JP7097938B2 - Wet medium crushing method - Google Patents

Wet medium crushing method Download PDF

Info

Publication number
JP7097938B2
JP7097938B2 JP2020190420A JP2020190420A JP7097938B2 JP 7097938 B2 JP7097938 B2 JP 7097938B2 JP 2020190420 A JP2020190420 A JP 2020190420A JP 2020190420 A JP2020190420 A JP 2020190420A JP 7097938 B2 JP7097938 B2 JP 7097938B2
Authority
JP
Japan
Prior art keywords
crushing
medium
inert gas
pulverization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020190420A
Other languages
Japanese (ja)
Other versions
JP2021041404A (en
Inventor
康雄 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moriroku Chemicals Co Ltd
Original Assignee
Moriroku Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moriroku Chemicals Co Ltd filed Critical Moriroku Chemicals Co Ltd
Priority to JP2020190420A priority Critical patent/JP7097938B2/en
Publication of JP2021041404A publication Critical patent/JP2021041404A/en
Priority to JP2021212422A priority patent/JP2022079449A/en
Application granted granted Critical
Publication of JP7097938B2 publication Critical patent/JP7097938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Description

本発明は、液化不活性ガスを分散媒とする被粉砕材料の懸濁液(スラリー)をボールやビーズ等の粉砕媒体と共に撹拌することにより、被粉砕材料を粉砕媒体によって粉砕し、解砕し、及び/又は分散させる、湿式媒体粉砕方法に関するものである。 In the present invention, a suspension (slurry) of a material to be pulverized using a liquefied inert gas as a dispersion medium is pulverized and pulverized by the pulverizing medium by stirring the suspension (slurry) of the material to be pulverized together with a pulverizing medium such as balls and beads. And / or disperse, the present invention relates to a wet medium pulverization method.

ビーズミルや撹拌型ボールミル等の湿式媒体粉砕装置は、一般に、電動モータ等によって駆動される回転軸と、この回転軸に取り付けられた撹拌部材を有する。この撹拌部材は種々の形態を有し、例えば、回転軸の軸芯を横切る方向に延在する円盤状又は棒状の部材や、回転軸の端部に固定され、かつ、一定の間隔を置いて回転軸と平行に延在する複数本の撹拌ピンや、回転軸の周囲に配置された種々の形状の回転羽根等によって構成される。これらの撹拌部材は、電動モータ等によって駆動される回転軸と共に、ベッセルに画成された粉砕室で回転する。 A wet medium crushing device such as a bead mill or a stirring type ball mill generally has a rotating shaft driven by an electric motor or the like, and a stirring member attached to the rotating shaft. This stirring member has various forms, for example, a disk-shaped or rod-shaped member extending in a direction crossing the axis of the rotating shaft, fixed to the end of the rotating shaft, and at regular intervals. It is composed of a plurality of stirring pins extending parallel to the rotating shaft, rotating blades of various shapes arranged around the rotating shaft, and the like. These stirring members rotate in a crushing chamber defined in a vessel together with a rotating shaft driven by an electric motor or the like.

かかる湿式媒体粉砕装置で被粉砕材料を粉砕するには、粉砕室に、分散媒となる液体(媒液)に被粉砕材料の粉粒体を浮遊させた懸濁液(スラリー)と、ボールやビーズ等の粉砕媒体を投入し、この粉砕室内で回転軸と撹拌部材を回転させる。これらの回転軸と撹拌部材は、懸濁液と粉砕媒体との混合物中で回転し、懸濁液と粉砕媒体との混合物を撹拌し、粉砕媒体に推力を付与する。推力を付与された粉砕媒体は、懸濁液中を移動して被粉砕材料に衝突し、これにより、被粉砕材料を粉砕し、解砕し、及び/又は分散させる。この明細書で被粉砕材料という用語は、粉砕される原材料のみでなく、この原材料に、必要に応じて混合される分散剤等の添加剤を含む意味で使用される。 In order to crush the material to be crushed by such a wet medium crushing device, a suspension (slurry) in which the powder or granular material of the material to be crushed is suspended in a liquid (medium solution) as a dispersion medium in a crushing chamber, a ball or the like. A crushing medium such as beads is charged, and the rotating shaft and the stirring member are rotated in this crushing chamber. These rotating shafts and agitating members rotate in a mixture of the suspension and the pulverizing medium, agitate the mixture of the suspension and the pulverizing medium, and apply thrust to the pulverizing medium. The thrusted crushing medium travels through the suspension and collides with the material to be crushed, thereby crushing, crushing and / or dispersing the material to be crushed. As used herein, the term material to be ground is used to mean not only the raw material to be ground, but also the raw material to include additives such as dispersants, which may be mixed as needed.

特開平1-107855号公報は、粉粒体をボールミル等で湿式媒体粉砕するとき、粉砕が進行して被粉砕材料の粒度が小さくなっても、懸濁液(スラリー)の粘度が上昇することを防止して、所期の粉砕効果を得ることができる、粉粒体の粉砕方法を開示する。 Japanese Patent Application Laid-Open No. 1-107855 states that when a powder or granular material is pulverized with a wet medium using a ball mill or the like, the viscosity of the suspension (slurry) increases even if the pulverization progresses and the particle size of the material to be pulverized becomes smaller. Disclosed is a method for crushing powders and granules, which can prevent the above and obtain the desired crushing effect.

この粉砕方法では、先ず、懸濁液の分散媒を液体炭酸ガスとし、被粉砕材料と粉砕媒体が挿入された耐圧構造の粉砕容器に、高圧ポンプで液体炭酸ガスを圧入する。そして、液体炭酸ガスが液体の状態にある温度及び圧力で粉砕を開始する。これにより、「粉砕の進行に伴って粒度は細かくなり媒液の粘度は上昇するが、同時に粉砕媒体の運動に伴う発熱で、ミル内の温度が上昇し、31℃を超えると超臨界流体になる。この状態では媒液の密度は液体に近い値を示しているにもかかわらず、粘性は液体の1/100程度となり、この結果、粉砕限界粒度を下げる効果をもたらす。」(同公報第2頁右欄第5行乃至第11行)。 In this crushing method, first, the dispersion medium of the suspension is liquid carbon dioxide gas, and the liquid carbon dioxide gas is pressed into a crushing container having a pressure-resistant structure in which the material to be crushed and the crushing medium are inserted by a high-pressure pump. Then, pulverization is started at the temperature and pressure at which the liquid carbon dioxide gas is in a liquid state. As a result, "the particle size becomes finer and the viscosity of the medium increases as the crushing progresses, but at the same time, the temperature inside the mill rises due to the heat generated by the movement of the crushing medium, and when it exceeds 31 ° C, it becomes a supercritical fluid. In this state, although the density of the medium is close to that of the liquid, the viscosity is about 1/100 of that of the liquid, and as a result, the effect of lowering the pulverization limit particle size is brought about. " Page 2, right column, lines 5 to 11).

また、特開平6-39307号公報は、粉粒体をボールミル等で湿式媒体粉砕するとき、粉砕が進行して被粉砕材料の粒度が小さくなっても、懸濁液(スラリー)の粘度が上昇することを防止して、所期の粉砕効果を得ることができる、粉粒体の粉砕方法を開示する。
この粉砕方法では、アセトン等の分散媒に被粉砕材料を混合した懸濁液(スラリー)とボール等の粉砕媒体を耐圧構造の粉砕容器に入れ、次いで、この粉砕容器に高圧ポンプで液体炭酸ガスを圧入添加し、添加物質である液体炭酸ガスが液体状態にある温度及び圧力で粉砕を開始する。これにより、「粉砕の進行にしたがって粒度は細かくなり媒液の粘度は上昇するが、同時に粉砕媒体の運動に伴う発熱で、ミル内の温度が上昇し、31℃を超えると超臨界状態となる。この状態では、添加物質の密度は液体に近い値を示しているにもかかわらず、粘性は液体の1/100程度となり、この結果、粉砕限界粒度を下げる効果をもたらす。」(同公報の段落0007)。
Further, according to Japanese Patent Application Laid-Open No. 6-39307, when the powder or granular material is pulverized with a wet medium by a ball mill or the like, the viscosity of the suspension (slurry) increases even if the pulverization progresses and the particle size of the material to be pulverized becomes smaller. Disclosed is a method for crushing powder or granular material, which can prevent the crushing effect and obtain the desired crushing effect.
In this crushing method, a suspension (slurry) in which a material to be crushed is mixed with a dispersion medium such as acetone and a crushing medium such as a ball are placed in a crushing container having a pressure resistant structure, and then the crushing container is filled with liquid carbon dioxide gas by a high pressure pump. Is press-fitted and added, and pulverization is started at a temperature and pressure at which the liquid carbon dioxide gas as an additive is in a liquid state. As a result, "as the pulverization progresses, the particle size becomes finer and the viscosity of the medium increases, but at the same time, the temperature inside the mill rises due to the heat generated by the movement of the pulverization medium, and when it exceeds 31 ° C, it becomes a supercritical state. In this state, although the density of the additive is close to that of the liquid, the viscosity is about 1/100 of that of the liquid, and as a result, the effect of lowering the pulverization limit particle size is brought about. " Paragraph 0007).

特開2003-1129号公報は、液化不活性ガス内に被粉砕物を分散させた懸濁液を媒体撹拌ミルで粉砕し、その後、液化不活性ガスを気化させて乾燥粉末を得ることを特徴とする微粉末の製造方法を開示する(同公報の請求項1)。同公報は、また、この微粉末の製造方法において、液化不活性ガスが、液体ヘリウム、液体ネオン、液体窒素、液体アルゴン、液体クリプトン、液体キセノンから選ばれた1種類の液化ガスである、微粉末の製造方法を開示する(同公報の請求項2)。同公報には、更に、「このように、液化不活性ガスを分散媒として使用して懸濁液化し、媒体撹拌ミルで粉砕するようにすると、液化不活性ガスの保有する寒冷熱を利用して粉体特性の温度依存性を向上させることができるうえ、粉砕作業時の摩擦熱等の影響を少なくすることができる。さらに、液化不活性ガスを分散媒とする懸濁液を粉砕する場合には、被粉砕物が液化不活性ガスに溶解したり、液化不活性ガスと反応したりすることがないことから、本来の性質を保持したまま微粉体化することができることになる。」(同公報の段落0015)と記載されている。 Japanese Patent Application Laid-Open No. 2003-1129 is characterized in that a suspension in which an object to be pulverized is dispersed in a liquefied inert gas is pulverized with a medium stirring mill, and then the liquefied inert gas is vaporized to obtain a dry powder. Discloses a method for producing a fine powder (claim 1 of the same publication). The publication also discloses that in this method for producing fine powder, the liquefied inert gas is one kind of liquefied gas selected from liquid helium, liquid neon, liquid nitrogen, liquid argon, liquid krypton, and liquid xenone. A method for producing a powder is disclosed (claim 2 of the same publication). The publication further states, "In this way, when the liquefied inert gas is used as a dispersion medium for suspension and pulverized with a medium stirring mill, the cold heat possessed by the liquefied inert gas is utilized. In addition to improving the temperature dependence of the powder characteristics, the influence of frictional heat during crushing work can be reduced. Further, when crushing a suspension using a liquefied inert gas as a dispersion medium. In addition, since the object to be crushed does not dissolve in the liquefied inert gas or react with the liquefied inert gas, it can be pulverized while maintaining the original properties. "( It is described as paragraph 0015) of the same publication.

国際公開第2011/059074号公報の段落0101には、液体窒素を分散媒とする湿式媒体粉砕に関し、「なお、粉砕中は液体窒素が蒸発するので、粉砕作業が終了するまでに、粉砕時間に応じて、ベッセル4に所定量の液体窒素を補充する必要がある。液体窒素の補充時期及び補充量を決定するため、ベッセル14の重量をロードセルで計測し、液体窒素の液面制御を行う。以下の実施例では、粉砕開始直後のベッセル14の総重量を基準にして、ベッセル14の重量を±10gの範囲に制御しながら粉砕を行った。」と記載されている。 Paragraph 0101 of International Publication No. 2011/059074 describes wet medium crushing using liquid nitrogen as a dispersion medium. Therefore, it is necessary to replenish the vessel 4 with a predetermined amount of liquid nitrogen. In order to determine the timing and amount of replenishment of the liquid nitrogen, the weight of the vessel 14 is measured by the load cell, and the liquid level of the liquid nitrogen is controlled. In the following examples, pulverization was performed while controlling the weight of the vessel 14 within the range of ± 10 g based on the total weight of the vessel 14 immediately after the start of pulverization. "

特開平1-107855号公報Japanese Unexamined Patent Publication No. 1-107855 特開平6-39307号公報Japanese Unexamined Patent Publication No. 6-39307 特開2003-1129号公報Japanese Patent Application Laid-Open No. 2003-1129 国際公開第2011/059074号International Publication No. 2011/059074

特許文献1に記載された粉砕方法は、懸濁液の分散媒を構成する液体炭酸ガスを粉砕に伴う発熱によって超臨界流体に移行させ、媒液の粘度を液体炭酸ガスの粘度の1/100程度にすることによって、粉砕限界粒度を下げることを特徴とする。二酸化炭素は常温常圧では気体であり、二酸化炭素を液体に保つためには、三重点(-56.6℃、0.52MPa)以上の温度及び圧力が必要である。したがって、この粉砕方法では、懸濁液を二酸化炭素の三重点以上の温度及び圧力で生成し、二酸化炭素の臨界点(31.1℃、7.38MPa)未満の温度及び圧力で粉砕を開始しなければならない。また、粉砕の進行に伴ってミル内の温度が上昇し、炭酸ガスが超臨界状態になると媒液の粘度が1/100程度に低下する。しかし、媒液の粘度が低下するとビーズの推力も低下し、ビーズの粉砕力が低下する。ビーズの推力は、媒液の粘性によって、撹拌部材からビーズに伝達されると考えられるからである。したがって、この粉砕方法によって所望の粒度の粉粒体を得るには、ミル内の圧力と温度を管理して懸濁液を生成し、更に、ミル内の温度と圧力を管理して、粉砕を開始する時期と液体炭酸ガスが超臨界状態に移行する時期を制御する必要がある。 In the pulverization method described in Patent Document 1, the liquid carbon dioxide gas constituting the dispersion medium of the suspension is transferred to the supercritical fluid by the heat generated by the pulverization, and the viscosity of the medium is 1/100 of the viscosity of the liquid carbon dioxide gas. It is characterized by lowering the pulverization limit particle size by adjusting the degree. Carbon dioxide is a gas at normal temperature and pressure, and in order to keep carbon dioxide in a liquid, a temperature and pressure of a triple point (-56.6 ° C., 0.52 MPa) or higher are required. Therefore, in this crushing method, a suspension is generated at a temperature and pressure above the triple point of carbon dioxide, and crushing is started at a temperature and pressure below the critical point of carbon dioxide (31.1 ° C., 7.38 MPa). There must be. Further, the temperature inside the mill rises with the progress of pulverization, and when the carbon dioxide gas becomes a supercritical state, the viscosity of the medium liquid decreases to about 1/100. However, when the viscosity of the medium solution decreases, the thrust of the beads also decreases, and the crushing force of the beads decreases. This is because the thrust of the beads is considered to be transmitted from the stirring member to the beads by the viscosity of the medium solution. Therefore, in order to obtain a powder or granular material having a desired particle size by this pulverization method, a suspension is produced by controlling the pressure and temperature in the mill, and further, the temperature and pressure in the mill are controlled to perform pulverization. It is necessary to control when to start and when the liquid carbon dioxide transitions to the supercritical state.

特許文献2に記載された粉砕方法は、懸濁液に液体炭酸ガスを添加し、この液体炭酸ガスを粉砕媒体の運動に伴う発熱で超臨界状態に移行させ、分散剤として機能させることを特徴とする。超臨界状態の二酸化炭素は、低粘度で、高拡散性の流体であるから、懸濁液に添加されると、懸濁液の分散媒と粉砕粒子の間の摩擦力を低減し、また、粉砕粒子に対する媒液の濡れ性を向上させて凝集を防止することができる。しかし、超臨界状態の二酸化炭素は、媒液自体の粘度も低下させるから、超臨界状態の二酸化炭素量が多すぎると、ビーズの推力が低下して、所期の粉砕力を得ることができない。したがって、この粉砕方法によって所望の粒度の粉粒体を得るには、懸濁液に液体炭酸ガスを添加するに際し、ミル内の圧力と温度を管理しなければならず、また、粉砕中に発生する超臨界状態の二酸化炭素の量を制御する必要がある。なお、二酸化炭素は、圧力7.38MPa(臨界圧力)では温度31.1℃(臨界温度)で流体状態を維持するから、媒液の臨界圧力が7.38MPa以下であっても、その臨界温度が31.1℃よりも高ければ、その媒液は超臨界状態の二酸化炭素と共存可能である。因みに、特許文献2に媒液として例示されたアセトンの臨界圧力は4.70MPaであるが、その臨界温度は234.94℃である。 The pulverization method described in Patent Document 2 is characterized in that liquid carbon dioxide gas is added to a suspension, and the liquid carbon dioxide gas is transferred to a supercritical state by heat generation accompanying the movement of the pulverization medium to function as a dispersant. And. Since carbon dioxide in the supercritical state is a low-viscosity, highly diffusible fluid, when added to the suspension, it reduces the frictional force between the dispersion medium of the suspension and the pulverized particles, and also It is possible to improve the wettability of the medium to the crushed particles and prevent aggregation. However, since carbon dioxide in the supercritical state also lowers the viscosity of the medium itself, if the amount of carbon dioxide in the supercritical state is too large, the thrust of the beads decreases and the desired crushing force cannot be obtained. .. Therefore, in order to obtain a powder or granular material having a desired particle size by this pulverization method, it is necessary to control the pressure and temperature in the mill when adding liquid carbon dioxide gas to the suspension, and it is generated during pulverization. It is necessary to control the amount of carbon dioxide in the supercritical state. Since carbon dioxide maintains a fluid state at a temperature of 31.1 ° C. (critical temperature) at a pressure of 7.38 MPa (critical pressure), the critical temperature is even if the critical pressure of the medium is 7.38 MPa or less. If is higher than 31.1 ° C., the medium can coexist with carbon dioxide in a supercritical state. Incidentally, the critical pressure of acetone exemplified as the medium solution in Patent Document 2 is 4.70 MPa, but the critical temperature thereof is 234.94 ° C.

湿式媒体粉砕では、懸濁液(スラリー)の固形分濃度が被粉砕材料の粉砕効率に影響する。湿式媒体粉砕における懸濁液の固形分濃度は、懸濁液中の分散媒の重量に対する被粉砕材料と粉砕媒体の合計重量の割合である。湿式媒体粉砕では、被粉砕材料毎に最適固形分濃度の存在が認められている。水やアルコールを分散媒とする湿式媒体粉砕では、懸濁液の固形分濃度が一定の割合を超えると、分散媒と被粉砕材料と粉砕媒体の混合物の粘度が増大し、粉砕媒体の運動が不活発になって、粉砕できない状態(増粘状態)になる。これに対し、液化不活性ガスの粘度及び表面張力は、それぞれ、水の粘度及び表面張力よりも小さいから、液化不活性ガスを分散媒とする懸濁液と粉砕媒体との混合物は、増粘状態になり難いという特質がある。例えば、液体窒素の粘度は水の粘度の約1/3であり、液体窒素の表面張力は水の表面張力の約1/7である。しかし、液化不活性ガスを分散媒とする被粉砕材料の懸濁液を常温常圧下で湿式媒体粉砕すると、粉砕室内の液化不活性ガスは外部からの熱の侵入や粉砕による発熱によって絶えず気化する。したがって、懸濁液を液体状態に保ち、湿式媒体粉砕を継続するためには、気化した分の液化不活性ガスを粉砕室に補充する必要がある。特許文献4の段落0101には、ロードセルを使用して、ベッセル内の液体窒素の液面制御を行う方法が記載されている。 In wet medium pulverization, the solid content concentration of the suspension (slurry) affects the pulverization efficiency of the material to be pulverized. The solid content concentration of the suspension in wet medium grinding is the ratio of the total weight of the material to be ground and the grinding medium to the weight of the dispersion medium in the suspension. In wet medium pulverization, the existence of the optimum solid content concentration is recognized for each material to be pulverized. In wet medium pulverization using water or alcohol as a dispersion medium, when the solid content concentration of the suspension exceeds a certain ratio, the viscosity of the mixture of the dispersion medium, the material to be crushed and the pulverization medium increases, and the pulverization medium moves. It becomes inactive and cannot be crushed (thickening state). On the other hand, since the viscosity and surface tension of the liquefied inert gas are smaller than the viscosity and surface tension of water, respectively, the mixture of the suspension using the liquefied inert gas as the dispersion medium and the pulverizing medium is thickened. It has the characteristic that it is difficult to be in a state. For example, the viscosity of liquid nitrogen is about 1/3 of the viscosity of water, and the surface tension of liquid nitrogen is about 1/7 of the surface tension of water. However, when a suspension of a material to be crushed using a liquefied inert gas as a dispersion medium is crushed in a wet medium under normal temperature and pressure, the liquefied inert gas in the crushing chamber is constantly vaporized by heat intrusion from the outside and heat generated by crushing. .. Therefore, in order to keep the suspension in a liquid state and continue the wet medium pulverization, it is necessary to replenish the liquefied inert gas for the vaporized portion to the pulverization chamber. Paragraph 0101 of Patent Document 4 describes a method of controlling the liquid level of liquid nitrogen in a vessel by using a load cell.

本発明の目的は、粉砕室内の液化不活性ガスと被粉砕材料と粉砕媒体の混合物を常温常圧下で撹拌することにより、被粉砕材料を粉砕する、湿式媒体粉砕方法において、粉砕室の温度上昇に起因する粉砕力の低下を防止し、もって、被粉砕材料の粉砕を促進することができる、湿式媒体粉砕方法を提供することにある。 An object of the present invention is to raise the temperature of a pulverized chamber in a wet medium pulverization method in which a liquefied inert gas in a pulverized chamber, a material to be pulverized, and a mixture of a pulverized medium are pulverized at normal temperature and pressure to pulverize the material to be pulverized. It is an object of the present invention to provide a wet medium pulverization method capable of preventing a decrease in pulverizing power due to the above-mentioned factors and thereby promoting pulverization of a material to be pulverized.

本発明の他の目的は、粉砕工程の自動化が容易な、湿式媒体粉砕方法を提供することにある。 Another object of the present invention is to provide a wet medium pulverization method in which the pulverization process can be easily automated.

上述の目的を達成するため、本発明の湿式媒体粉砕方法は、液化不活性ガスを分散媒とする被粉砕材料の懸濁液とボールやビーズ等の粉砕媒体との混合物を粉砕室で撹拌し、前記粉砕媒体によって前記被粉砕材料を粉砕し、解砕し、及び/又は分散させる、湿式媒体粉砕方法において、前記混合物の撹拌中に、前記分散媒の温度を低下させるように、前記粉砕室に、前記粉砕室の温度よりも低温の液化不活性ガスを供給し、これにより、前記分散媒の粘度を、前記粉砕媒体が前記被粉砕材料を粉砕し、解砕し、及び/又は分散させる粘度に保つことを特徴とする。 In order to achieve the above object, in the wet medium crushing method of the present invention, a mixture of a suspension of a material to be crushed using a liquefied inert gas as a dispersion medium and a crushing medium such as balls and beads is stirred in a crushing chamber. In a wet medium crushing method in which the material to be crushed is crushed, crushed and / or dispersed by the crushing medium, the crushing chamber is used so as to lower the temperature of the dispersion medium during stirring of the mixture. Is supplied with a liquefied inert gas having a temperature lower than the temperature of the crushing chamber, whereby the viscosity of the dispersion medium is adjusted by the crushing medium to crush, crush and / or disperse the material to be crushed. It is characterized by keeping the viscosity.

本発明の湿式媒体粉砕方法は、また、前記混合物の撹拌中に前記粉砕室に供給される前記液化不活性ガスが、前記混合物の固形分濃度を低下させることを特徴とする。 The wet medium pulverization method of the present invention is also characterized in that the liquefied inert gas supplied to the pulverization chamber during stirring of the mixture reduces the solid content concentration of the mixture.

本発明の湿式媒体粉砕方法は、また、前記混合物の撹拌中に前記粉砕室に供給される前記液化不活性ガスが、酸素の沸点よりも低温の液化不活性ガスであることを特徴とする。 The wet medium pulverization method of the present invention is also characterized in that the liquefied inert gas supplied to the pulverizing chamber during stirring of the mixture is a liquefied inert gas having a temperature lower than the boiling point of oxygen.

本発明の湿式媒体粉砕方法は、また、前記混合物の撹拌中に前記粉砕室に供給される前記液化不活性ガスが、気液分離器で脱気された液化不活性ガスであることを特徴とする。 The wet medium crushing method of the present invention is also characterized in that the liquefied inert gas supplied to the crushing chamber during stirring of the mixture is a liquefied inert gas degassed by a gas-liquid separator. do.

本発明の湿式媒体粉砕方法は、また、前記粉砕室の前記混合物を前記液化不活性ガスの蒸気層で覆うことを特徴とする。 The wet medium pulverization method of the present invention is also characterized in that the mixture in the pulverization chamber is covered with a vapor layer of the liquefied inert gas.

本発明の湿式媒体粉砕方法は、また、前記混合物の撹拌中に、前記混合物と前記粉砕室を画成するベッセルの合計重量が、粉砕前に計測された設定重量を維持するように、前記合計重量が前記設定重量未満になると、前記粉砕室に前記液化不活性ガスを供給し、次いで、前記混合物の撹拌中に前記合計重量が前記設定重量に達すると、前記液化不活性ガスの供給を停止することを特徴とする。 The wet medium crushing method of the present invention also comprises the total weight of the mixture and the vessel defining the crushing chamber to maintain the set weight measured prior to crushing during stirring of the mixture. When the weight becomes less than the set weight, the liquefied inert gas is supplied to the crushing chamber, and then when the total weight reaches the set weight during stirring of the mixture, the supply of the liquefied inert gas is stopped. It is characterized by doing.

本発明の湿式媒体粉砕方法は、また、前記混合物の撹拌中に、前記粉砕室の外装温度が予め設定された温度に達すると、前記粉砕室に前記液化不活性ガスを供給し、前記混合物と前記ベッセルの合計重量が予め設定された重量に達すると、前記液化不活性ガスの供給を停止することを特徴とする。 In the wet medium crushing method of the present invention, when the exterior temperature of the crushing chamber reaches a preset temperature during stirring of the mixture, the liquefied inert gas is supplied to the crushing chamber, and the mixture is combined with the mixture. When the total weight of the vessel reaches a preset weight, the supply of the liquefied inert gas is stopped.

本発明の湿式媒体粉砕方法は、また、前記粉砕室に供給される前記液化不活性ガスの温度が予め設定された温度よりも上昇し、かつ、異常判定がなされると、警報を発することを特徴とする。 The wet medium pulverization method of the present invention also issues an alarm when the temperature of the liquefied inert gas supplied to the pulverization chamber rises above a preset temperature and an abnormality determination is made. It is a feature.

本発明の湿式媒体粉砕方法において、懸濁液の分散媒は、液体窒素、液体ヘリウム、液体ネオン、液体アルゴン等の常温で化学的に不活性な、低温の液体であることを特徴とする。 In the wet medium pulverization method of the present invention, the dispersion medium of the suspension is a low-temperature liquid that is chemically inert at room temperature, such as liquid nitrogen, liquid helium, liquid neon, and liquid argon.

本発明の湿式媒体粉砕方法において、粉砕媒体は、アルミナ、メノウ、ジルコニア、窒化珪素、チタニア等の材料で構成されたセラミックビーズ又はボール、スチール、タングステンカーバイト、ステンレス鋼等の材料で構成された金属ビーズ又はボール、ソーダガラス、石英ガラス等の材料で構成されたガラス系ビーズ又はボール、ウレタン等の材料で構成された樹脂ビーズ又はボール、及び/又は、ドライアイス(固体二酸化炭素)の塊状体又は成形体又は粒状体であることを特徴とする。 In the wet medium crushing method of the present invention, the crushing medium is made of ceramic beads or balls, steel, tungsten carbide, stainless steel, etc., which are made of materials such as alumina, menow, zirconia, silicon nitride, and titania. Glass beads or balls made of metal beads or balls, soda glass, quartz glass, etc., resin beads or balls made of materials such as urethane, and / or agglomerates of dry ice (solid carbon dioxide). Alternatively, it is characterized by being a molded body or a granular body.

本発明の湿式媒体粉砕方法において、被粉砕材料として、医薬品、医薬品添加剤、樹脂、金属、セラミック又はガラス、その他の医療用又は産業用原材料を選択することを特徴とする。 The wet medium crushing method of the present invention is characterized in that a pharmaceutical product, a pharmaceutical additive, a resin, a metal, a ceramic or glass, and other medical or industrial raw materials are selected as the material to be crushed.

湿式媒体粉砕では、粉砕の進行に伴い、粉砕媒体と被粉砕材料との衝突による発熱や、粉砕媒体同士の衝突による発熱や、粉砕媒体や被粉砕材料と撹拌ディスクとの衝突による発熱や、外部からの熱の侵入等により、粉砕室の温度が上昇する。粉砕室の温度が上昇すると、被粉砕材料の分散媒として使用されている液化不活性ガスの温度が上昇し、液化不活性ガスの粘度が低下する。粉砕室で回転する撹拌部材の回転力は、液化不活性ガスの粘性によって粉砕媒体に伝達され、粉砕媒体の推力になるから、液化不活性ガスの粘度が低下すると、粉砕媒体の推力が減少し、粉砕媒体の粉砕力が低下する。このとき、粉砕室に低温の液化不活性ガスを供給すれば、被粉砕材料の分散媒として使用されている液化不活性ガスの温度を低下させ、その粘度を増加させることができる。この結果、被粉砕材料の分散媒として使用されている液化不活性ガスの粘度を、被粉砕材料の粉砕・解砕・分散に適した粘度に保つことができるから、被粉砕材料の粉砕を促進することができる。 In wet medium pulverization, as the pulverization progresses, heat is generated by the collision between the pulverized medium and the material to be crushed, heat is generated by the collision between the pulverized media, heat is generated by the collision between the pulverized medium or the material to be pulverized and the stirring disk, and external. The temperature of the crushing chamber rises due to the intrusion of heat from the crushing chamber. When the temperature of the crushing chamber rises, the temperature of the liquefied inert gas used as the dispersion medium of the material to be crushed rises, and the viscosity of the liquefied inert gas decreases. The rotational force of the stirring member rotating in the pulverization chamber is transmitted to the pulverization medium by the viscosity of the liquefied inert gas and becomes the thrust of the pulverization medium. Therefore, when the viscosity of the liquefied inert gas decreases, the thrust of the pulverization medium decreases. , The crushing power of the crushing medium is reduced. At this time, if the low-temperature liquefied inert gas is supplied to the crushing chamber, the temperature of the liquefied inert gas used as the dispersion medium of the material to be crushed can be lowered and the viscosity thereof can be increased. As a result, the viscosity of the liquefied inert gas used as the dispersion medium of the material to be crushed can be maintained at a viscosity suitable for crushing, crushing and dispersing the material to be crushed, so that crushing of the material to be crushed is promoted. can do.

また、湿式媒体粉砕では、粉砕の進行に伴い、粉砕室の温度が上昇すると、液化不活性ガスの蒸発量が増加するから、次第に、液化不活性ガスと被粉砕材料と粉砕媒体の混合物の固形分濃度が上昇する。粉砕室内の混合物の固形分濃度が上昇すると、粉砕媒体の運動が妨げられるから、粉砕媒体の粉砕力が低下する。このとき、粉砕室に被粉砕材料の分散媒として機能している液化不活性ガスを供給すれば、粉砕室内の混合物の固形分濃度を低下させることができる。この結果、粉砕媒体の運動が活発になり、被粉砕材料の粉砕が促進される。更に、粉砕室に供給される液化不活性ガスは低温の液化不活性ガスであるから、被粉砕材料の分散媒の粘度を増加させ、撹拌部材から粉砕媒体に伝達される推力が増大する。したがって、粉砕媒体の運動領域を拡大することができると共に、その粉砕力を増大することができる。 Further, in wet medium crushing, as the temperature of the crushing chamber rises as the crushing progresses, the amount of evaporation of the liquefied inert gas increases. The minute concentration increases. When the solid content concentration of the mixture in the crushing chamber increases, the movement of the crushing medium is hindered, so that the crushing power of the crushing medium decreases. At this time, if the liquefied inert gas functioning as a dispersion medium for the material to be crushed is supplied to the crushing chamber, the solid content concentration of the mixture in the crushing chamber can be lowered. As a result, the movement of the pulverizing medium becomes active, and the pulverization of the material to be pulverized is promoted. Further, since the liquefied inert gas supplied to the crushing chamber is a low-temperature liquefied inert gas, the viscosity of the dispersion medium of the material to be crushed is increased, and the thrust transmitted from the stirring member to the crushing medium is increased. Therefore, the moving region of the crushing medium can be expanded and the crushing force thereof can be increased.

液体窒素等の液化不活性ガス中に大気中の酸素が混入すると、沸点が変動することが知られている。例えば、大気圧下で、窒素の沸点は-195.79℃(77.36K)であるのに対し、酸素の沸点は-182.96℃(90.2K)であるため、窒素-酸素の状態図により、液相と気相の間に-195.79℃(77.36K)から-182.96℃(90.2K)に亘る共存域の存在を確認することができる。空気の組成は、窒素が約78%、酸素が約21%、アルゴン等のその他の気体が約1%であるから、大気圧下で湿式媒体粉砕を行うとき、分散媒中に混入する可能性が最も高い物質は酸素であると考えられる。液体窒素に酸素が混入すると、その温度は酸素の沸点まで上昇する可能性がある。そこで、酸素の沸点を一つの基準として選択し、この基準よりも低温の液化不活性ガスを使用すれば、粉砕室内の分散媒の温度を効果的に下げることができる。粉砕室内の分散媒の温度よりも高温の液化不活性ガスを使用しても、分散媒の温度を下げることはできないからである。 It is known that the boiling point fluctuates when oxygen in the atmosphere is mixed into a liquefied inert gas such as liquid nitrogen. For example, under atmospheric pressure, the boiling point of nitrogen is 195.79 ° C (77.36K), whereas the boiling point of oxygen is 182.96 ° C (90.2K), so the state of nitrogen-oxygen. From the figure, the existence of a coexistence zone from 195.79 ° C. (77.36K) to 182.96 ° C. (90.2K) can be confirmed between the liquid phase and the gas phase. Since the composition of air is about 78% nitrogen, about 21% oxygen, and about 1% other gases such as argon, it may be mixed in the dispersion medium when pulverizing the wet medium under atmospheric pressure. The highest substance is considered to be oxygen. When oxygen is mixed in liquid nitrogen, its temperature can rise to the boiling point of oxygen. Therefore, if the boiling point of oxygen is selected as one criterion and a liquefied inert gas having a temperature lower than this criterion is used, the temperature of the dispersion medium in the pulverization chamber can be effectively lowered. This is because the temperature of the dispersion medium cannot be lowered even if the liquefied inert gas having a temperature higher than the temperature of the dispersion medium in the pulverization chamber is used.

液体窒素等の液化不活性ガスの貯蔵タンクや供給用の配管類には、外部からの熱侵入があるため、液化不活性ガスが徐々に気化し、気化した液化不活性ガスは、その一部は液体に混入し、その残余部は液面上に気体層を形成する。これらのタンクや配管類から、気化した液化不活性ガスを大気中に放散する等して除去することができれば、液化不活性ガスの液体温度を下げることができる。しかし、貯蔵タンクや配管類から気化した液化不活性ガスを除去することが困難な場合がある。本発明は、液化不活性ガスを気液分離器で脱気して粉砕室に供給することにより、粉砕室の温度よりも低温の液化不活性ガスを粉砕室に確実に供給することができる。 Since the storage tank of liquefied inert gas such as liquid nitrogen and the piping for supply have heat intrusion from the outside, the liquefied inert gas gradually vaporizes, and the vaporized liquefied inert gas is a part of it. Mixes with the liquid, and the rest forms a gas layer on the liquid surface. If the vaporized liquefied inert gas can be removed from these tanks and pipes by dissipating it into the atmosphere, the liquid temperature of the liquefied inert gas can be lowered. However, it may be difficult to remove the vaporized inert gas from the storage tank or piping. According to the present invention, by degassing the liquefied inert gas with a gas-liquid separator and supplying it to the crushing chamber, the liquefied inert gas having a temperature lower than the temperature of the crushing chamber can be reliably supplied to the crushing chamber.

液化不活性ガスが空気と接触すると、空気中の酸素やアルゴン等の成分が液化不活性ガスに溶け込み、液化不活性ガスの組成が変化し、沸点が変動する。例えば、分散媒として液体窒素を使用する場合、大気圧下で、窒素の沸点は-195.79℃であるのに対し、酸素の沸点は-182.96℃であり、アルゴンの沸点は-185.85℃であるから、酸素やアルゴンが混入した分散媒の沸点が上昇する要因になる。本発明の湿式媒体粉砕方法では、粉砕室の混合物の界面を液化不活性ガスの蒸気層で覆うことにより、混合物中の液化不活性ガスが空気と接触することをできる限り防止する。また、混合物を覆う液化不活性ガスの蒸気層を介して、粉砕室に液化不活性ガスを供給すると、混合物の液面に気泡が発生しても、この気泡に空気中の酸素やアルゴン等の成分が混入することを防止することができる。これにより、本発明の湿式媒体粉砕方法によれば、粉砕室の温度が上昇することを防止し、粉砕を促進することができる。 When the liquefied inert gas comes into contact with air, components such as oxygen and argon in the air dissolve in the liquefied inert gas, the composition of the liquefied inert gas changes, and the boiling point fluctuates. For example, when liquid nitrogen is used as a dispersion medium, the boiling point of nitrogen is 195.79 ° C., the boiling point of oxygen is 182.96 ° C., and the boiling point of argon is -185 under atmospheric pressure. Since it is .85 ° C, it becomes a factor that raises the boiling point of the dispersion medium mixed with oxygen and argon. In the wet medium pulverization method of the present invention, the interface of the mixture in the pulverization chamber is covered with the vapor layer of the liquefied inert gas to prevent the liquefied inert gas in the mixture from coming into contact with air as much as possible. Further, when the liquefied inert gas is supplied to the pulverization chamber through the vapor layer of the liquefied inert gas covering the mixture, even if bubbles are generated on the liquid surface of the mixture, oxygen, argon, etc. in the air are added to the bubbles. It is possible to prevent the components from being mixed. Thereby, according to the wet medium pulverization method of the present invention, it is possible to prevent the temperature of the pulverization chamber from rising and promote pulverization.

本発明の湿式媒体粉砕方法によれば、液化不活性ガスと被粉砕材料と粉砕媒体の混合物の粉砕室内の最適液面高さを予め設定し、この時の混合物の重量と粉砕室を画成するベッセルの重量との合計重量が粉砕中に維持され、かつ、分散媒の温度が低下するように、低温の液化不活性ガスを供給するのみで、粉砕中の液化不活性ガスの蒸発分が補充され、粉砕を継続することができる。よって、粉砕工程を容易に自動化することができる。 According to the wet medium crushing method of the present invention, the optimum liquid level height in the crushing chamber of the mixture of the liquefied inert gas, the material to be crushed and the crushing medium is set in advance, and the weight of the mixture and the crushing chamber at this time are defined. Only by supplying a low temperature liquefied inert gas so that the total weight with the weight of the vessel is maintained during grinding and the temperature of the dispersion medium is lowered, the evaporation amount of the liquefied inert gas during grinding is reduced. It can be replenished and continued to grind. Therefore, the crushing process can be easily automated.

本発明の湿式媒体粉砕方法によれば、粉砕室の外装温度を検知することにより、粉砕室内の温度を推定し、液化不活性ガスの供給時期を選択することができる。したがって、混合物の撹拌中に、粉砕室の外装温度が予め設定された温度に達すると、粉砕室に低温の液化不活性ガスを供給して、粉砕を促進し、また、混合物とベッセルの合計重量が予め設定された重量に達すると、粉砕室への低温の液化不活性ガスの供給を停止して、液化不活性ガスが粉砕室から溢れることを防止することができる。よって、粉砕工程を容易に自動化することができる。 According to the wet medium pulverization method of the present invention, the temperature inside the pulverization chamber can be estimated by detecting the exterior temperature of the pulverization chamber, and the supply timing of the liquefied inert gas can be selected. Therefore, when the exterior temperature of the crushing chamber reaches a preset temperature during stirring of the mixture, a low temperature liquefied inert gas is supplied to the crushing chamber to promote crushing and also the total weight of the mixture and vessel. When the weight reaches a preset weight, the supply of the low-temperature liquefied inert gas to the crushing chamber can be stopped to prevent the liquefied inert gas from overflowing from the crushing chamber. Therefore, the crushing process can be easily automated.

本発明の湿式媒体粉砕方法によれば、粉砕室に供給される液化不活性ガスの温度が予め設定された温度よりも上昇し、異常判定がなされると、警報を発するように構成することができる。警報の発出により、粉砕装置を停止すれば、温度上昇によって粘度低下を生じた液化不活性ガスが粉砕室に供給されることを防止することができる。これにより、粉砕室内の液化不活性ガスの粘度低下を防ぎ、湿式媒体粉砕中に粉砕媒体(ビーズ)に付与される推力の低下を防ぐことができるから、所期の粉砕結果を得ることができる。 According to the wet medium pulverization method of the present invention, the temperature of the liquefied inert gas supplied to the pulverization chamber rises above a preset temperature, and when an abnormality is determined, an alarm is issued. can. If the crushing device is stopped by issuing an alarm, it is possible to prevent the liquefied inert gas whose viscosity has decreased due to the temperature rise from being supplied to the crushing chamber. As a result, it is possible to prevent the viscosity of the liquefied inert gas in the crushing chamber from decreasing and to prevent the thrust applied to the pulverizing medium (beads) from decreasing during the wet medium pulverization, so that the desired pulverization result can be obtained. ..

本発明の湿式媒体粉砕方法では、懸濁液の分散媒として、液化不活性ガスとして汎用されている液体窒素の他、液体ヘリウム、液体ネオン、液体アルゴン等の常温で化学的に不活性な、低温の液体を使用することもできる。 In the wet medium pulverization method of the present invention, as a dispersion medium for a suspension, in addition to liquid nitrogen which is widely used as a liquefied inert gas, liquid helium, liquid neon, liquid argon and the like are chemically inert at room temperature. Cold liquids can also be used.

本発明の湿式媒体粉砕方法では、粉砕媒体として、アルミナ、メノウ、ジルコニア、窒化珪素、チタニア等の材料で構成されたセラミックビーズ又はボール、スチール、タングステンカーバイト、ステンレス鋼等の材料で構成された金属ビーズ又はボール、ソーダガラス、石英ガラス等の材料で構成されたガラス系ビーズ又はボール、ウレタン等の材料で構成された樹脂ビーズ又はボールといった一般的に使用されている粉砕ビーズ又は粉砕ボールの他、ドライアイス(固体二酸化炭素)の塊状体又は成形体又は粒状体を使用することもできる。 In the wet medium crushing method of the present invention, the crushing medium is made of ceramic beads or balls, steel, tungsten carbide, stainless steel, etc., which are made of materials such as alumina, menow, zirconia, silicon nitride, and titania. Other commonly used crushed beads or balls such as metal beads or balls, glass beads or balls made of materials such as soda glass and quartz glass, and resin beads or balls made of materials such as urethane. , Agglomerates or moldings or granules of dry ice (solid carbon dioxide) can also be used.

本発明の湿式媒体粉砕方法によれば、例えば、医薬品、医薬品添加剤、樹脂、金属、セラミック又はガラス、その他、種々の医療用及び産業用原材料を粉砕することができる。 According to the wet medium crushing method of the present invention, for example, pharmaceuticals, pharmaceutical additives, resins, metals, ceramics or glass, and various other medical and industrial raw materials can be crushed.

本発明のその他の目的、構成及び作用効果は、以下の説明から明らかになる。 Other purposes, configurations and effects of the present invention will be clarified from the following description.

図1は、本発明の湿式媒体粉砕方法を実施するための縦型ビーズミルのベッセルの一実施例の縦断面図である。FIG. 1 is a vertical cross-sectional view of an embodiment of a vertical bead mill vessel for carrying out the wet medium pulverization method of the present invention. 図2は、本発明の湿式媒体粉砕方法を常温常圧下で実施している状態の図1のベッセルの縦断面図である。FIG. 2 is a vertical cross-sectional view of the vessel of FIG. 1 in a state where the wet medium pulverization method of the present invention is carried out under normal temperature and pressure. 図3は、本発明の湿式媒体粉砕方法を実施する縦型ビーズミル等の粉砕装置に液体窒素を供給する液体窒素供給装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a liquid nitrogen supply device that supplies liquid nitrogen to a crusher such as a vertical bead mill that implements the wet medium crushing method of the present invention. 図4は、図2の液体窒素供給装置の弁開度と供給圧力の実施例を示す表である。FIG. 4 is a table showing an example of the valve opening degree and the supply pressure of the liquid nitrogen supply device of FIG. 図5は、粉砕室の外装温度と粉砕室内の混合物の温度との対比表である。FIG. 5 is a comparison table between the exterior temperature of the crushing chamber and the temperature of the mixture in the crushing chamber. 図6は、Brookhaven National LaboratoryのSELECTED CRYOGENIC DATA NOTEBOOKのVI. PROPERTIIES OF NITROGEN VI-J-1.2に掲載された液体窒素の温度と粘度の関係を示す線図である。FIG. 6 shows the VI of Brookhaven National Laboratory's SELECTED CRYOGENIC DATA NOTEBOOK. FIG. 6 is a diagram showing the relationship between temperature and viscosity of liquid nitrogen published in PROPERTIIES OF NITROGEN VI-J-1.2. 図7は、S.ForsterのViscosity Measurements in Liquid Neon, Argon and Nitrogen, Cryogenics, Vol.3, 176-177(1963)に記載された液体窒素の粘度と温度の関係を示す表である。FIG. 7 shows S. Forester's Viscosity Measurements in Liquid Neon, Argon and Nitrogen, Cryogenics, Vol. 3, 176-177 (1963) is a table showing the relationship between the viscosity and temperature of liquid nitrogen. 図8は、大気圧下での窒素-酸素の状態図である。FIG. 8 is a phase diagram of nitrogen-oxygen under atmospheric pressure. 図9は、粘度測定装置の概略断面図である、FIG. 9 is a schematic cross-sectional view of the viscosity measuring device. 図10は、アメリカ国立標準技術研究所(NIST)のNIST Standard Reference Database 12 Version 5.0 のThermodynamic and Transport Properties of Pure Fluidsから取得した液体窒素の粘度データと、図7の表に示した数値との対照表である。FIG. 10 shows the viscosity data of liquid nitrogen obtained from the National Institute of Standards and Technology (NIST) NIST Standard Reference Database 12 Version 5.0 Thermodynamic and Transport Properties of Pure Fluids, and the viscosity data of liquid nitrogen. It is a comparison table of. 図11は、本発明の湿式媒体粉砕方法によってポリエチレンナフタレート(製造会社及び品番不明)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 11 is a table showing the crushing conditions when polyethylene naphthalate (manufacturing company and product number unknown) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. .. 図12は、本発明の湿式媒体粉砕方法によってポリエステル(日本エステル(株)ER6640)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 12 is a table showing the crushing conditions when polyester (ER6640, Nippon Ester Co., Ltd.) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図13は、本発明の湿式媒体粉砕方法によってポリエステル(ユニチカ(株)NEH2050)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 13 is a table showing the crushing conditions when polyester (NEH2050, Unitika Ltd.) is crushed by the wet medium crushing method of the present invention, the grain size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図14は、本発明の湿式媒体粉砕方法によってポリイミド(三井化学(株)PD450)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 14 is a table showing the crushing conditions when the polyimide (PD450 of Mitsui Chemicals, Inc.) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図15は、本発明の湿式媒体粉砕方法によってポリイミド(三井化学(株)PD450)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 15 is a table showing the crushing conditions when the polyimide (PD450 of Mitsui Chemicals, Inc.) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図16は、本発明の湿式媒体粉砕方法によって炭酸カルシウム(日東粉化工業(株)NN#200)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 16 shows the crushing conditions when calcium carbonate (NN # 200 of Nitto Powder Industry Co., Ltd.) was crushed by the wet medium crushing method of the present invention, the grain size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. It is a table showing. 図17は、本発明の湿式媒体粉砕方法によって炭酸カルシウム(日東粉化工業(株)NN#200)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 17 shows the crushing conditions when calcium carbonate (NN # 200 of Nitto Powder Industry Co., Ltd.) was crushed by the wet medium crushing method of the present invention, the grain size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. It is a table showing. 図18は、本発明の湿式媒体粉砕方法によって炭酸カルシウム(日東粉化工業(株)NN#200)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 18 shows the crushing conditions when calcium carbonate (NN # 200 of Nitto Powder Industry Co., Ltd.) was crushed by the wet medium crushing method of the present invention, the grain size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. It is a table showing. 図19は、本発明の湿式媒体粉砕方法によって炭酸カルシウム(日東粉化工業(株)NN#200)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 19 shows the crushing conditions when calcium carbonate (NN # 200 of Nitto Powder Industry Co., Ltd.) was crushed by the wet medium crushing method of the present invention, the grain size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. It is a table showing. 図20は、本発明の湿式媒体粉砕方法によってフライアッシュ(標準粉体JIS5種)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 20 is a table showing the crushing conditions when the fly ash (standard powder JIS 5 type) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図21は、本発明の湿式媒体粉砕方法によってケイ素(水澤化学工業(株)MIZUKASIL)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 21 is a table showing crushing conditions when silicon (MIZUKASIL, Mizusawa Industrial Chemicals Co., Ltd.) is crushed by the wet medium crushing method of the present invention, the particle sizes of raw materials and crushed products, and the exterior temperature of the crushing chamber during crushing. .. 図22は、本発明の湿式媒体粉砕方法によってガリウム(製造会社及び品番不明)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 22 is a table showing the crushing conditions when gallium (manufacturing company and product number unknown) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図23は、本発明の湿式媒体粉砕方法によってナイロン(製造会社及び品番不明)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 23 is a table showing the crushing conditions when nylon (manufacturing company and product number unknown) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図24は、本発明の湿式媒体粉砕方法によって液晶ポリマー(製造会社及び品番不明)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 24 is a table showing the crushing conditions when the liquid crystal polymer (manufacturing company and product number unknown) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図25は、本発明の湿式媒体粉砕方法によってゴム(製造会社及び品番不明)を粉砕したときの粉砕条件、原料と粉砕品の粒度及び粉砕中の粉砕室の外装温度を示す表である。FIG. 25 is a table showing the crushing conditions when rubber (manufacturing company and product number unknown) is crushed by the wet medium crushing method of the present invention, the particle size of the raw material and the crushed product, and the exterior temperature of the crushing chamber during crushing. 図26は、本発明の湿式媒体粉砕方法によってフェニトインを粉砕するときの粉砕前後の相転移熱含量(ΔH)を比較するための粉砕実験条件を示す表である。FIG. 26 is a table showing crushing experimental conditions for comparing the phase transition heat content (ΔH) before and after crushing when phenytoin is crushed by the wet medium crushing method of the present invention. 図27は、本発明の湿式媒体粉砕方法によってフェニトインを粉砕したときの粉砕前後の粒度を示す表である。FIG. 27 is a table showing the particle size before and after pulverization when phenytoin is pulverized by the wet medium pulverization method of the present invention. 図28は、本発明の湿式媒体粉砕方法によってフェニトインを粉砕したときの粉砕前と粉砕後の相転移熱含量(ΔH)をそれぞれ示す表である。FIG. 28 is a table showing the phase transition heat content (ΔH) before and after pulverization when phenytoin is pulverized by the wet medium pulverization method of the present invention.

液体窒素を分散媒とし、種々のメディア径のジルコニアビーズを粉砕媒体として、縦型ビーズミルで種々の医療用又は産業用原材料を粉砕し、分散媒の粘度と粉砕結果の関係を検証した。また、液体窒素を分散媒とし、メディア径φ0.3mmのジルコニアビーズを粉砕媒体として、フェニトインを粉砕し、粉砕前後のフェニトインの相転移熱含量ΔH(J/g)を比較して、粉砕中に粉砕室の混合物を液化不活性ガスの蒸気層で覆うことの効果を検証した。 Various medical or industrial raw materials were crushed with a vertical bead mill using liquid nitrogen as a dispersion medium and zirconia beads of various media diameters as a crushing medium, and the relationship between the viscosity of the dispersion medium and the crushing result was verified. Further, phenitoin was crushed using liquid nitrogen as a dispersion medium and zirconia beads having a media diameter of φ0.3 mm as a crushing medium, and the phase transition heat content ΔH (J / g) of phenitoin before and after crushing was compared during crushing. The effect of covering the mixture in the crushing chamber with a vapor layer of liquefied inert gas was verified.

図1に示すように、縦型ビーズミル(図示せず。)のベッセル1は、断熱用真空層ジャケット2で囲繞された粉砕室3を有する。断熱用真空層ジャケット2は、粉砕室3の側壁4の外面4aと底壁5の外面5aに沿って、真空断熱層6を形成する。真空断熱層6は、粉砕室3をベッセル1の周囲の大気から断熱する。粉砕室3は、側壁4の上縁部4bによって囲繞された開口部3aを有する。ベッセル1は、ビーズミルの運転中に粉砕室3の開口部3aを閉鎖するための蓋体7を備える。蓋体7は、その中央部に、ビーズミルの回転軸10を通すための回転軸挿通孔7aを有し、更に、回転軸挿通孔7aから半径方向に距離をおいて、液体窒素供給孔7bとフロート挿入孔兼窒素ガス排出孔7cを有する。 As shown in FIG. 1, the vessel 1 of the vertical bead mill (not shown) has a crushing chamber 3 surrounded by a heat insulating vacuum layer jacket 2. The heat insulating vacuum layer jacket 2 forms the vacuum heat insulating layer 6 along the outer surface 4a of the side wall 4 of the crushing chamber 3 and the outer surface 5a of the bottom wall 5. The vacuum heat insulating layer 6 insulates the crushing chamber 3 from the atmosphere around the vessel 1. The crushing chamber 3 has an opening 3a surrounded by an upper edge 4b of the side wall 4. The vessel 1 includes a lid 7 for closing the opening 3a of the crushing chamber 3 during the operation of the bead mill. The lid 7 has a rotary shaft insertion hole 7a for passing the rotary shaft 10 of the bead mill in the central portion thereof, and is further separated from the rotary shaft insertion hole 7a in the radial direction with the liquid nitrogen supply hole 7b. It has a float insertion hole and a nitrogen gas discharge hole 7c.

撹拌ディスク11a、11b、11c、11dは、回転軸10に間隔を置いて固定され、撹拌ディスク11a、11b、11c、11dは、回転軸10がその中心軸線の周りに回転すると、回転軸10と共に回転する。回転軸10は、電動モータ(図示せず。)によって、任意の回転数で回転する。 The stirring discs 11a, 11b, 11c, 11d are spaced apart from the rotating shaft 10, and the stirring discs 11a, 11b, 11c, 11d are together with the rotating shaft 10 when the rotating shaft 10 rotates around its central axis. Rotate. The rotary shaft 10 is rotated at an arbitrary rotation speed by an electric motor (not shown).

この縦型ビーズミルの仕様は、次のとおりである。
(1)ベッセル1の粉砕室3の容量:3リットル
(2)ベッセル1:断熱用真空層ジャケット2付きベッセル
(3)電動モータの出力:0.75KW
(4)電動モータの最高回転数:3000rpm
(5)撹拌ディスク11a-11dの最高周速:14m/秒
(6)撹拌ディスク11a-11dの接粉部の材質:SUS304
The specifications of this vertical bead mill are as follows.
(1) Capacity of crushing chamber 3 of vessel 1: 3 liters (2) Vessel 1: Vessel with vacuum layer jacket 2 for heat insulation (3) Output of electric motor: 0.75KW
(4) Maximum rotation speed of electric motor: 3000 rpm
(5) Maximum peripheral speed of stirring disk 11a-11d: 14 m / sec (6) Material of dust contact part of stirring disk 11a-11d: SUS304

粉砕室3の外装温度を計測するため、粉砕室3の側壁4の外面4aに熱電対式又は測温抵抗体式の温度計12aを取り付けた。温度計12aは、断熱用真空層ジャケット2の真空断熱層6の内部に位置する。温度計12aで計測された粉砕室3の外装温度が、粉砕室3に仕込まれた液体窒素20(図2参照)と被粉砕材料(図示せず。)と粉砕媒体(ビーズ)(図示せず。)の混合物13の温度に対応するように、温度計12aは、粉砕開始時の混合物13の最適な液面高さ13aよりも下方に設置される。参照番号13bは、最上位に位置する撹拌ディスク11aの上面の高さを示す。 In order to measure the exterior temperature of the crushing chamber 3, a thermocouple type or temperature measuring resistor type thermometer 12a was attached to the outer surface 4a of the side wall 4 of the crushing chamber 3. The thermometer 12a is located inside the vacuum heat insulating layer 6 of the heat insulating vacuum layer jacket 2. The exterior temperature of the crushing chamber 3 measured by the thermometer 12a is the liquid nitrogen 20 (see FIG. 2), the material to be crushed (not shown), and the crushing medium (beads) (not shown) charged in the crushing chamber 3. The thermometer 12a is installed below the optimum liquid level height 13a of the mixture 13 at the start of pulverization so as to correspond to the temperature of the mixture 13 of.). Reference number 13b indicates the height of the upper surface of the stirring disk 11a located at the highest level.

温度計12aの仕様は次のとおりである。
(1)白金測温抵抗体 RESUSTABCE THERMOMETER
(2)林電工株式会社 Pt100-B-2-L 139293-11-001
The specifications of the thermometer 12a are as follows.
(1) Platinum resistance temperature detector RESUSTABCE THERMOMETER
(2) Hayashi Denko Co., Ltd. Pt100-B-2-L 139293-11-001

ベッセル1の断熱用真空層ジャケット2の底面2aは、ロードセル14によって支持されている。
ロードセル14は、ベッセル1、蓋体7、温度計12a、フロートスケール15等の機器類の静荷重を計測することができるほか、粉砕室3に仕込まれる液体窒素20、粉砕媒体(図示せず。)、被粉砕材料(図示せず。)の静荷重を個々に計測することができる。また、ロードセル14は、粉砕室3に仕込まれた液体窒素20と粉砕媒体(図示せず。)と被粉砕材料(図示せず。)の混合物13の静荷重を計測することができる。
ロードセル14によって計測される運転開始直前の静荷重と運転中の動荷重の主要な構成要素は、共に、ベッセルの重量と、蓋体7の重量と、液体窒素供給用の配管18の重量と、窒素ガス排出用の配管19と、液化不活性ガス又は液体窒素20の重量と、被粉砕材料(図示せず。)の重量と、粉砕媒体(図示せず。)の重量の合計重量である。よって、本願中、ベッセル又はベッセル1の重量、合計重量及び動荷重とは、主に、ベッセル1と、蓋体7と、液体窒素供給用の配管18と、窒素ガス排出用の配管19と、液化不活性ガス又は液体窒素20と、被粉砕材料(図示せず。)と、粉砕媒体(図示せず。)の重量を含む意味で使用される。
なお、フロートスケール15は発砲スチロール製のため、極めて軽量である。
ロードセル14は、図2に示すように、縦型ビーズミルの回転軸10を回転させ、撹拌ディスク11a、11b、11c、11dで混合物13を撹拌しているときのベッセル1の動荷重を計測することができる。図2中、参照番号16は、ロードセル14を支持する固定面を示し、参照番号17は、撹拌ディスク11a、11b、11c、11dによって撹拌されている混合物13の液面を示す。
The bottom surface 2a of the heat insulating vacuum layer jacket 2 of the vessel 1 is supported by the load cell 14.
The load cell 14 can measure the static load of equipment such as the vessel 1, the lid 7, the thermometer 12a, and the float scale 15, as well as the liquid nitrogen 20 charged in the crushing chamber 3 and the crushing medium (not shown). ), The static load of the material to be crushed (not shown) can be measured individually. Further, the load cell 14 can measure the static load of the mixture 13 of the liquid nitrogen 20 charged in the crushing chamber 3, the crushing medium (not shown), and the material to be crushed (not shown).
The main components of the static load immediately before the start of operation and the dynamic load during operation measured by the load cell 14 are the weight of the vessel, the weight of the lid 7, and the weight of the pipe 18 for supplying liquid nitrogen. It is the total weight of the pipe 19 for discharging nitrogen gas, the weight of the liquefied inert gas or liquid nitrogen 20, the weight of the material to be crushed (not shown), and the weight of the crushing medium (not shown). Therefore, in the present application, the weight, total weight, and dynamic load of the vessel or vessel 1 mainly refer to the vessel 1, the lid 7, the pipe 18 for supplying liquid nitrogen, and the pipe 19 for discharging nitrogen gas. It is used to include the weight of a liquefied inert gas or liquid nitrogen 20, a material to be crushed (not shown), and a crushing medium (not shown).
Since the float scale 15 is made of styrofoam, it is extremely lightweight.
As shown in FIG. 2, the load cell 14 rotates the rotating shaft 10 of the vertical bead mill and measures the dynamic load of the vessel 1 when the mixture 13 is stirred by the stirring disks 11a, 11b, 11c, 11d. Can be done. In FIG. 2, reference number 16 indicates a fixed surface supporting the load cell 14, and reference number 17 indicates the liquid level of the mixture 13 being stirred by the stirring disks 11a, 11b, 11c, 11d.

ロードセル14の仕様は、次のとおりである。
(1)ユニパルス株式会社
(2)ハーメチックシール型ステンレス製シングルポイントロードセル USC-50KG
(3)定格容量:50Kg
The specifications of the load cell 14 are as follows.
(1) Unipulse Corporation (2) Hermetically sealed stainless steel single point load cell USC-50KG
(3) Rated capacity: 50 kg

フロートスケール15の仕様は、次のとおりである。
(1)材質:発砲スチロール(ポリスチレン)
(2)全長:200mm(1mm単位の目盛が表記されている。)
(3)直径:10mm
The specifications of the float scale 15 are as follows.
(1) Material: Styrofoam (polystyrene)
(2) Total length: 200 mm (scales in 1 mm units are shown)
(3) Diameter: 10 mm

図2中、参照番号18は液体窒素供給用の配管を示し、参照番号19は窒素ガス排出用の配管を示す。液体窒素供給用の配管18は、粉砕開始前に粉砕室3に液体窒素20を仕込むときに、蓋体7の液体窒素供給孔7bに連結され、粉砕が終了するまで、液体窒素供給孔7bに連結されている。液体窒素供給用の配管18には熱電対式又は測温抵抗体式の温度計12bを取り付けることができる。温度計12bによって、液体窒素供給用の配管18を通って粉砕室3に供給される液体窒素20の温度を検出することができる。温度計12bの仕様は、温度計12aの仕様と同様である。
窒素ガス排出用の配管19は、蓋体7のフロート挿入孔兼窒素ガス排出孔7cに連結される。図1に示すように、粉砕開始前、フロート挿入孔兼窒素ガス排出孔7cには、フロートスケール15が挿入され、粉砕室3中の混合物13の最適な液面高さ13aが設定される。窒素ガス排出用の配管19は、後述のように、フロートスケール15を取り出し、被粉砕材料(図示せず。)を投入した後に、フロート挿入孔兼窒素ガス排出孔7cに連結される。窒素ガス排出用の配管19は、粉砕が終了するまで、フロート挿入孔兼窒素ガス排出孔7cに連結されている。
In FIG. 2, reference number 18 indicates a pipe for supplying liquid nitrogen, and reference number 19 indicates a pipe for discharging nitrogen gas. The liquid nitrogen supply pipe 18 is connected to the liquid nitrogen supply hole 7b of the lid 7 when the liquid nitrogen 20 is charged into the crushing chamber 3 before the start of crushing, and stays in the liquid nitrogen supply hole 7b until the crushing is completed. It is connected. A thermocouple type or temperature measuring resistor type thermometer 12b can be attached to the pipe 18 for supplying liquid nitrogen . The thermometer 12b can detect the temperature of the liquid nitrogen 20 supplied to the crushing chamber 3 through the pipe 18 for supplying the liquid nitrogen. The specifications of the thermometer 12b are the same as the specifications of the thermometer 12a.
The nitrogen gas discharge pipe 19 is connected to the float insertion hole and nitrogen gas discharge hole 7c of the lid 7. As shown in FIG. 1, before the start of pulverization, the float scale 15 is inserted into the float insertion hole and nitrogen gas discharge hole 7c, and the optimum liquid level height 13a of the mixture 13 in the pulverization chamber 3 is set. As will be described later, the nitrogen gas discharge pipe 19 is connected to the float insertion hole and nitrogen gas discharge hole 7c after the float scale 15 is taken out and the material to be pulverized (not shown) is charged. The nitrogen gas discharge pipe 19 is connected to the float insertion hole and the nitrogen gas discharge hole 7c until the pulverization is completed.

図3に示すように、液体窒素20の貯蔵タンク31は、支持部材32、33に支持されて、密封容器34の内部に設置されている。貯蔵タンク31の外面と密封容器34の内面の間には真空断熱層35が形成されている。真空断熱層35は、密封容器34の周囲の大気から、貯蔵タンク31の内部に熱が侵入することを防止するために形成されている。しかし、密封容器34の周囲の熱は支持部材32、33から貯槽タンク31に伝達され、貯槽タンク31の液体窒素20を加熱する。この結果、貯槽タンク31の内部空間の上部に窒素ガス20aが滞留する。貯蔵タンク31の窒素ガス20aが所定の圧力以上に昇圧することを防止するため、貯蔵タンク31に放出弁や安全弁(図示せず。)を設けることができる。 As shown in FIG. 3, the storage tank 31 for liquid nitrogen 20 is supported by the support members 32 and 33 and installed inside the sealed container 34. A vacuum heat insulating layer 35 is formed between the outer surface of the storage tank 31 and the inner surface of the sealed container 34. The vacuum heat insulating layer 35 is formed to prevent heat from entering the inside of the storage tank 31 from the atmosphere around the sealed container 34. However, the heat around the sealed container 34 is transferred from the support members 32 and 33 to the storage tank 31, and heats the liquid nitrogen 20 in the storage tank 31. As a result, the nitrogen gas 20a stays in the upper part of the internal space of the storage tank 31. In order to prevent the nitrogen gas 20a of the storage tank 31 from being boosted to a predetermined pressure or higher, a release valve or a safety valve (not shown) can be provided in the storage tank 31.

図3に示すように、液体窒素20の貯蔵タンク31の液体窒素流出口31aは、液体窒素搬送用の配管36を介して、気液分離器37の液体窒素充填口37aに連結される。液体窒素搬送用の配管36は、貯蔵タンク31と同様に真空断熱層(図示せず。)によって覆われた真空断熱配管である。配管36には主供給弁38が介装され、主供給弁38の下流側には圧力計40が取り付けられている。配管36は、主供給弁38の上流側で分岐し、かつ、主供給弁38の下流側で合流する、分岐管36aを有する。分岐管36aには流量調整弁41が介装され、流量調整弁41の上流側には、電磁弁42が介装される。電磁弁42は分岐管36aの開閉のみを行う。図4に、主供給弁38と流量調整弁41の弁開度の一例と、かかる弁開度における圧力計40の計測値を示す。圧力計40の計測値は、配管36内の液体窒素20の供給圧力を示す。このとき、電磁弁42は全開である。 As shown in FIG. 3, the liquid nitrogen outlet 31a of the storage tank 31 of the liquid nitrogen 20 is connected to the liquid nitrogen filling port 37a of the gas-liquid separator 37 via a pipe 36 for transporting liquid nitrogen. The pipe 36 for transporting liquid nitrogen is a vacuum heat insulating pipe covered with a vacuum heat insulating layer (not shown) like the storage tank 31. A main supply valve 38 is interposed in the pipe 36, and a pressure gauge 40 is attached to the downstream side of the main supply valve 38. The pipe 36 has a branch pipe 36a that branches on the upstream side of the main supply valve 38 and joins on the downstream side of the main supply valve 38. A flow rate adjusting valve 41 is interposed in the branch pipe 36a, and a solenoid valve 42 is interposed on the upstream side of the flow rate adjusting valve 41. The solenoid valve 42 only opens and closes the branch pipe 36a. FIG. 4 shows an example of the valve opening degree of the main supply valve 38 and the flow rate adjusting valve 41, and the measured value of the pressure gauge 40 at the valve opening degree. The measured value of the pressure gauge 40 indicates the supply pressure of the liquid nitrogen 20 in the pipe 36. At this time, the solenoid valve 42 is fully open.

図3に示すように、気液分離器37は全体として中空の筒状容器37bから成り、液体窒素搬送用の配管36が連結される液体窒素充填口37aは、筒状容器37bの側面に開口する。筒状容器37bの内部には気液分離室37cが画成され、気液分離室37cには衝突板37dと整流板37eが取り付けられている。液体窒素充填口37aから気液分離室37cに吐出された液体窒素20が衝突板37dに当たるように、衝突板37dは液体窒素充填口37aに対向する位置に取り付けられている。液体窒素充填口37aから気液分離室37cに吐出された液体窒素20には、未だ窒素ガス20aが混在するが、衝突板37dに当たった時の衝撃で、液体窒素20中の窒素ガス20aは概ね脱気される。脱気された窒素ガス20aは、気液分離室37cの天井部に開口した窒素ガス排出口37fから大気中に放散する。衝突板37dに当たり窒素ガス20aを脱気された液体窒素20は、気液分離室37cを自重で落下し、整流板37eに至る。整流板37eには直径3mmの細孔Pが多数形成されている。液体窒素20はこれらの細孔Pを通過する時に、液体窒素20中の窒素ガス20aを更に脱気され、気液分離室37cの底部に形成された液体窒素排出口37gから、液体窒素供給用の配管18を通って、蓋体7の液体窒素供給孔7bに流入し、ベッセル1の粉砕室3に供給される。 As shown in FIG. 3, the gas-liquid separator 37 is composed of a hollow tubular container 37b as a whole, and the liquid nitrogen filling port 37a to which the pipe 36 for transporting liquid nitrogen is connected is opened on the side surface of the tubular container 37b. do. A gas-liquid separation chamber 37c is defined inside the tubular container 37b, and a collision plate 37d and a rectifying plate 37e are attached to the gas-liquid separation chamber 37c. The collision plate 37d is attached at a position facing the liquid nitrogen filling port 37a so that the liquid nitrogen 20 discharged from the liquid nitrogen filling port 37a into the gas-liquid separation chamber 37c hits the collision plate 37d. Nitrogen gas 20a is still mixed in the liquid nitrogen 20 discharged from the liquid nitrogen filling port 37a to the gas-liquid separation chamber 37c, but the nitrogen gas 20a in the liquid nitrogen 20 is generated by the impact when it hits the collision plate 37d. Mostly degassed. The degassed nitrogen gas 20a is released into the atmosphere from the nitrogen gas discharge port 37f opened in the ceiling of the gas-liquid separation chamber 37c. The liquid nitrogen 20 that hits the collision plate 37d and is degassed from the nitrogen gas 20a falls down the gas-liquid separation chamber 37c by its own weight and reaches the straightening vane 37e. A large number of pores P having a diameter of 3 mm are formed on the straightening vane 37e. When the liquid nitrogen 20 passes through these pores P, the nitrogen gas 20a in the liquid nitrogen 20 is further degassed, and the liquid nitrogen is supplied from the liquid nitrogen outlet 37 g formed at the bottom of the gas-liquid separation chamber 37c. It flows into the liquid nitrogen supply hole 7b of the lid 7 and is supplied to the crushing chamber 3 of the vessel 1 through the pipe 18.

液体窒素20を分散媒として、本発明の湿式媒体粉砕方法を実施するには、先ず、ベッセル1の粉砕室3にビーズ等の粉砕媒体(図示せず。)を所定量投入する。次に、ベッセル1に蓋体7を装着し、気液分離器37から、液体窒素供給用の配管18と蓋体7の液体窒素供給孔7bを通して、粉砕室3に所定量の液体窒素20を供給し、クールダウンを行う。次いで、蓋体7のフロート挿入孔兼窒素ガス排出孔7cにフロートスケール15を挿入し、フロート挿入孔兼窒素ガス排出孔7cの上縁部を基準にしてフロートスケール15の目盛を読み取る。更に、フロートスケール15の目盛を目視しながら、液体窒素供給孔7bから粉砕室3に液体窒素20を供給し、フロートスケール15の目盛が186mmに達した時に液体窒素20の供給を停止する。このとき、粉砕室3の液体窒素20の液面13aは、最上位に位置する撹拌ディスク11aの上面の高さ13bから20mm高くなるので、これを液体窒素20の適正液面とした。図1中、A=166mm、B=20mmである。次に、フロート挿入孔兼窒素ガス排出孔7cからフロートスケール15を取り除き、フロート挿入孔兼窒素ガス排出孔7cから粉砕室3に所定量の被粉砕材料(図示せず。)を投入する。被粉砕材料(図示せず。)の投入が完了すると、フロート挿入孔兼窒素ガス排出孔7cには窒素ガス排出用の配管19が連結される。窒素ガス排出用の配管19は自然排気用の管路(図示せず。)に連結することもできるし、ブロアー等を設置した強制排気用の管路(図示せず。)に連結することもできる。以上で粉砕の準備が完了する。 In order to carry out the wet medium crushing method of the present invention using liquid nitrogen 20 as a dispersion medium, first, a predetermined amount of a crushing medium (not shown) such as beads is charged into the crushing chamber 3 of the vessel 1. Next, the lid 7 is attached to the vessel 1, and a predetermined amount of liquid nitrogen 20 is supplied to the crushing chamber 3 from the gas-liquid separator 37 through the liquid nitrogen supply pipe 18 and the liquid nitrogen supply hole 7b of the lid 7. Supply and cool down. Next, the float scale 15 is inserted into the float insertion hole / nitrogen gas discharge hole 7c of the lid body 7, and the scale of the float scale 15 is read with reference to the upper edge portion of the float insertion hole / nitrogen gas discharge hole 7c. Further, while visually observing the scale of the float scale 15, the liquid nitrogen 20 is supplied to the crushing chamber 3 from the liquid nitrogen supply hole 7b, and the supply of the liquid nitrogen 20 is stopped when the scale of the float scale 15 reaches 186 mm. At this time, the liquid level 13a of the liquid nitrogen 20 in the crushing chamber 3 is 20 mm higher than the height 13b of the upper surface of the stirring disk 11a located at the uppermost position, so this was set as the appropriate liquid level of the liquid nitrogen 20. In FIG. 1, A = 166 mm and B = 20 mm. Next, the float scale 15 is removed from the float insertion hole / nitrogen gas discharge hole 7c, and a predetermined amount of the material to be crushed (not shown) is charged into the crushing chamber 3 from the float insertion hole / nitrogen gas discharge hole 7c. When the charging of the material to be pulverized (not shown) is completed, the nitrogen gas discharge pipe 19 is connected to the float insertion hole and nitrogen gas discharge hole 7c. The nitrogen gas discharge pipe 19 can be connected to a natural exhaust pipe (not shown) or a forced exhaust pipe (not shown) equipped with a blower or the like. can. This completes the preparation for crushing.

この状態で、回転軸10を回転させて粉砕を開始し、粉砕室3の液体窒素20と被粉砕材料(図示せず。)と粉砕媒体(図示せず。)の混合物13を撹拌ディスク11a、11b、11c、11dによって撹拌する。粉砕開始時の液体窒素20の温度は、ほぼ沸点(-195.79℃)にある。このとき、粉砕開始時のベッセル1の重量(ベッセル動荷重)をロードセル14によって計測し、粉砕開始時のベッセル1の重量(ベッセル動荷重)を得る。 In this state, the rotary shaft 10 is rotated to start crushing, and the mixture 13 of the liquid nitrogen 20 in the crushing chamber 3, the material to be crushed (not shown) and the crushing medium (not shown) is mixed with the stirring disk 11a. Stir with 11b, 11c, 11d. The temperature of liquid nitrogen 20 at the start of pulverization is approximately at the boiling point (-195.79 ° C.). At this time, the weight of the vessel 1 at the start of pulverization (vessel dynamic load) is measured by the load cell 14 to obtain the weight of the vessel 1 at the start of pulverization (vessel dynamic load).

粉砕が進行すると、混合物13の温度は上昇する。混合物13の温度が上昇する原因として、外部から粉砕室3に侵入した熱や、被粉砕材料(図示せず。)と粉砕媒体(図示せず。)との衝突によって発生した熱や、粉砕媒体(図示せず。)同士の衝突によって発生した熱や、粉砕媒体(図示せず。)や被粉砕材料(図示せず。)と撹拌ディスクとの衝突による発熱が考えられる。このうち、外部から粉砕室3に侵入する熱は、主として、側壁4の上縁部4bから侵入する。混合物13の温度は、粉砕室3の側壁4の外面4aに取り付けた温度計12aで計測する。温度計12aで計測された温度は、粉砕室3の外装温度であって、混合物13の温度ではないが、粉砕中の混合物13の温度を直接計測することは困難であるため、粉砕室3の外装温度から粉砕中の混合物13の温度を推定することとした。 As the grinding progresses, the temperature of the mixture 13 rises. The cause of the temperature rise of the mixture 13 is the heat that has entered the crushing chamber 3 from the outside, the heat generated by the collision between the material to be crushed (not shown) and the crushing medium (not shown), and the crushing medium. (Not shown) Heat generated by the collision between each other, or heat generation due to the collision between the crushing medium (not shown) or the material to be crushed (not shown) and the stirring disk can be considered. Of these, the heat that enters the crushing chamber 3 from the outside mainly enters from the upper edge portion 4b of the side wall 4. The temperature of the mixture 13 is measured by a thermometer 12a attached to the outer surface 4a of the side wall 4 of the crushing chamber 3. The temperature measured by the thermometer 12a is the exterior temperature of the crushing chamber 3, not the temperature of the mixture 13, but since it is difficult to directly measure the temperature of the mixture 13 during crushing, the temperature of the crushing chamber 3 is increased. It was decided to estimate the temperature of the mixture 13 being pulverized from the exterior temperature.

図5は、分散媒を水にした場合と、分散媒を液体窒素20にした場合の、粉砕中の粉砕室3の外装温度と、粉砕終了直後の混合物13の液温度との対照表である。同表に記載されているように、いずれの場合も、粉砕中の粉砕室3の外装温度と粉砕終了直後の混合物13の液温度との差は、約40℃であった。 FIG. 5 is a comparison table between the exterior temperature of the crushing chamber 3 during crushing and the liquid temperature of the mixture 13 immediately after the completion of crushing when the dispersion medium is water and the dispersion medium is liquid nitrogen 20. .. As described in the table, in each case, the difference between the exterior temperature of the crushing chamber 3 during crushing and the liquid temperature of the mixture 13 immediately after the completion of crushing was about 40 ° C.

粉砕室3内の液体窒素20は常温常圧下で常に気化しているが、図2に示すように、被粉砕材料(図示せず。)の粉砕が進行し、混合物13の温度が上昇すると、液体窒素20の蒸発量が増大する。粉砕室3内で気化した液体窒素20は、窒素ガス20bとなり、蓋体7のフロート挿入孔兼窒素ガス排出孔7cを経て、窒素ガス排出用の配管19に流出する。
粉砕室3の混合物13を液状に保ち、湿式媒体粉砕を継続するためには、気化した分の液体窒素20を粉砕室3に補充する必要がある。気化した分の液体窒素20は、図3の貯蔵タンク31から供給される。貯蔵タンク31から配管36に流出した液体窒素20は、図2に示すように、液体窒素供給用の配管18から蓋体7の液体窒素供給孔7bに流入する。このとき、液体窒素供給用の配管18の直前に配置された気液分離器37によって、貯蔵タンク31で貯蔵されている間に液体窒素20に混入した窒素ガス20aが分離されるから、気液分離器37の液体窒素排出口37gから粉砕室3に低温の液体窒素20を供給することができる。
The liquid nitrogen 20 in the pulverization chamber 3 is constantly vaporized under normal temperature and pressure, but as shown in FIG. 2, when the pulverization of the material to be pulverized (not shown) progresses and the temperature of the mixture 13 rises, The amount of evaporation of liquid nitrogen 20 increases. The liquid nitrogen 20 vaporized in the crushing chamber 3 becomes nitrogen gas 20b, and flows out to the nitrogen gas discharge pipe 19 through the float insertion hole and nitrogen gas discharge hole 7c of the lid 7.
In order to keep the mixture 13 in the pulverization chamber 3 in a liquid state and continue the wet medium pulverization, it is necessary to replenish the pulverization chamber 3 with the vaporized amount of liquid nitrogen 20. The vaporized amount of liquid nitrogen 20 is supplied from the storage tank 31 of FIG. As shown in FIG. 2, the liquid nitrogen 20 flowing out from the storage tank 31 to the pipe 36 flows into the liquid nitrogen supply hole 7b of the lid 7 from the liquid nitrogen supply pipe 18. At this time, the gas-liquid separator 37 arranged immediately before the liquid nitrogen supply pipe 18 separates the nitrogen gas 20a mixed in the liquid nitrogen 20 while being stored in the storage tank 31, so that the gas-liquid The low-temperature liquid nitrogen 20 can be supplied to the crushing chamber 3 from the liquid nitrogen discharge port 37 g of the separator 37.

図2に示すように、液体窒素供給用の配管18に取り付けた温度計12bによって、液体窒素供給用の配管18を通って粉砕室3に供給される液体窒素20の温度を監視し、所期の温度よりも高い温度の液体窒素20が粉砕室3に流入することを防止することができる。
液体窒素20の温度上昇は、例えば、次のような場合に発生する可能性がある。
(1)気液分離器37の衝突板37dや整流板37eの不具合により、窒素ガス20aの脱気不足が生じたとき
(2)液体窒素貯蔵タンク31の真空断熱層35の不具合により、密封容器34の外部から密封容器34の内部に熱が侵入したとき
(3)液体窒素搬送用の配管(真空断熱配管)36の真空断熱層(図示せず。)の不具合により、配管36の外部から配管36の内部に熱が侵入したとき
(4)液体窒素貯蔵タンク31の破損等により、液体窒素貯蔵タンク31から液体窒素20が漏出し、この結果、液体窒素20の流量が減少して温度が上昇したとき
(5)液体窒素搬送用の配管36の破損等により、配管36から液体窒素20が漏出し、この結果、液体窒素20の流量が減少して温度が上昇したとき
温度計12bが液体窒素20の温度上昇を検知したときには、例えば、次のように処置することができる。温度計12bが予め設定された温度よりも高い異常温度を検知し、その異常温度を予め設定された時間を超えて検知し続けたときに、液体窒素20の温度制御プログラムが異常判定を行い、警報(アラーム)を発する。次いで、主供給弁38を手動で停止し、電磁弁42をインターロック機構(図示せず。)により閉止し、液体窒素20の供給を停止する。そして、インターロック機構の作動により、縦型ビーズミルの稼働を停止させる。
このような構成を採ることにより、温度上昇によって粘度低下を生じた液体窒素20が粉砕室3に供給されることを防止することができるから、粉砕室3内の液体窒素の粘度の低下を防ぐことができる。これにより、湿式媒体粉砕中に粉砕媒体(ビーズ)に付与される推力を維持し、所期の粉砕結果を得ることができる。
As shown in FIG. 2, the temperature of the liquid nitrogen 20 supplied to the crushing chamber 3 through the liquid nitrogen supply pipe 18 is monitored by the thermometer 12b attached to the liquid nitrogen supply pipe 18. It is possible to prevent liquid nitrogen 20 having a temperature higher than the temperature of the period from flowing into the crushing chamber 3.
The temperature rise of liquid nitrogen 20 may occur, for example, in the following cases.
(1) When the nitrogen gas 20a is insufficiently degassed due to a defect in the collision plate 37d or the rectifying plate 37e of the gas-liquid separator 37 (2) A sealed container due to a defect in the vacuum heat insulating layer 35 of the liquid nitrogen storage tank 31. When heat invades the inside of the sealed container 34 from the outside of the 34 (3) Due to a defect in the vacuum heat insulating layer (not shown) of the liquid nitrogen transport pipe (vacuum heat insulating pipe) 36, the pipe is piped from the outside of the pipe 36. When heat invades the inside of 36 (4) Liquid nitrogen 20 leaks from the liquid nitrogen storage tank 31 due to damage to the liquid nitrogen storage tank 31, and as a result, the flow rate of the liquid nitrogen 20 decreases and the temperature rises. (5) Liquid nitrogen 20 leaks from the pipe 36 due to damage to the pipe 36 for transporting liquid nitrogen, and as a result, when the flow rate of the liquid nitrogen 20 decreases and the temperature rises, the thermometer 12b displays the liquid nitrogen. When the temperature rise of 20 is detected, for example, the following measures can be taken. When the thermometer 12b detects an abnormal temperature higher than the preset temperature and continues to detect the abnormal temperature beyond the preset time, the temperature control program of the liquid nitrogen 20 makes an abnormality determination. Issue an alarm (alarm). Next, the main supply valve 38 is manually stopped, the solenoid valve 42 is closed by an interlock mechanism (not shown), and the supply of liquid nitrogen 20 is stopped. Then, the operation of the vertical bead mill is stopped by the operation of the interlock mechanism.
By adopting such a configuration, it is possible to prevent the liquid nitrogen 20 whose viscosity has decreased due to the temperature rise from being supplied to the crushing chamber 3, so that the decrease in the viscosity of the liquid nitrogen in the crushing chamber 3 can be prevented. be able to. Thereby, the thrust applied to the crushing medium (beads) can be maintained during the crushing of the wet medium, and the desired crushing result can be obtained.

粉砕中にベッセル1の粉砕室3に液体窒素20を補充する時期は、ロードセル14によって検知されるベッセル1の動荷重に基づいて決定することができる。すなわち、粉砕の進行に伴って、ベッセル1の動荷重が、粉砕開始時のベッセル1の動荷重から所定量減少した時に、手動で電磁弁42を開放し、粉砕室3に液体窒素20を供給することができる。次いで、ベッセル1の動荷重が、粉砕開始時のベッセル1の動荷重に達した時に、手動で電磁弁42を閉鎖し、液体窒素20の供給を停止することができる。このような電磁弁42の開閉動作は自動化することができる。また、電磁弁42を開放する動荷重の下限値と、電磁弁42を閉鎖する動荷重の上限値を、粉砕開始時の動荷重とは別に設定することもできる。 The timing of replenishing the crushing chamber 3 of the vessel 1 with the liquid nitrogen 20 during crushing can be determined based on the dynamic load of the vessel 1 detected by the load cell 14. That is, when the dynamic load of the vessel 1 decreases by a predetermined amount from the dynamic load of the vessel 1 at the start of pulverization as the pulverization progresses, the solenoid valve 42 is manually opened and the liquid nitrogen 20 is supplied to the pulverization chamber 3. can do. Then, when the dynamic load of the vessel 1 reaches the dynamic load of the vessel 1 at the start of pulverization, the solenoid valve 42 can be manually closed to stop the supply of the liquid nitrogen 20. Such an opening / closing operation of the solenoid valve 42 can be automated. Further, the lower limit value of the dynamic load for opening the solenoid valve 42 and the upper limit value of the dynamic load for closing the solenoid valve 42 can be set separately from the dynamic load at the start of pulverization.

粉砕中にベッセル1の粉砕室3に液体窒素20を補充する時期は、温度計12aによって検知される粉砕室3の外装温度を考慮して定めることができる。すなわち、粉砕の進行に伴って、粉砕室3の外装温度が所定の温度に達した時に、手動で電磁弁42を開放し、粉砕室3に液体窒素20を供給することができる。次いで、ベッセル1の動荷重が、所定の動荷重に達した時に、手動で電磁弁42を閉鎖し、液体窒素20の供給を停止することができる。このような電磁弁42の開閉動作は自動化することができる。 The timing for replenishing the crushing chamber 3 of the vessel 1 with the liquid nitrogen 20 during crushing can be determined in consideration of the exterior temperature of the crushing chamber 3 detected by the thermometer 12a. That is, as the pulverization progresses, when the exterior temperature of the pulverization chamber 3 reaches a predetermined temperature, the solenoid valve 42 can be manually opened and the liquid nitrogen 20 can be supplied to the pulverization chamber 3. Then, when the dynamic load of the vessel 1 reaches a predetermined dynamic load, the solenoid valve 42 can be manually closed to stop the supply of the liquid nitrogen 20. Such an opening / closing operation of the solenoid valve 42 can be automated.

図6は、液体窒素の粘度と温度の関係を示した線図である。同図中、参照番号Cは液体窒素の沸点付近の温度を示し、参照番号Dは液体酸素の沸点付近の温度を示す。図7は、図6の線図上の代表的な数値を記載した表であり、図7中の参照番号C、Dは図6の参照番号C、Dに対応する。 FIG. 6 is a diagram showing the relationship between the viscosity of liquid nitrogen and the temperature. In the figure, reference numeral C indicates a temperature near the boiling point of liquid nitrogen, and reference numeral D indicates a temperature near the boiling point of liquid oxygen. FIG. 7 is a table showing typical numerical values on the diagram of FIG. 6, and reference numbers C and D in FIG. 7 correspond to reference numbers C and D in FIG.

図10は、図6及び7に記載された液体窒素の粘度と温度の関係を検証するため、アメリカ国立標準技術研究所(NIST)のデータベースから取得した液体窒素の粘度データと、図7の数値との対照表である。図10のNIST 12のデータの換算値の欄の方形の線で囲まれた数値と、この数値と同一行のS.Forsterの測定値の欄の方形の線で囲まれた数値を比較すると、両数値はほぼ同じ値であることが分かる。 10 shows the viscosity data of liquid nitrogen obtained from the database of the National Institute of Standards and Technology (NIST) and the numerical values of FIG. 7 in order to verify the relationship between the viscosity and the temperature of the liquid nitrogen shown in FIGS. It is a comparison table with. The numerical value surrounded by the square line in the conversion value column of the data of NIST 12 in FIG. 10 and the S.I. Comparing the numerical values surrounded by the square line in the column of the measured values of Forester, it can be seen that both numerical values are almost the same.

液体窒素の粘度と温度の関係は、図9に示すような、粘度測定装置によって計測することができる。図9を参照して液体窒素の粘度と温度の計測方法を説明すると、先ず、最内奥に位置する窒素容器に窒素ガスを封入する。この段階で、この窒素容器には窒素ガスのみが存在する。次いで、この窒素ガス容器を囲繞するヘリウム容器に、液体ヘリウムを徐々に注入する。大気圧下での液体ヘリウムの沸点は-269℃(約4K)であるから、窒素ガス容器は徐々に冷却され、同容器内の窒素ガスは徐々に液化する。そして、液化した窒素ガス中で粘度計のディスクを回転させ、その回転抵抗から、液体窒素の粘度を計測し、温度計で計測された温度との関係を求める。窒素ガス容器内の窒素ガスが徐々に液化するに従って、窒素ガス容器内の圧力は徐々に低下する。窒素ガス容器内の圧力は圧力計で計測する。すなわち、圧力は、圧力の上昇過程での変化を計測するのではなく、圧力の下降過程で変化を計測する。ただし、液体の粘度は、圧力の変化によっては、ほぼ変化しないことが知られている。 The relationship between the viscosity of liquid nitrogen and the temperature can be measured by a viscosity measuring device as shown in FIG. Explaining the method of measuring the viscosity and temperature of liquid nitrogen with reference to FIG. 9, first, nitrogen gas is filled in a nitrogen container located in the innermost part. At this stage, only nitrogen gas is present in this nitrogen container. Next, liquid helium is gradually injected into the helium container surrounding the nitrogen gas container. Since the boiling point of liquid helium under atmospheric pressure is -269 ° C. (about 4K), the nitrogen gas container is gradually cooled, and the nitrogen gas in the container is gradually liquefied. Then, the disk of the viscometer is rotated in the liquefied nitrogen gas, the viscosity of the liquid nitrogen is measured from the rotation resistance, and the relationship with the temperature measured by the thermometer is obtained. As the nitrogen gas in the nitrogen gas container gradually liquefies, the pressure in the nitrogen gas container gradually decreases. The pressure inside the nitrogen gas container is measured with a pressure gauge. That is, the pressure does not measure the change in the process of increasing the pressure, but measures the change in the process of decreasing the pressure. However, it is known that the viscosity of a liquid hardly changes with a change in pressure.

図6、7、10に記載されているように、液体窒素の粘度は液体窒素の温度が上昇すると低下する。液体窒素を分散媒として使用して湿式媒体粉砕をするとき、液体窒素の粘度が低下すると、ボールやビーズ等の粉砕媒体の推力が低下し、粉砕媒体が被粉砕材料に与える衝撃力が低下する。これらの図から、大気圧下での液体窒素の沸点における液体窒素の粘度は、0.15乃至0.16センチポアズ(cP)である。湿式媒体粉砕では、分散媒として水が使用される場合が多いが、図5に示すとおり、分散媒として水を使用したとき、粉砕中の分散媒の水温は約60℃であり、60℃の水の粘度は0.467センチポアズ(cP)であるから、大気圧下での液体窒素の沸点付近における液体窒素の粘度は、粉砕中の水(60℃)の粘度の約1/3である。また、液体窒素の沸点が液体酸素の沸点付近まで上昇したときの液体窒素の粘度は、0.11乃至0.12センチポアズ(cP)であるから、大気圧下での酸素の沸点付近における液体窒素の粘度は、粉砕中の水(60℃)の粘度の約1/4である。他方、水の表面張力は60℃で66.18mN/mであるのに対し、液体窒素の表面張力は-195.79℃で8.85mN/mであり、これは水の表面張力の約1/7である。したがって、液体窒素の温度をできる限りその沸点に近づけておくと、液体窒素が被粉砕材料や粉砕媒体の表面を十分に濡らし、個々の粒子を互いに分離された状態に保つと共に、これらの粒子の自由な運動を可能にする。また、液体窒素は、外部からの熱の侵入や、粉砕により発生した熱により絶えず沸騰しているため、その沸騰力も個々の粒子の自由な運動を助長する。したがって、液体窒素の粘度はボールやビーズ等の粉砕媒体に十分な推力を付与することができる。また、液体窒素の表面張力は水の表面張力よりも小さいから、液体窒素を分散媒として湿式媒体粉砕を行うと、増粘状態になり難いという利点がある。 As shown in FIGS. 6, 7, and 10, the viscosity of liquid nitrogen decreases as the temperature of liquid nitrogen rises. When pulverizing a wet medium using liquid nitrogen as a dispersion medium, if the viscosity of the liquid nitrogen decreases, the thrust of the pulverized medium such as balls and beads decreases, and the impact force given to the material to be pulverized by the pulverized medium decreases. .. From these figures, the viscosity of liquid nitrogen at the boiling point of liquid nitrogen under atmospheric pressure is 0.15 to 0.16 centipores (cP). In wet medium pulverization, water is often used as the dispersion medium, but as shown in FIG. 5, when water is used as the dispersion medium, the water temperature of the dispersion medium during pulverization is about 60 ° C., which is 60 ° C. Since the viscosity of water is 0.467 centipores (cP), the viscosity of liquid nitrogen near the boiling point of liquid nitrogen under atmospheric pressure is about 1/3 of the viscosity of water (60 ° C.) during grinding. Further, since the viscosity of liquid nitrogen when the boiling point of liquid nitrogen rises to near the boiling point of liquid oxygen is 0.11 to 0.12 centipores (cP), liquid nitrogen near the boiling point of oxygen under atmospheric pressure. The viscosity of is about 1/4 of the viscosity of water (60 ° C.) being pulverized. On the other hand, the surface tension of water is 66.18 mN / m at 60 ° C, whereas the surface tension of liquid nitrogen is 8.85 mN / m at 195.79 ° C, which is about 1 of the surface tension of water. / 7. Therefore, if the temperature of liquid nitrogen is kept as close to its boiling point as possible, the liquid nitrogen sufficiently wets the surface of the material to be crushed or the crushing medium, keeping the individual particles separated from each other, and of these particles. Allows free exercise. In addition, since liquid nitrogen is constantly boiling due to the intrusion of heat from the outside and the heat generated by crushing, its boiling power also promotes the free movement of individual particles. Therefore, the viscosity of liquid nitrogen can impart sufficient thrust to a pulverizing medium such as a ball or beads. Further, since the surface tension of liquid nitrogen is smaller than the surface tension of water, there is an advantage that it is difficult to obtain a thickened state when wet medium pulverization is performed using liquid nitrogen as a dispersion medium.

図8は、大気圧下での窒素-酸素の状態図である。液体窒素を分散媒として使用して湿式媒体粉砕を行うと、外部からの熱の侵入や、粉砕媒体同士の衝突による発熱や、粉砕媒体と被粉砕材料との衝突による発熱や、粉砕媒体や被粉砕材料と撹拌ディスクとの衝突による発熱により、液体窒素が蒸発し、分散媒中に窒素の気相が生成され、これらの気相に酸素を含む空気が混入し、分散媒の沸点が変動する場合がある。このとき、図8に示すように、液相と気相の間に窒素の沸点-195.79℃(77.36K)から酸素の沸点-182.96℃(90.2K)に亘る、液体窒素と気体酸素の共存域が生成されている。そこで、本発明は、図2に示すように、粉砕中の混合物13の液面17と蓋体7の間に、液面17を覆う窒素ガス層43を滞留させ、混合物13中の液体窒素20が空気と接触しないようにした。また、窒素ガス層43を生成しておけば、蓋体7の液体窒素供給孔7bから粉砕室3の液面17に液体窒素20が落下した時、液面17に気泡が生じたとしても、液面17は窒素ガス層43によって覆われているから、この気泡に空気中の酸素等が混入することはない。これにより、図8の共存域の生成をできる限り防止し、被粉砕材料の粉砕を促進する。 FIG. 8 is a phase diagram of nitrogen-oxygen under atmospheric pressure. When wet medium crushing is performed using liquid nitrogen as a dispersion medium, heat intrusion from the outside, heat generation due to collision between crushing media, heat generation due to collision between the crushing medium and the material to be crushed, crushing medium and subject Due to the heat generated by the collision between the crushing material and the stirring disk, liquid nitrogen evaporates, a gas phase of nitrogen is generated in the dispersion medium, air containing oxygen is mixed in these gas phases, and the boiling point of the dispersion medium fluctuates. In some cases. At this time, as shown in FIG. 8, liquid nitrogen ranges from a nitrogen boiling point of 195.79 ° C. (77.36K) to an oxygen boiling point of 182.96 ° C. (90.2K) between the liquid phase and the gas phase. And gaseous oxygen coexistence area is generated. Therefore, in the present invention, as shown in FIG. 2, a nitrogen gas layer 43 covering the liquid surface 17 is retained between the liquid level 17 and the lid 7 of the mixture 13 being pulverized, and the liquid nitrogen 20 in the mixture 13 is retained. Prevented contact with air. Further, if the nitrogen gas layer 43 is generated, even if bubbles are generated on the liquid surface 17 when the liquid nitrogen 20 falls from the liquid nitrogen supply hole 7b of the lid 7 to the liquid surface 17 of the crushing chamber 3. Since the liquid surface 17 is covered with the nitrogen gas layer 43, oxygen and the like in the air do not mix in the bubbles. This prevents the formation of the coexistence zone of FIG. 8 as much as possible and promotes the pulverization of the material to be pulverized.

図11乃至25に、本発明の湿式媒体粉砕方法によって種々の被粉砕材料を粉砕した結果を表示した。各表には、材料名、ビーズ材質、ビーズ径、撹拌ディスク回転数、粉砕時間、懸濁液の分散媒、ベッセルの動荷重、粉砕中の粉砕室の外装温度、及び、原料と粉砕品の粒度測定結果を記載した。
同一条件で2回粉砕を行った場合には、それぞれの粉砕による粒度測定結果を、粉砕品(1)、粉砕品(2)のように、別個に記載した。粉砕品(2)の粉砕中の粉砕室の外装温度が粉砕品(1)の粉砕中の粉砕室の外装温度よりも高い温度である理由は、粉砕品(2)の粉砕時の外気温度が粉砕品(1)の粉砕時の外気温度よりも高いこと等が考えられる。いずれにせよ、図14のポリイミドの粉砕品(1)(2)の粒度、及び、図16乃至19の炭酸カルシウムの粉砕品(1)(2)の粒度をそれぞれ比較すると、粉砕室の外装温度が低い方が粉砕品の微細化が進行していることがわかる。
図11乃至25に示した粉砕結果のほとんどは、外気温度の異なる日に行われた粉砕であり、同一の表の中に複数の粉砕結果が表示された粉砕例においても、同様に、外気温度の異なる日に実施されたものがある。
図11乃至25の粉砕前及び粉砕後の被粉砕材料の粒度分布の測定に使用した機器は、株式会社島津製作所製のレーザー回析式粒度分布測定装置SALD-2100である。
なお、本発明の湿式媒体粉砕方法によれば、図11乃至25に示した被粉砕材料のほかに、シリコン、樹皮(杉)、カーボンブラック、フェニトイン、マニジピン、イブプロフェン、サルブタモール硫酸塩、ポリエチレンワックス、ヒドロキシプロピルセルロース、結晶セルロース、超高分子量ポリエチレン、キトサンについても、良好な粉砕結果を得ることができた。
11 to 25 show the results of pulverizing various materials to be pulverized by the wet medium pulverization method of the present invention. Each table shows the material name, bead material, bead diameter, stirring disk rotation speed, crushing time, suspension dispersion medium, dynamic load of vessel, exterior temperature of crushing chamber during crushing, and raw materials and crushed products. The particle size measurement results are described.
When crushing was performed twice under the same conditions, the particle size measurement results of each crushing were described separately as in the case of the crushed product (1) and the crushed product (2). The reason why the exterior temperature of the crushing chamber during crushing of the crushed product (2) is higher than the exterior temperature of the crushing chamber during crushing of the crushed product (1) is because the outside air temperature at the time of crushing the crushed product (2) is high. It is conceivable that the temperature of the crushed product (1) is higher than the outside air temperature at the time of crushing. In any case, when the particle sizes of the pulverized polyimide products (1) and (2) of FIG. 14 and the particle sizes of the pulverized calcium carbonate products (1) and (2) of FIGS. 16 to 19 are compared, the exterior temperature of the pulverized chamber is compared. It can be seen that the lower the value, the more the pulverized product is becoming finer.
Most of the crushing results shown in FIGS. 11 to 25 were crushed on days with different outside air temperatures, and similarly, even in the crushing example in which a plurality of crushing results are displayed in the same table, the outside air temperature is also used. Some were carried out on different days.
The equipment used for measuring the particle size distribution of the material to be crushed before and after pulverization in FIGS. 11 to 25 is the laser diffraction type particle size distribution measuring device SALD-2100 manufactured by Shimadzu Corporation.
According to the wet medium crushing method of the present invention, in addition to the materials to be crushed shown in FIGS. 11 to 25, silicon, bark (sugi), carbon black, phenitoin, manidipine, ibprofen, salbutamoll sulfate, polyethylene wax, etc. Good pulverization results could also be obtained for hydroxypropyl cellulose, crystalline cellulose, ultra-high molecular weight polyethylene, and chitosan.

図26乃至28は、分散媒として液体窒素を使用して本発明の湿式媒体粉砕方法によってフェニトインを粉砕したときに、分散媒の液体窒素が空気中の酸素を急激に取込む現象(被粉砕物の酸化反応)が生じるか否かを検証したときの、粉砕実験条件、粉砕前後のフェニトイン粒度、及び粉砕前後のフェニトインの相転移熱含量(ΔH)を示す。このとき、フェニトインの粒度分布の測定に使用した機器は、株式会社島津製作所製のレーザー回析式粒度分布測定装置SALD-2100である。また、粉砕前後の相転移熱含量(ΔH)の測定は、株式会社島津製作所製の示差走査熱量計DSC-60を使用した。図28から明らかなように、粉砕前後の相転移熱含量(ΔH)の変化は僅かであるため、酸化による結晶変化は生じなかったと判断した。この実験で粉砕前後の相転移熱含量(ΔH)の変化は僅かであった原因は、図2の窒素ガス層43によって、混合物13の液面17が空気から遮断されていたためと考えられる。 FIGS. 26 to 28 show a phenomenon in which liquid nitrogen in the dispersion medium rapidly takes in oxygen in the air when phenitoin is pulverized by the wet medium pulverization method of the present invention using liquid nitrogen as the dispersion medium (object to be pulverized). The pulverization experiment conditions, the fenitoin particle size before and after pulverization, and the phase transition heat content (ΔH) of fenitoin before and after pulverization are shown when it was verified whether or not the oxidation reaction of the above occurs. At this time, the device used for measuring the particle size distribution of phenytoin is the laser diffraction type particle size distribution measuring device SALD-2100 manufactured by Shimadzu Corporation. The phase transition heat content (ΔH) before and after pulverization was measured by using a differential scanning calorimeter DSC-60 manufactured by Shimadzu Corporation. As is clear from FIG. 28, since the change in the phase transition heat content (ΔH) before and after pulverization was slight, it was judged that the crystal change due to oxidation did not occur. It is probable that the reason why the change in the phase transition heat content (ΔH) before and after pulverization was slight in this experiment was that the liquid level 17 of the mixture 13 was shielded from the air by the nitrogen gas layer 43 in FIG.

粉砕室内の液化不活性ガスと被粉砕材料と粉砕媒体の混合物を常温常圧下で撹拌することにより、被粉砕材料を粉砕するに際し、粉砕室の温度上昇に起因する粉砕力の低下を防止し、被粉砕材料の粉砕を促進することができる。 By stirring a mixture of the liquefied inert gas in the crushing chamber, the material to be crushed, and the crushing medium under normal temperature and pressure, it is possible to prevent a decrease in crushing power due to an increase in the temperature of the crushing chamber when crushing the material to be crushed. The crushing of the material to be crushed can be promoted.

1 ベッセル
2 断熱用真空層ジャケット
3 粉砕室
6 真空断熱層
7 蓋体
10 回転軸
11a、11b、11c、11d 撹拌ディスク
12a、12b 温度計
14 ロードセル
15 フロートスケール
17 液面
20 液体窒素
20a 窒素ガス
31 液体窒素貯蔵タンク
34 密封容器
35 真空断熱層
36 液体窒素搬送用の配管(真空断熱配管)
37 気液分離器
38 主供給弁
40 圧力計
41 流量調整弁
42 電磁弁
43 窒素ガス層
1 Vessel 2 Insulation vacuum layer jacket 3 Crushing chamber 6 Vacuum insulation layer 7 Lid 10 Rotating shaft 11a, 11b, 11c, 11d Stirring disk 12a, 12 b Thermometer 14 Load cell 15 Float scale 17 Liquid level 20 Liquid nitrogen 20a Nitrogen Gas 31 Liquid nitrogen storage tank 34 Sealed container 35 Vacuum insulation layer 36 Liquid nitrogen transfer piping (vacuum insulation piping)
37 Gas-liquid separator 38 Main supply valve 40 Pressure gauge 41 Flow control valve 42 Solenoid valve 43 Nitrogen gas layer

Claims (10)

液化不活性ガスを分散媒とする被粉砕材料の懸濁液と粉砕媒体との混合物を粉砕室で撹拌し、前記粉砕媒体によって前記被粉砕材料を粉砕し、解砕し、及び/又は分散させる、湿式媒体粉砕方法において、前記混合物の撹拌中に、前記粉砕室に、気液分離器で脱気された液化不活性ガスを供給し、これにより、前記分散媒の粘度を、前記粉砕媒体が前記被粉砕材料を粉砕し、解砕し、及び/又は分散させる粘度に保つことを特徴とする、湿式媒体粉砕方法。 A mixture of a suspension of the material to be crushed and a crushing medium using a liquefied inert gas as a dispersion medium is stirred in a crushing chamber, and the material to be crushed is crushed, crushed and / or dispersed by the crushing medium. In the wet medium crushing method, a liquefied inert gas degassed by a gas-liquid separator is supplied to the crushing chamber during stirring of the mixture, whereby the viscosity of the dispersion medium is crushed. A wet medium pulverization method, wherein the medium maintains a viscosity at which the material to be pulverized, crushed, and / or dispersed. 請求項1に記載した湿式媒体粉砕方法において、前記混合物の撹拌中に前記粉砕室に供給される前記液化不活性ガスは、前記混合物の固形分濃度を低下させることを特徴とする、前記湿式媒体粉砕方法。 The wet medium according to claim 1, wherein the liquefied inert gas supplied to the crushing chamber during stirring of the mixture reduces the solid content concentration of the mixture. Grinding method. 請求項1又は2に記載した湿式媒体粉砕方法において、前記混合物の撹拌中に前記粉砕室に供給される前記液化不活性ガスは、酸素の沸点よりも低温の液化不活性ガスであることを特徴とする、前記湿式媒体粉砕方法。 In the wet medium crushing method according to claim 1 or 2, the liquefied inert gas supplied to the crushing chamber during stirring of the mixture is a liquefied inert gas having a temperature lower than the boiling point of oxygen. The wet medium crushing method. 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記粉砕室の前記混合物を前記液化不活性ガスの蒸気層で覆うことを特徴とする、前記湿式媒体粉砕方法。 The wet medium crushing method according to any one of claims 1 to 3 , wherein the mixture in the crushing chamber is covered with a vapor layer of the liquefied inert gas. 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記混合物の撹拌中に、前記混合物と前記粉砕室を画成するベッセルの合計重量が、粉砕前に計測された設定重量を維持するように、前記合計重量が前記設定重量未満になると、前記粉砕室に前記液化不活性ガスを供給し、次いで、前記混合物の撹拌中に前記合計重量が前記設定重量に達すると、前記液化不活性ガスの供給を停止することを特徴とする、前記湿式媒体粉砕方法。 In the wet medium pulverization method according to any one of claims 1 to 4 , the total weight of the mixture and the vessel defining the pulverization chamber was measured before pulverization during stirring of the mixture. When the total weight is less than the set weight so as to maintain the set weight, the liquefied inert gas is supplied to the crushing chamber, and then the total weight reaches the set weight during stirring of the mixture. , The method for pulverizing a wet medium, which comprises stopping the supply of the liquefied inert gas. 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記混合物の撹拌中に、前記粉砕室の外装温度が予め設定された温度に達すると、前記粉砕室に前記液化不活性ガスを供給し、前記混合物と前記粉砕室を画成するベッセルの合計重量が予め設定された重量に達すると、前記液化不活性ガスの供給を停止することを特徴とする、前記湿式媒体粉砕方法。 In the wet medium crushing method according to any one of claims 1 to 4 , when the exterior temperature of the crushing chamber reaches a preset temperature during stirring of the mixture, the liquefaction is performed in the crushing chamber. The wet medium, characterized in that the supply of the liquefied inert gas is stopped when the total weight of the mixture and the vessel defining the crushing chamber reaches a preset weight by supplying the inert gas. Grinding method. 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記粉砕室に供給される前記液化不活性ガスの温度が予め設定された温度よりも上昇し、かつ、異常判定がなされると、警報を発することを特徴とする、前記湿式媒体粉砕方法。 In the wet medium pulverization method according to any one of claims 1 to 6 , the temperature of the liquefied inert gas supplied to the pulverization chamber rises above a preset temperature, and abnormality determination is made. The wet medium pulverization method, which comprises issuing an alarm when the above-mentioned is performed. 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記液化不活性ガスは、液体窒素、液体ヘリウム、液体ネオン、又は、液体アルゴンであることを特徴とする、前記湿式媒体粉砕方法。 The wet medium pulverization method according to any one of claims 1 to 7 , wherein the liquefied inert gas is liquid nitrogen, liquid helium, liquid neon, or liquid argon. Wet medium crushing method. 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記粉砕媒体は、アルミナ、メノウ、ジルコニア、窒化珪素、チタニア等の材料で構成されたセラミックビーズ又はボール、スチール、タングステンカーバイト、ステンレス鋼等の材料で構成された金属ビーズ又はボール、ソーダガラス、石英ガラス等の材料で構成されたガラス系ビーズ又はボール、ウレタン等の材料で構成された樹脂ビーズ又はボール、及び/又は、ドライアイス(固体二酸化炭素)の塊状体又は成形体又は粒状体であることを特徴とする、前記湿式媒体粉砕方法。 In the wet medium crushing method according to any one of claims 1 to 8 , the crushing medium is a ceramic bead or ball, steel, which is made of a material such as alumina, menow, zirconia, silicon nitride, and titania. Metal beads or balls made of materials such as tungsten carbide and stainless steel, glass beads or balls made of materials such as soda glass and quartz glass, resin beads or balls made of materials such as urethane, and / Or, the wet medium pulverization method, which is a lump, a molded body, or a granular body of dry ice (solid carbon dioxide). 請求項1乃至のうちのいずれか一項に記載した湿式媒体粉砕方法において、前記被粉砕材料は、医薬品、医薬品添加剤、樹脂、金属、セラミック又はガラス、医療用又は産業用原材料であることを特徴とする、前記湿式媒体粉砕方法。 In the wet medium crushing method according to any one of claims 1 to 9 , the material to be crushed is a pharmaceutical product, a pharmaceutical additive, a resin, a metal, a ceramic or glass, a medical or industrial raw material. The wet medium crushing method.
JP2020190420A 2020-11-16 2020-11-16 Wet medium crushing method Active JP7097938B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020190420A JP7097938B2 (en) 2020-11-16 2020-11-16 Wet medium crushing method
JP2021212422A JP2022079449A (en) 2020-11-16 2021-12-27 Wet medium pulverization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190420A JP7097938B2 (en) 2020-11-16 2020-11-16 Wet medium crushing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021212422A Division JP2022079449A (en) 2020-11-16 2021-12-27 Wet medium pulverization method

Publications (2)

Publication Number Publication Date
JP2021041404A JP2021041404A (en) 2021-03-18
JP7097938B2 true JP7097938B2 (en) 2022-07-08

Family

ID=74862818

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020190420A Active JP7097938B2 (en) 2020-11-16 2020-11-16 Wet medium crushing method
JP2021212422A Pending JP2022079449A (en) 2020-11-16 2021-12-27 Wet medium pulverization method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021212422A Pending JP2022079449A (en) 2020-11-16 2021-12-27 Wet medium pulverization method

Country Status (1)

Country Link
JP (2) JP7097938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130648A1 (en) 2021-12-21 2023-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives DEVICE AND METHOD FOR GRINDING AND MIXING POWDER COMPRISING CONTRAROTATIVE GRINDING AND MIXING MOTORS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059074A1 (en) 2009-11-13 2011-05-19 森六ケミカルズ株式会社 Fine powder manufacturing method and fine powder manufactured using same
JP2014144410A (en) 2013-01-28 2014-08-14 Aimetsukusu Kk Apparatus for producing fine powder
JP2017131884A (en) 2016-01-26 2017-08-03 アイメックス株式会社 Crushing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059074A1 (en) 2009-11-13 2011-05-19 森六ケミカルズ株式会社 Fine powder manufacturing method and fine powder manufactured using same
JP2014144410A (en) 2013-01-28 2014-08-14 Aimetsukusu Kk Apparatus for producing fine powder
JP2017131884A (en) 2016-01-26 2017-08-03 アイメックス株式会社 Crushing device

Also Published As

Publication number Publication date
JP2022079449A (en) 2022-05-26
JP2021041404A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP7097938B2 (en) Wet medium crushing method
JP5529884B2 (en) Method for producing fine powder and fine powder produced by the same method
JP7208228B2 (en) Apparatus and method for cryogenic grinding using grinding media in the form of solidified cryogenic gas
US20060000222A1 (en) Apparatus for producing slush nitrogen and method for producing the same
US6765053B2 (en) Drag-reducing polymer suspensions
PT1021241E (en) PROCESS FOR THE PRODUCTION OF A PRODUCT IN THE FORM OF PO FROM A SUBSTANCE OR MIXTURE OF LIQUID SUBSTANCES
US7271205B2 (en) Non-cryogenic process for granulating polymer drag reducing agents
WO2003029330A1 (en) Drag-reducing polymer suspensions
JP2015166631A (en) Process for filling gas storage container
Hewitt et al. Effect of milling temperature on the synthesis and consolidation of nanocomposite WC–10Co powders
Morales et al. Mechanical particle-size reduction techniques
US20030065055A1 (en) Method for manufacturing drag-reducing polymer suspensions
Groeneweg et al. Droplet break-up in a stirred water-in-oil emulsion in the presence of emulsifiers
Morales et al. Mechanical particle-size reduction techniques
US8535720B2 (en) Method and apparatus for enhanced size reduction of particles
Fisher Milling of active pharmaceutical ingredients
JP2005199124A (en) Medium agitation type crusher
JP3891032B2 (en) Gas hydrate continuous production method and apparatus
US20230123703A1 (en) Apparatus and method for bulk structural modification of metallic materials at reduced temperatures
Morales et al. Mechanical particle-size reduction techniques
Belusko et al. Direct contact phase change material thermal energy storage
Kwan et al. The effects of operating conditions on the milling of microcrystalline cellulose
CA1163785A (en) In-line slush making process
JP2007197576A (en) Apparatus and method of for decomposing plastic
JP6963222B2 (en) A method that enables uniform contact between gas and powder by providing a rocking mechanism, and an air-solid contact device for a packed bed, a moving bed, and a multi-stage fluidized bed using the method.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210331

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210927

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211227

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20211227

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20220112

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20220302

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220303

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220316

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220525

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220617

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220628

R150 Certificate of patent or registration of utility model

Ref document number: 7097938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150