JP7099259B2 - Fuel cell vehicle - Google Patents

Fuel cell vehicle Download PDF

Info

Publication number
JP7099259B2
JP7099259B2 JP2018208687A JP2018208687A JP7099259B2 JP 7099259 B2 JP7099259 B2 JP 7099259B2 JP 2018208687 A JP2018208687 A JP 2018208687A JP 2018208687 A JP2018208687 A JP 2018208687A JP 7099259 B2 JP7099259 B2 JP 7099259B2
Authority
JP
Japan
Prior art keywords
gas
pipe
fuel cell
discharge pipe
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018208687A
Other languages
Japanese (ja)
Other versions
JP2020077479A (en
Inventor
誠 武山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018208687A priority Critical patent/JP7099259B2/en
Publication of JP2020077479A publication Critical patent/JP2020077479A/en
Application granted granted Critical
Publication of JP7099259B2 publication Critical patent/JP7099259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

本発明は、燃料電池車両に関する。 The present invention relates to a fuel cell vehicle.

燃料電池車両では、搭載した燃料電池への燃料ガスや酸化ガスおよび冷却水の給排を必要とする。特許文献1では、燃料電池を車室より車両前方側に搭載し、コンプレッサ等の補機類を燃料電池の近傍で車両後方側に搭載することで、ガスや冷却水の給排ホースや配管の簡略化を図る手法が提案されている。 Fuel cell vehicles require the supply and discharge of fuel gas, oxidation gas, and cooling water to the on-board fuel cells. In Patent Document 1, a fuel cell is mounted on the front side of the vehicle from the vehicle interior, and auxiliary equipment such as a compressor is mounted on the rear side of the vehicle in the vicinity of the fuel cell, so that gas and cooling water supply / discharge hoses and pipes are installed. A method for simplification has been proposed.

特開2018-41539号公報Japanese Unexamined Patent Publication No. 2018-41539

特許文献1で提案された燃料電池等の搭載手法では、燃料電池の搭載箇所が車室近傍となる。よって、以下に説明するように、燃料電池へのガス供給に伴って発生する音が車両運転手や同乗者にノイズとして認識されることが危惧される。 In the method of mounting a fuel cell or the like proposed in Patent Document 1, the mounting location of the fuel cell is near the vehicle interior. Therefore, as described below, there is a concern that the sound generated by supplying gas to the fuel cell may be recognized as noise by the vehicle driver or passengers.

車両の始動時や運転終了時には、燃料電池とガス給排管系におけるガス掃気を図るため、燃料電池の発電運転を行わずに、ガス供給がなされる。酸化ガスである空気は、定常出力で運転するコンプレッサにて供給され、燃料電池内の流路の掃気に必要なガス量を超える余剰空気が、燃料電池をバイパスして、ガス排出管に流れ込むことになる。また、車両走行中であっても、アクセルオフの状況では、アクセルオフ時点での出力でコンプレッサを運転させたまま、要求出力に対応したガス量を超える余剰空気が、燃料電池をバイパスして、ガス排出管に流れ込むことになる。余剰空気がバイパス管を経てガス排出管に流れ込む際、その余剰空気は、燃料電池から排出されてガス排出管を流れる空気(オフガス)と合流した上で、バイパス管とガス排出管との合流箇所の管路に衝突し、このガス衝突による衝撃音が発生し得る。また、バイパス管とガス排出管との合流箇所からその下流に空気が流れる際においても、気流音が生じ得る。 At the start and end of operation of the vehicle, gas is supplied without performing power generation operation of the fuel cell in order to scaveng the gas in the fuel cell and the gas supply / exhaust pipe system. Air, which is an oxidation gas, is supplied by a compressor that operates at a steady output, and excess air that exceeds the amount of gas required for scavenging the flow path in the fuel cell bypasses the fuel cell and flows into the gas discharge pipe. become. In addition, even when the vehicle is running, in the accelerator off situation, the excess air exceeding the gas amount corresponding to the required output bypasses the fuel cell while the compressor is operated at the output at the time of accelerator off. It will flow into the gas discharge pipe. When excess air flows into the gas discharge pipe via the bypass pipe, the surplus air is discharged from the fuel cell and merges with the air (off gas) flowing through the gas discharge pipe, and then the junction between the bypass pipe and the gas discharge pipe. It collides with the pipeline of the gas, and the impact noise due to this gas collision can be generated. In addition, airflow noise may occur when air flows downstream from the confluence of the bypass pipe and the gas discharge pipe.

アクセルオフの状況や車両起動時、および車両停止時では、タイヤの回転に伴って生じる音等の暗騒音が小さいため、上記した衝撃音や気流音が車両運転手や同乗者にノイズとして認識され得る。衝撃音や気流音は、空気がバイパス管から合流するガス排出管を鋼管や樹脂パイプとして剛性を高めれば低減できるが、ガス排出管は、燃料電池回りでの配管の自由度確保や配管作業の簡便化の観点から、燃料電池周辺においては、撓み可能な可撓管形態とせざるを得ず、衝撃音や気流音の低減が進まないのが実情である。また、バイパス管とガス排出管との合流箇所管路へのガス衝突に伴う衝撃音は、バイパス管とガス排出管とが緩やかな角度で合流するようにすることで低減できるが、燃料電池回りでの各種管路の配管経路の設計上、バイパス管とガス排出管とを緩やかな角度で合流させることも難しい。こうしたことから、燃料電池回りでの配管の自由度や配管作業の簡便化を確保した上で、燃料電池へのガス供給に伴ってガス排出管で発生する音がノイズとして認識され難くすることが要請されるに至った。 Since the background noise such as the noise generated by the rotation of the tire is small when the accelerator is off, when the vehicle is started, and when the vehicle is stopped, the above-mentioned impact noise and airflow noise are recognized as noise by the vehicle driver and passengers. obtain. Impact noise and airflow noise can be reduced by increasing the rigidity of the gas discharge pipe where air joins from the bypass pipe as a steel pipe or resin pipe. From the viewpoint of simplification, in the vicinity of the fuel cell, there is no choice but to adopt a flexible pipe form that can be bent, and the actual situation is that the reduction of impact noise and airflow noise is not progressing. In addition, the impact noise caused by the gas collision with the junction of the bypass pipe and the gas discharge pipe can be reduced by making the bypass pipe and the gas discharge pipe merge at a gentle angle, but around the fuel cell. Due to the design of the piping routes of various pipelines in, it is difficult to join the bypass pipe and the gas discharge pipe at a gentle angle. For this reason, it is difficult to recognize the sound generated in the gas discharge pipe as noise is generated when the gas is supplied to the fuel cell, while ensuring the freedom of piping around the fuel cell and the simplification of the piping work. It came to be requested.

本発明は、以下の形態として実現することが可能である。 The present invention can be realized as the following forms.

(1)本発明の一形態によれば、燃料電池車両が提供される。この燃料電池車両は、燃料電池に酸化ガスを供給する酸化ガス供給流路と、前記燃料電池の酸化ガス排出マニホールドに接続され、前記燃料電池から排出される前記酸化ガスを外部に導く酸化ガス排出管と、前記酸化ガス供給流路と前記酸化ガス排出管とを、前記燃料電池をバイパスして接続するバイパス管とを備え、前記酸化ガス排出管は、前記酸化ガス排出マニホールドに接続される管路最上流から前記燃料電池の周辺に配管される電池周辺管路域までが、可撓管形態とされ、更に、前記酸化ガス排出管は、前記可撓管形態の管路途中に、前記酸化ガス排出管を流れる前記酸化ガスの流れ方向の下流に向かって前記バイパス管が鋭角に接続されるバイパス管接続体を突出して備え、該バイパス管接続体に接続された前記バイパス管を前記バイパス管の中心線に沿って前記酸化ガス排出管の内壁に投影したバイパス管投影部位を含む管路と該バイパス管投影部位より下流側の管路を前記バイパス管投影部位より上流側の管路より大きな肉厚の管路としている。この形態の燃料電池車両では、酸化ガス排出管を、燃料電池の酸化ガス排出マニホールドから燃料電池周辺に掛けての管路域において撓み可能な可撓管形態とするので、燃料電池回りでの配管の自由度や配管作業の簡便化を確保できる。これに加え、この形態の燃料電池車両では、燃料電池の運転に伴って酸化ガス供給流路からバイパス管を経て酸化ガスが酸化ガス排出管に流れ込む際、この酸化ガスは、酸化ガス排出管を流れるガス流れ方向の下流に向かって鋭角に流れ込み、バイパス管接続体の突出箇所におけるバイパス管投影部位を含む管路に衝突する。このガス衝突に伴い衝撃音が発生し得るが、バイパス管投影部位を含む管路とこのバイパス管投影部位より下流側の管路は、バイパス管投影部位より上流側の管路より大きな肉厚の管路であることから、酸化ガス排出管の外部への衝撃音の漏洩は起き難くなる。また、バイパス管を経た酸化ガス排出管への酸化ガスの流れ込みが、酸化ガス排出管を流れるガス流れ方向の下流に向かって鋭角であることから、衝撃音自体もある程度、低減すると共に、バイパス管投影部位からその下流に酸化ガスが流れる際の気流音も小さくなり得る。この結果、この形態の燃料電池車両によれば、燃料電池の運転に伴って酸化ガス排出管で発生する音をノイズとして認識され難くすることができる。 (1) According to one embodiment of the present invention, a fuel cell vehicle is provided. This fuel cell vehicle is connected to an oxide gas supply flow path for supplying the oxide gas to the fuel cell and an oxide gas discharge manifold of the fuel cell, and guides the oxide gas discharged from the fuel cell to the outside. The pipe is provided with a bypass pipe for connecting the oxide gas supply flow path and the oxide gas discharge pipe by bypassing the fuel cell, and the oxide gas discharge pipe is connected to the oxide gas discharge manifold. The area from the uppermost stream of the path to the area around the battery that is piped around the fuel cell is in the form of a flexible pipe, and the oxide gas discharge pipe is formed in the middle of the pipe in the form of the flexible pipe. The bypass pipe is provided by projecting a bypass pipe connection body to which the bypass pipe is connected at a sharp angle toward the downstream in the flow direction of the oxide gas flowing through the gas discharge pipe, and the bypass pipe connected to the bypass pipe connection body is the bypass pipe. The pipeline including the bypass tube projection site projected onto the inner wall of the oxide gas discharge pipe along the center line of the It is a thick pipeline. In this type of fuel cell vehicle, the oxide gas discharge pipe is in the form of a flexible pipe that can be bent in the pipeline area from the oxide gas discharge manifold of the fuel cell to the vicinity of the fuel cell. It is possible to secure the degree of freedom and the simplification of piping work. In addition to this, in this type of fuel cell vehicle, when the oxide gas flows from the oxide gas supply flow path to the oxide gas discharge pipe through the bypass pipe as the fuel cell is operated, the oxide gas passes through the oxide gas discharge pipe. It flows at a sharp angle toward the downstream in the flowing gas flow direction and collides with the conduit including the bypass tube projection portion at the protruding portion of the bypass tube connection. Impact noise may be generated due to this gas collision, but the pipeline including the bypass tube projection site and the pipeline downstream of this bypass tube projection site are thicker than the pipeline upstream of the bypass tube projection site. Since it is a pipeline, it is difficult for impact noise to leak to the outside of the oxide gas discharge pipe. In addition, since the inflow of oxidative gas into the oxidative gas discharge pipe through the bypass pipe is sharp toward the downstream in the gas flow direction through the oxidative gas discharge pipe, the impact noise itself is reduced to some extent and the bypass pipe is used. The sound of the airflow when the oxidizing gas flows downstream from the projection site can also be reduced. As a result, according to this form of the fuel cell vehicle, it is possible to make it difficult to recognize the sound generated in the oxide gas discharge pipe as noise when the fuel cell is operated.

なお、本発明は、種々の態様で実現することが可能である。例えば、燃料電池車両における燃料電池への酸化ガス供給方法や燃料電池からの酸化ガス排出に用いる酸化ガス排出管、その製造方法等の形態で実現することができる。 The present invention can be realized in various aspects. For example, it can be realized in the form of a method of supplying an oxidizing gas to a fuel cell in a fuel cell vehicle, an oxidizing gas discharging pipe used for discharging the oxidizing gas from the fuel cell, a method of manufacturing the same, and the like.

燃料電池システムの概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of the fuel cell system. 燃料電池システムを構成する主要な機器とガス経路についての車両搭載の様子を概略的に示す説明図である。It is explanatory drawing which shows the state of being mounted on the vehicle about the main equipment which constitutes a fuel cell system and a gas path. 図1におけるオフガス上流側排出管の管配設領域の機器位置関係を3次元的に概略視して示す説明図である。It is explanatory drawing which shows 3D schematic the device positional relationship of the pipe arrangement area of the off-gas upstream side discharge pipe in FIG. オフガス上流側排出管の管路構成の概略を管路に沿って断面視して示す説明図である。It is explanatory drawing which shows the outline of the pipeline structure of the off-gas upstream side discharge pipe by cross-sectional view along the pipeline. オフガス上流側排出管における発生音の測定結果を示すグラフである。It is a graph which shows the measurement result of the generated sound in the off-gas upstream side discharge pipe.

図1は燃料電池システム10の概略構成を示す説明図である。図2は燃料電池システム10を構成する主要な機器とガス経路についての車両搭載の様子を概略的に示す説明図である。燃料電池システム10は、燃料電池100と、燃料ガス供給回路200と、エア供給回路300と、排ガス回路400と、冷却回路500と、を備える。 FIG. 1 is an explanatory diagram showing a schematic configuration of the fuel cell system 10. FIG. 2 is an explanatory diagram schematically showing how the main equipment constituting the fuel cell system 10 and the gas path are mounted on the vehicle. The fuel cell system 10 includes a fuel cell 100, a fuel gas supply circuit 200, an air supply circuit 300, an exhaust gas circuit 400, and a cooling circuit 500.

燃料電池100は、燃料ガスと酸素含有の酸化ガスの供給を受けて発電し、発電電力を、図示しない負荷、例えば燃料電池搭載車両の駆動モータ等に出力する。この燃料電池100は、車両20の車室30より車両前方側の搭載域40に搭載されている。搭載域40は、図示しない車両ボンネットを開けることで開放され、燃料電池100の周辺の保守点検が可能となる。 The fuel cell 100 receives the supply of the fuel gas and the oxygen-containing oxidizing gas to generate electricity, and outputs the generated power to a load (not shown), for example, a drive motor of a vehicle equipped with a fuel cell. The fuel cell 100 is mounted in the mounting area 40 on the front side of the vehicle from the vehicle compartment 30 of the vehicle 20. The mounting area 40 is opened by opening a vehicle bonnet (not shown), and maintenance and inspection around the fuel cell 100 becomes possible.

燃料ガス供給回路200は、燃料ガスタンク210と、燃料ガス供給流路220と、燃料ガス排気流路230と、燃料ガス循環流路240と、メインバルブ250と、レギュレーター260と、インジェクタ270と、気液分離器280と、還流ポンプ290と、を備える。燃料ガスタンク210は、燃料ガスを貯蔵する。本実施形態では、燃料ガスとして、水素ガスを用いている。 The fuel gas supply circuit 200 includes a fuel gas tank 210, a fuel gas supply flow path 220, a fuel gas exhaust flow path 230, a fuel gas circulation flow path 240, a main valve 250, a regulator 260, an injector 270, and a gas. A liquid separator 280 and a recirculation pump 290 are provided. The fuel gas tank 210 stores fuel gas. In this embodiment, hydrogen gas is used as the fuel gas.

