JP7097130B1 - How to recover lithium from waste lithium-ion batteries - Google Patents

How to recover lithium from waste lithium-ion batteries Download PDF

Info

Publication number
JP7097130B1
JP7097130B1 JP2022005152A JP2022005152A JP7097130B1 JP 7097130 B1 JP7097130 B1 JP 7097130B1 JP 2022005152 A JP2022005152 A JP 2022005152A JP 2022005152 A JP2022005152 A JP 2022005152A JP 7097130 B1 JP7097130 B1 JP 7097130B1
Authority
JP
Japan
Prior art keywords
lithium
salt
sodium
aqueous solution
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022005152A
Other languages
Japanese (ja)
Other versions
JP2023104271A (en
Inventor
慶太 山田
幸雄 佐久間
太郎 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Priority to JP2022005152A priority Critical patent/JP7097130B1/en
Priority to JP2022086581A priority patent/JP2023104845A/en
Application granted granted Critical
Publication of JP7097130B1 publication Critical patent/JP7097130B1/en
Priority to PCT/JP2022/036663 priority patent/WO2023054667A1/en
Priority to KR1020247008226A priority patent/KR20240048004A/en
Priority to CA3230515A priority patent/CA3230515A1/en
Priority to CN202280059655.9A priority patent/CN117897508A/en
Publication of JP2023104271A publication Critical patent/JP2023104271A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

【課題】高い回収率でリチウムを回収でき、回収プロセスで生成される塩を、当該プロセスで鉱酸及びアルカリとして再利用できる廃リチウムイオン電池からリチウムを回収する方法を提供する。【解決手段】廃リチウムイオン電池からリチウムを回収する方法が、廃リチウムイオン電池から得られた活物質粉を鉱酸で溶解し、更に水酸化ナトリウム及び水酸化カリウムの少なくとも1つを添加して得られる溶液から、マンガン等の有価金属を有機溶媒で抽出する工程と、この抽出工程で得られるアルカリ金属混合塩水溶液からリチウム塩とナトリウム等塩を分離する分離工程と、リチウム塩を第1の電解する工程と、ナトリウム等塩を電解し水酸化ナトリウム及び水酸化カリウムの少なくとも1つの水溶液を得る第2の電解工程を含み、第2の電解工程で得られる水酸化ナトリウム及び水酸化カリウムの少なくとも1つの水溶液と鉱酸を再利用する。【選択図】図1A method for recovering lithium from waste lithium-ion batteries is provided, in which lithium can be recovered at a high recovery rate and salts produced in the recovery process can be reused as mineral acids and alkalis in the process. A method for recovering lithium from waste lithium ion batteries comprises dissolving active material powder obtained from waste lithium ion batteries in a mineral acid and further adding at least one of sodium hydroxide and potassium hydroxide. A step of extracting a valuable metal such as manganese from the obtained solution with an organic solvent, a separation step of separating a lithium salt and a salt such as sodium from the alkali metal mixed salt aqueous solution obtained in this extraction step, and a step of separating the lithium salt into a first and a second electrolysis step of electrolyzing a sodium salt or the like to obtain an aqueous solution of at least one of sodium hydroxide and potassium hydroxide, wherein at least sodium hydroxide and potassium hydroxide obtained in the second electrolysis step Recycle one aqueous solution and mineral acid. [Selection drawing] Fig. 1

Description

本発明は、廃リチウムイオン電池からリチウムを回収する方法に関する。 The present invention relates to a method for recovering lithium from a waste lithium ion battery.

近年、リチウムイオン電池の普及に伴い、廃リチウムイオン電池からコバルト、ニッケル、マンガン、リチウム等の有価金属を回収し、前記リチウムイオン電池の材料として再利用する方法が検討されている。 In recent years, with the spread of lithium ion batteries, a method of recovering valuable metals such as cobalt, nickel, manganese, and lithium from waste lithium ion batteries and reusing them as materials for the lithium ion batteries has been studied.

従来、前記廃リチウムイオン電池から前記有価金属を回収する際には、該廃リチウムイオン電池を加熱処理(焙焼)、粉砕、分級等して得られた前記有価金属を含む粉末からコバルト、ニッケル、マンガン、及びリチウムを湿式プロセスにて分離精製している(例えば、特許文献1、2参照)。 Conventionally, when recovering the valuable metal from the waste lithium ion battery, cobalt and nickel are obtained from a powder containing the valuable metal obtained by heat-treating (roasting), crushing, classifying, etc. of the waste lithium ion battery. , Manganese, and lithium are separated and purified by a wet process (see, for example, Patent Documents 1 and 2).

なお、本発明において、廃リチウムイオン電池とは、電池製品としての寿命が消尽した使用済みのリチウムイオン電池、製造工程で不良品等として廃棄されたリチウムイオン電池、及び製造工程において製品化に用いられた残余の正極材料、負極材料等を意味する。また、前記廃リチウムイオン電池から得られた正極及び負極を含む粉末を、活物質粉とする。さらに、不純物とは、活物質粉に含まれる金属のうち、回収を必要としない金属を意味する。 In the present invention, the waste lithium ion battery is a used lithium ion battery whose life as a battery product has expired, a lithium ion battery discarded as a defective product in the manufacturing process, and used for commercialization in the manufacturing process. It means the residual positive material, negative material, etc. Further, the powder containing the positive electrode and the negative electrode obtained from the waste lithium ion battery is used as an active material powder. Further, the impurity means a metal that does not require recovery among the metals contained in the active material powder.

特許第6835820号公報Japanese Patent No. 6835820 特許第6869444号公報Japanese Patent No. 6869444

しかしながら、既存の湿式プロセスでは、アルカリ源として、回収目的物であるリチウム化合物以外の化合物を使用しているから、リチウム以外の陽イオン濃度が高くなり、同時にリチウムイオン濃度が低下する。この結果、従来の湿式プロセスでは、目的物であるリチウムの回収率が著しく低下してしまう。さらに従来の湿式プロセスでは、活物質粉の溶解で使用した鉱酸、及びアルカリ源として使用した化合物は、塩として排出されてしまい、当該鉱酸、及びアルカリ源として使用した化合物を循環してリサイクルする技術が無いという不都合がある。
近年、かかる不都合を解消して、高い回収率でリチウムを回収でき、回収プロセスで生成される塩を、当該プロセスで鉱酸及びアルカリとして再利用できる廃リチウムイオン電池からリチウムを回収する方法が希求されていたが、そのような方法は提供されていなかった。本発明が解決しようとする課題は、高い回収率でリチウムを回収でき、回収プロセスで生成される塩を、当該プロセスで鉱酸及びアルカリとして再利用できる廃リチウムイオン電池からリチウムを回収する方法を提供することである。
However, in the existing wet process, since a compound other than the lithium compound which is the recovery target is used as the alkali source, the concentration of cations other than lithium increases, and at the same time, the concentration of lithium ions decreases. As a result, in the conventional wet process, the recovery rate of lithium, which is the target product, is significantly reduced. Furthermore, in the conventional wet process, the mineral acid used for dissolving the active material powder and the compound used as the alkali source are discharged as salts, and the mineral acid and the compound used as the alkali source are circulated and recycled. There is an inconvenience that there is no technology to do.
In recent years, there has been a demand for a method of recovering lithium from a waste lithium ion battery that can recover lithium with a high recovery rate and can reuse the salt produced in the recovery process as mineral acid and alkali in the process by eliminating such inconvenience. However, no such method was provided. The problem to be solved by the present invention is a method for recovering lithium from a waste lithium ion battery that can recover lithium with a high recovery rate and can reuse the salt produced in the recovery process as mineral acid and alkali in the process. To provide.

本発明者らは上記課題に鑑み検討を重ね、活物質粉を鉱酸で溶解して得られる溶液に、水酸化ナトリウム及び水酸化カリウムの少なくとも1つを添加し、更にリチウム塩水溶液と、ナトリウム及びカリウムの少なくとも1つの塩水溶液を分離し、分離されたナトリウム及びカリウムの少なくとも1つの塩水溶液を電解して得られる鉱酸と、水酸化ナトリウム及び水酸化カリウムの少なくとも1つを再利用できることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。 The present inventors have repeated studies in view of the above problems, and added at least one of sodium hydroxide and potassium hydroxide to the solution obtained by dissolving the active material powder with mineral acid, and further added a lithium salt aqueous solution and sodium. And the mineral acid obtained by separating at least one salt aqueous solution of potassium and electrolyzing the separated at least one salt aqueous solution of sodium and potassium, and at least one of sodium hydroxide and potassium hydroxide can be reused. I found it. The present invention has been completed based on these findings.

本発明は、廃リチウムイオン電池からリチウムを回収する方法であって、廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸により溶解する溶解工程と、前記溶解工程で得られる溶液に水酸化ナトリウム及び水酸化カリウムの少なくとも1つを添加する水酸化アルカリ金属添加工程と、前記水酸化アルカリ金属添加工程で得られる溶液から溶媒抽出により、前記活物質粉に含まれる鉄、アルミニウム、マンガン、コバルト、及びニッケルの少なくとも1つを有機溶媒で抽出する抽出工程と、前記抽出工程で得られるアルカリ金属混合塩水溶液からリチウム塩と、ナトリウム塩及びカリウムの少なくとも1つの塩のそれぞれを分離する分離工程と、前記分離工程で得られるリチウム塩水溶液を、イオン交換膜を用いて電解し水酸化リチウム水溶液を得る第1の電解工程と、前記分離工程から得られるナトリウム及びカリウムの少なくとも1つの塩水溶液を、イオン交換膜を用いて電解し水酸化アルカリ金属水溶液を得る第2の電解工程を含み、前記第2の電解工程で得られる水酸化アルカリ金属水溶液を、前記水酸化アルカリ金属添加工程、前記抽出工程、及び前記分離工程の少なくとも1つの工程で再利用し、前記第2の電解工程で生成する気体を回収して得られる鉱酸、及び前記第2の電解工程の陽極室で得られる鉱酸の少なくとも1つを前記溶解工程で再利用する、廃リチウムイオン電池からリチウムを回収する方法である。
前記分離工程は、好ましくはリン酸リチウム法、蒸発濃縮法、及び溶媒抽出法の少なくとも1つにより行われる。
本発明では、好ましくはナトリウム及びカリウムの少なくとも1つの前記塩水溶液を濃縮し、濃縮されたナトリウム及びカリウムの少なくとも1つの塩水溶液を前記第2の電解工程で電解する。
前記溶解工程で使用される前記鉱酸は、好ましくは塩酸、硫酸、及び硝酸の少なくとも1つを含む。
前記第1の電解工程及び第2の電解工程の少なくとも1つで使用される電力として、好ましくは再生可能エネルギーを使用する。
前記第1の電解工程及び第2の電解工程の少なくとも1つで使用される電力として、好ましくは太陽光発電及び風力発電の少なくとも1つを使用する。
The present invention is a method for recovering lithium from a waste lithium ion battery, in which a dissolution step of dissolving an active material powder obtained by pretreating the waste lithium ion battery with a mineral acid and a solution obtained in the dissolution step. The iron, aluminum, contained in the active material powder by solvent extraction from the solution obtained in the alkali metal hydroxide addition step of adding at least one of sodium hydroxide and potassium hydroxide to the alkali metal hydroxide step. Separate each of the lithium salt and at least one salt of sodium salt and potassium from the extraction step of extracting at least one of manganese, cobalt, and nickel with an organic solvent and the aqueous alkali metal mixed salt solution obtained in the extraction step. A separation step, a first electrolysis step of electrolyzing the lithium salt aqueous solution obtained in the separation step using an ion exchange membrane to obtain a lithium hydroxide aqueous solution, and at least one salt of sodium and potassium obtained from the separation step. The second electrolysis step of electrolyzing the aqueous solution using an ion exchange film to obtain an alkali metal hydroxide aqueous solution is included, and the alkali metal hydroxide aqueous solution obtained in the second electrolysis step is added to the alkali metal hydroxide addition step. The mineral acid obtained by recovering the gas generated in the second electrolysis step by reusing in at least one step of the extraction step and the separation step, and obtained in the anode chamber of the second electrolysis step. It is a method of recovering lithium from a waste lithium ion battery, in which at least one of the mineral acids is reused in the melting step.
The separation step is preferably carried out by at least one of a lithium phosphate method, an evaporation concentration method, and a solvent extraction method.
In the present invention, preferably at least one aqueous salt solution of sodium and potassium is concentrated, and the concentrated aqueous salt solution of sodium and potassium is electrolyzed in the second electrolysis step.
The mineral acid used in the dissolution step preferably contains at least one of hydrochloric acid, sulfuric acid, and nitric acid.
Renewable energy is preferably used as the electric power used in at least one of the first electrolysis step and the second electrolysis step.
As the electric power used in at least one of the first electrolysis step and the second electrolysis step, preferably at least one of photovoltaic power generation and wind power generation is used.

