) * | 2020-02-25 | 2023-09-01 | 北京字节跳动网络技术有限公司 | 图像实例分割方法、装置、电子设备及存储介质 |
CN113362271B (zh) * | 2020-03-06 | 2022-09-09 | 深圳睿心智能医疗科技有限公司 | 血管三维影像分割方法、装置、计算机设备和存储介质 |
CN111445478B (zh) * | 2020-03-18 | 2023-09-08 | 吉林大学 | 一种用于cta图像的颅内动脉瘤区域自动检测系统和检测方法 |
CN111815569B (zh) * | 2020-06-15 | 2024-03-29 | 广州视源电子科技股份有限公司 | 基于深度学习的图像分割方法、装置、设备和存储介质 |
CN111754534B (zh) * | 2020-07-01 | 2024-05-31 | 杭州脉流科技有限公司 | 基于深度神经网络的ct左心室短轴图像分割方法、装置、计算机设备和存储介质 |
WO2022087853A1 (zh) * | 2020-10-27 | 2022-05-05 | 深圳市深光粟科技有限公司 | 一种图像分割方法、装置及计算机可读存储介质 |
CN112862837B (zh) * | 2021-01-27 | 2023-06-23 | 南京信息工程大学 | 一种基于卷积神经网络的图像处理方法和系统 |
CN113223704B (zh) * | 2021-05-20 | 2022-07-26 | 吉林大学 | 基于深度学习的计算机断层扫描主动脉瘤的辅助诊断方法 |
CN113298830B (zh) * | 2021-06-22 | 2022-07-15 | 西南大学 | 一种基于自监督的急性颅内ich区域图像分割方法 |
US11992274B2 (en) | 2021-07-08 | 2024-05-28 | Medtronic Navigation, Inc. | Systems and methods for automatic oblique lateral interbody fusion (OLIF) corridor planning |
CN113610739B (zh) * | 2021-08-10 | 2024-07-02 | 平安国际智慧城市科技股份有限公司 | 图像数据增强方法、装置、设备及存储介质 |
WO2023157439A1 (ja) * | 2022-02-18 | 2023-08-24 | 富士フイルム株式会社 | 画像処理装置及びその作動方法、推論装置並びに学習装置 |
CN114663651B (zh) * | 2022-03-24 | 2023-01-24 | 北京安德医智科技有限公司 | 一种根据颅内cta图像识别血管闭塞状态的方法和装置 |
CN114842004B (zh) * | 2022-07-04 | 2022-10-21 | 真健康(北京)医疗科技有限公司 | 基于神经网络模型的穿刺位置验证方法及设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170109881A1 (en) | 2015-10-14 | 2017-04-20 | The Regents Of The University Of California | Automated segmentation of organ chambers using deep learning methods from medical imaging |
WO2017091833A1 (en) | 2015-11-29 | 2017-06-01 | Arterys Inc. | Automated cardiac volume segmentation |
CN107203989A (zh) | 2017-04-01 | 2017-09-26 | 南京邮电大学 | 基于全卷积神经网络的端对端胸部ct图像分割方法 |
WO2018009405A1 (en) | 2016-07-08 | 2018-01-11 | Avent, Inc. | System and method for automatic detection, localization, and semantic segmentation of anatomical objects |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5903664A (en) | 1996-11-01 | 1999-05-11 | General Electric Company | Fast segmentation of cardiac images |
US7809190B2 (en) | 2006-04-27 | 2010-10-05 | Siemens Medical Solutions Usa, Inc. | General framework for image segmentation using ordered spatial dependency |
US7916919B2 (en) | 2006-09-28 | 2011-03-29 | Siemens Medical Solutions Usa, Inc. | System and method for segmenting chambers of a heart in a three dimensional image |
US8494236B2 (en) | 2009-10-07 | 2013-07-23 | Siemens Aktiengesellschaft | System and method for cardiac segmentation in MR-cine data using inverse consistent non-rigid registration |
US9262834B2 (en) | 2012-07-30 | 2016-02-16 | General Electric Company | Systems and methods for performing segmentation and visualization of images |
US9824456B2 (en) | 2014-06-26 | 2017-11-21 | The Governors Of The University Of Alberta | Automatic segmentation of image frames in anatomical scan based on non-rigid registration with manually segmented frame |
US10368956B2 (en) | 2016-02-16 | 2019-08-06 | The Johns Hopkins University | MR-levelcheck-2: method for localization of structures in projection images |
US9767557B1 (en) * | 2016-06-23 | 2017-09-19 | Siemens Healthcare Gmbh | Method and system for vascular disease detection using recurrent neural networks |
CN106897993B (zh) | 2017-01-12 | 2019-07-26 | 华东师范大学 | 基于定量磁化率成像人脑灰质核团概率图谱的构建方法 |
CN109493347B (zh) * | 2017-09-12 | 2021-03-23 | 深圳科亚医疗科技有限公司 | 在图像中对稀疏分布的对象进行分割的方法和系统 |
WO2019090447A1 (en) * | 2017-11-10 | 2019-05-16 | Shenzhen United Imaging Healthcare Co., Ltd. | System and method for image reconstruction |
-
2018
- 2018-04-26 US US15/963,442 patent/US10896508B2/en active Active
-
2019
- 2019-01-17 WO PCT/IB2019/050377 patent/WO2019155306A1/en active Application Filing
- 2019-01-17 JP JP2020538806A patent/JP7102531B2/ja active Active
- 2019-01-17 GB GB2012077.0A patent/GB2583682B/en active Active
- 2019-01-17 DE DE112019000708.4T patent/DE112019000708T5/de active Pending