燃料ガス供給流路220は、車両後方側に搭載された燃料ガスタンク210から燃料電池100に掛けて配設され、燃料ガスを燃料電池100に供給する。燃料ガス供給流路220には、燃料ガスタンク210側から、メインバルブ250と、レギュレーター260と、インジェクタ270が設けられている。メインバルブ250は、燃料ガスタンク210からの燃料ガスの供給をオン・オフする。レギュレーター260は、燃料ガスの圧力を所定の圧力に減圧してインジェクタ270に供給する。インジェクタ270は、燃料ガスの圧力と量とを調整して燃料電池100を噴射する噴射装置である。本実施形態では、3つのインジェクタ270が並列に配置されている。なお、インジェクタ270の数は3に限定されず、1つのインジェクタあるいは2以上の複数のインジェクタを備える構成であってもよい。本実施形態のように複数のインジェクタ270を備えると、燃料電池100に要求される発電量に応じて燃料電池100に噴射される燃料ガスの量を調整し易くできる。 The fuel gas supply flow path 220 is arranged so as to hang from the fuel gas tank 210 mounted on the rear side of the vehicle to the fuel cell 100, and supplies the fuel gas to the fuel cell 100. The fuel gas supply flow path 220 is provided with a main valve 250, a regulator 260, and an injector 270 from the fuel gas tank 210 side. The main valve 250 turns on / off the supply of fuel gas from the fuel gas tank 210. The regulator 260 reduces the pressure of the fuel gas to a predetermined pressure and supplies it to the injector 270. The injector 270 is an injection device that injects the fuel cell 100 by adjusting the pressure and amount of the fuel gas. In this embodiment, three injectors 270 are arranged in parallel. The number of injectors 270 is not limited to 3, and may be configured to include one injector or two or more injectors. When a plurality of injectors 270 are provided as in the present embodiment, it is possible to easily adjust the amount of fuel gas injected into the fuel cell 100 according to the amount of power generation required for the fuel cell 100.

燃料ガス排気流路230は、燃料電池100からの燃料排ガスを排出する。燃料ガス循環流路240は、燃料ガス排気流路230から燃料ガス供給流路220に掛けて配設され、燃料電池100から排出される燃料排ガスを燃料ガス供給流路220に循環させる。燃料ガス循環流路240には、気液分離器280が配設されている。燃料排ガスには、反応で消費されなかった燃料ガス及び燃料電池100を通って移動してきた窒素などの不純物と、水が含まれている。気液分離器280は、図2に示すように、燃料電池100の近傍で車両前方側に配置され、燃料ガス循環流路240を通過する燃料排ガスに含まれる水分と、ガス(燃料ガスと燃料電池100を通って移動してきた窒素などの不純物)に気液分離し、分離液水を貯留する。燃料ガス循環流路240には、還流ポンプ290が設けられている。気液分離器280で分離された未消費の燃料ガスを含むガスは、還流ポンプ290によって燃料ガス供給流路220に循環され、再利用される。 The fuel gas exhaust flow path 230 discharges the fuel exhaust gas from the fuel cell 100. The fuel gas circulation flow path 240 is arranged so as to extend from the fuel gas exhaust flow path 230 to the fuel gas supply flow path 220, and circulates the fuel exhaust gas discharged from the fuel cell 100 to the fuel gas supply flow path 220. A gas-liquid separator 280 is arranged in the fuel gas circulation flow path 240. The fuel exhaust gas contains the fuel gas that was not consumed in the reaction, impurities such as nitrogen that has moved through the fuel cell 100, and water. As shown in FIG. 2, the gas-liquid separator 280 is arranged on the front side of the vehicle in the vicinity of the fuel cell 100, and contains water and gas (fuel gas and fuel) contained in the fuel exhaust gas passing through the fuel gas circulation flow path 240. Gas-liquid separation is performed on impurities such as nitrogen that have moved through the battery 100, and the separated liquid water is stored. A recirculation pump 290 is provided in the fuel gas circulation flow path 240. The gas containing the unconsumed fuel gas separated by the gas-liquid separator 280 is circulated to the fuel gas supply flow path 220 by the recirculation pump 290 and reused.

エア供給回路300は、エアクリーナ310と、エア供給流路320と、エアコンプレッサ330と、インタクーラ340と、スタック入口バルブ350と、大気圧センサ375と、外気温センサ380と、エアフローメータ385と、供給ガス温度センサ390と、供給ガス圧力センサ395と、を備える。本実施形態の燃料電池100は、酸素含有の酸化ガスとして、空気を用いる。 The air supply circuit 300 supplies an air cleaner 310, an air supply flow path 320, an air compressor 330, an intercooler 340, a stack inlet valve 350, an atmospheric pressure sensor 375, an outside temperature sensor 380, an air flow meter 385, and the like. It includes a gas temperature sensor 390 and a supply gas pressure sensor 395. The fuel cell 100 of the present embodiment uses air as the oxygen-containing oxidizing gas.

エアクリーナ310は、空気を取り込む時に、空気中の塵埃を除去する。エアクリーナ310と、燃料電池100とは、エア供給流路320で接続されている。酸化ガス供給流路であるエア供給流路320には、エアクリーナ310側から、エアコンプレッサ330、インタクーラ340、スタック入口バルブ350、がこの順で設けられている。エアコンプレッサ330は、空気を圧縮し、エア供給流路320を通して空気を燃料電池100に供給する。一般に、気体は、圧縮されると、温度が上昇する。これは、気体を圧縮するときには、気体の圧力に対抗して圧縮するため、気体に仕事が加えられるからである。 The air cleaner 310 removes dust in the air when taking in air. The air cleaner 310 and the fuel cell 100 are connected by an air supply flow path 320. The air supply flow path 320, which is the oxidation gas supply flow path, is provided with an air compressor 330, an intercooler 340, and a stack inlet valve 350 in this order from the air cleaner 310 side. The air compressor 330 compresses the air and supplies the air to the fuel cell 100 through the air supply flow path 320. Generally, when a gas is compressed, its temperature rises. This is because when the gas is compressed, it compresses against the pressure of the gas, so that work is added to the gas.

インタクーラ340は、エアコンプレッサ330によって圧縮されて温度が上昇した空気の温度を燃料電池100の温度とほぼ同じになるように熱交換を行う。すなわち、インタクーラ340には、燃料電池100から排出された冷媒が分流されて供給されており、この冷媒の温度は、燃料電池100の温度とほぼ等しくなっている。したがって、圧縮された空気の温度は、燃料電池100の温度とほぼ等しくなる。なお、燃料電池100から排出される排ガスの温度も、燃料電池100の温度とほぼ等しい。スタック入口バルブ350は、空気の燃料電池100への供給をオン・オフするためのバルブである。大気圧センサ375は、大気圧を測定する。外気温センサ380は、取り込む前の空気の温度を取得する。エアフローメータ385は、取り込んだ空気の流量を測定する。供給ガス温度センサ390は、燃料電池100に供給される空気の温度を測定し、供給ガス圧力センサ395は、燃料電池100に供給される空気の圧力を測定する。 The intercooler 340 exchanges heat so that the temperature of the air compressed by the air compressor 330 and whose temperature has risen becomes substantially the same as the temperature of the fuel cell 100. That is, the refrigerant discharged from the fuel cell 100 is divided and supplied to the intercooler 340, and the temperature of this refrigerant is substantially equal to the temperature of the fuel cell 100. Therefore, the temperature of the compressed air is substantially equal to the temperature of the fuel cell 100. The temperature of the exhaust gas discharged from the fuel cell 100 is also substantially equal to the temperature of the fuel cell 100. The stack inlet valve 350 is a valve for turning on / off the supply of air to the fuel cell 100. The atmospheric pressure sensor 375 measures the atmospheric pressure. The outside air temperature sensor 380 acquires the temperature of the air before it is taken in. The air flow meter 385 measures the flow rate of the taken-in air. The supply gas temperature sensor 390 measures the temperature of the air supplied to the fuel cell 100, and the supply gas pressure sensor 395 measures the pressure of the air supplied to the fuel cell 100.

排ガス回路400は、オフガス排出管410と、調圧バルブ420と、液水排出管430と、排出弁440と、酸化ガスのバイパス管450と、サイレンサー470とを備える。酸化ガス排出管であるオフガス排出管410は、燃料電池100に接続されて車両後方に伸び、燃料電池100に接続されるオフガス上流側排出管411と、その下流側のオフガス下流側排出管412とから構成され、燃料電池100から排出される空気(酸化ガス)を燃料電池100から外部に導いて排出する。オフガス上流側排出管411は、管路上下端で他の固定機器への固定が想定されるゴム製の撓み可能な可撓管形態であり、耐熱性のエチレン-プロピレン系ゴム等を用いて成形される。オフガス下流側排出管412は、他の部材と適宜箇所で固定され、排出管自体で管路軌跡を維持できるパイプ形態であり、耐熱性の樹脂を用いて成形される。オフガス排出管410には、調圧バルブ420が設けられている。図1において、調圧バルブ420は、オフガス上流側排出管411の管路途中に示されているが、オフガス上流側排出管411がその上流端で固定される後述のマニホールド治具に設けられている。調圧バルブ420は、燃料電池100中の空気の圧力を調整する。 The exhaust gas circuit 400 includes an off-gas discharge pipe 410, a pressure control valve 420, a liquid water discharge pipe 430, a discharge valve 440, an oxidation gas bypass pipe 450, and a silencer 470. The off-gas discharge pipe 410, which is an oxidation gas discharge pipe, is connected to the fuel cell 100 and extends to the rear of the vehicle, and the off-gas upstream side discharge pipe 411 connected to the fuel cell 100 and the off-gas downstream side discharge pipe 412 on the downstream side thereof. The air (oxidizing gas) discharged from the fuel cell 100 is guided to the outside from the fuel cell 100 and discharged. The off-gas upstream discharge pipe 411 is a flexible tube made of rubber that is supposed to be fixed to other fixing devices at the lower end of the pipeline, and is molded using heat-resistant ethylene-propylene rubber or the like. Ru. The off-gas downstream discharge pipe 412 is in the form of a pipe that is fixed to other members at appropriate points and can maintain the pipeline locus by the discharge pipe itself, and is formed by using a heat-resistant resin. The off-gas discharge pipe 410 is provided with a pressure regulating valve 420. In FIG. 1, the pressure regulating valve 420 is shown in the middle of the pipeline of the off-gas upstream side discharge pipe 411, but is provided on a manifold jig described later in which the off-gas upstream side discharge pipe 411 is fixed at the upstream end thereof. There is. The pressure regulating valve 420 adjusts the pressure of air in the fuel cell 100.

液水排出管430は、気液分離器280と、オフガス排出管410とを接続している。液水排出管430は、排出弁440と接続されている。本実施形態では、排出弁440と液水排出管430を気液分離器280に一体化させた気液分離ユニット280Yとして構成している。排出弁440は、図示しない制御部の制御を受けて液水排出管430の管路を開閉し、排出弁440による管路開放により、気液分離器280が貯留した分離液水を液水排出管430を経てオフガス排出管410のオフガス上流側排出管411に排出する。この分離液水排出後においても排出弁440が管路を開放している状態では、燃料電池100から排出された燃料排ガスは、液水排出管430を経てオフガス排出管410のオフガス上流側排出管411に排出される。上記した排出弁440の管路開放は、燃料排ガス中の窒素濃度が高くなる、あるいは、気液分離器280中の水の量が多くなったときには、実行される。 The liquid water discharge pipe 430 connects the gas-liquid separator 280 and the off-gas discharge pipe 410. The liquid water discharge pipe 430 is connected to the discharge valve 440. In the present embodiment, the discharge valve 440 and the liquid / water discharge pipe 430 are integrated into the gas / liquid separator 280 as a gas / liquid separation unit 280Y. The discharge valve 440 opens and closes the pipeline of the liquid water discharge pipe 430 under the control of a control unit (not shown), and by opening the pipeline by the discharge valve 440, the separated liquid water stored in the gas-liquid separator 280 is discharged. It is discharged to the off-gas upstream side discharge pipe 411 of the off-gas discharge pipe 410 via the pipe 430. Even after the separated liquid water is discharged, the fuel exhaust gas discharged from the fuel cell 100 is discharged from the off gas upstream side discharge pipe of the off gas discharge pipe 410 via the liquid water discharge pipe 430 in a state where the discharge valve 440 is open. It is discharged to 411. The above-mentioned pipe opening of the discharge valve 440 is executed when the nitrogen concentration in the fuel exhaust gas becomes high or the amount of water in the gas-liquid separator 280 becomes high.

バイパス管450は、エア供給流路320とオフガス排出管410のオフガス上流側排出管411とを、燃料電池100をバイパスして接続して、燃料電池100を経由せずに空気(酸化ガス)をオフガス排出管410に流し込む流路である。バイパス管450には、バイパス流路調整弁455が設けられている。バイパス流路調整弁455は、その開閉や、弁の開度を調整することにより、バイパス管450に流す空気であるバイパスエアの流量を調節する。オフガス排出管410のオフガス下流側排出管412に設けられたサイレンサー470は、オフガス排出管410を通過する排ガスの排気音を低減させる。 The bypass pipe 450 connects the air supply flow path 320 and the off-gas upstream discharge pipe 411 of the off-gas discharge pipe 410 by bypassing the fuel cell 100, and allows air (oxidized gas) to flow without passing through the fuel cell 100. This is a flow path for flowing into the off-gas discharge pipe 410. The bypass pipe 450 is provided with a bypass flow path adjusting valve 455. The bypass flow path adjusting valve 455 adjusts the flow rate of the bypass air, which is the air flowing through the bypass pipe 450, by opening and closing the valve and adjusting the opening degree of the valve. The silencer 470 provided in the off-gas downstream side discharge pipe 412 of the off-gas discharge pipe 410 reduces the exhaust noise of the exhaust gas passing through the off-gas discharge pipe 410.

冷却回路500は、冷媒供給流路510と、冷媒排出流路515と、ラジエータ流路520と、ウォーターポンプ525と、ラジエータ530と、冷媒バイパス流路540と、三方バルブ545と、を備える。冷媒供給流路510は、燃料電池100に冷媒を供給するための流路であり、冷媒供給流路510にはウォーターポンプ525が配置されている。冷媒排出流路515は、燃料電池100から冷媒を排出するための流路である。冷媒排出流路515には、温度センサ550が設けられており、燃料電池100から排出される冷媒の温度を測定する。温度センサ550で測定される温度は、燃料電池100の内部の温度とほぼ等しく、燃料電池100から排出される排ガスの温度とも、ほぼ等しい。冷媒排出流路515の下流部は、三方バルブ545を介して、ラジエータ流路520と、冷媒バイパス流路540と、に接続されている。ラジエータ流路520には、ラジエータ530が設けられている。ラジエータ530には、ラジエータファン535が設けられている。ラジエータファン535は、ラジエータ530に風を送り、ラジエータ530からの放熱を促進する。ラジエータ流路520の下流部と、冷媒バイパス流路540の下流部とは、冷媒供給流路510に接続されている。冷媒供給流路510と、冷媒排出流路515とは、インタクーラ340に接続されている。 The cooling circuit 500 includes a refrigerant supply flow path 510, a refrigerant discharge flow path 515, a radiator flow path 520, a water pump 525, a radiator 530, a refrigerant bypass flow path 540, and a three-way valve 545. The refrigerant supply flow path 510 is a flow path for supplying the refrigerant to the fuel cell 100, and a water pump 525 is arranged in the refrigerant supply flow path 510. The refrigerant discharge flow path 515 is a flow path for discharging the refrigerant from the fuel cell 100. A temperature sensor 550 is provided in the refrigerant discharge flow path 515, and measures the temperature of the refrigerant discharged from the fuel cell 100. The temperature measured by the temperature sensor 550 is substantially equal to the temperature inside the fuel cell 100, and is also substantially equal to the temperature of the exhaust gas discharged from the fuel cell 100. The downstream portion of the refrigerant discharge flow path 515 is connected to the radiator flow path 520 and the refrigerant bypass flow path 540 via a three-way valve 545. The radiator flow path 520 is provided with a radiator 530. The radiator 530 is provided with a radiator fan 535. The radiator fan 535 sends wind to the radiator 530 to promote heat dissipation from the radiator 530. The downstream portion of the radiator flow path 520 and the downstream portion of the refrigerant bypass flow path 540 are connected to the refrigerant supply flow path 510. The refrigerant supply flow path 510 and the refrigerant discharge flow path 515 are connected to the intercooler 340.

図3は図1におけるオフガス上流側排出管411の管配設領域411Eの機器位置関係を3次元的に概略視して示す説明図である。図4はオフガス上流側排出管411の管路構成の概略を管路に沿って断面視して示す説明図である。なお、図3においては、オフガス上流側排出管411の周辺機器の位置関係を示すことを主眼とし、個々の機器の外形については概略的な図示に留めた。また、図4では、オフガス上流側排出管411への管路接続の様子とオフガス上流側排出管411の管路肉厚の推移を示している。 FIG. 3 is an explanatory diagram showing the equipment positional relationship of the pipe arrangement region 411E of the off-gas upstream discharge pipe 411 in FIG. 1 in a three-dimensional schematic manner. FIG. 4 is an explanatory diagram showing an outline of the pipeline configuration of the off-gas upstream discharge pipe 411 in a cross-sectional view along the pipeline. In FIG. 3, the main purpose is to show the positional relationship of the peripheral devices of the off-gas upstream discharge pipe 411, and the outer shapes of the individual devices are shown in a schematic manner. Further, FIG. 4 shows the state of the pipeline connection to the off-gas upstream discharge pipe 411 and the transition of the pipeline wall thickness of the off-gas upstream discharge pipe 411.

図3に示すように、オフガス上流側排出管411は、管路上下端に拡径した管接続体411a、411bを備え、管路のほぼ中間にバイパス管接続体411cを備え、バイパス管接続体411cより流路下流側に分岐配管411dを備える。管接続体411aには、燃料電池100の側の固定機器である空気のオフガス排出マニホールド102が挿入され、管接続体411bには、固定機器であるオフガス下流側排出管412(図1参照)が挿入される。オフガス排出マニホールド102は、本発明における酸化ガス排出マニホールドに該当する。オフガス上流側排出管411は、図示しない管結束バンドにより、液密・気密に管路上下端でオフガス排出マニホールド102とオフガス下流側排出管412に固定される。オフガス上流側排出管411は、オフガス排出マニホールド102に接続される管路最上流から燃料電池100の周辺に配管される電池周辺管路域に亘る配管であって、既述したようにゴム製の撓み可能な可撓管である。よって、オフガス上流側排出管411は、管路上下端の管接続体411a,411bの固定対象であるオフガス排出マニホールド102とオフガス下流側排出管412に至る間において、支障なく組み込み装着される。 As shown in FIG. 3, the off-gas upstream discharge pipe 411 includes pipe connecting bodies 411a and 411b whose diameters are expanded at the upper and lower ends of the pipe, bypass pipe connecting body 411c approximately in the middle of the pipe, and bypass pipe connecting body 411c. A branch pipe 411d is provided on the downstream side of the flow path. An air off-gas discharge manifold 102, which is a fixed device on the side of the fuel cell 100, is inserted into the pipe connection body 411a, and an off-gas downstream side discharge pipe 412 (see FIG. 1), which is a fixed device, is inserted into the pipe connection body 411b. Will be inserted. The off-gas discharge manifold 102 corresponds to the oxide gas discharge manifold in the present invention. The off-gas upstream side discharge pipe 411 is liquidtightly and airtightly fixed to the off-gas discharge manifold 102 and the off-gas downstream side discharge pipe 412 at the lower end of the pipeline by a pipe binding band (not shown). The off-gas upstream side discharge pipe 411 is a pipe extending from the uppermost stream of the pipeline connected to the off-gas discharge manifold 102 to the battery peripheral pipeline area connected to the periphery of the fuel battery 100, and is made of rubber as described above. It is a flexible tube that can be bent. Therefore, the off-gas upstream side discharge pipe 411 is incorporated and mounted without any trouble between the off-gas discharge manifold 102, which is the fixing target of the pipe connecting bodies 411a and 411b at the lower end of the pipeline, and the off-gas downstream side discharge pipe 412.

バイパス管接続体411cは、可撓管形態のオフガス上流側排出管411の管路途中から突出した分岐管体であって、図中の矢印で示す空気の流れ方向Fとなす角θは、鋭角とされている。このバイパス管接続体411cには、バイパス管450が挿入され、オフガス上流側排出管411は、図示しない管結束バンドにより、液密・気密にバイパス管接続体411cでバイパス管450に固定される。こうして固定されたバイパス管450は、オフガス上流側排出管411を流れる空気の流れ方向の下流に向かって鋭角にオフガス上流側排出管411に接続されることになる。 The bypass pipe connection body 411c is a branch pipe body protruding from the middle of the pipeline of the off-gas upstream discharge pipe 411 in the form of a flexible pipe, and the angle θ formed with the air flow direction F indicated by the arrow in the figure is an acute angle. It is said that. A bypass pipe 450 is inserted into the bypass pipe connection body 411c, and the off-gas upstream discharge pipe 411 is liquid-tightly and airtightly fixed to the bypass pipe 450 by the bypass pipe connection body 411c by a pipe binding band (not shown). The bypass pipe 450 fixed in this way is connected to the off-gas upstream side discharge pipe 411 at an acute angle toward the downstream in the flow direction of the air flowing through the off-gas upstream side discharge pipe 411.

オフガス上流側排出管411は、図3と図4に示すように、バイパス管接続体411cから下流側の管路域を大きな肉厚の厚肉管路域411fとしている。この厚肉管路域411fは、バイパス管接続体411cに接続されたバイパス管450をその中心線Cに沿ってオフガス上流側排出管411の内壁に投影したバイパス管投影部位411pを含む管路とこの投影部位より下流側の管路の管路域である。そして、厚肉管路域411fの管路肉厚は、バイパス管投影部位411pより上流の管路の肉厚より大きくされている。本実施形態では、バイパス管投影部位411pより上流の管路の肉厚を、既存のオフガス上流側排出管と同じ3.5mmとし、厚肉管路域411fの管路肉厚を5.0mmとした。この場合、厚肉管路域411fにおける厚肉化の程度は、オフガス上流側排出管411の長さや排出管自体の管路径、或いはバイパス管450の接続位置やオフガス上流側排出管411とバイパス管450の管路径比、バイパス管450からオフガス上流側排出管411に流れ込む空気の最大想定流量等に応じて種々、規定できる。例えば、バイパス管投影部位411pより上流側の管路肉厚を1.5~3.5mmとした場合には、厚肉管路域411fの管路肉厚を上流側の管路肉厚より厚肉の3.0~6.0mm程度とでき、この際には、上記したように管路長や管路径等を考慮すればよい。そして、厚肉に規定した厚肉管路域411fにおいて、撓み可能であれば管路上下端の管接続体411a,411bでの固定部材との接続・固定に支障は起きない。 As shown in FIGS. 3 and 4, the off-gas upstream discharge pipe 411 has a thick pipe area 411f on the downstream side of the bypass pipe connection body 411c. This thick pipe area 411f is a pipe including a bypass pipe projection portion 411p in which the bypass pipe 450 connected to the bypass pipe connection body 411c is projected onto the inner wall of the off-gas upstream discharge pipe 411 along the center line C thereof. It is the pipeline area of the pipeline on the downstream side of this projection site. The thickness of the thick pipe area 411f is made larger than the thickness of the pipe upstream of the bypass pipe projection portion 411p. In the present embodiment, the wall thickness of the pipe upstream from the bypass pipe projection portion 411p is 3.5 mm, which is the same as the existing off-gas upstream discharge pipe, and the pipe wall thickness of the thick pipe area 411f is 5.0 mm. did. In this case, the degree of thickening in the thick-walled pipeline area 411f is the length of the off-gas upstream discharge pipe 411, the pipeline diameter of the discharge pipe itself, the connection position of the bypass pipe 450, or the off-gas upstream discharge pipe 411 and the bypass pipe. It can be variously specified according to the pipeline diameter ratio of 450, the maximum assumed flow rate of air flowing from the bypass pipe 450 to the off-gas upstream discharge pipe 411, and the like. For example, when the pipe wall thickness on the upstream side of the bypass pipe projection portion 411p is 1.5 to 3.5 mm, the pipe wall thickness of the thick pipe line area 411f is thicker than the pipe wall thickness on the upstream side. The thickness of the meat can be about 3.0 to 6.0 mm, and in this case, the pipe length, the pipe diameter, and the like may be taken into consideration as described above. Then, in the thick-walled pipeline area 411f specified for the thick-walled pipe, if it can be flexed, there is no problem in connecting / fixing to the fixing member at the pipe connecting bodies 411a and 411b at the upper and lower ends of the pipeline.

この他、オフガス上流側排出管411は、上記した接続体に加え、管接続体411bの側の管路域と、分岐配管411dが分岐した管路域に、管路補強用のリブ411eを備える。分岐配管411dは、オフガス上流側排出管411の側方に配設された気液分離器280に向けて突出して形成され、液水排出管430が挿入して接続される。液水排出管430の接続後、分岐配管411dは、図示しない管結束バンドにより、液密・気密に液水排出管430に固定される。こうして分岐配管411dに接続された液水排出管430は、気液分離器280が気液分離した分離液水を、排出弁440(図1参照)により、分岐配管411dを経てオフガス排出管410、詳しくはオフガス上流側排出管411に排出する。 In addition, the off-gas upstream discharge pipe 411 is provided with a rib 411e for reinforcing the pipe in the pipe area on the side of the pipe connection 411b and the pipe area in which the branch pipe 411d is branched, in addition to the above-mentioned connection body. .. The branch pipe 411d is formed so as to project toward the gas-liquid separator 280 arranged on the side of the off-gas upstream discharge pipe 411, and the liquid water discharge pipe 430 is inserted and connected. After connecting the liquid water discharge pipe 430, the branch pipe 411d is fixed to the liquid water discharge pipe 430 in a liquidtight and airtight manner by a pipe binding band (not shown). In the liquid water discharge pipe 430 connected to the branch pipe 411d in this way, the separated liquid water separated by the gas-liquid separator 280 is discharged through the branch pipe 411d by the discharge valve 440 (see FIG. 1), and the off-gas discharge pipe 410, Specifically, it is discharged to the off-gas upstream discharge pipe 411.

以上説明したように、燃料電池システム10を搭載した本実施形態の車両20では、オフガス排出管410を燃料電池100の側で構成するオフガス上流側排出管411を、燃料電池100のオフガス排出マニホールド102から燃料電池周辺に掛けての管路域において撓み可能な可撓管形態とする。これにより、本実施形態の車両20によれば、燃料電池回りでのオフガス上流側排出管411の配管の自由度や配管作業の簡便化を確保できる。 As described above, in the vehicle 20 of the present embodiment equipped with the fuel cell system 10, the off-gas upstream side discharge pipe 411 constituting the off-gas discharge pipe 410 on the side of the fuel cell 100 is provided with the off-gas discharge manifold 102 of the fuel cell 100. The form is a flexible tube that can be bent in the pipeline area from the fuel cell to the vicinity of the fuel cell. Thereby, according to the vehicle 20 of the present embodiment, it is possible to secure the degree of freedom of piping of the off-gas upstream side discharge pipe 411 around the fuel cell and the simplification of the piping work.

これに加え、本実施形態の車両20では、燃料電池100の運転に伴ってエア供給流路320からバイパス管450を経て空気がオフガス排出管410のオフガス上流側排出管411に流れ込む際、この空気は、図4に示すように、オフガス上流側排出管411を流れるガス流れ方向Fの下流に向かって鋭角に流れ込み、バイパス管接続体411cの突出箇所におけるバイパス管投影部位411pを含む管路に衝突する。この空気衝突に伴い衝撃音が発生し得るが、バイパス管投影部位411pを含む管路とこのバイパス管投影部位411pより下流側の管路の管路域は、バイパス管投影部位411pより上流の管路より管路肉厚が大きい厚肉管路域411fである。よって、本実施形態の車両20によれば、バイパス管450から合流した空気が流れるオフガス上流側排出管411の厚肉管路域411fから排出管外部への衝撃音の漏洩を起き難くできる。また、本実施形態の車両20では、バイパス管450を経たオフガス上流側排出管411への空気の流れ込みを、オフガス上流側排出管411を流れるガス流れ方向Fの下流に向かって鋭角に起こすことから、衝撃音自体もある程度、低減できると共に、バイパス管投影部位411pからその下流に空気が流れる際の気流音も小さくできる。この結果、本実施形態の車両20によれば、燃料電池100への空気供給に伴ってオフガス排出管410で発生する音を、車両運転者や同乗者にノイズとして認識され難くすることができる。 In addition to this, in the vehicle 20 of the present embodiment, when air flows from the air supply flow path 320 through the bypass pipe 450 to the off gas upstream side discharge pipe 411 of the off gas discharge pipe 410 with the operation of the fuel cell 100, this air As shown in FIG. 4, flows at a sharp angle toward the downstream of the gas flow direction F flowing through the off-gas upstream discharge pipe 411, and collides with the pipe line including the bypass pipe projection portion 411p at the protrusion of the bypass pipe connection body 411c. do. Impact noise may be generated due to this air collision, but the pipeline area including the bypass pipe projection portion 411p and the pipeline downstream of the bypass pipe projection portion 411p is the pipe upstream of the bypass pipe projection portion 411p. It is a thick pipe area 411f in which the pipe wall thickness is larger than that of the road. Therefore, according to the vehicle 20 of the present embodiment, it is possible to prevent the leakage of the impact sound from the thick-walled pipeline area 411f of the off-gas upstream discharge pipe 411 through which the air merged from the bypass pipe 450 flows to the outside of the discharge pipe. Further, in the vehicle 20 of the present embodiment, the air flows into the off-gas upstream side discharge pipe 411 via the bypass pipe 450 at a sharp angle toward the downstream side of the gas flow direction F flowing through the off-gas upstream side discharge pipe 411. The impact sound itself can be reduced to some extent, and the airflow sound when air flows downstream from the bypass tube projection portion 411p can also be reduced. As a result, according to the vehicle 20 of the present embodiment, it is possible to make it difficult for the vehicle driver and passengers to recognize the sound generated in the off-gas discharge pipe 410 due to the air supply to the fuel cell 100 as noise.

図5はオフガス上流側排出管411における発生音の測定結果を示すグラフである。この音測定は、次の状況で、行った。まず、図3に示すオフガス排出マニホールド102への接続側の管接続体411aから管路最下流の管接続体411bまでの管路肉厚が3.5mmで均一の比較例品のオフガス上流側排出管411を組み込んだ車両と、管接続体411aからバイパス管投影部位411pまでの管路肉厚が3.5mmで、厚肉管路域411fの管路肉厚が5.0mmの実施形態品のオフガス上流側排出管411を組み込んだ車両とを準備した。そして、それぞれの車両を運転終了状況とし、燃料電池100を発電運転させることなく、運転停止時の規定量の空気をエアコンプレッサ330でエア供給流路320に送り出す。送り出された空気の内、燃料電池100における空気流路の掃気に必要な流量の空気が燃料電池100を流れた後にオフガス上流側排出管411に排出される。これと同時に、掃気に必要な量を超える余剰空気がバイパス管450を経てオフガス上流側排出管411に流れ込む。この状況において、集音マイクを図2に示す車室30の前方の搭載域40にセットし、オフガス上流側排出管411から漏洩する音を、比較例品のオフガス上流側排出管411を組み込んだ車両と、実施形態品のオフガス上流側排出管411を組み込んだ車両とにおいて、個別に測定した。 FIG. 5 is a graph showing the measurement result of the generated sound in the off-gas upstream discharge pipe 411. This sound measurement was performed in the following situations. First, the off-gas upstream side discharge of the comparative example product having a uniform pipe wall thickness of 3.5 mm from the pipe connection body 411a on the connection side to the off-gas discharge manifold 102 shown in FIG. A vehicle incorporating the pipe 411 and an embodiment having a pipe wall thickness of 3.5 mm from the pipe connection body 411a to the bypass pipe projection portion 411p and a pipe wall thickness of 5.0 mm in the thick pipe area 411f. A vehicle incorporating the off-gas upstream discharge pipe 411 was prepared. Then, the operation of each vehicle is set to the end state, and the specified amount of air at the time of stopping the operation is sent out to the air supply flow path 320 by the air compressor 330 without causing the fuel cell 100 to generate electricity. Of the sent out air, air having a flow rate required for scavenging the air flow path in the fuel cell 100 flows through the fuel cell 100 and then is discharged to the off-gas upstream side discharge pipe 411. At the same time, excess air exceeding the amount required for scavenging flows into the off-gas upstream discharge pipe 411 via the bypass pipe 450. In this situation, the sound collecting microphone was set in the mounting area 40 in front of the passenger compartment 30 shown in FIG. 2, and the sound leaking from the off-gas upstream side discharge pipe 411 was incorporated into the off-gas upstream side discharge pipe 411 of the comparative example product. The measurement was performed individually in the vehicle and the vehicle incorporating the off-gas upstream discharge pipe 411 of the embodiment.

図5に示すように、700Hzを超える周波数の音がいずれの車両においても70dBを超える音量で測定されたが、実施形態品のオフガス上流側排出管411を組み込んだ車両では、オフガス上流側排出管411から漏洩する音の音量低下が見られた。このことからも、実施形態品のオフガス上流側排出管411を組み込んだ本実施形態の車両20によれば、燃料電池100への空気供給に伴ってオフガス排出管410で発生する音を、車両運転者や同乗者にノイズとして認識され難くすることができると言える。 As shown in FIG. 5, the sound having a frequency exceeding 700 Hz was measured at a volume exceeding 70 dB in all the vehicles, but in the vehicle incorporating the off-gas upstream discharge pipe 411 of the embodiment, the off-gas upstream discharge pipe is used. A decrease in the volume of the sound leaking from 411 was observed. For this reason as well, according to the vehicle 20 of the present embodiment incorporating the off-gas upstream side discharge pipe 411 of the embodiment, the noise generated in the off-gas discharge pipe 410 due to the air supply to the fuel cell 100 is heard in the vehicle operation. It can be said that it can be made difficult for people and passengers to recognize it as noise.

本実施形態の車両20は、燃料電池100を車室30より車両前方側の搭載域40に搭載したので、燃料電池100への空気供給に伴ってオフガス排出管410で発生する音は、車室30の車両運転者や同乗者に感知されやすい。しかしながら、既述したように、オフガス排出管410で発生する音をノイズとして認識され難くできるので、車両運転者や同乗者に、車両始動時や運転停止時において違和感を与え難くできる。 In the vehicle 20 of the present embodiment, the fuel cell 100 is mounted in the mounting area 40 on the front side of the vehicle from the vehicle compartment 30, so that the sound generated in the off-gas discharge pipe 410 due to the air supply to the fuel cell 100 is in the vehicle compartment. It is easily perceived by 30 vehicle drivers and passengers. However, as described above, since the sound generated in the off-gas discharge pipe 410 can be hardly recognized as noise, it is possible to make it difficult for the vehicle driver and passengers to feel a sense of discomfort when the vehicle is started or stopped.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above-described embodiment, and can be realized with various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve the part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

本実施形態の車両20では、燃料電池100を車室30より車両前方側の搭載域40に搭載したが、これに限らない。例えば、車両ボディー構造上、車室30の下方領域や車室30より車両後方側に燃料電池100を搭載しても、オフガス排出管410で発生する音をノイズとして認識され難くできる。 In the vehicle 20 of the present embodiment, the fuel cell 100 is mounted in the mounting area 40 on the front side of the vehicle from the vehicle interior 30, but the present invention is not limited to this. For example, due to the structure of the vehicle body, even if the fuel cell 100 is mounted in the lower region of the vehicle compartment 30 or on the rear side of the vehicle compartment 30, the sound generated in the off-gas discharge pipe 410 can be hardly recognized as noise.

本実施形態の車両20では、燃料電池システム10において、バイパス管接続体411cをオフガス排出管410の管路のほぼ中間に設けたが、管接続体411aの側の管路上流域や管接続体411bの側の管路下流域に設けてもよい。また、分岐配管411dをバイパス管接続体411cの上流側に設けてもよい。 In the vehicle 20 of the present embodiment, in the fuel cell system 10, the bypass pipe connecting body 411c is provided substantially in the middle of the pipe line of the off-gas discharge pipe 410, but the pipe connecting body upstream area or the pipe connecting body 411b on the side of the pipe connecting body 411a is provided. It may be provided in the downstream area of the pipeline on the side of. Further, the branch pipe 411d may be provided on the upstream side of the bypass pipe connection body 411c.

10…燃料電池システム、20…車両、30…車室、40…搭載域、100…燃料電池、102…オフガス排出マニホールド、200…燃料ガス供給回路、210…燃料ガスタンク、220…燃料ガス供給流路、230…燃料ガス排気流路、240…燃料ガス循環流路、250…メインバルブ、260…レギュレーター、270…インジェクタ、280…気液分離器、280Y…気液分離ユニット、290…還流ポンプ、300…エア供給回路、310…エアクリーナ、320…エア供給流路、330…エアコンプレッサ、340…インタクーラ、350…スタック入口バルブ、375…大気圧センサ、380…外気温センサ、385…エアフローメータ、390…供給ガス温度センサ、395…供給ガス圧力センサ、400…排ガス回路、410…オフガス排出管、411…オフガス上流側排出管、411E…管配設領域、411a…管接続体、411b…管接続体、411c…バイパス管接続体、411d…分岐配管、411e…リブ、411f…厚肉管路域、411p…バイパス管投影部位、412…オフガス下流側排出管、420…調圧バルブ、430…液水排出管、440…排出弁、450…バイパス管、455…バイパス流路調整弁、470…サイレンサー、500…冷却回路、510…冷媒供給流路、515…冷媒排出流路、520…ラジエータ流路、525…ウォーターポンプ、530…ラジエータ、535…ラジエータファン、540…冷媒バイパス流路、545…三方バルブ、550…温度センサ、C…中心線 10 ... Fuel cell system, 20 ... Vehicle, 30 ... Vehicle room, 40 ... Mounting area, 100 ... Fuel cell, 102 ... Off gas discharge manifold, 200 ... Fuel gas supply circuit, 210 ... Fuel gas tank, 220 ... Fuel gas supply flow path , 230 ... Fuel gas exhaust flow path, 240 ... Fuel gas circulation flow path, 250 ... Main valve, 260 ... Regulator, 270 ... Injector, 280 ... Gas-liquid separator, 280Y ... Gas-liquid separation unit, 290 ... Recirculation pump, 300 ... air supply circuit, 310 ... air cleaner, 320 ... air supply flow path, 330 ... air compressor, 340 ... intercooler, 350 ... stack inlet valve, 375 ... atmospheric pressure sensor, 380 ... outside temperature sensor, 385 ... air flow meter, 390 ... Supply gas temperature sensor, 395 ... Supply gas pressure sensor, 400 ... Exhaust gas circuit, 410 ... Off gas discharge pipe, 411 ... Off gas upstream side discharge pipe, 411E ... Pipe arrangement area, 411a ... Pipe connection body, 411b ... Pipe connection body, 411c ... Bypass pipe connection body, 411d ... Branch pipe, 411e ... Rib, 411f ... Thick-walled pipe area, 411p ... Bypass pipe projection site, 412 ... Off-gas downstream discharge pipe, 420 ... Pressure control valve, 430 ... Liquid water discharge Pipe, 440 ... Discharge valve, 450 ... Bypass pipe, 455 ... Bypass flow path adjustment valve, 470 ... Silencer, 500 ... Cooling circuit, 510 ... Fuel supply flow path, 515 ... Fuel discharge flow path, 520 ... Radiator flow path, 525 ... Water pump, 530 ... Radiator, 535 ... Radiator fan, 540 ... Fuel bypass flow path, 545 ... Three-way valve, 550 ... Temperature sensor, C ... Center line

Claims (1)

燃料電池車両であって、
燃料電池に酸化ガスを供給する酸化ガス供給流路と、
前記燃料電池の酸化ガス排出マニホールドに接続され、前記燃料電池から排出される前記酸化ガスを外部に導く酸化ガス排出管と、
前記酸化ガス供給流路と前記酸化ガス排出管とを、前記燃料電池をバイパスして接続するバイパス管とを備え、
前記酸化ガス排出管は、前記酸化ガス排出マニホールドに接続される管路最上流から前記燃料電池の周辺に配管される電池周辺管路域までが、可撓管形態とされ、
更に、前記酸化ガス排出管は、前記可撓管形態の管路途中に、前記酸化ガス排出管を流れる前記酸化ガスの流れ方向の下流に向かって前記バイパス管が鋭角に接続されるバイパス管接続体を突出して備え、該バイパス管接続体に接続された前記バイパス管を前記バイパス管の中心線に沿って前記酸化ガス排出管の内壁に投影したバイパス管投影部位を含む管路と該バイパス管投影部位より下流側の管路を前記バイパス管投影部位より上流側の管路より大きな肉厚の管路としている、燃料電池車両。
It ’s a fuel cell vehicle,
Oxidation gas supply flow path that supplies oxidation gas to the fuel cell,
An oxidation gas discharge pipe connected to the oxidation gas discharge manifold of the fuel cell and guiding the oxidation gas discharged from the fuel cell to the outside,
A bypass pipe for connecting the oxidation gas supply flow path and the oxidation gas discharge pipe by bypassing the fuel cell is provided.
The oxidative gas discharge pipe has a flexible pipe form from the uppermost stream of the pipeline connected to the oxidative gas discharge manifold to the battery peripheral pipeline area piped around the fuel cell.
Further, the oxide gas discharge pipe is connected to a bypass pipe in which the bypass pipe is connected at a sharp angle toward the downstream in the flow direction of the oxide gas flowing through the oxide gas discharge pipe in the middle of the flexible pipe form. A pipe line including a bypass pipe projection portion and the bypass pipe in which the body is projected and the bypass pipe connected to the bypass pipe connection body is projected onto the inner wall of the oxide gas discharge pipe along the center line of the bypass pipe. A fuel cell vehicle in which the pipeline on the downstream side of the projection portion is a conduit having a thickness larger than that on the upstream side of the bypass pipe projection portion.
JP2018208687A 2018-11-06 2018-11-06 Fuel cell vehicle Active JP7099259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208687A JP7099259B2 (en) 2018-11-06 2018-11-06 Fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208687A JP7099259B2 (en) 2018-11-06 2018-11-06 Fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2020077479A JP2020077479A (en) 2020-05-21
JP7099259B2 true JP7099259B2 (en) 2022-07-12

Family

ID=70725064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208687A Active JP7099259B2 (en) 2018-11-06 2018-11-06 Fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP7099259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400359A (en) * 2018-05-09 2018-08-14 湖南优加特装智能科技有限公司 Device for recovering tail gas and hydrogen fuel cell with it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289416A (en) 2008-05-27 2009-12-10 Honda Motor Co Ltd Fuel cell system
JP2010015848A (en) 2008-07-04 2010-01-21 Suzuki Motor Corp Fuel gas supply device of fuel cell system
WO2012007989A1 (en) 2010-07-13 2012-01-19 トヨタ自動車株式会社 Piping unit for use in fuel cell and fuel cell unit provided therewith, and fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289416A (en) 2008-05-27 2009-12-10 Honda Motor Co Ltd Fuel cell system
JP2010015848A (en) 2008-07-04 2010-01-21 Suzuki Motor Corp Fuel gas supply device of fuel cell system
WO2012007989A1 (en) 2010-07-13 2012-01-19 トヨタ自動車株式会社 Piping unit for use in fuel cell and fuel cell unit provided therewith, and fuel cell system

Also Published As

Publication number Publication date
JP2020077479A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US9601797B2 (en) Fuel cell stack manifold with ejector function
US9895967B2 (en) Piping member for fuel cell and fuel cell vehicle equipped therewith
CN100502120C (en) Fuel cell system
JP6511538B2 (en) Aspirator system with multiport aspirator
US20100003577A1 (en) Fuel gas supplying apparatus for fuel cell system
JP2002373687A (en) Noise silencing for fuel-cell-mounted equipment
CN105283336B (en) Electric vehicle
JP7099259B2 (en) Fuel cell vehicle
KR102531082B1 (en) Virtual engine sound system for vehicle
KR102167511B1 (en) Fuel cell vehicle and control method of fuel cell vehicle
CN105386906A (en) Intake manifold structure for engine
JP7306965B2 (en) freight vehicle
JP5333663B2 (en) Vehicle fuel cell system and fuel cell vehicle
JP5229461B2 (en) Fuel gas supply device for fuel cell system
US20160061164A1 (en) Vacuum producer including an aspirator and an ejector
JP5772968B2 (en) Fuel cell system and starting method thereof
KR20100007204A (en) Negative pressure adjusting apparatus for brake booster
CN108736046B (en) Fuel cell system
JP2002216811A (en) Fuel cell system
US10697408B2 (en) Vehicle gas processing device
JP5229687B2 (en) Fuel gas supply device for fuel cell system
JP2009021150A (en) Fuel cell system and fuel cell vehicle
JP2005129463A (en) Movable body
JP2008052969A (en) Fuel cell system
JP5224107B2 (en) Exhaust device for fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R151 Written notification of patent or utility model registration

Ref document number: 7099259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151