JP7099584B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP7099584B2
JP7099584B2 JP2021075892A JP2021075892A JP7099584B2 JP 7099584 B2 JP7099584 B2 JP 7099584B2 JP 2021075892 A JP2021075892 A JP 2021075892A JP 2021075892 A JP2021075892 A JP 2021075892A JP 7099584 B2 JP7099584 B2 JP 7099584B2
Authority
JP
Japan
Prior art keywords
signal
photoelectric conversion
image
image pickup
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021075892A
Other languages
Japanese (ja)
Other versions
JP2021145337A (en
JP2021145337A5 (en
Inventor
朗 木下
昭彦 小濱
敏彰 前田
尚也 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2021075892A priority Critical patent/JP7099584B2/en
Publication of JP2021145337A publication Critical patent/JP2021145337A/en
Publication of JP2021145337A5 publication Critical patent/JP2021145337A5/en
Application granted granted Critical
Publication of JP7099584B2 publication Critical patent/JP7099584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、撮像装置に関する。 The present invention relates to an image pickup apparatus .

撮像レンズの軸上色収差に関するデータに基づいて合焦誤差を補正して撮像レンズの焦点調節を行う撮像装置が知られている(特許文献1)。しかし、従来技術では、撮像レンズの軸上色収差による撮像画像の色ずれは補正できないという問題があった。 An image pickup device that corrects a focusing error based on data on axial chromatic aberration of an image pickup lens and adjusts the focus of the image pickup lens is known (Patent Document 1). However, in the prior art, there is a problem that the color shift of the captured image due to the axial chromatic aberration of the imaging lens cannot be corrected.

特開2003-143618号公報Japanese Patent Application Laid-Open No. 2003-143618

第1の態様によると、撮像装置は、光学系の第1領域を透過した光を光電変換して電荷を生成する第1光電変換部と、前記光学系の第2領域を透過した光を光電変換して電荷を生成する第2光電変換部と、前記光学系の前記第1領域を透過した光を光電変換して電荷を生成する第3光電変換部と、前記光学系の前記第2領域を透過した光を光電変換して電荷を生成する第4光電変換部と、前記第1光電変換部で生成された電荷に基づく第1信号と前記第2光電変換部で生成された電荷に基づく第2信号とのずれ量に基づいて、前記第3光電変換部で生成された電荷に基づく第3信号と前記第4光電変換部で生成された電荷に基づく第4信号との少なくとも一方のずれ量を補正する補正部と、を備える。 According to the first aspect, the image pickup apparatus photoelectrically converts the light transmitted through the first region of the optical system into a first photoelectric conversion unit to generate an electric charge, and the light transmitted through the second region of the optical system. A second photoelectric conversion unit that converts and generates an electric charge, a third photoelectric conversion unit that photoelectrically converts light transmitted through the first region of the optical system to generate an electric charge, and the second region of the optical system. Based on the fourth photoelectric conversion unit that photoelectrically converts the light transmitted through the light to generate an electric charge, the first signal based on the electric charge generated by the first photoelectric conversion unit, and the electric charge generated by the second photoelectric conversion unit. At least one of the deviation between the third signal based on the charge generated by the third photoelectric conversion unit and the fourth signal based on the charge generated by the fourth photoelectric conversion unit based on the amount of deviation from the second signal. A correction unit for correcting the amount is provided.

第1の実施の形態に係る撮像装置の要部構成図。The main part block diagram of the image pickup apparatus which concerns on 1st Embodiment. 第1の実施の形態に係る撮像素子の画素の配置例を示す図。The figure which shows the arrangement example of the pixel of the image pickup element which concerns on 1st Embodiment. 第1の実施の形態に係る撮像素子に入射する光束を説明するための図。The figure for demonstrating the light flux incident on the image pickup element which concerns on 1st Embodiment. 第1の実施の形態に係る撮像素子の画素による信号を示す図。The figure which shows the signal by the pixel of the image pickup element which concerns on 1st Embodiment. 第1の実施の形態に係る撮像装置により規格化された各色成分の信号を示す図および各色成分の信号を比較する図。The figure which shows the signal of each color component standardized by the image pickup apparatus which concerns on 1st Embodiment, and the figure which compares the signal of each color component. 第1の実施の形態に係る撮像装置の動作例を示すフローチャート。The flowchart which shows the operation example of the image pickup apparatus which concerns on 1st Embodiment. 第2の実施の形態に係る撮像素子の画素による信号を示す図。The figure which shows the signal by the pixel of the image pickup element which concerns on 2nd Embodiment. 第2の実施の形態に係る撮像装置により規格化された各色成分の信号を示す図および各色成分の信号を比較する図。The figure which shows the signal of each color component standardized by the image pickup apparatus which concerns on 2nd Embodiment, and the figure which compares the signal of each color component. 第2の実施の形態に係る撮像装置の動作例を示すフローチャート。The flowchart which shows the operation example of the image pickup apparatus which concerns on 2nd Embodiment.

(第1の実施の形態)
図1は、第1の実施の形態に係る撮像装置であるデジタルカメラ1(以下、カメラ1と呼ぶ)の要部構成図である。カメラ1は、カメラボディ2と交換レンズ3とにより構成される。交換レンズ3は、マウント部(不図示)を介してカメラボディ2に装着される。カメラボディ2に交換レンズ3が装着されると、カメラボディ2側の接続部202と交換レンズ3側の接続部302とが接続され、カメラボディ2および交換レンズ3間の通信が可能となる。
(First Embodiment)
FIG. 1 is a configuration diagram of a main part of a digital camera 1 (hereinafter referred to as a camera 1) which is an image pickup apparatus according to the first embodiment. The camera 1 is composed of a camera body 2 and an interchangeable lens 3. The interchangeable lens 3 is attached to the camera body 2 via a mount portion (not shown). When the interchangeable lens 3 is attached to the camera body 2, the connection portion 202 on the camera body 2 side and the connection portion 302 on the interchangeable lens 3 side are connected, and communication between the camera body 2 and the interchangeable lens 3 becomes possible.

交換レンズ3は、結像光学系(撮像光学系)31と、レンズ制御部32と、レンズメモリ33とを備える。結像光学系31は、焦点調節レンズ(フォーカスレンズ)を含む複数のレンズや絞りにより構成され、カメラボディ2の撮像素子22の撮像面上に被写体像を結像する。レンズ制御部32は、カメラボディ2のボディ制御部21から出力される信号に基づいて焦点調節レンズを光軸L1方向に進退移動させ、結像光学系31の結像位置を調節する。ボディ制御部21から出力される信号には、焦点調節レンズの移動量や移動方向、移動速度などを表す信号が含まれる。レンズメモリ33は、不揮発性の記憶媒体等により構成され、交換レンズ3に関連する情報、例えば結像光学系31の射出瞳の位置に関する情報等のレンズ情報が記憶される。レンズメモリ33に記憶されるレンズ情報は、レンズ制御部32により読み出されて、ボディ制御部21に送信される。 The interchangeable lens 3 includes an imaging optical system (imaging optical system) 31, a lens control unit 32, and a lens memory 33. The imaging optical system 31 is composed of a plurality of lenses including a focus adjusting lens (focus lens) and an aperture, and forms a subject image on the imaging surface of the imaging element 22 of the camera body 2. The lens control unit 32 moves the focus adjustment lens forward and backward in the optical axis L1 direction based on the signal output from the body control unit 21 of the camera body 2 to adjust the image formation position of the image formation optical system 31. The signal output from the body control unit 21 includes a signal indicating the movement amount, movement direction, movement speed, and the like of the focus adjustment lens. The lens memory 33 is composed of a non-volatile storage medium or the like, and stores information related to the interchangeable lens 3, for example, lens information such as information regarding the position of the exit pupil of the imaging optical system 31. The lens information stored in the lens memory 33 is read out by the lens control unit 32 and transmitted to the body control unit 21.

カメラボディ2は、ボディ制御部21と、撮像素子22と、メモリ23と、表示部24と、操作部25と、電子ビューファインダ(EVF)26と、接眼レンズ27とを備える。撮像素子22は、CCDやCMOS等のイメージセンサであり、撮像素子22には複数の画素が二次元状(行方向及び列方向)に配置される。撮像素子22は、結像光学系31の射出瞳を通過した光束を、各画素の2つの光電変換部により受光して受光量に応じた一対の信号(2つの信号)を生成し、生成した一対の信号をボディ制御部21に出力する。撮像素子22の複数の画素は、例えば、それぞれR(赤)、G(緑)、B(青)のカラーフィルタを有する。各画素はカラーフィルタを通して被写体像を撮像する。 The camera body 2 includes a body control unit 21, an image sensor 22, a memory 23, a display unit 24, an operation unit 25, an electronic viewfinder (EVF) 26, and an eyepiece lens 27. The image pickup element 22 is an image sensor such as a CCD or CMOS, and a plurality of pixels are arranged two-dimensionally (row direction and column direction) on the image pickup element 22. The image sensor 22 receives the luminous flux that has passed through the exit pupil of the imaging optical system 31 by the two photoelectric conversion units of each pixel, and generates a pair of signals (two signals) according to the amount of light received. A pair of signals are output to the body control unit 21. The plurality of pixels of the image pickup device 22 have, for example, R (red), G (green), and B (blue) color filters, respectively. Each pixel captures a subject image through a color filter.

メモリ23は、メモリカード等の記録媒体であり、ボディ制御部21によって画像データや音声データ等の書き込み及び読み出しが行われる。表示部24は、ボディ制御部21により生成される画像データに対応する画像を表示する。また、表示部24は、撮影条件に関連する各種情報(シャッター速度、絞り値、ISO感度等)やメニュー画面等を表示する。操作部25は、レリーズボタン、録画ボタン、各種設定スイッチなどを含み、操作部25の操作に応じた操作信号をボディ制御部21へ出力する。電子ビューファインダ26は、ボディ制御部21により生成された画像データに対応する画像の表示を行う。また、電子ビューファインダ26は、撮影条件に関連する各種情報の表示を行う。電子ビューファインダ26に表示された画像や各種情報は、接眼レンズ27を介してユーザにより観察される。 The memory 23 is a recording medium such as a memory card, and the body control unit 21 writes and reads image data, audio data, and the like. The display unit 24 displays an image corresponding to the image data generated by the body control unit 21. In addition, the display unit 24 displays various information (shutter speed, aperture value, ISO sensitivity, etc.) related to shooting conditions, a menu screen, and the like. The operation unit 25 includes a release button, a recording button, various setting switches, and the like, and outputs an operation signal corresponding to the operation of the operation unit 25 to the body control unit 21. The electronic viewfinder 26 displays an image corresponding to the image data generated by the body control unit 21. Further, the electronic viewfinder 26 displays various information related to the shooting conditions. The image and various information displayed on the electronic viewfinder 26 are observed by the user via the eyepiece 27.

ボディ制御部21は、CPU、ROM、RAM等により構成され、制御プログラムに基づきカメラ1の各部を制御する。また、ボディ制御部21は、各種の信号処理を行う。例えば、ボディ制御部21は、撮像素子22に制御信号を供給して撮像素子22の動作を制御する。ボディ制御部21は、焦点検出部28と画像処理部29とを有する。 The body control unit 21 is composed of a CPU, ROM, RAM, etc., and controls each unit of the camera 1 based on a control program. Further, the body control unit 21 performs various signal processing. For example, the body control unit 21 supplies a control signal to the image sensor 22 to control the operation of the image sensor 22. The body control unit 21 has a focus detection unit 28 and an image processing unit 29.

焦点検出部28は、撮像素子22から出力される一対の信号を用いて瞳分割型の位相差検出方式によりデフォーカス量を算出し、デフォーカス量をレンズ制御部32に送信する。換言すると、焦点検出部28は、撮像素子22から出力される一対の信号を用いて、結像光学系31による像の結像面と撮像素子22の撮像面とのずれ量を算出する。ボディ制御部21は、ずれ量から焦点調節レンズの移動量や移動方向等に関する情報を生成し、接続部202と接続部302とを介してレンズ制御部32に送信する。レンズ制御部32は、ボディ制御部21から送信された情報に基づき不図示のモータを駆動して、焦点調節レンズを、結像光学系31による像が撮像素子22の撮像面に結像する位置、すなわち合焦位置に移動させる。 The focus detection unit 28 calculates the defocus amount by the pupil division type phase difference detection method using a pair of signals output from the image sensor 22, and transmits the defocus amount to the lens control unit 32. In other words, the focus detection unit 28 calculates the amount of deviation between the image forming surface of the image by the image pickup optical system 31 and the image pickup surface of the image pickup element 22 by using the pair of signals output from the image pickup element 22. The body control unit 21 generates information on the movement amount, the movement direction, and the like of the focus adjustment lens from the deviation amount, and transmits the information to the lens control unit 32 via the connection unit 202 and the connection unit 302. The lens control unit 32 drives a motor (not shown) based on the information transmitted from the body control unit 21 to form a focus adjustment lens at a position where an image formed by the image pickup optical system 31 is formed on the image pickup surface of the image pickup element 22. That is, move it to the in-focus position.

画像処理部29は、撮像素子22から出力される一対の信号に基づいて画像データを生成する。画像処理部29は、取得部29aと処理部29bとを有する。詳細は後述するが、取得部29aは、結像光学系31の射出瞳の異なる領域を通過する光の複数の色成分(複数の色光)それぞれについての一対の信号を、撮像素子22から取得する。処理部29bは、取得部29aにより取得された一対の信号を加算して画像信号を生成する。また、処理部29bは、画像信号に種々の画像処理を行って画像データを生成する。 The image processing unit 29 generates image data based on a pair of signals output from the image sensor 22. The image processing unit 29 has an acquisition unit 29a and a processing unit 29b. Although details will be described later, the acquisition unit 29a acquires a pair of signals for each of a plurality of color components (plurality of color light) of light passing through different regions of the exit pupil of the imaging optical system 31 from the image pickup device 22. .. The processing unit 29b adds a pair of signals acquired by the acquisition unit 29a to generate an image signal. Further, the processing unit 29b performs various image processing on the image signal to generate image data.

結像光学系31を合焦させた後も、軸上色収差に応じてR、G、Bなど互いに波長が異なる色成分の光は、各々の焦点位置(合焦位置)が異なる。そのため、結像光学系31により結像された被写体像を撮像して生成される画像では、結像光学系31による軸上色収差の影響を受けて色ずれが生じる。そこで、本実施の形態では、取得部(入力部)29aは、RGBの色毎の一対の信号を取得する。処理部(補正部)29bは、色毎の一対の信号のずれ量、すなわち軸上色収差に応じた色毎の一対の像の間のずれ量を算出する。また、処理部(補正部、画像生成部)29bは、算出した色毎のずれ量に基づいて色毎の一対の信号を合成することにより、軸上色収差を補正した画像信号を生成する。このため、画像信号に基づいて生成される画像に生じる色ずれを低減させることができる。以下に詳細に説明する。 Even after focusing the imaging optical system 31, the light of color components having different wavelengths such as R, G, and B according to the axial chromatic aberration has different focal positions (focusing positions). Therefore, in the image generated by imaging the subject image formed by the imaging optical system 31, color shift occurs due to the influence of the axial chromatic aberration by the imaging optical system 31. Therefore, in the present embodiment, the acquisition unit (input unit) 29a acquires a pair of signals for each of the RGB colors. The processing unit (correction unit) 29b calculates the amount of deviation between the pair of signals for each color, that is, the amount of deviation between the pair of images for each color according to the axial chromatic aberration. Further, the processing unit (correction unit, image generation unit) 29b generates an image signal corrected for axial chromatic aberration by synthesizing a pair of signals for each color based on the calculated deviation amount for each color. Therefore, it is possible to reduce the color shift that occurs in the image generated based on the image signal. This will be described in detail below.

図2は、第1の実施の形態に係る撮像素子22の画素の配置例を示す図である。撮像素子22では、画素12が二次元状(行方向および列方向)に配置される。各画素12には、例えば、R(赤)、G(緑)、B(青)の異なる分光感度を有する3つのカラーフィルタのいずれかが設けられる。Rのカラーフィルタは主に赤色の波長域の光を透過し、Gのカラーフィルタは主に緑色の波長域の光を透過し、Bのカラーフィルタは主に青色の波長域の光を透過する。画素12に配置されたカラーフィルタの色を、「R」、「G」または「B」と表記して模式的に表す。なお、焦点検出のための専用の画素として用いる画素には、画素に入射する光の全波長域を透過させるフィルタ(白色フィルタ)を設けるようにしてもよい。 FIG. 2 is a diagram showing an example of arranging pixels of the image pickup device 22 according to the first embodiment. In the image pickup device 22, the pixels 12 are arranged two-dimensionally (row direction and column direction). Each pixel 12 is provided with, for example, one of three color filters having different spectral sensitivities of R (red), G (green), and B (blue). The R color filter mainly transmits light in the red wavelength region, the G color filter mainly transmits light in the green wavelength region, and the B color filter mainly transmits light in the blue wavelength region. .. The color of the color filter arranged in the pixel 12 is schematically represented by notation as "R", "G" or "B". The pixel used as a dedicated pixel for focus detection may be provided with a filter (white filter) that transmits the entire wavelength range of the light incident on the pixel.

各画素12は、配置されるカラーフィルタに応じて異なる分光感度特性を有する。撮像素子22では、RおよびGのカラーフィルタを有する画素12が交互に配置される画素群401と、GおよびBのカラーフィルタを有する画素12(以下、R、GおよびBのカラーフィルタを有する画素をそれぞれR画素、G画素、およびB画素とも称する)が交互に配置される画素群402とが、二次元状に繰り返し配置される。こうして、R画素とG画素とB画素とは、ベイヤー配列に従って配置されている。 Each pixel 12 has different spectral sensitivity characteristics depending on the color filter arranged. In the image pickup element 22, the pixel group 401 in which the pixels 12 having the R and G color filters are alternately arranged, and the pixel 12 having the G and B color filters (hereinafter, the pixels having the R, G and B color filters). The pixel group 402 in which R pixels, G pixels, and B pixels are alternately arranged, respectively, is repeatedly arranged in a two-dimensional manner. In this way, the R pixel, the G pixel, and the B pixel are arranged according to the Bayer arrangement.

画素12は、マイクロレンズ40と、水平方向(行方向)に並んで配置される光電変換部41および光電変換部42とを有する。なお、図2においては、光電変換部41および光電変換部42を、行方向(図2に示すX軸方向)、即ち横方向に並べて配置したが、列方向(図2に示すY軸方向)、即ち縦方向に並べて配置してもよい。 The pixel 12 has a microlens 40, and a photoelectric conversion unit 41 and a photoelectric conversion unit 42 arranged side by side in the horizontal direction (row direction). In FIG. 2, the photoelectric conversion unit 41 and the photoelectric conversion unit 42 are arranged side by side in the row direction (X-axis direction shown in FIG. 2), that is, in the horizontal direction, but in the column direction (Y-axis direction shown in FIG. 2). That is, they may be arranged side by side in the vertical direction.

図3は、第1の実施の形態に係る撮像素子に入射する光束を説明するための図である。なお、図3に示す例では、説明を簡略化するために、画素12は3画素のみ図示している。画素12は、上述のように、マイクロレンズ40と、カラーフィルタ43と、マイクロレンズ40およびカラーフィルタ43を透過した光束を受光する光電変換部41および光電変換部42とを有する。各画素12では、Z軸プラス方向に向かって、マイクロレンズ40、カラーフィルタ41、光電変換部41および光電変換部42が設けられている。 FIG. 3 is a diagram for explaining a light flux incident on the image pickup device according to the first embodiment. In the example shown in FIG. 3, for simplification of the explanation, only three pixels are shown in the pixel 12. As described above, the pixel 12 includes a microlens 40, a color filter 43, and a photoelectric conversion unit 41 and a photoelectric conversion unit 42 that receive a light beam transmitted through the microlens 40 and the color filter 43. Each pixel 12 is provided with a microlens 40, a color filter 41, a photoelectric conversion unit 41, and a photoelectric conversion unit 42 in the plus direction of the Z axis.

各画素12の光電変換部41および光電変換部42には、撮像光学系31の射出瞳60の異なる領域を通過した光が入射する。第1の瞳領域61を通過した第1の光束がマイクロレンズ40を介して光電変換部42に入射し、第2の瞳領域62を通過した第2の光束がマイクロレンズ40を介して光電変換部41に入射する。光電変換部41は、第2の瞳領域62を通過した光を受光し、受光量に応じた電荷を生成する。光電変換部42は、第1の瞳領域61を通過した光を受光し、受光量に応じた電荷を生成する。各画素12は、一対の信号として、光電変換部41により生成された電荷に基づく信号と、光電変換部42により生成された電荷に基づく信号とを出力する。以下の説明では、光電変換部41により生成された電荷に基づく信号を信号A、光電変換部42により生成された電荷に基づく信号を信号Bと称する。このように、各画素12は、第1の瞳領域61を通過した光に基づく信号Bと第2の瞳領域62を通過した光に基づく信号Aとの一対の信号を、ボディ制御部21に出力する。 Light that has passed through different regions of the exit pupil 60 of the imaging optical system 31 is incident on the photoelectric conversion unit 41 and the photoelectric conversion unit 42 of each pixel 12. The first luminous flux that has passed through the first pupil region 61 is incident on the photoelectric conversion unit 42 via the microlens 40, and the second luminous flux that has passed through the second pupil region 62 is photoelectrically converted via the microlens 40. It is incident on the portion 41. The photoelectric conversion unit 41 receives light that has passed through the second pupil region 62, and generates an electric charge according to the amount of light received. The photoelectric conversion unit 42 receives light that has passed through the first pupil region 61, and generates an electric charge according to the amount of light received. Each pixel 12 outputs as a pair of signals a signal based on the electric charge generated by the photoelectric conversion unit 41 and a signal based on the electric charge generated by the photoelectric conversion unit 42. In the following description, the signal based on the charge generated by the photoelectric conversion unit 41 is referred to as a signal A, and the signal based on the charge generated by the photoelectric conversion unit 42 is referred to as a signal B. As described above, each pixel 12 transmits a pair of signals of the light-based signal B passing through the first pupil region 61 and the light-based signal A passing through the second pupil region 62 to the body control unit 21. Output.

また、各画素12はR、GまたはBの何れかのカラーフィルタを有するため、画素12から出力される一対の信号は、R、GまたはBの何れかの色成分に対応する信号となる。以下、R画素から出力される信号Aおよび信号Bを、それぞれ信号Ra、信号Rbとする。同様に、G画素から出力される信号Aおよび信号Bを、それぞれ信号Ga、信号Gbとし、B画素から出力される信号Aおよび信号Bを、それぞれ信号Ba、信号Bbとする。 Further, since each pixel 12 has a color filter of any of R, G, and B, the pair of signals output from the pixel 12 is a signal corresponding to any of the color components of R, G, or B. Hereinafter, the signal A and the signal B output from the R pixel will be referred to as a signal Ra and a signal Rb, respectively. Similarly, the signal A and the signal B output from the G pixel are referred to as a signal Ga and a signal Gb, respectively, and the signal A and the signal B output from the B pixel are referred to as a signal Ba and a signal Bb, respectively.

焦点検出部28は、例えば各G画素から出力される信号Gaおよび信号Gbの一対の信号に基づいて相関演算を行う。焦点検出部28は、この相関演算によって、第1の瞳領域61を通過した第1の光束による像と第2の瞳領域62を通過した第2の光束による像とのズレ量(位相差情報)を算出し、この像ズレ量に基づきデフォーカス量を算出する。 The focus detection unit 28 performs a correlation calculation based on, for example, a pair of signals of the signal Ga and the signal Gb output from each G pixel. By this correlation calculation, the focus detection unit 28 determines the amount of deviation (phase difference information) between the image of the first luminous flux passing through the first pupil region 61 and the image of the second luminous flux passing through the second pupil region 62. ) Is calculated, and the defocus amount is calculated based on this image shift amount.

図4は、第1の実施の形態に係る撮像素子の画素による信号を示す図である。横軸は複数の画素12の並び方向を示し、縦軸は各画素12による各色成分についての信号のレベルを示す。図4(a)~(c)は、黒地の背景に一本の白線が配置された被写体を撮像した場合の、白線に直交する方向(例えば水平方向)における各画素12からの信号の分布を示す。また、図4(a)~(c)は、G画素からの一対の信号による位相差情報を用いて合焦させた後の各画素12からの信号を示している。図4(a)は各B画素によるB成分の信号(信号Ba、Bb)の分布、図4(b)は各G画素によるG成分の信号(信号Ga、Gb)の分布、図4(c)は各R画素によるR成分の信号(信号Ra、Rb)の分布をそれぞれ示す。 FIG. 4 is a diagram showing a signal by the pixels of the image pickup device according to the first embodiment. The horizontal axis indicates the arrangement direction of the plurality of pixels 12, and the vertical axis indicates the signal level for each color component by each pixel 12. FIGS. 4A to 4C show the distribution of signals from each pixel 12 in a direction orthogonal to the white line (for example, the horizontal direction) when a subject in which one white line is arranged on a black background is imaged. show. Further, FIGS. 4A to 4C show signals from each pixel 12 after focusing using the phase difference information by a pair of signals from the G pixel. FIG. 4A shows the distribution of B component signals (signals Ba and Bb) by each B pixel, and FIG. 4B shows the distribution of G component signals (signals Ga and Gb) by each G pixel and FIG. 4 (c). ) Indicates the distribution of the signal (signal Ra, Rb) of the R component by each R pixel.

撮像光学系31では軸上色収差が生じるため、RGBの各色成分の光に応じた信号Aおよび信号Bのピークとなる焦点位置が異なる。このため、図4(a)~(c)に示すように、各色成分の信号Aおよび信号Bのずれ量(位相差)は異なっている。取得部29aにより異なる瞳領域を通過した光のRGB成分毎の一対の信号が取得された後、処理部29bは、RGB成分毎の一対の信号のずれ量、すなわち一対の像の間のずれ量を算出する。被写体についてG成分で合焦させているため、図4(b)に示すG成分の一対の信号(信号Ga、Gb)のずれ量は略ゼロとなり、RGB成分のうちG成分の一対の像のずれ量が最も小さくなっている。図4(a)、(c)に示すB成分およびR成分については、軸上色収差により一対の信号間に位相ずれが生じている。 Since axial chromatic aberration occurs in the image pickup optical system 31, the focal positions of the peaks of the signal A and the signal B differ according to the light of each color component of RGB. Therefore, as shown in FIGS. 4A to 4C, the amount of deviation (phase difference) between the signal A and the signal B of each color component is different. After the acquisition unit 29a acquires a pair of signals for each RGB component of light that has passed through different pupil regions, the processing unit 29b determines the amount of deviation of the pair of signals for each RGB component, that is, the amount of deviation between the pair of images. Is calculated. Since the subject is focused with the G component, the amount of deviation of the pair of signals (signals Ga and Gb) of the G component shown in FIG. 4B is substantially zero, and the pair of images of the G component among the RGB components The amount of deviation is the smallest. With respect to the B component and the R component shown in FIGS. 4A and 4C, a phase shift occurs between the pair of signals due to axial chromatic aberration.

処理部29bは、像のずれ量が最小となる基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号を補正する補正処理を行う。例えば、ずれ量が最小となるG成分を基準色成分とし、B成分のずれ量がG成分のずれ量に一致するように、信号Baと信号Bbとを平行に移動(シフト)させる。同様に、R成分のずれ量がG成分のずれ量に一致するように、信号Raと信号Rbとをシフトさせる。また、各色成分による一対の信号の各ピーク位置が一致するように、B成分およびR成分の各信号をシフトさせる。処理部29bは、信号Gaと信号Gbとのずれ量を基準として、信号Baと信号Bbとのずれ量が減少するように信号Ba、Bbをシフトさせ、信号Raと信号Rbとのずれ量が減少するように信号Ra、Rbをシフトさせる補正処理を行う。 The processing unit 29b performs correction processing for correcting a pair of signals of other color components different from the reference color component based on the deviation amount of the reference color component that minimizes the deviation amount of the image. For example, the G component that minimizes the deviation amount is used as the reference color component, and the signal Ba and the signal Bb are moved (shifted) in parallel so that the deviation amount of the B component matches the deviation amount of the G component. Similarly, the signal Ra and the signal Rb are shifted so that the deviation amount of the R component matches the deviation amount of the G component. Further, the signals of the B component and the R component are shifted so that the peak positions of the pair of signals due to the color components match. The processing unit 29b shifts the signals Ba and Bb so that the amount of deviation between the signal Ba and the signal Bb is reduced based on the amount of deviation between the signal Ga and the signal Gb, and the amount of deviation between the signal Ra and the signal Rb is increased. A correction process is performed to shift the signals Ra and Rb so as to decrease.

図4(d)~(f)は、補正処理後の各色成分の信号の分布を示す。図4(d)はB成分の信号の分布、図4(e)はG成分の信号の分布、図4(f)はR成分の信号の分布をそれぞれ示す。ずれ量が最小となるG成分については、信号の補正を行っていない。処理部29bは、補正処理後の各色成分の信号Aおよび信号Bを合成した信号を生成する。具体的には、処理部29bは、画像信号として、各色成分の信号Aおよび信号Bを加算した加算信号Ba+b、Ga+b、Ra+bを、図4(d)~(f)に示すようにそれぞれ生成する。また、比較のために、図4(a)~(c)において、補正処理前の各色成分の信号Aおよび信号Bを加算した加算信号を示している。加算信号Ba+bは信号Baと信号Bbとを加算した信号であり、加算信号Ga+bは信号Gaと信号Gbとを加算した信号であり、加算信号Ra+bは信号Raと信号Rbとを加算した信号である。このように、処理部29bは、G成分とは異なるR成分およびB色成分の一対の信号をシフトさせた後に、各色成分の一対の信号をそれぞれ加算して画像信号を生成することによって、軸上色収差による色ずれの補正を行う。 4 (d) to 4 (f) show the signal distribution of each color component after the correction process. 4 (d) shows the distribution of the signal of the B component, FIG. 4 (e) shows the distribution of the signal of the G component, and FIG. 4 (f) shows the distribution of the signal of the R component. The signal is not corrected for the G component that minimizes the deviation amount. The processing unit 29b generates a signal obtained by synthesizing the signal A and the signal B of each color component after the correction processing. Specifically, the processing unit 29b generates additional signals Ba + b, Ga + b, and Ra + b, which are the sum of the signals A and B of each color component, as image signals, as shown in FIGS. 4 (d) to 4 (f), respectively. .. Further, for comparison, FIGS. 4A to 4C show an addition signal obtained by adding the signal A and the signal B of each color component before the correction processing. The addition signal Ba + b is a signal obtained by adding the signal Ba and the signal Bb, the addition signal Ga + b is a signal obtained by adding the signal Ga and the signal Gb, and the addition signal Ra + b is a signal obtained by adding the signal Ra and the signal Rb. .. In this way, the processing unit 29b shifts the pair of signals of the R component and the B color component different from the G component, and then adds the pair of signals of each color component to generate an image signal. Corrects color shift due to top chromatic aberration.

図5は、第1の実施の形態に係る撮像装置により規格化された各色成分の信号を示す図および各色成分の信号を比較する図である。図5(a)、(b)は、各色成分の信号のピーク値が所定の値(例えば1)になるように規格化(正規化)を行った結果を示す図である。図5(a)は、図4(a)~(c)に示す補正処理前の加算信号について規格化を行った結果であり、図5(b)は、図4(d)~(f)に示す補正処理後の加算信号について規格化を行った結果である。 FIG. 5 is a diagram showing signals of each color component standardized by the image pickup apparatus according to the first embodiment and a diagram comparing signals of each color component. FIGS. 5A and 5B are diagrams showing the results of normalization (normalization) so that the peak value of the signal of each color component becomes a predetermined value (for example, 1). 5 (a) is the result of normalization of the addition signal before the correction process shown in FIGS. 4 (a) to 4 (c), and FIG. 5 (b) is a result of FIGS. 4 (d) to 4 (f). This is the result of standardization of the added signal after the correction processing shown in.

図5(c)、(d)は、規格化された各色成分の加算信号を比較する図である。図5(c)は、図5(a)に示す補正処理前の各色成分の加算信号について比較する図であり、図5(d)は、図5(b)に示す補正処理後の各色成分の加算信号について比較する図である。図5(c)、(d)に示すB/G-1、R/G-1は、それぞれB成分の加算信号Ba+bとG成分の加算信号Ga+bとの比から1を引いた値、R成分の加算信号Ra+bとG成分の加算信号Ga+bとの比から1を引いた値である。図5に示すように、各色成分の信号のレベルが大きく変化する領域、すなわち被写体である白線と黒地との境界領域において、軸上色収差の影響によりB/G-1およびR/G-1の絶対値が大きくなっており、各色成分の信号により生成される画像で色ずれが生じることとなる。 5 (c) and 5 (d) are diagrams for comparing the addition signals of each standardized color component. 5 (c) is a diagram comparing the addition signals of each color component before the correction process shown in FIG. 5 (a), and FIG. 5 (d) is a diagram showing each color component after the correction process shown in FIG. 5 (b). It is a figure which compares the addition signal of. B / G-1 and R / G-1 shown in FIGS. 5 (c) and 5 (d) are values obtained by subtracting 1 from the ratio of the addition signal Ba + b of the B component and the addition signal Ga + b of the G component, respectively, and the R component. It is a value obtained by subtracting 1 from the ratio of the addition signal Ra + b of the above and the addition signal Ga + b of the G component. As shown in FIG. 5, in the region where the signal level of each color component changes significantly, that is, in the boundary region between the white line and the black background, which is the subject, B / G-1 and R / G-1 are affected by the influence of axial chromatic aberration. The absolute value is large, and color shift occurs in the image generated by the signal of each color component.

そこで、本実施の形態では、上述したように、処理部29bは、各色成分の信号による波形の形状が一致するように補正処理を行う。処理部29bは、境界領域において各色成分間の差が小さくなるように一対の信号をシフトして加算する。これによって、図5(d)に示す補正処理後では、図5(c)に示す補正処理前よりも各色成分の信号間の差が小さくなる。特に、画素位置PにおけるB/G-1の値が大きく変化しており、図5(c)に示す補正処理前の値に対して、図5(d)に示す補正処理後の値は約15%低減している。このように、処理部29bは、算出した色毎のずれ量に基づいて色毎の一対の信号を合成することによって軸上色収差を補正した画像信号を生成し、画像信号を用いて被写体像に関する画像データを生成する。このため、軸上色収差により生じる色ずれを抑制することができる。なお、表示部24に表示するスルー画(ライブビュー画像)として表示して軸上色収差を補正した画像信号による画像を表示してもよく、これにより軸上色収差を補正された画像がスルー画として表示される。 Therefore, in the present embodiment, as described above, the processing unit 29b performs correction processing so that the shapes of the waveforms due to the signals of the respective color components match. The processing unit 29b shifts and adds a pair of signals so that the difference between the color components becomes small in the boundary region. As a result, after the correction process shown in FIG. 5 (d), the difference between the signals of each color component becomes smaller than that before the correction process shown in FIG. 5 (c). In particular, the value of B / G-1 at the pixel position P has changed significantly, and the value after the correction process shown in FIG. 5 (d) is about the same as the value before the correction process shown in FIG. 5 (c). It is reduced by 15%. In this way, the processing unit 29b generates an image signal corrected for axial chromatic aberration by synthesizing a pair of signals for each color based on the calculated deviation amount for each color, and uses the image signal to relate to the subject image. Generate image data. Therefore, it is possible to suppress color shift caused by axial chromatic aberration. An image based on an image signal with axial chromatic aberration corrected may be displayed as a through image (live view image) displayed on the display unit 24, and the image corrected with axial chromatic aberration may be displayed as a through image. Is displayed.

図6は、第1の実施の形態に係る撮像装置の動作例を示すフローチャートである。図6に示す処理は、例えば、ユーザにより操作部25が操作され、撮影が開始された場合に実行される。 FIG. 6 is a flowchart showing an operation example of the image pickup apparatus according to the first embodiment. The process shown in FIG. 6 is executed, for example, when the operation unit 25 is operated by the user and shooting is started.

ステップS100において、カメラボディ2のボディ制御部21は、撮像素子22から出力される各色成分の一対の信号を焦点検出信号として取得する。ステップS110において、ボディ制御部21は、色毎の焦点検出信号を用いて、色毎のデフォーカス量を算出する。ステップS120において、ボディ制御部21は、例えば、デフォーカス量が所定の閾値以下となる撮像素子22の撮像面上の範囲を算出し、補正範囲として決定する。 In step S100, the body control unit 21 of the camera body 2 acquires a pair of signals of each color component output from the image sensor 22 as a focus detection signal. In step S110, the body control unit 21 calculates the defocus amount for each color by using the focus detection signal for each color. In step S120, the body control unit 21 calculates, for example, a range on the image pickup surface of the image pickup device 22 in which the defocus amount is equal to or less than a predetermined threshold value, and determines it as a correction range.

ステップS130において、ボディ制御部21は、補正範囲における各色成分の一対の信号のずれ量に基づいて、ずれ量が最小となる基準色成分を検出する。また、ボディ制御部21は、基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号のシフト量を算出する。ステップS140において、ボディ制御部21は、算出した補正範囲に対応する各画素12からの信号に対して上述した補正処理を行って、画像信号を生成する。すなわち、ボディ制御部21は、撮像面上の補正範囲については、決定したシフト量に基づいて一対の信号をシフトさせた後に加算する処理を行う。ボディ制御部21は、生成した画像信号に対して種々の画像処理を行って画像データを生成し、図6に示す処理を終了する。 In step S130, the body control unit 21 detects the reference color component having the minimum deviation amount based on the deviation amount of the pair of signals of each color component in the correction range. Further, the body control unit 21 calculates the shift amount of a pair of signals of other color components different from the reference color component based on the deviation amount of the reference color component. In step S140, the body control unit 21 performs the above-mentioned correction processing on the signal from each pixel 12 corresponding to the calculated correction range to generate an image signal. That is, the body control unit 21 performs a process of shifting the pair of signals based on the determined shift amount and then adding the correction range on the imaging surface. The body control unit 21 performs various image processing on the generated image signal to generate image data, and ends the processing shown in FIG.

上述した実施の形態によれば、次の作用効果が得られる。
(1)画像処理装置(画像処理部29)は、結像光学系31の射出瞳60の異なる領域を通過する光の複数の色成分それぞれについての一対の信号を取得する取得部29aと、取得部29aにより取得された一対の信号に基づいて、結像光学系31により生じる軸上色収差を補正した画像信号を生成する処理部29bと、を備える。このようにしたので、軸上色収差の影響によって画像に生じる色ずれを低減させることができる。
(2)処理部29bは、一対の信号を用いて結像光学系31により形成される像のずれ量を算出し、ずれ量に基づいて一対の信号を合成して画像信号を生成する。このようにしたので、軸上色収差に応じた色毎の一対の像の間のずれ量を算出することができる。また、算出した色毎のずれ量に基づいて色毎の一対の信号を合成することによって、軸上色収差による色ずれを補正した画像信号を生成することができる。
According to the above-described embodiment, the following effects can be obtained.
(1) The image processing apparatus (image processing unit 29) has an acquisition unit 29a for acquiring a pair of signals for each of a plurality of color components of light passing through different regions of the exit pupil 60 of the imaging optical system 31 and an acquisition unit 29a. A processing unit 29b that generates an image signal corrected for axial chromatic aberration caused by the imaging optical system 31 based on a pair of signals acquired by the unit 29a is provided. Since this is done, it is possible to reduce the color shift that occurs in the image due to the influence of axial chromatic aberration.
(2) The processing unit 29b calculates the amount of deviation of the image formed by the imaging optical system 31 using the pair of signals, and synthesizes the pair of signals based on the amount of deviation to generate an image signal. Since this is done, it is possible to calculate the amount of deviation between the pair of images for each color according to the axial chromatic aberration. Further, by synthesizing a pair of signals for each color based on the calculated amount of deviation for each color, it is possible to generate an image signal in which the color deviation due to axial chromatic aberration is corrected.

(3)処理部29bは、複数の色成分のうちの結像光学系31により形成される像のずれ量が最小となる基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号をシフトさせて合成し、画像信号を生成する。本実施の形態では、最も合焦する方向に基準色成分とは異なる他の色成分の一対の信号をシフトさせて、他の色成分のずれ量が減少するように補正する。この結果、画像に生じる色ずれを低減させることができる。
(4)処理部29bは、他の色成分のずれ量が基準色成分のずれ量に一致するように、他の色成分の一対の信号をシフトさせて合成する。このようにしたので、各色成分の信号による波形の形状が一致するように補正処理を行うことができ、色ずれを低減させることができる。また、各色成分についてピントが合った画像を得ることができる。
(3) The processing unit 29b is different from the reference color component based on the deviation amount of the reference color component that minimizes the deviation amount of the image formed by the imaging optical system 31 among the plurality of color components. A pair of color component signals are shifted and combined to generate an image signal. In the present embodiment, a pair of signals of other color components different from the reference color component are shifted in the most focused direction, and correction is made so that the amount of deviation of the other color components is reduced. As a result, it is possible to reduce the color shift that occurs in the image.
(4) The processing unit 29b shifts and synthesizes a pair of signals of the other color components so that the deviation amount of the other color components matches the deviation amount of the reference color component. Since this is done, the correction process can be performed so that the shapes of the waveforms due to the signals of the respective color components match, and the color shift can be reduced. In addition, it is possible to obtain an image in which each color component is in focus.

(第2の実施の形態)
図7~図9を参照して、第2の実施の形態に係る撮像装置について説明する。なお、図中、第1の実施の形態と同一もしくは相当部分には、同一の参照番号を付し、第1の実施の形態に係る撮像装置との相違点を主に説明する。第1の実施の形態では、像のずれ量が最小となる基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号を補正して画像信号を生成する例について説明した。第2の実施の形態では、像のずれ量が最大となる基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号を補正して画像信号を生成する例について説明する。
(Second embodiment)
The image pickup apparatus according to the second embodiment will be described with reference to FIGS. 7 to 9. In the figure, the same or corresponding parts as those of the first embodiment are designated by the same reference numbers, and the differences from the image pickup apparatus according to the first embodiment will be mainly described. In the first embodiment, an example in which a pair of signals of other color components different from the reference color component is corrected to generate an image signal based on the deviation amount of the reference color component that minimizes the deviation amount of the image. Explained. In the second embodiment, an example in which a pair of signals of other color components different from the reference color component is corrected to generate an image signal based on the deviation amount of the reference color component that maximizes the deviation amount of the image. Will be explained.

図7は、第2の実施の形態に係る撮像素子の画素による信号を示す図である。撮像条件は第1の実施の形態の場合と同様であり、図7(a)~(c)は補正前の各色成分の信号の分布を示し、図7(d)~(f)は補正後の各色成分の信号の分布を示している。 FIG. 7 is a diagram showing a signal by the pixels of the image pickup device according to the second embodiment. The imaging conditions are the same as in the case of the first embodiment, FIGS. 7 (a) to 7 (c) show the signal distribution of each color component before correction, and FIGS. 7 (d) to 7 (f) show the signal distribution after correction. The distribution of the signal of each color component of is shown.

処理部29bは、図7に示す例ではB成分を基準色成分とし、R成分のずれ量がB成分のずれ量に一致するように、信号Raと信号Rbとをシフトさせる。また、処理部29bは、G成分のずれ量がB成分のずれ量に一致するように、信号Gaと信号Gbとをシフトさせる。また、G成分の一対の信号については、G成分の信号の波形の形状とB成分の信号の波形の形状とがより一致するように、シフト後の信号Gaおよび信号Gbにデジタルローパスフィルタをかけている。図7(e)においては、デジタルローパスフィルタによりフィルタ処理された後の信号Gaおよび信号Gbを示している。図7(e)に示す信号Ga+bは、フィルタ処理後の信号Gaおよび信号Gbを加算した信号である。このように、処理部29bは、像のずれ量が最大となる基準色成分による信号の波形の形状と、基準色成分とは異なる他の色成分による信号の波形の形状とが一致するように補正処理を行う。なお、R成分の一対の信号に対しても、フィルタ処理を行うようにしてもよい。 In the example shown in FIG. 7, the processing unit 29b uses the B component as a reference color component, and shifts the signal Ra and the signal Rb so that the deviation amount of the R component matches the deviation amount of the B component. Further, the processing unit 29b shifts the signal Ga and the signal Gb so that the deviation amount of the G component matches the deviation amount of the B component. For a pair of G component signals, a digital low-pass filter is applied to the shifted signal Ga and signal Gb so that the shape of the waveform of the signal of the G component and the shape of the waveform of the signal of the B component more closely match. ing. FIG. 7E shows the signal Ga and the signal Gb after being filtered by the digital low-pass filter. The signal Ga + b shown in FIG. 7 (e) is a signal obtained by adding the filtered signal Ga and the signal Gb. In this way, the processing unit 29b ensures that the shape of the signal waveform due to the reference color component that maximizes the image shift amount matches the shape of the signal waveform due to other color components different from the reference color component. Perform correction processing. It should be noted that the filter processing may also be performed on the pair of signals of the R component.

図8は、第2の実施の形態に係る撮像装置により規格化された各色成分の信号を示す図および各色成分の信号を比較する図である。図8(a)は、図7(a)~(c)に示す補正処理前の加算信号について規格化を行った結果であり、図8(b)は、図7(d)~(f)に示す補正処理後の加算信号について規格化を行った結果である。また、図8(c)は、図8(a)に示す補正処理前の各色成分の加算信号について比較する図であり、図8(d)は、図8(b)に示す補正処理後の各色成分の加算信号について比較する図である。 FIG. 8 is a diagram showing signals of each color component standardized by the image pickup apparatus according to the second embodiment and a diagram comparing signals of each color component. 8 (a) is the result of standardizing the addition signal before the correction process shown in FIGS. 7 (a) to 7 (c), and FIG. 8 (b) is a result of FIGS. 7 (d) to 7 (f). This is the result of standardization of the added signal after the correction processing shown in. 8 (c) is a diagram comparing the addition signals of each color component before the correction process shown in FIG. 8 (a), and FIG. 8 (d) is a diagram after the correction process shown in FIG. 8 (b). It is a figure which compares the addition signal of each color component.

上述した補正処理を行うことにより、図8(d)に示す補正処理後では、図8(c)に示す補正処理前よりも各色成分の信号間の差が小さくなっている。図8(d)に示す各画素位置のR/G-1の値は、ゼロに近い値となっている。この結果、軸上色収差により生じる画像の色ずれを抑制することができる。 By performing the correction process described above, after the correction process shown in FIG. 8 (d), the difference between the signals of each color component is smaller than that before the correction process shown in FIG. 8 (c). The value of R / G-1 at each pixel position shown in FIG. 8D is close to zero. As a result, it is possible to suppress the color shift of the image caused by the axial chromatic aberration.

ボディ制御部21は、例えば、デフォーカス量が所定の閾値以下となる補正範囲、例えば主要被写体の画像領域では、第1の実施の形態の場合と同様の補正処理を行って軸上色収差による色ずれを低減させる。また、デフォーカス量が所定の閾値よりも大きくなる補正範囲、例えば主要被写体とは異なる被写体の画像領域では、第2の実施の形態による補正処理を行って軸上色収差による色ずれを低減させる。 For example, in the correction range in which the defocus amount is equal to or less than a predetermined threshold value, for example, in the image region of the main subject, the body control unit 21 performs the same correction processing as in the case of the first embodiment to perform color due to axial chromatic aberration. Reduce the deviation. Further, in a correction range in which the defocus amount is larger than a predetermined threshold value, for example, in an image region of a subject different from the main subject, the correction processing according to the second embodiment is performed to reduce the color shift due to axial chromatic aberration.

図9は、第2の実施の形態に係る撮像装置の動作例を示すフローチャートである。図9に示す処理は、例えば、ユーザにより操作部25が操作され、撮影が開始された場合に実行される。 FIG. 9 is a flowchart showing an operation example of the image pickup apparatus according to the second embodiment. The process shown in FIG. 9 is executed, for example, when the operation unit 25 is operated by the user and shooting is started.

ステップS200において、カメラボディ2のボディ制御部21は、撮像素子22から出力される各色成分の一対の信号を焦点検出信号として取得する。ステップS210において、ボディ制御部21は、色成分毎のデフォーカス量を算出する。ステップS220において、ボディ制御部21は、例えば、デフォーカス量が所定の閾値以下となる撮像面上の範囲を第1補正範囲として算出し、デフォーカス量が所定の閾値よりも大きい撮像面上の範囲を第2補正範囲として算出する。 In step S200, the body control unit 21 of the camera body 2 acquires a pair of signals of each color component output from the image sensor 22 as a focus detection signal. In step S210, the body control unit 21 calculates the defocus amount for each color component. In step S220, the body control unit 21 calculates, for example, a range on the imaging surface where the defocus amount is equal to or less than a predetermined threshold value as the first correction range, and the defocus amount is larger than the predetermined threshold value on the imaging surface. The range is calculated as the second correction range.

ステップS230において、ボディ制御部21は、第2補正範囲における各色成分の一対の信号のずれ量に基づいて、ずれ量が最大となる基準色成分を検出する。また、ボディ制御部21は、ずれ量が最大となる基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号のシフト量を決定する。第1補正範囲については、第1の実施の形態の場合と同様に、ボディ制御部21は、第1補正範囲においてずれ量が最小となる色成分のずれ量に基づいて、各色成分の一対の信号のシフト量を決定する。 In step S230, the body control unit 21 detects the reference color component having the maximum deviation amount based on the deviation amount of the pair of signals of each color component in the second correction range. Further, the body control unit 21 determines the shift amount of a pair of signals of other color components different from the reference color component based on the deviation amount of the reference color component that maximizes the deviation amount. Regarding the first correction range, as in the case of the first embodiment, the body control unit 21 has a pair of color components of each color component based on the deviation amount of the color component that minimizes the deviation amount in the first correction range. Determine the amount of signal shift.

ステップS240において、ボディ制御部21は、補正処理の際に用いるフィルタを決定する。例えば、ボディ制御部21は、第1補正範囲に対応する各画素12による信号に対してはフィルタを用いずに補正処理を行う。また、ボディ制御部21は、第2補正範囲に対応する各画素12による信号に対してはフィルタを用いて補正処理を行う。例えば、ボディ制御部21は、画像のぼかし量に応じて、補正処理に用いるフィルタを選択する。 In step S240, the body control unit 21 determines a filter to be used in the correction process. For example, the body control unit 21 performs correction processing on the signal by each pixel 12 corresponding to the first correction range without using a filter. Further, the body control unit 21 performs correction processing using a filter on the signal by each pixel 12 corresponding to the second correction range. For example, the body control unit 21 selects a filter to be used for the correction process according to the amount of blurring of the image.

ステップS250において、ボディ制御部21は、第2補正範囲に対応する各画素12からの信号に対しては、像のずれ量が最大となる色成分のずれ量に基づいて信号の補正処理を行う。また、ボディ制御部21は、第1補正範囲に対応する各画素12からの信号に対しては、像のずれ量が最小となる色成分のずれ量に基づいて信号の補正処理を行う。すなわち、ボディ制御部21は、第1補正範囲については決定したシフト量に基づいて一対の信号をシフトさせた後に加算し、第2補正範囲については決定したシフト量に基づいて一対の信号をシフトさせた後にフィルタ処理を行ってから加算して画像信号を生成する。ボディ制御部21は、生成した画像信号に対して種々の画像処理を行って画像データを生成し、図9に示す処理を終了する。 In step S250, the body control unit 21 corrects the signal from each pixel 12 corresponding to the second correction range based on the amount of deviation of the color component that maximizes the amount of deviation of the image. .. Further, the body control unit 21 performs signal correction processing on the signal from each pixel 12 corresponding to the first correction range based on the deviation amount of the color component that minimizes the deviation amount of the image. That is, the body control unit 21 shifts the pair of signals based on the determined shift amount for the first correction range and then adds them, and shifts the pair of signals for the second correction range based on the determined shift amount. After that, filter processing is performed and then addition is performed to generate an image signal. The body control unit 21 performs various image processing on the generated image signal to generate image data, and ends the processing shown in FIG.

上述した実施の形態によれば、第1の実施の形態と同様の作用効果に加えて、次の作用効果が得られる。
(5)処理部29bは、複数の色成分のうちの結像光学系31により形成される像のずれ量が最大となる基準色成分のずれ量に基づいて、基準色成分とは異なる他の色成分の一対の信号をシフトさせて合成し、画像信号を生成する。本実施の形態では、最もぼける方向に基準色成分とは異なる他の色成分の一対の信号をシフトさせて、各色成分のずれ量が一致するように補正する。この結果、画像に生じる色ずれを低減させることができる。また、ボケ効果が付与された画像を得ることができる。
According to the above-described embodiment, in addition to the same action and effect as in the first embodiment, the following action and effect can be obtained.
(5) The processing unit 29b is different from the reference color component based on the deviation amount of the reference color component that maximizes the deviation amount of the image formed by the imaging optical system 31 among the plurality of color components. A pair of color component signals are shifted and combined to generate an image signal. In the present embodiment, a pair of signals of other color components different from the reference color component are shifted in the most blurred direction, and correction is made so that the deviation amounts of the respective color components match. As a result, it is possible to reduce the color shift that occurs in the image. In addition, it is possible to obtain an image with a bokeh effect.

(6)処理部29bは、主要被写体の画像領域では複数の色成分のうちの結像光学系31により形成される像のずれ量が最小となる色成分のずれ量に基づいて一対の信号を合成し、主要被写体とは異なる被写体の画像領域では複数の色成分のうちのずれ量が最大となる色成分のずれ量に基づいて一対の信号を合成する。本実施の形態では、例えば主要被写体の画像領域では、最も合焦した状態となる基準色成分による像と基準色成分とは異なる他の色成分による像とが一致するように補正される。また、例えば主要被写体以外の画像領域では、最もぼけた状態となる基準色成分による像と基準色成分とは異なる他の色成分による像とが一致するように補正される。この結果、主要被写体の画像領域および主要被写体以外の画像領域について、軸上色収差による色ずれを低減させることができる。また、主要被写体の画像領域については、各色成分についてピントが合った画像を得ることができ、主要被写体以外の画像領域については、ボケ効果が付与された画像を得ることができる。 (6) The processing unit 29b outputs a pair of signals based on the amount of deviation of the color component that minimizes the amount of deviation of the image formed by the imaging optical system 31 among the plurality of color components in the image region of the main subject. In the image area of a subject different from the main subject, a pair of signals are combined based on the deviation amount of the color component having the maximum deviation amount among the plurality of color components. In the present embodiment, for example, in the image region of the main subject, the image of the reference color component that is in the most focused state and the image of another color component different from the reference color component are corrected so as to match. Further, for example, in an image region other than the main subject, the image due to the reference color component that is in the most blurred state and the image due to another color component different from the reference color component are corrected so as to match. As a result, it is possible to reduce color shift due to axial chromatic aberration in the image area of the main subject and the image area other than the main subject. Further, for the image area of the main subject, it is possible to obtain an image in which each color component is in focus, and for the image area other than the main subject, it is possible to obtain an image to which the bokeh effect is imparted.

次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。 The following modifications are also within the scope of the present invention, and one or more of the modifications can be combined with the above-described embodiment.

(変形例1)
上述した実施の形態では、1画素に2つの光電変換部を有する2PD構成を例に説明したが、各画素の構成はこれに限らない。例えば、1画素あたり4つの光電変換部を有する4PD構成にしてもよい。
(Modification 1)
In the above-described embodiment, a 2PD configuration having two photoelectric conversion units in one pixel has been described as an example, but the configuration of each pixel is not limited to this. For example, a 4PD configuration having four photoelectric conversion units per pixel may be used.

(変形例2)
上述した実施の形態では、デフォーカス量に基づいて補正範囲を決定する例について説明した。しかし、デプスマップ(Depth Map)やレンズのMTF(Modulation Transfer Function)等に基づいて補正範囲を決定し、補正範囲についての各色成分の一対の信号に対する補正処理の内容を決定するようにしてもよい。
(Modification 2)
In the above-described embodiment, an example of determining the correction range based on the defocus amount has been described. However, the correction range may be determined based on the Depth Map, the MTF (Modulation Transfer Function) of the lens, or the like, and the content of the correction processing for the pair of signals of each color component for the correction range may be determined. ..

(変形例3)
上述した実施の形態では、基準色成分のずれ量に基づいて各色成分のずれ量が一致するように補正して、軸上色収差による色ずれを補正する例について説明した。しかし、ボケ量を大きくしたい領域については、基準色成分のずれ量を基準とした補正処理を行わないようにしてもよい。この場合、色毎に個別に補正処理を行わないようにしてもよい。例えば、各色成分の一対の信号に対してぼかし量に応じたボケフィルタをかけた後に、各色成分の一対の信号を合成する。これにより、ボケ量を大きくしたい領域については、ボケが強調された画像を得ることができる。
(Modification 3)
In the above-described embodiment, an example of correcting the color shift due to axial chromatic aberration by correcting the shift amount of each color component to match based on the shift amount of the reference color component has been described. However, in the region where the amount of blurring is desired to be large, the correction process based on the amount of deviation of the reference color component may not be performed. In this case, the correction process may not be performed individually for each color. For example, after applying a blur filter according to the amount of blurring to the pair of signals of each color component, the pair of signals of each color component are combined. As a result, it is possible to obtain an image in which the blur is emphasized in the region where the amount of blur is desired to be increased.

(変形例4)
上述した実施の形態では、1画素に2つの光電変換部を有する2PD構成を例に説明したが、各画素の構成はこれに限らない。例えば、1画素あたり4つの光電変換部を有する4PD構成にしてもよい。
(Modification example 4)
In the above-described embodiment, a 2PD configuration having two photoelectric conversion units in one pixel has been described as an example, but the configuration of each pixel is not limited to this. For example, a 4PD configuration having four photoelectric conversion units per pixel may be used.

(変形例5)
上述した実施の形態および変形例では、本発明を画像処理装置としてデジタルカメラに適用した例について説明したが、本発明は、例えば、スマートフォン、タブレット、パーソナルコンピュータ、PCに内蔵のカメラ、車載カメラ等の他の装置に適用することができる。
(Modification 5)
In the above-described embodiments and modifications, an example in which the present invention is applied to a digital camera as an image processing device has been described. However, the present invention describes, for example, a smartphone, a tablet, a personal computer, a camera built in a PC, an in-vehicle camera, or the like. It can be applied to other devices.

(変形例6)
上述した実施の形態および変形例では、撮像装置に画像処理装置が備えられている例を説明したが、画像処理装置をコンピュータによって実現するようにしてもよい。この場合、図6や図9に例示したフローチャートに基づく処理を行うプログラムをコンピュータ(またはCPUなど)に実行させることにより、画像処理装置を構成する。プログラムは、記憶媒体や通信回線を介する提供など、種々の形態のコンピュータプログラム製品として供給することができる。
(Modification 6)
In the above-described embodiments and modifications, the example in which the image processing device is provided in the image pickup device has been described, but the image processing device may be realized by a computer. In this case, the image processing apparatus is configured by causing a computer (or a CPU or the like) to execute a program that performs processing based on the flowcharts illustrated in FIGS. 6 and 9. The program can be supplied as various forms of computer program products, such as those provided via storage media and communication lines.

本発明は次のようなカメラボディも含む。
(1)第1の光電変換部と第2の光電変換部とを有する第1の色光を受光する複数の第1の受光部と、第3の光電変換部と第4の光電変換部とを有する第2の色光を受光する複数の第2の受光部と、複数の上記第1の光電変換部で受光した被写体の像の位置に対して、複数の上記第2の光電変換部で受光した被写体の像の位置をずらす補正を、上記複数の第1の受光部から出力される信号に行い、複数の上記第1の光電変換部で受光した被写体の像と複数の上記第2の光電変換部で受光した被写体の像のずれと、複数の上記第3の光電変換部で受光した被写体の像と複数の上記第4の光電変換部で受光した被写体の像のずれとの差を少なくする補正部と、上記複数の第2の受光部からの信号と、補正された上記複数の第1の受光部からの信号とにより画像信号を生成する画像生成部とを有する撮像装置。
(2)(1)のような撮像装置において、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれが、上記複数の第3の光電変換部で受光した被写体の像と上記複数の第4の光電変換部で受光した被写体の像のずれよりも大きい。
(3)(2)のような撮像装置において、上記補正部は、上記複数の第1の光電変換部で受光した被写体の像の位置に対して、上記複数の第2の光電変換部で受光した被写体の像の位置をずらす補正を行い、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれを小さくする。
(4)(1)のような撮像装置において、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれが、上記複数の第3の光電変換部で受光した被写体の像と上記複数の第4の光電変換部で受光した被写体の像のずれよりも小さい。
(5)(4)のような撮像装置において、上記補正部は、上記複数の第1の光電変換部で受光した被写体の像の位置に対して、上記複数の第2の光電変換部で受光した被写体の像の位置をずらす補正を行い、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれを大きくする。
(6)(5)のような撮像装置において、上記補正部は、補正された上記複数の第1の受光部からの信号に対してローパスフィルタをかける。
(7)(1)~(6)のような撮像装置において、上記補正部は、上記複数の第1の光電変換部からの信号に対して、上記複数の第2の光電変換部からの信号をずらす補正を行う。
(8)(1)のような撮像装置において、上記補正部は、上記複数の第1の受光部と上記複数の第2の受光部とのうち主要被写体からの光を受光する上記第1の受光部と上記第2の受光部とでは、上記被写体の像のずれが大きい方の色を第1の色として補正を行い、上記複数の第1の受光部と上記複数の第2の受光部とのうち主要被写体以外の被写体からの光を受光する上記第1の受光部と上記第2の受光部とでは、上記被写体の像のずれが小さい方の色を第2の色として補正を行う。
(9)第1の光電変換部と第2の光電変換部とを有する第1の色光を受光する複数の第1の受光部と、第3の光電変換部と第4の光電変換部とを有する第2の色光を受光する複数の第2の受光部とを有する撮像部で撮像された画像信号を入力する入力部と、複数の上記第1の光電変換部で受光した被写体の像の位置に対して、複数の上記第2の光電変換部で受光した被写体の像の位置をずらす補正を、上記複数の第1の受光部から出力される信号に行い、複数の上記第1の光電変換部で受光した被写体の像と複数の上記第2の光電変換部で受光した被写体の像のずれと、複数の上記第3の光電変換部で受光した被写体の像と複数の上記第4の光電変換部で受光した被写体の像のずれとの差を少なくする補正部と、上記複数の第2の受光部からの信号と、補正された上記複数の第1の受光部からの信号とにより画像信号を生成する画像生成部とを有する画像処理装置。
(10)(9)のような画像処理装置において、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれが、上記複数の第3の光電変換部で受光した被写体の像と上記複数の第4の光電変換部で受光した被写体の像のずれよりも大きい。
(11)(10)のような画像処理装置において、上記補正部は、上記複数の第1の光電変換部で受光した被写体の像の位置に対して、上記複数の第2の光電変換部で受光した被写体の像の位置をずらす補正を行い、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれを小さくする。
(12)(9)のような画像処理装置において、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれが、上記複数の第3の光電変換部で受光した被写体の像と上記複数の第4の光電変換部で受光した被写体の像のずれよりも小さい。
(13)(12)のような画像処理装置において、上記補正部は、上記複数の第1の光電変換部で受光した被写体の像の位置に対して、上記複数の第2の光電変換部で受光した被写体の像の位置をずらす補正を行い、上記複数の第1の光電変換部で受光した被写体の像と上記複数の第2の光電変換部で受光した被写体の像のずれを大きくする。
(14)(13)のような画像処理装置において、上記補正部は、補正された上記複数の第1の受光部からの信号に対してローパスフィルタをかける。
(15)(9)~(14)のような画像処理装置において、上記補正部は、上記複数の第1の光電変換部からの信号に対して、上記複数の第2の光電変換部からの信号をずらす補正を行う。
(16)(9)のような画像処理装置において、上記補正部は、上記複数の第1の受光部と上記複数の第2の受光部とのうち主要被写体からの光を受光する上記第1の受光部と上記第2の受光部とでは、上記被写体の像のずれが大きい方の色を第1の色として補正を行い、上記複数の第1の受光部と上記複数の第2の受光部とのうち主要被写体以外の被写体からの光を受光する上記第1の受光部と上記第2の受光部とでは、上記被写体の像のずれが小さい方の色を第2の色として補正を行う。
The present invention also includes the following camera bodies.
(1) A plurality of first light receiving units having a first photoelectric conversion unit and a second photoelectric conversion unit to receive the first color light, and a third photoelectric conversion unit and a fourth photoelectric conversion unit are provided. The plurality of second photoelectric conversion units received light with respect to the positions of the plurality of second light receiving units that receive the second color light and the image of the subject received by the plurality of first photoelectric conversion units. Correction to shift the position of the image of the subject is performed on the signals output from the plurality of first light receiving units, and the image of the subject received by the plurality of first photoelectric conversion units and the second photoelectric conversion are performed. Reduce the difference between the image of the subject received by the unit and the image of the subject received by the plurality of third photoelectric conversion units and the image of the subject received by the fourth photoelectric conversion unit. An image pickup apparatus having a correction unit, an image generation unit that generates an image signal by a signal from the plurality of second light receiving units, and a corrected signal from the plurality of first light receiving units.
(2) In the image pickup apparatus as described in (1), the difference between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is the plurality of deviations. It is larger than the deviation between the image of the subject received by the third photoelectric conversion unit and the image of the subject received by the plurality of fourth photoelectric conversion units.
(3) In an image pickup apparatus such as (2), the correction unit receives light from the position of the image of the subject received by the plurality of first photoelectric conversion units by the plurality of second photoelectric conversion units. The position of the image of the subject is corrected to shift, and the deviation between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is reduced.
(4) In the image pickup apparatus as described in (1), the difference between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is the plurality of deviations. It is smaller than the deviation between the image of the subject received by the third photoelectric conversion unit and the image of the subject received by the plurality of fourth photoelectric conversion units.
(5) In an image pickup apparatus such as (4), the correction unit receives light from the position of the image of the subject received by the plurality of first photoelectric conversion units by the plurality of second photoelectric conversion units. The position of the image of the subject is corrected to shift, and the deviation between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is increased.
(6) In the image pickup apparatus as in (5), the correction unit applies a low-pass filter to the corrected signals from the plurality of first light receiving units.
(7) In the imaging apparatus such as (1) to (6), the correction unit receives signals from the plurality of second photoelectric conversion units with respect to signals from the plurality of first photoelectric conversion units. Make corrections to shift.
(8) In an image pickup apparatus such as (1), the correction unit receives light from a main subject among the plurality of first light receiving units and the plurality of second light receiving units. In the light receiving unit and the second light receiving unit, the color having the larger deviation of the image of the subject is corrected as the first color, and the plurality of first light receiving units and the plurality of second light receiving units are corrected. Of the above, the first light receiving unit and the second light receiving unit that receive light from a subject other than the main subject perform correction with the color having the smaller image deviation of the subject as the second color. ..
(9) A plurality of first light receiving units having a first photoelectric conversion unit and a second photoelectric conversion unit to receive the first color light, and a third photoelectric conversion unit and a fourth photoelectric conversion unit are provided. Positions of an input unit for inputting an image signal captured by an image pickup unit having a plurality of second light receiving units for receiving the second color light, and an image of a subject received by the plurality of first photoelectric conversion units. On the other hand, the correction for shifting the position of the image of the subject received by the plurality of second photoelectric conversion units is performed on the signals output from the plurality of first light receiving units, and the plurality of first photoelectric conversion units are converted. The difference between the image of the subject received by the unit and the image of the subject received by the plurality of second photoelectric conversion units, the image of the subject received by the plurality of third photoelectric conversion units, and the plurality of fourth photoelectrics. An image is formed by a correction unit that reduces the difference between the image of the subject received by the conversion unit and the deviation of the image of the subject, the signals from the plurality of second light receiving units, and the corrected signals from the plurality of first light receiving units. An image processing device having an image generation unit that generates a signal.
(10) In an image processing apparatus such as (9), the difference between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is the above. It is larger than the deviation between the image of the subject received by the plurality of third photoelectric conversion units and the image of the subject received by the plurality of fourth photoelectric conversion units.
(11) In an image processing apparatus such as (10), the correction unit is a plurality of second photoelectric conversion units with respect to the position of an image of a subject received by the plurality of first photoelectric conversion units. Correction is performed to shift the position of the image of the received subject, and the deviation between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is reduced.
(12) In an image processing apparatus such as (9), the difference between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is the above. It is smaller than the deviation between the image of the subject received by the plurality of third photoelectric conversion units and the image of the subject received by the plurality of fourth photoelectric conversion units.
(13) In an image processing apparatus such as (12), the correction unit is a plurality of second photoelectric conversion units with respect to the position of an image of a subject received by the plurality of first photoelectric conversion units. Correction is performed to shift the position of the image of the received subject, and the deviation between the image of the subject received by the plurality of first photoelectric conversion units and the image of the subject received by the plurality of second photoelectric conversion units is increased.
(14) In an image processing apparatus such as (13), the correction unit applies a low-pass filter to the corrected signals from the plurality of first light receiving units.
(15) In the image processing apparatus as described in (9) to (14), the correction unit may be used with respect to the signals from the plurality of first photoelectric conversion units from the plurality of second photoelectric conversion units. Make corrections to shift the signal.
(16) In an image processing apparatus such as (9), the correction unit receives light from a main subject among the plurality of first light receiving units and the plurality of second light receiving units. In the light receiving unit and the second light receiving unit, the color having the larger deviation of the image of the subject is corrected as the first color, and the plurality of first light receiving units and the plurality of second light receiving units are corrected. In the first light receiving section and the second light receiving section that receive light from a subject other than the main subject, the color with the smaller image deviation of the subject is used as the second color for correction. conduct.

2…カメラボディ、3…交換レンズ、21…ボディ制御部、22…撮像素子、29…画像処理部、29a…取得部、29b…処理部、31…結像光学系 2 ... Camera body, 3 ... Interchangeable lens, 21 ... Body control unit, 22 ... Image sensor, 29 ... Image processing unit, 29a ... Acquisition unit, 29b ... Processing unit, 31 ... Imaging optical system

Claims (9)

光学系の第1領域を透過した光を光電変換して電荷を生成する第1光電変換部と、
前記光学系の第2領域を透過した光を光電変換して電荷を生成する第2光電変換部と、
前記光学系の前記第1領域を透過した光を光電変換して電荷を生成する第3光電変換部と、
前記光学系の前記第2領域を透過した光を光電変換して電荷を生成する第4光電変換部と、
前記第1光電変換部で生成された電荷に基づく第1信号と前記第2光電変換部で生成された電荷に基づく第2信号とのずれ量に基づいて、前記第3光電変換部で生成された電荷に基づく第3信号と前記第4光電変換部で生成された電荷に基づく第4信号との少なくとも一方のずれ量を補正する補正部と、
を備える撮像装置。
A first photoelectric conversion unit that photoelectrically converts light transmitted through the first region of an optical system to generate an electric charge, and a first photoelectric conversion unit.
A second photoelectric conversion unit that photoelectrically converts light transmitted through the second region of the optical system to generate an electric charge, and a second photoelectric conversion unit.
A third photoelectric conversion unit that photoelectrically converts light transmitted through the first region of the optical system to generate an electric charge, and a third photoelectric conversion unit.
A fourth photoelectric conversion unit that photoelectrically converts light transmitted through the second region of the optical system to generate an electric charge, and a fourth photoelectric conversion unit.
It is generated by the third photoelectric conversion unit based on the amount of deviation between the first signal based on the charge generated by the first photoelectric conversion unit and the second signal based on the charge generated by the second photoelectric conversion unit. A correction unit that corrects the amount of deviation of at least one of the third signal based on the electric charge and the fourth signal based on the electric charge generated by the fourth photoelectric conversion unit.
An image pickup device equipped with.
請求項1に記載の撮像装置において、
前記補正部は、前記第3信号と前記第4信号とのずれ量が、前記第1信号と前記第2信号とのずれ量と一致するように、前記第3信号と前記第4信号とを補正する撮像装置。
In the image pickup apparatus according to claim 1 ,
The correction unit sets the third signal and the fourth signal so that the amount of deviation between the third signal and the fourth signal matches the amount of deviation between the first signal and the second signal. Image pickup device for correction.
請求項1または2に記載の撮像装置において、
前記補正部は、前記第1信号と前記第2信号との最小となるずれ量に基づいて、前記第3信号と前記第4信号との少なくとも一方のずれ量を補正する撮像装置。
In the image pickup apparatus according to claim 1 or 2 .
The correction unit is an image pickup device that corrects at least one of the third signal and the fourth signal based on the minimum deviation amount between the first signal and the second signal.
請求項1または2に記載の撮像装置において、
前記補正部は、前記第1信号と前記第2信号との最大となるずれ量に基づいて、前記第3信号と前記第4信号との少なくとも一方のずれ量を補正する撮像装置。
In the image pickup apparatus according to claim 1 or 2 .
The correction unit is an image pickup device that corrects at least one of the third signal and the fourth signal based on the maximum deviation amount between the first signal and the second signal.
請求項1からのいずれか一項に記載の撮像装置において、
前記第1信号と前記第2信号とのずれ量と、前記第3信号と前記第4信号とのずれ量とを検出する検出部を備える撮像装置。
In the image pickup apparatus according to any one of claims 1 to 4 .
An imaging device including a detection unit that detects the amount of deviation between the first signal and the second signal and the amount of deviation between the third signal and the fourth signal.
請求項1からのいずれか一項に記載の撮像装置において、
第1波長の光を透過させる第1フィルタと、
第2波長の光を透過させる第2フィルタと、を備え、
前記第1光電変換部と前記第2光電変換部とは、前記第1フィルタを透過した光を光電変換し、
前記第3光電変換部と前記第4光電変換部とは、前記第2フィルタを透過した光を光電変換する撮像装置。
In the image pickup apparatus according to any one of claims 1 to 5 ,
The first filter that transmits light of the first wavelength and
A second filter that transmits light of a second wavelength is provided.
The first photoelectric conversion unit and the second photoelectric conversion unit photoelectrically convert the light transmitted through the first filter.
The third photoelectric conversion unit and the fourth photoelectric conversion unit are image pickup devices that photoelectrically convert the light transmitted through the second filter.
請求項1からのいずれか一項に記載の撮像装置において、
第1マイクロレンズと、
第2マイクロレンズと、を備え、
前記第1光電変換部と前記第2光電変換部とは、前記第1マイクロレンズを透過した光を光電変換し、
前記第3光電変換部と前記第4光電変換部とは、前記第2マイクロレンズを透過した光を光電変換する撮像装置。
In the image pickup apparatus according to any one of claims 1 to 6 .
With the first microlens,
With a second microlens,
The first photoelectric conversion unit and the second photoelectric conversion unit photoelectrically convert the light transmitted through the first microlens.
The third photoelectric conversion unit and the fourth photoelectric conversion unit are image pickup devices that photoelectrically convert light transmitted through the second microlens.
請求項1からのいずれか一項に記載の撮像装置において、
前記補正部で補正された前記第3信号と前記第4信号とを加算して画像データを生成する生成部を備える撮像装置。
In the image pickup apparatus according to any one of claims 1 to 7 .
An image pickup apparatus including a generation unit that generates image data by adding the third signal and the fourth signal corrected by the correction unit.
請求項1からのいずれか一項に記載の撮像装置において、
前記補正部で補正された前記第3信号と前記第4信号とに基づいて、前記光学系の焦点検出を行う焦点検出部を備える撮像装置。
The image pickup apparatus according to any one of claims 1 to 8 .
An image pickup apparatus including a focus detection unit that detects the focus of the optical system based on the third signal and the fourth signal corrected by the correction unit.
JP2021075892A 2016-07-05 2021-04-28 Imaging device Active JP7099584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021075892A JP7099584B2 (en) 2016-07-05 2021-04-28 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133496A JP6916416B2 (en) 2016-07-05 2016-07-05 Imaging device
JP2021075892A JP7099584B2 (en) 2016-07-05 2021-04-28 Imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016133496A Division JP6916416B2 (en) 2016-07-05 2016-07-05 Imaging device

Publications (3)

Publication Number Publication Date
JP2021145337A JP2021145337A (en) 2021-09-24
JP2021145337A5 JP2021145337A5 (en) 2022-02-09
JP7099584B2 true JP7099584B2 (en) 2022-07-12

Family

ID=60948188

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016133496A Active JP6916416B2 (en) 2016-07-05 2016-07-05 Imaging device
JP2021075892A Active JP7099584B2 (en) 2016-07-05 2021-04-28 Imaging device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016133496A Active JP6916416B2 (en) 2016-07-05 2016-07-05 Imaging device

Country Status (1)

Country Link
JP (2) JP6916416B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083407A (en) 1999-09-13 2001-03-30 Canon Inc Image pickup device
JP2009122524A (en) 2007-11-16 2009-06-04 Nikon Corp Focus detecting device and imaging apparatus
JP2012015819A (en) 2010-06-30 2012-01-19 Fujifilm Corp Stereoscopic image imaging apparatus
JP2013190471A (en) 2012-03-12 2013-09-26 Canon Inc Image processing device, focus detector, and image processing program
JP2014041202A (en) 2012-08-21 2014-03-06 Nikon Corp Focus detection device and imaging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092581A2 (en) * 2006-02-07 2007-08-16 The Board Of Trustees Of The Leland Stanford Junior University Correction of optical aberrations
JP5528139B2 (en) * 2010-02-02 2014-06-25 キヤノン株式会社 Image processing apparatus, imaging apparatus, and image processing program
JP5192096B2 (en) * 2010-03-24 2013-05-08 富士フイルム株式会社 Stereo imaging device
JP6467823B2 (en) * 2014-08-29 2019-02-13 株式会社ニコン Imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083407A (en) 1999-09-13 2001-03-30 Canon Inc Image pickup device
JP2009122524A (en) 2007-11-16 2009-06-04 Nikon Corp Focus detecting device and imaging apparatus
JP2012015819A (en) 2010-06-30 2012-01-19 Fujifilm Corp Stereoscopic image imaging apparatus
JP2013190471A (en) 2012-03-12 2013-09-26 Canon Inc Image processing device, focus detector, and image processing program
JP2014041202A (en) 2012-08-21 2014-03-06 Nikon Corp Focus detection device and imaging device

Also Published As

Publication number Publication date
JP2021145337A (en) 2021-09-24
JP2018007111A (en) 2018-01-11
JP6916416B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP5701785B2 (en) The camera module
US9843710B2 (en) Focusing adjustment apparatus and focusing adjustment method
JP5000413B2 (en) Imaging system and image signal processing program
JP5243666B2 (en) Imaging apparatus, imaging apparatus main body, and shading correction method
CN108462830B (en) Image pickup apparatus and control method of image pickup apparatus
US8988591B2 (en) Solid-state imaging device, camera module, and focus adjustment method of camera module
US20160080727A1 (en) Depth measurement apparatus, imaging apparatus, and depth measurement method
US20130162780A1 (en) Stereoscopic imaging device and shading correction method
JP5656613B2 (en) Imaging apparatus and control method thereof
JP6381266B2 (en) IMAGING DEVICE, CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP5272699B2 (en) Image processing apparatus, imaging apparatus, program, and image processing method
WO2013005489A1 (en) Image capture device and image processing device
JP6849325B2 (en) Control device, image pickup device, control method, program, and storage medium
JP5528139B2 (en) Image processing apparatus, imaging apparatus, and image processing program
JP2007158628A (en) Imaging apparatus and image processing method
JP2011160255A5 (en)
JP6330474B2 (en) Image processing apparatus, image processing apparatus control method, and imaging apparatus
US9143762B2 (en) Camera module and image recording method
JP7099584B2 (en) Imaging device
JP2014215436A (en) Image-capturing device, and control method and control program therefor
JP6370004B2 (en) Imaging apparatus and imaging method
JP7019442B2 (en) Image pickup device and its control method
US11711611B2 (en) Image capturing apparatus, storage medium, and image capturing method
JP5942755B2 (en) Image processing circuit, image processing method, and imaging apparatus
WO2020017641A1 (en) Focus detection device, image capture device and interchangeable lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7099584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150