- 2019-01-17 CN CN201980007424.1A patent/CN111557020B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170109881A1 (en) | 2015-10-14 | 2017-04-20 | The Regents Of The University Of California | Automated segmentation of organ chambers using deep learning methods from medical imaging |
WO2017091833A1 (en) | 2015-11-29 | 2017-06-01 | Arterys Inc. | Automated cardiac volume segmentation |
WO2018009405A1 (en) | 2016-07-08 | 2018-01-11 | Avent, Inc. | System and method for automatic detection, localization, and semantic segmentation of anatomical objects |
CN107203989A (zh) | 2017-04-01 | 2017-09-26 | 南京邮电大学 | 基于全卷积神经网络的端对端胸部ct图像分割方法 |
Non-Patent Citations (1)
Title |
---|
Majd Zreik, 外7名,"Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis",Computer Vision and Pattern Recognition,2017年12月06日,p.1-13,[令和4年6月20日検索], インターネット<URL:https://arxiv.org/pdf/1711.08917.pdf> |
Also Published As
Publication number | Publication date |
---|---|
US20190244357A1 (en) | 2019-08-08 |
JP2021513697A (ja) | 2021-05-27 |
CN111557020A (zh) | 2020-08-18 |
CN111557020B (zh) | 2023-12-05 |
GB2583682A (en) | 2020-11-04 |
DE112019000708T5 (de) | 2020-11-05 |
GB2583682B (en) | 2021-03-10 |
US10896508B2 (en) | 2021-01-19 |
WO2019155306A1 (en) | 2019-08-15 |
GB202012077D0 (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7102531B2 (ja) | コンピュータ断層撮影血管造影における解剖学的構造のセグメンテーションのための方法、コンピュータ・プログラム、コンピュータ可読記憶媒体、および装置 | |
JP7383010B2 (ja) | 医用画像認識方法及びシステム、並びに、モデルトレーニング方法、コンピュータ装置、及びプログラム | |
US10706333B2 (en) | Medical image analysis method, medical image analysis system and storage medium | |
US9968257B1 (en) | Volumetric quantification of cardiovascular structures from medical imaging | |
Chaitanya et al. | Semi-supervised task-driven data augmentation for medical image segmentation | |
Tang et al. | Construction and verification of retinal vessel segmentation algorithm for color fundus image under BP neural network model | |
Khan et al. | Deep neural architectures for medical image semantic segmentation | |
US11854703B2 (en) | Simulating abnormalities in medical images with generative adversarial networks | |
CN110475505B (zh) | 利用全卷积网络的自动分割 | |
Habijan et al. | Whole heart segmentation from CT images using 3D U-net architecture | |
Wang et al. | Uncertainty-guided efficient interactive refinement of fetal brain segmentation from stacks of MRI slices | |
Hooda et al. | An efficient variant of fully-convolutional network for segmenting lung fields from chest radiographs | |
WO2022193750A1 (zh) | 一种基于深度学习的乳腺图像配准方法 | |
Sharan et al. | Encoder modified U-net and feature pyramid network for multi-class segmentation of cardiac magnetic resonance images | |
US12094188B2 (en) | Methods and systems for training learning network for medical image analysis | |
CN110570394A (zh) | 医学图像分割方法、装置、设备及存储介质 | |
Guo et al. | Cardiac MRI left ventricle segmentation and quantification: A framework combining U-Net and continuous max-flow | |
Wu et al. | Transformer-based 3D U-Net for pulmonary vessel segmentation and artery-vein separation from CT images | |
Yao et al. | Graph matching and deep neural networks based whole heart and great vessel segmentation in congenital heart disease | |
CN112750110A (zh) | 基于神经网络对肺部病灶区进行评估的评估系统和相关产品 | |
Patil et al. | A Domain-Shift Invariant CNN Framework for Cardiac MRI Segmentation Across Unseen Domains | |
US11263481B1 (en) | Automated contrast phase based medical image selection/exclusion | |
JP2023131287A (ja) | 情報処理装置および学習方法 | |
Tang et al. | Segmentation of anatomical structures in cardiac CTA using multi-label V-Net | |
JP2022546303A (ja) | 管状フィーチャのセグメント化 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210614 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210623 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7102531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |