JP7097165B2 - Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod - Google Patents

Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod Download PDF

Info

Publication number
JP7097165B2
JP7097165B2 JP2017193223A JP2017193223A JP7097165B2 JP 7097165 B2 JP7097165 B2 JP 7097165B2 JP 2017193223 A JP2017193223 A JP 2017193223A JP 2017193223 A JP2017193223 A JP 2017193223A JP 7097165 B2 JP7097165 B2 JP 7097165B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
wire rod
cnt
nanotube wire
bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017193223A
Other languages
Japanese (ja)
Other versions
JP2019065431A (en
Inventor
英樹 會澤
智 山下
一富 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2017193223A priority Critical patent/JP7097165B2/en
Publication of JP2019065431A publication Critical patent/JP2019065431A/en
Application granted granted Critical
Publication of JP7097165B2 publication Critical patent/JP7097165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数のカーボンナノチューブを束ねてなるカーボンナノチューブ束の複数を撚り合わせて構成されるカーボンナノチューブ線材、カーボンナノチューブ線材と該線材に接続されるはんだ部とを備えるカーボンナノチューブ線材接続構造体、及びカーボンナノチューブ線材の製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention relates to a carbon nanotube wire rod formed by twisting a plurality of carbon nanotube bundles formed by bundling a plurality of carbon nanotubes, and a carbon nanotube wire rod connecting structure including a carbon nanotube wire rod and a solder portion connected to the wire rod. And a method for manufacturing a carbon nanotube wire rod.

従来、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。 Conventionally, as power lines and signal lines in various fields such as automobiles and industrial equipment, electric wires made of one or more wire rods and an insulating coating covering the core wires have been used. As a material for a wire rod constituting a core wire, copper or a copper alloy is usually used from the viewpoint of electrical characteristics, but in recent years, aluminum or an aluminum alloy has been proposed from the viewpoint of weight reduction. For example, the specific gravity of aluminum is about 1/3 of the specific gravity of copper, and the conductivity of aluminum is about 2/3 of the conductivity of copper (when pure copper is used as the standard of 100% IACS, pure aluminum is about 66% IACS). In order to pass the same current as the copper wire through the aluminum wire, it is necessary to increase the cross-sectional area of the aluminum wire to about 1.5 times the cross-sectional area of the copper wire. Even if a large aluminum wire is used, the mass of the aluminum wire is about half the mass of the pure copper wire, so that it is advantageous from the viewpoint of weight reduction.

上記のような背景のもと、昨今では、自動車、産業機器等の高性能化・高機能化が進められており、これに伴い、各種電気機器、制御機器などの配設数が増加するとともに、これら機器に使用される電気配線体の配線数も増加する傾向にある。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の軽量化が強く望まれている。 Against the background described above, in recent years, the performance and functionality of automobiles, industrial equipment, etc. have been improved, and along with this, the number of arrangements of various electric equipment, control equipment, etc. has increased. , The number of wirings of the electric wiring body used for these devices also tends to increase. On the other hand, in order to improve the fuel efficiency of moving objects such as automobiles for environmental friendliness, it is strongly desired to reduce the weight of wire rods.

こうした更なる軽量化を達成するための新たな手段の一つとして、カーボンナノチューブを線材として活用する技術が新たに提案されている。カーボンナノチューブは、六角形格子の網目構造を有する筒状体の単層、あるいは略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、電流容量、弾性、機械的強度等の特性に優れるため、電力線や信号線に使用されている金属に代替する材料として注目されている。 As one of the new means for achieving such further weight reduction, a new technique for utilizing carbon nanotubes as a wire rod has been proposed. Carbon nanotubes are a three-dimensional network structure composed of a single layer of a tubular body having a network structure of a hexagonal lattice or multiple layers arranged substantially coaxially, and are lightweight, conductive, and current capacity. Since it has excellent properties such as elasticity and mechanical strength, it is attracting attention as a material to replace metals used in power lines and signal lines.

カーボンナノチューブの比重は、銅の比重の約1/5(アルミニウムの約1/2)であり、また、カーボンナノチューブ単体は、銅(抵抗率1.68×10-6Ω・cm)よりも高導電性を示す。したがって理論的には、複数のカーボンナノチューブを撚り合わせてカーボンナノチューブ集合体を形成すれば、更なる軽量化、高導電率の実現が可能となる。しかしながら、nm単位のカーボンナノチューブを撚り合わせて、μm~mm単位のカーボンナノチューブ線材を作製した場合、構成単位となる1本当たりの外径が非常に小さいため、カーボンナノチューブ間の接触抵抗や内部欠陥形成が要因となり、線材全体の抵抗値が増大してしまうという問題があることから、カーボンナノチューブをそのまま線材として使用することが困難であった。また、接続の観点から、カーボンナノチューブ線材とはんだからなるカーボンナノチューブ接続構造体を作製する場合、カーボンナノチューブ線材とはんだの相性が悪く、接続強度や電気特性を確保することが困難であった。 The specific gravity of carbon nanotubes is about 1/5 of the specific gravity of copper (about 1/2 of aluminum), and carbon nanotubes alone are higher than copper (resistivity 1.68 × 10-6 Ω · cm). Shows conductivity. Therefore, theoretically, if a plurality of carbon nanotubes are twisted to form a carbon nanotube aggregate, further weight reduction and high conductivity can be realized. However, when carbon nanotubes in units of nm are twisted together to produce carbon nanotube wires in units of μm to mm, the outer diameter of each carbon nanotube as a constituent unit is very small, so that the contact resistance between carbon nanotubes and internal defects It has been difficult to use carbon nanotubes as they are as a wire rod because there is a problem that the resistance value of the entire wire rod increases due to the formation. Further, from the viewpoint of connection, when a carbon nanotube connection structure made of a carbon nanotube wire and a solder is manufactured, the compatibility between the carbon nanotube wire and the solder is poor, and it is difficult to secure the connection strength and the electrical characteristics.

カーボンナノチューブ撚線(線材)の端部でCVD(chemical vapor Deposition)等によってCNTを成長させ、当該端部から伸びた成長CNTを他のカーボンナノチューブ撚線或いはその成長CNTと接続することにより、カーボンナノチューブ撚線同士の接続強度や電気的特性を実現することが可能な製造方法が提案されている(特許文献1)。 Carbon is grown by growing CNTs at the ends of carbon nanotube stranded wires (wires) by CVD (chemical vapor deposition) or the like, and the grown CNTs extended from the ends are connected to other carbon nanotube stranded wires or their grown CNTs to form carbon. A manufacturing method capable of realizing connection strength and electrical characteristics between nanotube stranded wires has been proposed (Patent Document 1).

特開2013-47402号公報Japanese Unexamined Patent Publication No. 2013-470402

しかしながら、上記特許文献では、複数のカーボンナノチューブを撚り合わせてなるカーボンナノチューブ線材の端部同士を、成長CNTを介して接続することが開示されているにすぎない。カーボンナノチューブ束を撚り合わせて作成したカーボンナノチューブ線材では、カーボンナノチューブ束間の接触抵抗が高く、特定のカーボンナノチューブ束に電流が集中する、いわゆる過電流が生じやすい問題がある。 However, the above patent document merely discloses that the ends of carbon nanotube wires obtained by twisting a plurality of carbon nanotubes are connected to each other via a growth CNT. The carbon nanotube wire rod made by twisting the carbon nanotube bundles has a problem that the contact resistance between the carbon nanotube bundles is high and the current concentrates on a specific carbon nanotube bundle, so-called overcurrent is likely to occur.

本発明の目的は、カーボンナノチューブ束間の接触抵抗を低減させ、過電流の発生を抑制することができるカーボンナノチューブ線材、及びカーボンナノチューブ接続構造体を提供することにある。 An object of the present invention is to provide a carbon nanotube wire rod capable of reducing contact resistance between carbon nanotube bundles and suppressing the generation of overcurrent, and a carbon nanotube connection structure.

本発明の要旨構成は、以下の通りである。
[1]複数のカーボンナノチューブ束を撚り合わせて構成されるカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配されためっき部を備え、
前記カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき層が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であることを特徴とするカーボンナノチューブ線材。
[2]前記めっき部が、前記複数のカーボンナノチューブ束のうちの隣接する複数のカーボンナノチューブ束間に3次元的に形成されていることを特徴とする上記[1]記載のカーボンナノチューブ線材。
[3]前記めっき部は、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択された1又は複数を主成分とする材料で形成されることを特徴とする、上記[1]又は[2]記載のカーボンナノチューブ線材。
[4]異種元素がドープされていることを特徴とする、上記[1]~[3]のいずれかに記載のカーボンナノチューブ線材。
[5]前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、上記[1]~[4]のいずれかに記載のカーボンナノチューブ線材。
[6]複数のカーボンナノチューブ束を撚り合わせて構成されるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続されるはんだ部とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材は、該カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配されためっき部を備え、
前記カーボンナノチューブ線材の断面視において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であることを特徴とするカーボンナノチューブ線材接続構造体。
[7]複数のカーボンナノチューブ束で構成されるカーボンナノチューブ線材本体に無電界めっき処理を施して下地部を形成する工程と、
前記無電界めっき処理を施したカーボンナノチューブ線材本体に電界めっき処理を施して、前記カーボンナノチューブ線材本体の長手方向に沿って、該カーボンナノチューブ線材本体の内部及び表層部にめっき部を形成する工程と、
前記無電界めっきを施す工程の前か又は前記電界めっきを施す工程の後に、前記複数のカーボンナノチューブ束を撚り合わせる工程と、
を有することを特徴とする、カーボンナノチューブ線材の製造方法。
The gist structure of the present invention is as follows.
[1] A carbon nanotube wire rod formed by twisting a plurality of carbon nanotube bundles.
A plated portion provided along the longitudinal direction of the carbon nanotube wire and arranged inside and on the surface layer of the carbon nanotube wire is provided.
In the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod, the ratio of the length of the portion where the plating layer having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0. A carbon nanotube wire rod having a ratio of a value obtained by dividing the number of carbon nanotube bundles of 5 or more by the total number of the plurality of carbon nanotube bundles to be 70% or more.
[2] The carbon nanotube wire rod according to the above [1], wherein the plated portion is three-dimensionally formed between a plurality of adjacent carbon nanotube bundles among the plurality of carbon nanotube bundles.
[3] The plated portion includes copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), chromium (Cr) and nickel (Cr). The carbon nanotube wire rod according to the above [1] or [2], which is formed of a material containing one or more of the main components selected from the group consisting of Ni).
[4] The carbon nanotube wire rod according to any one of [1] to [3] above, which is doped with a different element.
[5] The carbon nanotube wire rod according to any one of [1] to [4] above, wherein the carbon nanotubes constituting the carbon nanotube wire rod have a two-layer or three-layer structure.
[6] A carbon nanotube wire connection structure including a carbon nanotube wire composed by twisting a plurality of carbon nanotube bundles and a solder portion connected to the carbon nanotube wire.
The carbon nanotube wire rod is provided along the longitudinal direction of the carbon nanotube wire rod, and includes a plating portion arranged inside and on the surface layer portion of the carbon nanotube wire rod.
In the cross-sectional view of the carbon nanotube wire rod, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0.5 or more. A carbon nanotube wire connection structure characterized in that the ratio of the value obtained by dividing the number of bundles by the total number of the plurality of carbon nanotube bundles is 70% or more.
[7] A step of forming a base portion by subjecting a carbon nanotube wire body composed of a plurality of carbon nanotube bundles to a fieldless plating treatment.
A step of subjecting the carbon nanotube wire rod main body subjected to the electroless plating treatment to an electric field plating treatment to form a plated portion inside and on the surface layer portion of the carbon nanotube wire rod main body along the longitudinal direction of the carbon nanotube wire rod main body. ,
The step of twisting the plurality of carbon nanotube bundles before or after the step of performing the electroless plating, and the step of twisting the plurality of carbon nanotube bundles.
A method for producing a carbon nanotube wire rod, which comprises.

本発明によれば、カーボンナノチューブ線材における過電流の発生を低減することができる。 According to the present invention, it is possible to reduce the occurrence of overcurrent in the carbon nanotube wire rod.

本発明の実施形態に係るカーボンナノチューブ線材の構成の一例を示す模式図であり、(a)は斜視図、(b)は断面図である。It is a schematic diagram which shows an example of the structure of the carbon nanotube wire rod which concerns on embodiment of this invention, (a) is a perspective view, (b) is a sectional view. 本発明の実施形態に係るカーボンナノチューブ線材接続構造体の構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the carbon nanotube wire rod connection structure which concerns on embodiment of this invention.

以下、本発明の実施形態を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<カーボンナノチューブ線材接続構造体の構成>
図1は、本発明の実施形態に係るカーボンナノチューブ線材の構成の一例を示す模式図であり、(a)は斜視図、(b)は断面図である。なお、図1におけるカーボンナノチューブ線材接続構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
<Structure of carbon nanotube wire connection structure>
1A and 1B are schematic views showing an example of the configuration of a carbon nanotube wire rod according to an embodiment of the present invention, where FIG. 1A is a perspective view and FIG. 1B is a sectional view. The carbon nanotube wire connection structure in FIG. 1 shows an example thereof, and the shape, dimensions, and the like of each configuration according to the present invention are not limited to those in FIG.

図1(a)及び(b)に示すように、カーボンナノチューブ線材1(以下、CNT線材ともいう)は、複数のカーボンナノチューブ束11,11,・・・(以下、CNT束という)を撚り合わせて構成されるCNT線材であって、CNT線材1の長手方向に沿って設けられ、前記CNT線材の内部及び表層部に配されためっき部12を備え、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の表面全長に対する、当該CNT束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるCNT束の個数を、複数のCNT束11,11,・・・の総数で除した値の比率が、70%以上である。 As shown in FIGS. 1 (a) and 1 (b), the carbon nanotube wire 1 (hereinafter, also referred to as CNT wire) is obtained by twisting a plurality of carbon nanotube bundles 11, 11, ... (hereinafter, referred to as CNT bundle). The CNT wire rod is provided along the longitudinal direction of the CNT wire rod 1, and includes a plating portion 12 arranged inside the CNT wire rod and on the surface layer portion, and is in a direction perpendicular to the longitudinal direction of the CNT wire rod 1. In the cross section of the above, the number of CNT bundles in which the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the CNT bundle 11 to the total surface length of the CNT bundle 11 is 0.5 or more is plural. The ratio of the values divided by the total number of CNT bundles 11, 11, ... Is 70% or more.

めっき部12は、複数のCNT束11,11,・・・のうちの隣接する複数のCNT束間に3次元的に形成されているのが好ましい。例えば、めっき部12は、複数のCNT束11,11,・・・間に連通して形成された3次元構造を有している。また、めっき部12の一部が、各CNT束11の外周面の一部又は全体にめっき層として配置されているのが好ましい。 The plating portion 12 is preferably formed three-dimensionally between a plurality of adjacent CNT bundles among the plurality of CNT bundles 11, 11, .... For example, the plating portion 12 has a three-dimensional structure formed by communicating between a plurality of CNT bundles 11, 11, .... Further, it is preferable that a part of the plating portion 12 is arranged as a plating layer on a part or the whole of the outer peripheral surface of each CNT bundle 11.

めっき部12は、好ましくはCNT線材1の長手方向に垂直な方向の断面において、CNT線材1の全体に偏り無く配されており、均一に分散して配置されている。図1では、めっき部12は、複数のCNT束11,11の表面に別個に形成されているが、複数のCNT束11,11,・・・の表面に一体で形成されてもよい。また、めっき部12は、隣接する複数のCNT間、例えば隣接する2つのCNT11,11間に形成されるのが好ましい。更に、めっき部12は、隣接する複数のCNT間に、当該隣接する複数のCNTのいずれとも密着した状態で形成されるのがより好ましい。 The plated portions 12 are preferably evenly distributed over the entire CNT wire rod 1 in a cross section in a direction perpendicular to the longitudinal direction of the CNT wire rod 1, and are uniformly dispersed and arranged. In FIG. 1, the plating portion 12 is formed separately on the surfaces of the plurality of CNT bundles 11, 11, but may be integrally formed on the surfaces of the plurality of CNT bundles 11, 11, .... Further, the plating portion 12 is preferably formed between a plurality of adjacent CNTs, for example, between two adjacent CNTs 11 and 11. Further, it is more preferable that the plating portion 12 is formed between the plurality of adjacent CNTs in a state of being in close contact with any of the plurality of adjacent CNTs.

めっき部は、はんだとCNT線材1との相性の観点から銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択された1又は複数を主成分とする合金で形成されているのが好ましい。 From the viewpoint of compatibility between the solder and the CNT wire rod 1, the plated portion is made of copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), It is preferably formed of an alloy containing one or more selected from the group consisting of chromium (Cr) and nickel (Ni) as a main component.

CNT線材1は、めっき部12以外の他の金属部を有していてもよい。例えば、CNT線材1は、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択された1又は複数を主成分とする合金で形成されためっき部と、該めっき部の下地を構成し、鉄(Fe)、ニッケル(Ni)及びコバルト(Co)またはこれらを主成分とする合金で形成された下地部とを備えてもよい。下地部は、好ましくはめっきで形成されており、この場合、上記めっき部とは異なる他のめっき部を構成する。また、CNT線材1にめっき部及び下地部の双方が形成される場合、下地部の一部が、CNT束11の外表面に形成され、めっき部の一部が、下地部の外表面に形成されるのが好ましい。このとき、CNT束11の重心から見て内側に位置する下地部を第1層、外側に位置するめっき部を第2層とすることができる。更に、CNT線材1にめっき部及び下地部の双方が形成される場合、上記下地部の複層が設けられてもよいし、上記めっき部の複層が形成されてもよい。CNT線材1或いはCNT束11に下地部が設けられることで、下地部とめっきとの濡れ性が向上し、CNT線材1とめっき部12との接着強度を向上することができる。 The CNT wire rod 1 may have a metal portion other than the plating portion 12. For example, the CNT wire rod 1 includes copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), chromium (Cr) and nickel (Ni). A plated portion formed of an alloy containing one or more of the main components selected from the group consisting of) and the base of the plated portion, which comprises iron (Fe), nickel (Ni) and cobalt (Co) or these. It may be provided with a base portion formed of an alloy containing the above as a main component. The base portion is preferably formed by plating, and in this case, forms another plating portion different from the above-mentioned plating portion. When both the plated portion and the base portion are formed on the CNT wire rod 1, a part of the base portion is formed on the outer surface of the CNT bundle 11, and a part of the plated portion is formed on the outer surface of the base portion. It is preferable to be plated. At this time, the base portion located inside from the center of gravity of the CNT bundle 11 can be used as the first layer, and the plating portion located outside can be used as the second layer. Further, when both the plated portion and the base portion are formed on the CNT wire rod 1, a plurality of layers of the base portion may be provided, or a plurality of layers of the plated portion may be formed. By providing the base portion on the CNT wire rod 1 or the CNT bundle 11, the wettability between the base portion and the plating can be improved, and the adhesive strength between the CNT wire rod 1 and the plating portion 12 can be improved.

めっき部12の厚さは、母材の保護及びコスト等を考慮し、0.3μm~3.0μmである。めっき部と下地部の双方が形成される場合、めっき部と下地部の合計厚さは、0.3μm~3.0μmである。このとき、CNT束の1層目に相当する下地部の材料は、CNT束との密着力に優れた金属、2層目に相当するめっき部の材料は、電気伝導の優れた金属であることが好ましい。 The thickness of the plated portion 12 is 0.3 μm to 3.0 μm in consideration of protection of the base material, cost, and the like. When both the plated portion and the base portion are formed, the total thickness of the plated portion and the base portion is 0.3 μm to 3.0 μm. At this time, the material of the base portion corresponding to the first layer of the CNT bundle is a metal having excellent adhesion to the CNT bundle, and the material of the plating portion corresponding to the second layer is a metal having excellent electrical conduction. Is preferable.

カーボンナノチューブ或いはカーボンナノチューブ束の撚り線において、めっきされていない素線同士では接続抵抗が大きく、素線間の導通がとりにくい。そのため、端末から電流を流す場合に、撚り線を構成する素線全部に電流が流れない場合があり、特に大電流を流した場合、特定の素線にのみ電流が流れ、素線の許容電流量を超え、素線が切断してしまう場合がある。 In the stranded wire of carbon nanotubes or bundles of carbon nanotubes, the connection resistance is large between the unplated strands, and it is difficult to establish conduction between the strands. Therefore, when a current is passed from the terminal, the current may not flow through all the strands that make up the stranded wire. Especially when a large current is passed, the current flows only through a specific strand, and the allowable current of the strands. The amount may be exceeded and the wire may be cut.

CNT束である素線がめっき処理されている場合、めっきされていな素線と素線同士に比べて、めっきされた素線同士では1/100程度、めっきされた素線とめっきされていない素線では1/10程度に接触抵抗が下がるため、素線同士の導通が向上し、素線全体に電流が流れるようになる。その結果、大電流を流した場合でも特定の素線にのみ過剰な電流が流れて素線が切断されることがない。 When the strands that are CNT bundles are plated, the plated strands are about 1/100 of the unplated strands and the strands are not plated. Since the contact resistance of the strands is reduced to about 1/10, the continuity between the strands is improved and the current flows through the strands. As a result, even when a large current is passed, an excessive current flows only in a specific wire and the wire is not cut.

そこで、本実施形態では、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の外縁全長に対する、当該CNT束の外縁に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるCNT束の個数を、複数のCNT束11,11,・・・の総数で除した値が70%以上であり、80%以上が好ましく、90%以上がより好ましい。上記値が70%未満であると、素線間の接触抵抗が十分下がらず、大きな電流が流れたときに特性の素線に過電流が生じやすくなり、好ましくない。また、CNT束の外縁に形成されるめっき部の厚さが1μm未満であると、はんだ付けの際にめっきが剥がれてCNTが露出し、接続抵抗が増加するため好ましくない。 Therefore, in the present embodiment, in the cross section in the direction perpendicular to the longitudinal direction of the CNT wire rod 1, the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the outer edge of the CNT bundle with respect to the total length of the outer edge of the CNT bundle 11. The value obtained by dividing the number of CNT bundles having a ratio of 0.5 or more by the total number of a plurality of CNT bundles 11, 11, ... Is 70% or more, preferably 80% or more, and 90% or more. preferable. If the above value is less than 70%, the contact resistance between the strands does not decrease sufficiently, and when a large current flows, an overcurrent is likely to occur in the characteristic strands, which is not preferable. Further, if the thickness of the plated portion formed on the outer edge of the CNT bundle is less than 1 μm, the plating is peeled off during soldering, the CNTs are exposed, and the connection resistance is increased, which is not preferable.

各CNT束の断面が円形であるか或いは円相当径が算出可能である場合、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の外周全長に対する、当該CNT束の外周に厚さ1μm以上のめっき層が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、複数のカーボンナノチューブ束11,11,・・・の総数で除した値の比率が、70%以上であり、80%以上が好ましく、90%以上がより好ましい。 When the cross section of each CNT bundle is circular or the equivalent circle diameter can be calculated, the thickness on the outer periphery of the CNT bundle with respect to the total outer circumference of the CNT bundle 11 in the cross section in the direction perpendicular to the longitudinal direction of the CNT wire 1. The ratio of the number of carbon nanotube bundles in which the ratio of the lengths of the portions where the plating layer of 1 μm or more is formed is 0.5 or more divided by the total number of the plurality of carbon nanotube bundles 11, 11, ... However, it is 70% or more, preferably 80% or more, and more preferably 90% or more.

めっき部12は、CNT線材1の長手方向の全長の一部に形成されてもよいし、CNT線材1の長手方向の全長に亘って形成されてもよい。このめっき部12では、CNT束11の外縁全長に対する、当該CNT束の外縁に厚さ1μm以上のめっき層が形成された部分の長さの比が0.5以上であるCNT束の個数を、複数のCNT束11,11,…の総数で除した値の比率が、CNT線材1の長手方向に関してばらつきが小さいのが好ましい。例えば、1.0mのCNT線材を概ね10箇所で切断して各断面をSEMで観察し、上述の算出方法を用いて各CNT束の上記値を算出し、得られた複数の値を平均することで、めっき部12の長手方向における上記値の平均値を得ることができる。また、10箇所で得られた上記値の標準偏差を求めることで、CNT線材1の長手方向に関する上記値のばらつきを確認することができる。 The plated portion 12 may be formed on a part of the entire length of the CNT wire 1 in the longitudinal direction, or may be formed over the entire length of the CNT wire 1 in the longitudinal direction. In the plating portion 12, the number of CNT bundles in which the ratio of the length of the portion where the plating layer having a thickness of 1 μm or more is formed on the outer edge of the CNT bundle 11 to the total length of the outer edge of the CNT bundle 11 is 0.5 or more is determined. It is preferable that the ratio of the values divided by the total number of the plurality of CNT bundles 11, 11, ... Is small in the longitudinal direction of the CNT wire 1. For example, a 1.0 m CNT wire is cut at approximately 10 points, each cross section is observed by SEM, the above values of each CNT bundle are calculated using the above calculation method, and the obtained plurality of values are averaged. Therefore, the average value of the above values in the longitudinal direction of the plated portion 12 can be obtained. Further, by obtaining the standard deviation of the above values obtained at 10 points, it is possible to confirm the variation of the above values in the longitudinal direction of the CNT wire rod 1.

CNT線材1は、1層以上の層構造を有するCNTの複数が束ねられてなるCNT束同士を撚り合わせて構成されている。CNT線材1の外径は、0.01mm~5mmである。
CNT線材1は、複数のCNTが纏められた束状体となっている。CNT線材1は、異種元素がドープされていてもよい。この場合、CNT束11に異種元素がドープされてなるカーボンナノチューブ複合体の複数を撚り合わせて構成されてもよい。
The CNT wire rod 1 is configured by twisting CNT bundles formed by bundling a plurality of CNTs having a layer structure of one or more layers. The outer diameter of the CNT wire rod 1 is 0.01 mm to 5 mm.
The CNT wire rod 1 is a bundle in which a plurality of CNTs are bundled together. The CNT wire rod 1 may be doped with a different element. In this case, the CNT bundle 11 may be configured by twisting a plurality of carbon nanotube composites doped with different elements.

CNT線材1を構成するCNTは、単層構造又は複層構造を有する筒状体であり、それぞれSWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。例えば、2層構造を有するCNTは、六角形格子の網目構造を有する2つの筒状体が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接してこれらが連続的に結合している。 The CNTs constituting the CNT wire rod 1 are tubular bodies having a single-walled structure or a multi-walled structure, and are called SWNTs (single-walled nanotubes) and MWNTs (multi-walled nanotubes), respectively. For example, a CNT having a two-walled structure is a three-dimensional network structure in which two tubular bodies having a network structure of a hexagonal lattice are arranged substantially coaxially, and is called a DWNT (Double-walled nanotube). The hexagonal lattice, which is a constituent unit, is a six-membered ring in which carbon atoms are arranged at its vertices, and these are continuously bonded adjacent to other six-membered rings.

CNTの性質は、上記のような筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びそれ以外のカイラル型に大別され、アームチェア型は金属性、カイラル型は半導体性、ジグザグ型はその中間の挙動を示す。よってCNTの導電性はいずれのカイラリティを有するかによって大きく異なり、CNT集合体の導電性を向上させるには、金属性の挙動を示すアームチェア型のCNTの割合を増大させることが重要とされてきた。一方、半導体性を有するカイラル型のCNTに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、金属的挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性CNTに異種元素をドープした場合には、導電性の低下を引き起こす。 The properties of CNTs depend on the chirality of the cylindrical body as described above. Chirality is roughly classified into armchair type, zigzag type, and other chiral type. Armchair type is metallic, chiral type is semiconducting, and zigzag type shows intermediate behavior. Therefore, the conductivity of CNTs varies greatly depending on which chirality they have, and in order to improve the conductivity of CNT aggregates, it has been important to increase the proportion of armchair-type CNTs that exhibit metallic behavior. rice field. On the other hand, it is known that a chiral-type CNT having a semiconductor property is doped with a substance (dissimilar element) having an electron donating property or an electron accepting property to exhibit metallic behavior. Further, in a general metal, by doping a dissimilar element, conduction electrons are scattered inside the metal and the conductivity is lowered. Similarly, when the metallic CNT is doped with a dissimilar element, the conductivity is lowered. , Causes a decrease in conductivity.

このように、金属性CNT及び半導体性CNTへのドーピング効果は、導電性の観点からはトレードオフの関係にあると言えることから、理論的には金属性CNTと半導体性CNTとを別個に作製し、半導体性CNTにのみドーピング処理を施した後、これらを組み合わせることが望ましい。しかし、現状の製法技術では金属性CNTと半導体性CNTとを選択的に作り分けることは困難であり、金属性CNTと半導体性CNTが混在した状態で作製される。このため、金属性CNTと半導体性CNTの混合物からなるCNT線材の導電性を向上させるには、異種元素・分子によるドーピング処理が効果的となるCNT構造を選択することが好ましい。 As described above, it can be said that the doping effect on metallic CNTs and semiconducting CNTs has a trade-off relationship from the viewpoint of conductivity. Therefore, theoretically, metallic CNTs and semiconducting CNTs are prepared separately. However, it is desirable to combine these after doping the semiconducting CNTs only. However, it is difficult to selectively produce metallic CNTs and semiconducting CNTs with the current manufacturing method technology, and metallic CNTs and semiconducting CNTs are produced in a mixed state. Therefore, in order to improve the conductivity of the CNT wire rod made of a mixture of metallic CNTs and semiconductor CNTs, it is preferable to select a CNT structure in which doping treatment with different elements / molecules is effective.

CNT線材1を構成するCNTは、2層又は3層の層構造を有するのが好ましい。具体的には、CNT線材1を構成するCNT束11において、複数のCNTの個数に対する、2層構造又は3層構造を有するCNTの個数の和の比率が50%以上であるのが好ましく、75%以上であるのがより好ましい。すなわち、一のCNT束を構成する全CNTの総数をNTOTAL、上記全CNTのうち2層構造を有するCNT(2)の数の和をNCNT(2)、上記全CNTのうち3層構造を有するCNT(3)の数の和をNCNT(3)としたとき、下記式(1)で表すことができる。
(NCNT(2)+NCNT(3))/NTOTAL×100(%)≧50(%) ・・・(1)
The CNTs constituting the CNT wire rod 1 preferably have a two-layer or three-layer structure. Specifically, in the CNT bundle 11 constituting the CNT wire rod 1, the ratio of the sum of the number of CNTs having a two-layer structure or a three-layer structure to the number of a plurality of CNTs is preferably 50% or more, 75 % Or more is more preferable. That is, the total number of all CNTs constituting one CNT bundle is N TOTAL , the sum of the number of CNTs (2) having a two-walled structure among all the CNTs is N CNT (2) , and the three-walled structure among all the CNTs. When the sum of the numbers of CNTs (3) having is N CNT (3) , it can be expressed by the following equation (1).
(N CNT (2) + N CNT (3) ) / N TOTAL × 100 (%) ≧ 50 (%) ・ ・ ・ (1)

2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高い。また、ドーパントは、CNTの最内層の内部、もしくは複数のCNTで形成されるCNT間の隙間に導入される。CNTの層間距離はグラファイトの層間距離である0.335nmと同等であり、多層CNTの場合その層間にドーパントが入り込むことはサイズ的に困難である。このことからドーピング効果はCNTの内部および外部にドーパントが導入されることで発現するが、多層CNTの場合は最外層および最内層に接していない内部に位置するチューブのドープ効果が発現しにくくなる。以上のような理由により、複層構造のCNTにそれぞれドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。また、ドーパントは、強い求電子性もしくは求核性を示す、反応性の高い試薬であることが多い。単層構造のCNTは多層よりも剛性が弱く、耐薬品性に劣るためにドーピング処理を施すと、CNT自体の構造が破壊されてしまうことがある。よって本発明ではCNT集合体に含まれる2層構造又は3層構造を有するCNTの個数に着目する。また、2層又は3層構造のCNTの個数の和の比率が50%未満であると、単層構造或いは4層以上の複層構造を有するCNTの比率が高くなり、CNT集合体全体としてドーピング効果が小さくなり、高導電率が得にくくなる。よって、2層又は3層構造のCNTの個数の和の比率を上記範囲内の値とする。 A CNT with a small number of layers, such as a two-layer structure or a three-layer structure, has relatively higher conductivity than a CNT with a larger number of layers. Further, the dopant is introduced inside the innermost layer of CNTs or in the gaps between CNTs formed by a plurality of CNTs. The interlayer distance of CNTs is equivalent to 0.335 nm, which is the interlayer distance of graphite, and in the case of multi-walled CNTs, it is difficult for the dopant to enter between the layers in terms of size. From this, the doping effect is exhibited by introducing the dopant inside and outside the CNT, but in the case of the multi-walled CNT, the doping effect of the tube located inside not in contact with the outermost layer and the innermost layer is less likely to be exhibited. .. For the above reasons, when the CNTs having a multi-layer structure are individually doped, the doping effect of the CNTs having a two-layer structure or a three-layer structure is the highest. In addition, the dopant is often a highly reactive reagent that exhibits strong electrophilicity or nucleophilicity. A CNT having a single-walled structure has a weaker rigidity than a multi-walled structure and is inferior in chemical resistance. Therefore, when doping treatment is performed, the structure of the CNT itself may be destroyed. Therefore, in the present invention, attention is paid to the number of CNTs having a two-layer structure or a three-layer structure contained in the CNT aggregate. Further, when the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is less than 50%, the ratio of CNTs having a single-walled structure or a multi-walled structure having four or more layers becomes high, and the CNT aggregate as a whole is doped. The effect is reduced and it becomes difficult to obtain high conductivity. Therefore, the ratio of the sum of the number of CNTs having a two-layer or three-layer structure is set as a value within the above range.

CNTにドープされるドーパントは、導電性が向上すれば特に限定はないが、例えば硝酸、硫酸、ヨウ素、臭素、カリウム、ナトリウム、ホウ素及び窒素からなる群から選択される1つ以上の異種元素もしくは分子である。 The dopant doped in CNT is not particularly limited as long as the conductivity is improved, and is, for example, one or more dissimilar elements selected from the group consisting of nitric acid, sulfuric acid, iodine, bromine, potassium, sodium, boron and nitrogen. It is a molecule.

また、CNT束11を構成するCNTの最外層の外径は5.0nm以下であるのが好ましい。CNT束11を構成するCNTの最外層の外径が5.0nmを超えると、CNT間および最内層の隙間に起因する空孔率が大きくなり、導電性が低下してしまうため、好ましくない。 Further, the outer diameter of the outermost layer of the CNTs constituting the CNT bundle 11 is preferably 5.0 nm or less. If the outer diameter of the outermost layer of the CNTs constituting the CNT bundle 11 exceeds 5.0 nm, the porosity due to the gaps between the CNTs and the innermost layer increases, and the conductivity decreases, which is not preferable.

CNT線材1は、線材全体の強度及び導電性の観点から、その当該線材に分散配置された他の金属部材を有していてもよい。他の金属部材は、例えば長尺状の線材或いは粒子であり、このような形状を有する他の金属部材がCNTに混合されている。上記他の金属部材の金属は、例えば銅、銅合金、アルミニウム、アルミニウム合金を主成分とする材料である。 The CNT wire rod 1 may have other metal members dispersed and arranged on the wire rod from the viewpoint of the strength and conductivity of the entire wire rod. Other metal members are, for example, long wire rods or particles, and other metal members having such a shape are mixed with CNTs. The metal of the other metal member is, for example, a material containing copper, a copper alloy, aluminum, or an aluminum alloy as a main component.

<カーボンナノチューブ線材の製造方法>
本実施形態に係るカーボンナノチューブ線材の製造方法は、複数のカーボンナノチューブ束で構成されるカーボンナノチューブ線材本体に無電界めっき処理を施す工程と、上記無電界めっき処理を施したカーボンナノチューブ線材本体に電界めっき処理を施して、上記カーボンナノチューブ線材本体の長手方向に沿って、該カーボンナノチューブ線材本体の内部及び表層部にめっき部を形成する工程と、上記無電界めっきを施す工程の前か又は上記電界めっきを施す工程の後に、上記複数のカーボンナノチューブ束を撚り合わせる工程と、を有する。
<Manufacturing method of carbon nanotube wire>
The method for manufacturing the carbon nanotube wire rod according to the present embodiment includes a step of subjecting the carbon nanotube wire rod main body composed of a plurality of carbon nanotube bundles to an electric field plating treatment and an electric field on the carbon nanotube wire rod main body subjected to the electric field plating treatment. A step of performing a plating treatment to form a plated portion inside and on the surface layer of the carbon nanotube wire body along the longitudinal direction of the carbon nanotube wire body, and before or before the step of performing no-electron plating or the electric field. After the step of applying plating, there is a step of twisting the plurality of carbon nanotube bundles.

具体的には、先ず、複数のCNT束で構成されるCNT線材本体を準備し、鉄(Fe)、ニッケル(Ni)及びコバルト(Co)から選択された1又は複数を主成分とする合金を含有するめっき浴に所定時間浸漬して、CNT線材本体にめっき部の下地となる下地部を形成する。これにより、CNT線材の内部及び表層部に下地部が形成される。CNT線材本体に下地部を形成することで、CNT線材本体とめっき部との接着性を向上することができる点で優れている。 Specifically, first, a CNT wire rod main body composed of a plurality of CNT bundles is prepared, and an alloy containing one or more selected from iron (Fe), nickel (Ni) and cobalt (Co) as a main component is prepared. Immerse in the contained plating bath for a predetermined time to form a base portion to be a base of the plating portion on the CNT wire rod main body. As a result, a base portion is formed inside the CNT wire rod and on the surface layer portion. By forming the base portion on the CNT wire main body, it is excellent in that the adhesiveness between the CNT wire main body and the plated portion can be improved.

次に、下地部が形成されたCNT線材本体を、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択された1又は複数を主成分とする合金を含有するめっき浴に所定時間浸漬して、CNT線材本体にめっき部を形成する。これにより、CNT線材の内部及び表層部にめっき部が形成される。本電界めっき処理により、CNT線材内部及び表層部にめっき部が形成されたCNT線材を得る。 Next, the CNT wire rod main body on which the base portion is formed is subjected to copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), and chrome. A plated portion is formed on the main body of the CNT wire by immersing it in a plating bath containing an alloy containing one or a plurality of alloys having one or a plurality of main components selected from the group consisting of (Cr) and nickel (Ni) for a predetermined time. As a result, a plated portion is formed inside the CNT wire and on the surface layer portion. By this electric field plating treatment, a CNT wire having a plated portion formed inside the CNT wire and on the surface layer portion is obtained.

上記無電界めっき或いは電界めっき処理によって形成されるめっき部の深さ方向の割合、すなわちCNT線材の外縁から重心までの長さに対するめっき部の厚さの比は、複数のCNT束の撚り度に依存する。めっき部の深さ方向の割合を好ましい範囲内の値にするには、上記無電界めっきを施す工程の後に、複数のCNT束を撚り合わせる工程を行うか、上記無電界めっきを施す工程の前に、複数のCNT束を弱い撚りで撚り合わせる工程を行うのが好ましい。無電界めっきを施す工程の前に撚り合わせる工程を行う場合、CNT線材本体の単位長さ当たりの巻き数を表す撚り度(T/m)を小さくすることで、めっき浴のめっきがCNT線材本体に浸透する量が多くなり、CNT線材の表層部に位置するCNT束に加えて、CNT線材の内部に位置するCNT束にもめっき部を形成することができる。 The ratio in the depth direction of the plated portion formed by the above-mentioned electric field plating or electroplating treatment, that is, the ratio of the thickness of the plated portion to the length from the outer edge of the CNT wire to the center of gravity is determined by the twist degree of the plurality of CNT bundles. Dependent. In order to set the ratio of the plated portion in the depth direction to a value within a preferable range, a step of twisting a plurality of CNT bundles is performed after the step of performing the electroless plating, or before the step of performing the electroless plating. In addition, it is preferable to perform a step of twisting a plurality of CNT bundles with a weak twist. When the step of twisting is performed before the process of applying electroless plating, the degree of twist (T / m), which represents the number of turns per unit length of the CNT wire body, is reduced so that the plating of the plating bath can be performed on the CNT wire body. The amount of permeation into the CNT wire increases, and the plated portion can be formed not only on the CNT bundle located on the surface layer portion of the CNT wire rod but also on the CNT bundle located inside the CNT wire rod.

次いで、下地部及びめっき部が形成された複数のカーボンナノチューブ束を撚り合わせる。これにより、主として表層部1aに配されためっき部12を備えるCNT線材1が得られる。 Next, a plurality of carbon nanotube bundles in which the base portion and the plated portion are formed are twisted together. As a result, the CNT wire rod 1 having the plating portion 12 mainly arranged on the surface layer portion 1a can be obtained.

<カーボンナノチューブ線材接続構造体の構成>
図2は、本実施形態に係るカーボンナノチューブ線材接続構造体の構成の一例を示す断面図である。なお、図2におけるカーボンナノチューブ線材接続構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図2のものに限られないものとする。
図2に示すように、カーボンナノチューブ線材接続構造体10(以下、CNT線材接続構造体ともいう)は、複数のCNT束11,11,・・・を撚り合わせて構成されるCNT線材1と、CNT線材1に接続されるはんだ部2とを備える。はんだ部2は、めっき部12を介してCNT線材1と接続されると共に、銅板などの被接続部材20と接続されている。
<Structure of carbon nanotube wire connection structure>
FIG. 2 is a cross-sectional view showing an example of the configuration of the carbon nanotube wire rod connecting structure according to the present embodiment. The carbon nanotube wire connection structure in FIG. 2 shows an example thereof, and the shape, dimensions, and the like of each configuration according to the present invention are not limited to those in FIG.
As shown in FIG. 2, the carbon nanotube wire connection structure 10 (hereinafter, also referred to as a CNT wire connection structure) includes a CNT wire 1 formed by twisting a plurality of CNT bundles 11, 11, ... It includes a solder portion 2 connected to the CNT wire rod 1. The solder portion 2 is connected to the CNT wire rod 1 via the plating portion 12 and is also connected to the connected member 20 such as a copper plate.

はんだ部2は、例えば、銅(Cu)、スズ(Sn)、鉛(Zn)、銀(Ag)、ニッケル(Ni)、クロム(Cr)から選択された1又は複数を主成分とする合金で形成されている。はんだ部2は、例えばリフロー方式や、糸状はんだとはんだごてを用いた方法で形成することができる。 The solder portion 2 is, for example, an alloy containing one or more selected from copper (Cu), tin (Sn), lead (Zn), silver (Ag), nickel (Ni), and chromium (Cr) as a main component. It is formed. The solder portion 2 can be formed by, for example, a reflow method or a method using a thread-like solder and a soldering iron.

はんだ部2は、めっき部12と同様、CNT線材1の長手方向に沿って設けられ、CNT線材1の内部及び表層部に配される。めっき部12は、上述のように、前記カーボンナノチューブ線材の断面視において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、複数のカーボンナノチューブ束11、11,・・・の総数で除した値の比率が、70%以上である。そして、はんだ部2は、CNT線材1の内部及び表層部に上述の割合で配されためっき部12と接合されている。これにより、はんだ部2とめっき部12とが良好に接着し、はんだ部2とCNT線材1との機械的接続及び電気的接続が確保される。 Like the plating portion 12, the solder portion 2 is provided along the longitudinal direction of the CNT wire rod 1, and is arranged inside the CNT wire rod 1 and on the surface layer portion. As described above, the plated portion 12 is the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle with respect to the total surface length of the carbon nanotube bundle in the cross-sectional view of the carbon nanotube wire rod. The ratio of the value obtained by dividing the number of carbon nanotube bundles having a ratio of 0.5 or more by the total number of the plurality of carbon nanotube bundles 11, 11, ... Is 70% or more. The solder portion 2 is joined to the plating portion 12 arranged inside the CNT wire rod 1 and on the surface layer portion at the above ratio. As a result, the solder portion 2 and the plating portion 12 are well adhered to each other, and the mechanical connection and the electrical connection between the solder portion 2 and the CNT wire rod 1 are secured.

図1では、はんだ部2は、CNT線材1の長手方向に垂直な方向の断面視において、CNT線材1の表層部1aに配されためっき部12の表面全体に形成されているが、CNT線材1との良好な接続性が確保できる範囲で、めっき部12の一部に形成されていてもよい。また、はんだ部2は、CNT線材1の表層部1aの表面全体に形成されているが、CNT線材1との良好な接続性が確保できる範囲で、CNT線材1の表層部1aの一部に形成されていてもよい。 In FIG. 1, the solder portion 2 is formed on the entire surface of the plated portion 12 arranged on the surface layer portion 1a of the CNT wire rod 1 in a cross-sectional view in a direction perpendicular to the longitudinal direction of the CNT wire rod 1. It may be formed in a part of the plating portion 12 as long as good connectivity with 1 can be ensured. Further, the solder portion 2 is formed on the entire surface of the surface layer portion 1a of the CNT wire rod 1, but is formed on a part of the surface layer portion 1a of the CNT wire rod 1 as long as good connectivity with the CNT wire rod 1 can be ensured. It may be formed.

上述したように、本実施形態によれば、CNT線材1は、該CNT線材の長手方向に沿って設けられ、且つCNT線材1の内部及び表層部に配されためっき部12を備え、CNT線材1の長手方向に垂直な方向の断面において、CNT束11の表面全長に対する、当該CNT束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、複数のCNT束11、11、・・・の総数で除した値の比率が70%以上であるので、めっき部12の介在によってCNT束間の接触抵抗が低減し、CNT線材1を構成する複数のCNT束11,11,…のほぼ全体に電流を流すことができる。これにより、CNT束間の接触抵抗を低減させ、過電流の発生を抑制することができる。 As described above, according to the present embodiment, the CNT wire rod 1 is provided along the longitudinal direction of the CNT wire rod, and includes a plated portion 12 arranged inside the CNT wire rod 1 and on the surface layer portion, and the CNT wire rod 1 is provided. In the cross section in the direction perpendicular to the longitudinal direction of 1, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the CNT bundle 11 to the total surface length of the CNT bundle 11 is 0.5 or more. Since the ratio of the value obtained by dividing the number of carbon nanotube bundles by the total number of the plurality of CNT bundles 11, 11, ... Is 70% or more, the contact resistance between the CNT bundles is reduced by the presence of the plating portion 12. A current can be passed through almost all of the plurality of CNT bundles 11, 11, ... Constituting the CNT wire rod 1. As a result, the contact resistance between the CNT bundles can be reduced and the generation of overcurrent can be suppressed.

また、CNT線材接続構造体10が、複数のCNT束11,11,・・・を撚り合わせて構成されるCNT線材1と、CNT線材1に接続されるはんだ部2とを備え、はんだ部2が、めっき部12を介してCNT線材1と接続されているので、CNT線材1と被接続部材20との良好な接続を実現することが可能となる。 Further, the CNT wire connection structure 10 includes a CNT wire 1 formed by twisting a plurality of CNT bundles 11, 11, ..., And a solder portion 2 connected to the CNT wire 1, and the solder portion 2 is provided. However, since the CNT wire 1 is connected to the CNT wire 1 via the plating portion 12, it is possible to realize a good connection between the CNT wire 1 and the connected member 20.

以上、本発明の実施形態に係るCNT線材、CNT接続構造体およびその製造方法について述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。 Although the CNT wire rod, the CNT connection structure and the manufacturing method thereof according to the embodiment of the present invention have been described above, the present invention is not limited to the embodiments described, and various types are based on the technical idea of the present invention. It can be transformed and changed.

以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.

(実施例1及び比較例1)
先ず、浮遊触媒気相成長(FCCVD)法を用い、電気炉によって1300℃に加熱された、内径φ60mm、長さ1600mmのアルミナ管内部に、炭素源であるデカヒドロナフタレン、触媒であるフェロセン、及び反応促進剤であるチオフェンを、体積比率にてそれぞれ100:4:1で含む原料溶液Lを、スプレー噴霧により供給した。キャリアガスは、水素を9.5L/minで供給した。得られたCNTを回収機にてシート状に回収し、これらを集めてCNT集合体を製造し、更にCNT集合体を束ねてCNT線材を製造し、大気下において500℃に加熱し、さらに酸処理を施すことによって高純度化を行った。
得られたCNT50mgとコール酸ナトリウム450mgを24.5gの水に加え超音波攪拌装置を用いて30分攪拌した後、超音波ホモジナイザーを用いて分散液とした。続いて、内径1mmの注入ノズルを介して、前記CNT分散液をイソプロピルアルコール中に注入し、糸状に凝集させ、さらに乾燥させることで、CNTからなる3mの素線を得た。
得られた素線を硫酸銅、ホルマリン、ロシェル塩からなるめっき液に浸漬し、無電解銅めっきした。その後、硫酸銅と硫酸の水溶液からなるめっき液にCNT線材本体を浸漬し、1Aで50分電解めっきすることで、電解めっきされた38本の素線を作製した。
続いて銅めっきされた38本の素線を200T/mで撚り、素線の100%が銅めっきされたCNT撚り線であるCNT線材を得た。
(実施例2)
実施例1と同様の方法で作製した素線を10T/mで撚った。
CNT線材本体を硫酸銅、ホルマリン、ロシェル塩からなるめっき液に浸漬し、無電解銅めっきした。
その後、硫酸銅と硫酸の水溶液からなるめっき液にCNT線材本体を浸漬し、1Aで40分電解めっきすることで、当該CNT線材本体に電界めっき処理が施されたCNT線材を作製した。
(Example 1 and Comparative Example 1)
First, using the floating catalytic vapor phase growth (FCCVD) method, decahydronaphthalene as a carbon source, ferrocene as a catalyst, and ferrocene as a catalyst are placed inside an alumina tube having an inner diameter of φ60 mm and a length of 1600 mm heated to 1300 ° C. by an electric furnace. The raw material solution L containing the reaction accelerator thiophene in a volume ratio of 100: 4: 1 was supplied by spray spraying. As the carrier gas, hydrogen was supplied at 9.5 L / min. The obtained CNTs are collected in the form of a sheet by a recovery machine, and these are collected to produce a CNT aggregate, and the CNT aggregates are bundled to produce a CNT wire rod, which is heated to 500 ° C. in the atmosphere and further acid. High purity was achieved by applying the treatment.
50 mg of the obtained CNT and 450 mg of sodium cholic acid were added to 24.5 g of water and stirred for 30 minutes using an ultrasonic stirrer, and then a dispersion was prepared using an ultrasonic homogenizer. Subsequently, the CNT dispersion liquid was injected into isopropyl alcohol via an injection nozzle having an inner diameter of 1 mm, aggregated in a thread shape, and further dried to obtain a 3 m strand of CNT.
The obtained wire was immersed in a plating solution composed of copper sulfate, formalin, and Rochelle salt, and electroless copper plating was performed. Then, the main body of the CNT wire was immersed in a plating solution consisting of an aqueous solution of copper sulfate and sulfuric acid, and electroplated at 1 A for 50 minutes to prepare 38 electrolytically plated wires.
Subsequently, 38 copper-plated strands were twisted at 200 T / m to obtain a CNT wire rod in which 100% of the strands were copper-plated CNT strands.
(Example 2)
The strands produced by the same method as in Example 1 were twisted at 10 T / m.
The main body of the CNT wire was immersed in a plating solution composed of copper sulfate, formalin, and Rochelle salt, and electroless copper plating was performed.
Then, the CNT wire rod main body was immersed in a plating solution consisting of an aqueous solution of copper sulfate and sulfuric acid, and electrolytically plated at 1 A for 40 minutes to prepare a CNT wire rod main body subjected to electroplating treatment.

(比較例1)
実施例1と同様の方法で作製した、銅めっきされていない素線19本と、銅めっきされた素線19本を200T/mで撚り、CNT撚り線であるCNT線材を得た。
(Comparative Example 1)
19 copper-plated strands and 19 copper-plated strands produced by the same method as in Example 1 were twisted at 200 T / m to obtain a CNT wire rod which is a CNT stranded wire.

(a)めっき割合の測定
1.0mのCNT撚り線(CNT線材)を長手方向に10cm毎に垂直な面で切断し、イオンミリングによって断面を研磨した。つづいてSEM観察を行った。CNT線材の各素線の表面の全長を求めこれをAとした。つづいて、当該素線の表面のうちめっきされている部分の長さをBとした。B/Aが0.5以上の素線を、めっき部が形成されている素線とし、その本数を求めた。
上記にて求めためっき部が形成された素線の本数を、CNT線材全体の素線の総数で除した値の比率を、CNT線材の断面におけるめっき割合(%)とした。めっき割合が70%以上である場合を良好であるとした。
(A) Measurement of plating ratio A 1.0 m CNT stranded wire (CNT wire rod) was cut at intervals of 10 cm in the longitudinal direction on a vertical surface, and the cross section was polished by ion milling. Subsequently, SEM observation was performed. The total length of the surface of each wire of the CNT wire was obtained and designated as A. Subsequently, the length of the plated portion of the surface of the wire was defined as B. The strands having a B / A of 0.5 or more were defined as the strands on which the plated portion was formed, and the number thereof was determined.
The ratio of the value obtained by dividing the number of strands on which the plated portion was formed obtained above by the total number of strands of the entire CNT wire was defined as the plating ratio (%) in the cross section of the CNT wire. A case where the plating ratio was 70% or more was regarded as good.

(b)はんだとの接合性
CNT撚り線の末端と銅板をはんだにて接続して、はんだ部が形成されたCNT接続構造体を作製し、銅板とCNT撚り線の間の接続抵抗を測定した。接続抵抗が10mΩ以下である場合を良好であるとした。
(B) Bondability with solder The end of the CNT stranded wire and the copper plate were connected with solder to prepare a CNT connection structure in which the solder portion was formed, and the connection resistance between the copper plate and the CNT stranded wire was measured. .. The case where the connection resistance is 10 mΩ or less is regarded as good.

(c)過電流の有無の測定
CNT撚り線に、2000A/cmの電流密度で5分間電流を印加した。電流を流す前のCNT撚り線の抵抗値をR1、電流を流した後の抵抗値をR2とした。過電流が生じる場合、特定の素線が劣化するため、R2はR1に比べて高い値となる。ここでは、R2/R1<1.5である場合を良好「○」、R2/R1≧1.5である場合を不良「×」とした。
(C) Measurement of the presence or absence of overcurrent A current was applied to the CNT stranded wire at a current density of 2000 A / cm 2 for 5 minutes. The resistance value of the CNT stranded wire before the current was passed was R1, and the resistance value after the current was passed was R2. When an overcurrent occurs, a specific wire is deteriorated, so that R2 has a higher value than R1. Here, the case where R2 / R1 <1.5 is regarded as a good “◯”, and the case where R2 / R1 ≧ 1.5 is regarded as a bad “×”.

(d)CNT撚り線の密度
密度勾配管を用いて、上記CNT撚り線の密度を測定した。長手方向の長さが2cmのサンプルを用いた。CNT撚り線の密度は、アルミの密度と同等の2.7g/cm未満である場合を、軽量電線として良好であるとした。
(D) Density of CNT stranded wire The density of the CNT stranded wire was measured using a density gradient tube. A sample with a length of 2 cm in the longitudinal direction was used. When the density of the CNT stranded wire is less than 2.7 g / cm 3 , which is equivalent to the density of aluminum, it is considered to be good as a lightweight electric wire.

上記実施例1及び比較例1の測定、評価結果を表1に示す。 Table 1 shows the measurement and evaluation results of Example 1 and Comparative Example 1.

Figure 0007097165000001
Figure 0007097165000001

表1に示すように、実施例1,2では、CNT線材の内部及び最表層にめっき部が設けられており、CNT線材における上記めっき割合がそれぞれ100%、82%で良好であった。また、過電流の発生が抑えられ、耐久性に優れていることが分かった。また、はんだとの接合性及びCNT撚り線の密度のいずれも、良好であることが分かった。 As shown in Table 1, in Examples 1 and 2, plating portions were provided inside the CNT wire rod and on the outermost surface layer, and the plating ratios in the CNT wire rod were good at 100% and 82%, respectively. In addition, it was found that the generation of overcurrent was suppressed and the durability was excellent. It was also found that both the bondability with the solder and the density of the CNT stranded wire were good.

一方、比較例1では、CNT線材における上記めっき割合が不良であり、過電流が頻繁に発生し、CNT線材の耐久性が低いことが分かった。また、接続抵抗が実施例1,2と比較して格段に大きいことが分かった。 On the other hand, in Comparative Example 1, it was found that the plating ratio in the CNT wire was poor, overcurrent frequently occurred, and the durability of the CNT wire was low. Further, it was found that the connection resistance was significantly larger than that of Examples 1 and 2.

1 カーボンナノチューブ線材(CNT線材)
2 はんだ部
10 カーボンナノチューブ線材接続構造体(CNT線材接続構造体)
11 カーボンナノチューブ束(CNT束)
12 めっき部
20 被接続部材
1 Carbon nanotube wire rod (CNT wire rod)
2 Solder part 10 Carbon nanotube wire connection structure (CNT wire connection structure)
11 Carbon nanotube bundle (CNT bundle)
12 Plating part 20 Connected member

Claims (7)

複数のカーボンナノチューブ束を撚り合わせて構成されるカーボンナノチューブ線材であって、
前記カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配され、且つ前記複数のカーボンナノチューブ束のそれぞれの表面に別個に形成されためっき部を備え、
前記カーボンナノチューブ線材の長手方向に垂直な方向の断面において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき層が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であることを特徴とするカーボンナノチューブ線材。
It is a carbon nanotube wire rod composed by twisting a plurality of carbon nanotube bundles.
A plated portion provided along the longitudinal direction of the carbon nanotube wire, arranged inside and on the surface of the carbon nanotube wire , and separately formed on the surface of each of the plurality of carbon nanotube bundles .
In the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube wire rod, the ratio of the length of the portion where the plating layer having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0. A carbon nanotube wire rod having a ratio of a value obtained by dividing the number of carbon nanotube bundles of 5 or more by the total number of the plurality of carbon nanotube bundles to be 70% or more.
前記めっき部が、前記複数のカーボンナノチューブ束のうちの隣接する複数のカーボンナノチューブ束間に3次元的に形成されていることを特徴とする請求項1記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to claim 1, wherein the plated portion is three-dimensionally formed between a plurality of adjacent carbon nanotube bundles among the plurality of carbon nanotube bundles. 前記めっき部は、銅(Cu)、銀(Ag)、金(Au)、スズ(Sn)、白金(Pt)、チタン(Ti)、鉄(Fe)、クロム(Cr)及びニッケル(Ni)からなる群から選択された1又は複数を主成分とする材料で形成されることを特徴とする、請求項1又は2記載のカーボンナノチューブ線材。 The plated portion is made of copper (Cu), silver (Ag), gold (Au), tin (Sn), platinum (Pt), titanium (Ti), iron (Fe), chromium (Cr) and nickel (Ni). The carbon nanotube wire rod according to claim 1 or 2, characterized in that it is formed of a material containing one or more of the main components selected from the group. 異種元素がドープされていることを特徴とする、請求項1~3のいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 3, wherein the carbon nanotube wire rod is doped with a different element. 前記カーボンナノチューブ線材を構成するカーボンナノチューブが、2層又は3層の層構造を有することを特徴とする、請求項1~4のいずれか1項に記載のカーボンナノチューブ線材。 The carbon nanotube wire rod according to any one of claims 1 to 4, wherein the carbon nanotubes constituting the carbon nanotube wire rod have a two-layer or three-layer structure. 複数のカーボンナノチューブ束を撚り合わせて構成されるカーボンナノチューブ線材と、前記カーボンナノチューブ線材に接続されるはんだ部とを備えるカーボンナノチューブ線材接続構造体であって、
前記カーボンナノチューブ線材は、該カーボンナノチューブ線材の長手方向に沿って設けられ、前記カーボンナノチューブ線材の内部及び表層部に配され、且つ前記複数のカーボンナノチューブ束のそれぞれの表面に別個に形成されためっき部を備え、
前記カーボンナノチューブ線材の断面視において、カーボンナノチューブ束の表面全長に対する、当該カーボンナノチューブ束の表面に厚さ1μm以上のめっき部が形成された部分の長さの比が0.5以上であるカーボンナノチューブ束の個数を、前記複数のカーボンナノチューブ束の総数で除した値の比率が、70%以上であることを特徴とするカーボンナノチューブ線材接続構造体。
A carbon nanotube wire connection structure including a carbon nanotube wire composed by twisting a plurality of carbon nanotube bundles and a solder portion connected to the carbon nanotube wire.
The carbon nanotube wire rod is provided along the longitudinal direction of the carbon nanotube wire rod, is arranged inside the carbon nanotube wire rod and on the surface layer portion , and is separately formed on the surface of each of the plurality of carbon nanotube bundles. Equipped with a part
In the cross-sectional view of the carbon nanotube wire rod, the ratio of the length of the portion where the plated portion having a thickness of 1 μm or more is formed on the surface of the carbon nanotube bundle to the total surface length of the carbon nanotube bundle is 0.5 or more. A carbon nanotube wire connection structure characterized in that the ratio of the value obtained by dividing the number of bundles by the total number of the plurality of carbon nanotube bundles is 70% or more.
複数のカーボンナノチューブ束で構成されるカーボンナノチューブ線材本体に無電界めっき処理を施して下地部を形成する工程と、
前記無電界めっき処理を施したカーボンナノチューブ線材本体に電界めっき処理を施して、前記カーボンナノチューブ線材本体の長手方向に沿って、該カーボンナノチューブ線材本体の内部及び表層部にめっき部を形成する工程と、
前記電界めっきを施す工程の後に、前記複数のカーボンナノチューブ束を撚り合わせる工程と、
を有することを特徴とする、カーボンナノチューブ線材の製造方法。
A process of forming a base portion by subjecting a carbon nanotube wire body composed of a plurality of carbon nanotube bundles to a fieldless plating process.
A step of subjecting the carbon nanotube wire rod main body subjected to the electroless plating treatment to an electric field plating treatment to form a plated portion inside and on the surface layer portion of the carbon nanotube wire rod main body along the longitudinal direction of the carbon nanotube wire rod main body. ,
After the step of applying the electric field plating, a step of twisting the plurality of carbon nanotube bundles and a step of twisting the plurality of carbon nanotube bundles.
A method for producing a carbon nanotube wire rod, which comprises.
JP2017193223A 2017-10-03 2017-10-03 Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod Active JP7097165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193223A JP7097165B2 (en) 2017-10-03 2017-10-03 Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193223A JP7097165B2 (en) 2017-10-03 2017-10-03 Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod

Publications (2)

Publication Number Publication Date
JP2019065431A JP2019065431A (en) 2019-04-25
JP7097165B2 true JP7097165B2 (en) 2022-07-07

Family

ID=66339171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193223A Active JP7097165B2 (en) 2017-10-03 2017-10-03 Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod

Country Status (1)

Country Link
JP (1) JP7097165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812533B1 (en) * 2019-12-27 2021-01-13 トクセン工業株式会社 Manufacturing method for long products made of carbon nanotubes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231530A (en) 2007-03-22 2008-10-02 Furukawa Electric Co Ltd:The Surface coating material
US20100330365A1 (en) 2008-03-07 2010-12-30 Hassel Joerg Strand-like material composite with cnt yarns and method for the manufacture thereof
JP2012533158A (en) 2009-07-10 2012-12-20 ナノコンプ テクノロジーズ インコーポレイテッド Hybrid conductor and method for manufacturing the same
JP2013026077A (en) 2011-07-22 2013-02-04 Kyowa Densen Kk Covered wire and manufacturing method therefor
WO2017033482A1 (en) 2015-08-24 2017-03-02 古河電気工業株式会社 Aggregate of carbon nanotubes, carbon nanotube composite material, and carbon nanotube wire
JP2017174689A (en) 2016-03-24 2017-09-28 古河電気工業株式会社 Carbon nanotube wire and carbon nanotube wire-connected structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231530A (en) 2007-03-22 2008-10-02 Furukawa Electric Co Ltd:The Surface coating material
US20100330365A1 (en) 2008-03-07 2010-12-30 Hassel Joerg Strand-like material composite with cnt yarns and method for the manufacture thereof
JP2012533158A (en) 2009-07-10 2012-12-20 ナノコンプ テクノロジーズ インコーポレイテッド Hybrid conductor and method for manufacturing the same
JP2013026077A (en) 2011-07-22 2013-02-04 Kyowa Densen Kk Covered wire and manufacturing method therefor
WO2017033482A1 (en) 2015-08-24 2017-03-02 古河電気工業株式会社 Aggregate of carbon nanotubes, carbon nanotube composite material, and carbon nanotube wire
JP2017174689A (en) 2016-03-24 2017-09-28 古河電気工業株式会社 Carbon nanotube wire and carbon nanotube wire-connected structure

Also Published As

Publication number Publication date
JP2019065431A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6928526B2 (en) Manufacturing method of carbon nanotube wire rod, carbon nanotube wire rod connecting structure and carbon nanotube wire rod
EP2896051B1 (en) Bulk carbon nanotube and metallic composites and method of fabricating
Jarosz et al. Carbon nanotube wires and cables: near-term applications and future perspectives
US8808792B2 (en) Carbon nanotube conductor with enhanced electrical conductivity
JP6719243B2 (en) Method for producing carbon nanotube wire
US20100047564A1 (en) Carbon nanotube composites
JP2018170267A (en) Electrically conductive carbon nanotube wire having metallic coating and methods of forming the same
JP2017174689A (en) Carbon nanotube wire and carbon nanotube wire-connected structure
JPWO2017033482A1 (en) Carbon nanotube aggregate, carbon nanotube composite material, and carbon nanotube wire
US20200399748A1 (en) Metal Matrix Composite Comprising Nanotubes And Method Of Producing Same
JP7306996B2 (en) Carbon nanotube coated wires and coils
JP6738627B2 (en) Carbon nanotube wire and carbon nanotube wire connecting structure
JP7097165B2 (en) Method for manufacturing carbon nanotube wire rod, carbon nanotube wire rod connection structure and carbon nanotube wire rod
JP6767292B2 (en) Carbon nanotube wire rod and carbon nanotube wire rod connection structure
JP2018115087A (en) Carbon nanotube aggregate, carbon nanotube wire, and method for producing carbon nanotube aggregate
CN109016778B (en) Method for preparing porous metal composite structure
US20190093260A1 (en) Electrically conductive yarn
JP2020181687A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material
JP6967854B2 (en) Carbon nanotube aggregates and carbon nanotube wires
JP2020181686A (en) Carbon nanotube wire material, carbon nanotube wire material connecting structure, and manufacturing method of carbon nanotube wire material
JP6719244B2 (en) Carbon nanotube wire connecting method and carbon nanotube wire connecting structure
RU178132U1 (en) EXTERNAL CONDUCTOR FOR COAXIAL TYPE ELECTRIC COMMUNICATION CABLES
JP7254708B2 (en) Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
JP7214644B2 (en) Carbon nanotube composite wires, carbon nanotube coated wires, wire harnesses, wiring for robots and overhead wires for trains
JP7370917B2 (en) connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7097165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151