本発明の廃リチウムイオン電池からリチウムを回収する方法は、高い回収率でリチウムを回収でき、回収プロセスで生成される塩を、当該プロセスで鉱酸及びアルカリとして再利用できる方法を提供する。 The method for recovering lithium from a waste lithium ion battery of the present invention provides a method capable of recovering lithium with a high recovery rate and reusing the salt produced in the recovery process as mineral acid and alkali in the process.

本発明の廃リチウムイオン電池からリチウムを回収する方法の1つの実施態様の構成を示す説明図。Explanatory drawing which shows the structure of one Embodiment of the method of recovering lithium from the waste lithium ion battery of this invention. リン酸リチウム法を示す説明図。Explanatory drawing which shows the lithium phosphate method. 本発明の廃リチウムイオン電池からのリチウムの回収方法の第1の電解工程に用いるイオン交換膜電解槽の構造を示す説明的断面図。Explanatory sectional view which shows the structure of the ion exchange membrane electrolytic cell used in the 1st electrolysis step of the method of recovering lithium from a waste lithium ion battery of this invention. 本発明の廃リチウムイオン電池からのリチウムの回収方法の第2の電解工程に用いるイオン交換膜電解槽の構造を示す説明的断面図。Explanatory sectional view which shows the structure of the ion exchange membrane electrolytic cell used in the 2nd electrolysis step of the method of recovering lithium from a waste lithium ion battery of this invention.

次に、添付の図面を参照しながら本発明について更に詳細に説明する。
図1に示すように、本発明の廃リチウムイオン電池からリチウムを回収する方法(以下、「回収方法」と称する)は、活物質粉1を出発物質とする。
Next, the present invention will be described in more detail with reference to the accompanying drawings.
As shown in FIG. 1, in the method of recovering lithium from the waste lithium ion battery of the present invention (hereinafter, referred to as “recovery method”), the active material powder 1 is used as a starting material.

<溶解工程>
本発明の回収方法は、前処理して得られた前記活物質粉1を鉱酸により溶解する溶解工程(STEP 1)を含む。前記鉱酸は、好ましくは塩酸、硫酸、及び硝酸の少なくとも1つ含み、より好ましくは塩酸、硫酸、及び硝酸の少なくとも1つであり、更に好ましくは塩酸、硫酸、又は硝酸であり、特に好ましくは塩酸である。前記活物質粉1は、リチウム、鉄、アルミニウム、コバルト、ニッケル、マンガン等の有価金属を含んでいるから、前記鉱酸による前記活物質粉1の溶解により、前記活物質粉1に含まれる前記有価金属の溶解液を得ることができる。
<Dissolution process>
The recovery method of the present invention includes a dissolution step (STEP 1) in which the active substance powder 1 obtained by pretreatment is dissolved with a mineral acid. The mineral acid preferably contains at least one of hydrochloric acid, sulfuric acid, and nitric acid, more preferably at least one of hydrochloric acid, sulfuric acid, and nitric acid, still more preferably hydrochloric acid, sulfuric acid, or nitric acid, and particularly preferably. It is hydrochloric acid. Since the active material powder 1 contains valuable metals such as lithium, iron, aluminum, cobalt, nickel, and manganese, the active material powder 1 is contained in the active material powder 1 by dissolving the active material powder 1 with the mineral acid. A solution of valuable metal can be obtained.

<水酸化アルカリ添加工程>
本発明の回収方法は、前記溶解工程で得られる前記有価金属の溶解液に水酸化ナトリウム及び水酸化カリウムの少なくとも1つを添加する水酸化アルカリ金属添加工程(STEP 2)を含む。図1において、水酸化アルカリ金属として水酸化ナトリウムのみを添加した場合を示す。水酸化ナトリウム及び水酸化カリウムの少なくとも1つの添加は、水酸化ナトリウム及び水酸化カリウムの少なくとも1つの固体の添加、水酸化ナトリウム水溶液及び水酸化カリウム水溶液の少なくとも1つの添加、これらの混合形態の少なくとも1つであってよい。前記有価金属の溶解液は当該水酸化アルカリ金属添加工程において中和される。
さらに水酸化鉄及び水酸化アルミニウムが、前記有価金属の溶解液への水酸化ナトリウム及び水酸化カリウムの少なくとも1つの添加により順次沈殿し、前記有価金属の溶解液から鉄及びアルミニウムが分離される場合がある。
<Alkali hydroxide addition process>
The recovery method of the present invention includes an alkali metal hydroxide addition step (STEP 2) in which at least one of sodium hydroxide and potassium hydroxide is added to the solution of the valuable metal obtained in the dissolution step. FIG. 1 shows a case where only sodium hydroxide is added as an alkali metal hydroxide. The addition of at least one of sodium hydroxide and potassium hydroxide is the addition of at least one solid of sodium hydroxide and potassium hydroxide, the addition of at least one aqueous solution of sodium hydroxide and aqueous solution of potassium hydroxide, at least in a mixed form thereof. There may be one. The solution of the valuable metal is neutralized in the alkali metal hydroxide addition step.
Further, when iron hydroxide and aluminum hydroxide are sequentially precipitated by adding at least one of sodium hydroxide and potassium hydroxide to the solution of the valuable metal, and iron and aluminum are separated from the solution of the valuable metal. There is.

<抽出工程>
本発明の回収方法は、前記水酸化アルカリ金属添加工程で得られる溶液から溶媒抽出により、前記活物質粉1に含まれる鉄、アルミニウム、マンガン、コバルト、及びニッケルの少なくとも1つを有機溶媒で抽出する抽出工程(STEP 3)を含む。
<Extraction process>
In the recovery method of the present invention, at least one of iron, aluminum, manganese, cobalt, and nickel contained in the active material powder 1 is extracted with an organic solvent by solvent extraction from the solution obtained in the alkali metal hydroxide addition step. Including the extraction step (STEP 3).

リチウム、ナトリウム、マンガン、コバルト、及びニッケルが、前記水酸化アルカリ金属添加工程において中和された前記有価金属の溶解液に含まれている。鉄及びアルミニウムが、前記水酸化アルカリ金属添加工程において除去されていない場合、鉄及びアルミニウムも前記有価金属の溶解液に含まれている。 Lithium, sodium, manganese, cobalt, and nickel are contained in the solution of the valuable metal neutralized in the alkali metal hydroxide addition step. When iron and aluminum are not removed in the alkali metal hydroxide addition step, iron and aluminum are also contained in the solution of the valuable metal.

前記抽出工程は、前記有価金属の溶解液から第1の有機溶媒により鉄、アルミニウム、マンガン、コバルト、又はニッケルを抽出する第1の抽出工程を含む。前記有価金属の溶解液及び第1の有機溶媒の均質な混合液のpHが、水酸化ナトリウム及び水酸化カリウムの少なくとも1つ等のアルカリの添加により調整され、第1の金属含有有機相と第1の抽出残液が当該第1の抽出工程で得られる。 The extraction step includes a first extraction step of extracting iron, aluminum, manganese, cobalt, or nickel from the solution of the valuable metal with a first organic solvent. The pH of the solution of the valuable metal and the homogeneous mixture of the first organic solvent is adjusted by the addition of an alkali such as at least one of sodium hydroxide and potassium hydroxide, and the first metal-containing organic phase and the first. The extraction residue of 1 is obtained in the first extraction step.

前記抽出工程は、前記第1の抽出残液から、第2の有機溶媒により前記第1の抽出工程で抽出されていない有価金属を抽出する第2の抽出工程を含んでいてよい。前記第1の抽出残液及び第2の有機溶媒の均質な混合液のpHが、水酸化ナトリウム及び水酸化カリウムの少なくとも1つ等のアルカリの添加により調整され、第2の金属含有有機相と第2の抽出残液が当該第2の抽出工程で得られる。 The extraction step may include a second extraction step of extracting valuable metals not extracted in the first extraction step from the first extraction residual liquid with a second organic solvent. The pH of the homogeneous mixture of the first extraction residue and the second organic solvent is adjusted by the addition of an alkali such as at least one of sodium hydroxide and potassium hydroxide to form a second metal-containing organic phase. The second extraction residual liquid is obtained in the second extraction step.

前記抽出工程は、前記第2の抽出残液から、前記第1及び第2の抽出工程で抽出されていない前記有価金属を順次抽出する第3~第5の抽出工程を含んでいてよい。 The extraction step may include a third to fifth extraction step of sequentially extracting the valuable metal not extracted in the first and second extraction steps from the second extraction residual liquid.

前記抽出工程で使用される有機溶媒として、例えばリン酸水素ビス(2-エチルヘキシル)、2-エチルヘキシル(2-エチルヘキシル)ホスホネート、及びビス(2,4,4-トリメチルペンチル)ホスフィン酸が挙げられる。当該有機溶媒は炭化水素、例えばケロシンで希釈されていてよい。 Examples of the organic solvent used in the extraction step include hydrogen phosphate bis (2-ethylhexyl), 2-ethylhexyl (2-ethylhexyl) phosphonate, and bis (2,4,4-trimethylpentyl) phosphinic acid. The organic solvent may be diluted with a hydrocarbon, for example kerosene.

前記鉄含有有機相、アルミニウム含有有機相、マンガン含有有機相、コバルト含有有機相、及びニッケル含有有機相のそれぞれに対し硫酸による逆抽出が実施され、金属硫酸塩(硫酸鉄、硫酸アルミニウム、硫酸マンガン、硫酸コバルト、及び硫酸ニッケル)水溶液2が回収される。 Back extraction with sulfuric acid was performed on each of the iron-containing organic phase, aluminum-containing organic phase, manganese-containing organic phase, cobalt-containing organic phase, and nickel-containing organic phase, and metal sulfates (iron sulfate, aluminum sulfate, manganese sulfate) were subjected to back extraction. , Cobalt sulfate, and nickel sulfate) aqueous solution 2 is recovered.

<分離工程>
本発明の回収方法は、前記抽出工程で得られるリチウムと、ナトリウム及びカリウムの少なくとも1つを含むアルカリ金属混合塩水溶液からリチウム塩と、ナトリウム及びカリウムの少なくとも1つの塩のそれぞれを分離する分離工程(STEP 4)を含む。
前記分離工程は、特定の方法に限定されないが、好ましくはリン酸リチウム法、蒸発濃縮法、及び溶媒抽出法の少なくとも1つにより行われる。
<Separation process>
The recovery method of the present invention is a separation step of separating each of the lithium salt and at least one salt of sodium and potassium from the aqueous alkali metal mixed salt solution containing lithium obtained in the extraction step and at least one of sodium and potassium. (STEP 4) is included.
The separation step is not limited to a specific method, but is preferably performed by at least one of a lithium phosphate method, an evaporation concentration method, and a solvent extraction method.

(リン酸リチウム法)
図2を用いて、リン酸リチウム法について説明する。リン酸リチウム法は、リン酸アルミニウムと、水酸化ナトリウム及び水酸化カリウムの少なくとも1つの水酸化アルカリ金属(MOH)水溶液を、前記アルカリ金属混合塩水溶液に添加し、リン酸リチウム及び水酸化アルミニウムを含む固形物を生成させるリン酸化工程(STEP A)を含む。塩化アルカリ金属(MCl)が、前記固形物が生成した前記水性液に溶解している。前記水酸化アルカリ金属は、好ましくは水酸化ナトリウムである。図2では、前記アルカリ金属として水酸化ナトリウムのみを使用する場合が示されている。
(Lithium phosphate method)
The lithium phosphate method will be described with reference to FIG. In the lithium phosphate method, aluminum phosphate and at least one alkali metal hydroxide (MOH) aqueous solution of sodium hydroxide and potassium hydroxide are added to the alkali metal mixed salt aqueous solution to add lithium phosphate and aluminum hydroxide. Includes a phosphorylation step (STEP A) to produce the containing solids. The alkali metal chloride (MCl) is dissolved in the aqueous liquid produced by the solid. The alkali metal hydroxide is preferably sodium hydroxide. FIG. 2 shows a case where only sodium hydroxide is used as the alkali metal.

リン酸リチウム法は、前記リン酸化工程で生成した前記固形物を固液分離する第1の固液分離(STEP B)を含む。当該第1の固液分離工程として、例えばろ過が挙げられる。 The lithium phosphate method comprises a first solid-liquid separation (STEP B) for solid-liquid separation of the solids produced in the phosphorylation step. The first solid-liquid separation step includes, for example, filtration.

リン酸リチウム法は、前記第1の固液分離工程で分離された前記固形物は洗浄されてもよい。前記固形物を水に懸濁させて得られた懸濁液に鉱酸を添加して、当該懸濁液のpHを2~3に調整するpH調整工程(STEP C)を含む。前記鉱酸は特定の鉱酸に限定されない。前記鉱酸は、塩酸、硫酸、及び硝酸の少なくとも1つを含む。前記鉱酸は、好ましくは塩酸、硫酸、及び硝酸の少なくとも1つであり、より好ましくは塩酸、硫酸、又は硝酸であり、更に好ましくは塩酸である。鉱酸が塩酸である場合、前記リチウム塩は塩化リチウムであり、図2には、この場合が記載されている。 In the lithium phosphate method, the solid matter separated in the first solid-liquid separation step may be washed. It comprises a pH adjusting step (STEP C) in which a mineral acid is added to a suspension obtained by suspending the solid in water to adjust the pH of the suspension to 2 to 3. The mineral acid is not limited to a specific mineral acid. The mineral acid contains at least one of hydrochloric acid, sulfuric acid, and nitric acid. The mineral acid is preferably at least one of hydrochloric acid, sulfuric acid, and nitric acid, more preferably hydrochloric acid, sulfuric acid, or nitric acid, and even more preferably hydrochloric acid. When the mineral acid is hydrochloric acid, the lithium salt is lithium chloride, and this case is described in FIG.

リン酸リチウム法は、前記pH調整工程で得られたリン酸アルミニウムとリチウム塩水溶液を固液分離する第2の固液分離工程(STEP D)を含む。当該第2の固液分離工程として、例えばろ過が挙げられる。当該第2の固液分離工程で得られるリン酸アルミニウムは短時間で固液分離可能であり、固液分離されたリン酸アルミニウムは前記リン酸化工程で再利用される。 The lithium phosphate method includes a second solid-liquid separation step (STEP D) for solid-liquid separation of the aluminum phosphate obtained in the pH adjustment step and the lithium salt aqueous solution. The second solid-liquid separation step includes, for example, filtration. The aluminum phosphate obtained in the second solid-liquid separation step can be solid-liquid separated in a short time, and the solid-liquid separated aluminum phosphate is reused in the phosphorylation step.

前記第2の固液分離工程で得られたリチウム塩水溶液のpHは、好ましくは後述するpH調整工程(STEP 5)で調整される。前記pH調整工程(STEP C)で前記懸濁液のpHは2~3に調整されているから、前記リチウム塩水溶液のpHは2~3であるが、当該pHは当該pH調整工程(STEP 5)において、好ましくは6~14、より好ましくは6~8に調整される。この場合、未反応のアルミニウム及びリンが沈殿し、前記リチウム塩水溶液の純度がより高くなる。 The pH of the lithium salt aqueous solution obtained in the second solid-liquid separation step is preferably adjusted in the pH adjusting step (STEP 5) described later. Since the pH of the suspension is adjusted to 2 to 3 in the pH adjusting step (STEP C), the pH of the lithium salt aqueous solution is 2 to 3, but the pH is the pH adjusting step (STEP 5). ), It is preferably adjusted to 6 to 14, more preferably 6 to 8. In this case, unreacted aluminum and phosphorus precipitate, and the purity of the aqueous lithium salt solution becomes higher.

好ましくは前記pH調整工程(STEP 5)においてpHが調整された前記リチウム塩水溶液を、イオン交換膜を用いて電解し水酸化リチウム水溶液を得る、後述する第1の電解工程(STEP 6)を実施する。前記リチウム塩水溶液は、前記第1の電解工程に付される前に第1の濃縮工程(STEP E)で濃縮されてよい。当該第1の濃縮工程を、例えば逆浸透膜(RO膜)を用いて行うことができる。 Preferably, the first electrolysis step (STEP 6) described later is carried out in which the lithium salt aqueous solution whose pH has been adjusted in the pH adjustment step (STEP 5) is electrolyzed using an ion exchange membrane to obtain a lithium hydroxide aqueous solution. do. The aqueous lithium salt solution may be concentrated in a first concentration step (STEP E) before being subjected to the first electrolysis step. The first concentration step can be performed using, for example, a reverse osmosis membrane (RO membrane).

リン酸リチウム法では、前記第1の固液分離工程で分離された、前記塩化アルカリ金属が溶解しているろ液は、後述する第2の濃縮工程(STEP 9)で濃縮されてよい。 In the lithium phosphate method, the filtrate in which the alkali metal chloride is dissolved, which is separated in the first solid-liquid separation step, may be concentrated in the second concentration step (STEP 9) described later.

(蒸発濃縮法)
リチウムと、ナトリウム及びカリウムの少なくとも1つを含む前記アルカリ金属混合塩水溶液が蒸発濃縮され、塩化ナトリウム及び塩化カリウムの少なくとも1つ等のナトリウム塩及びカリウム塩の少なくとも1つが順次晶析され、当該アルカリ金属混合塩水溶液から分離される。分離された塩化ナトリウム及び塩化カリウムの少なくとも1つ等のナトリウム塩及びカリウム塩の少なくとも1つが水に溶解され、ナトリウム及びカリウムの少なくとも1つの塩水溶液を、イオン交換膜を用いて電解する、後述する第2の電解工程(STEP 7)が実施される。ナトリウム塩及びカリウム塩の少なくとも1つが分離されたリチウム塩水溶液は、前記リン酸リチウム法で得られたリチウム塩水溶液と同様に好ましくは後述するpH調整工程(STEP 5)及び第1の濃縮工程(STEP E)に付され、後述する第1の電解工程(STEP 6)に付される。
(Evaporation concentration method)
The alkali metal mixed salt aqueous solution containing lithium and at least one of sodium and potassium is evaporated and concentrated, and at least one of sodium salt and potassium salt such as at least one of sodium chloride and potassium chloride is sequentially crystallized, and the alkali is concerned. Separated from the aqueous metal mixture. At least one of the separated sodium salts such as sodium chloride and potassium chloride and at least one of the potassium salts are dissolved in water, and the aqueous salt solution of at least one salt of sodium and potassium is electrolyzed using an ion exchange membrane, which will be described later. The second electrolysis step (STEP 7) is carried out. The lithium salt aqueous solution from which at least one of the sodium salt and the potassium salt is separated is preferably the pH adjusting step (STEP 5) and the first concentration step (STEP 5), which will be described later, in the same manner as the lithium salt aqueous solution obtained by the lithium phosphate method. It is attached to STEP E) and is attached to the first electrolysis step (STEP 6) described later.

(溶媒抽出法)
リチウムと、ナトリウム及びカリウムの少なくとも1つを含む前記アルカリ金属混合塩水溶液、及びリチウム抽出用有機溶媒の均質な混合液のpHが、水酸化ナトリウム及び水酸化カリウムの少なくとも1つ等のアルカリの添加により、好ましくは5~9の範囲に調整され、リチウム含有有機相と、抽出残液としてナトリウム及びカリウムの少なくとも1つの塩水溶液が得られる。リチウム抽出用有機溶媒として、例えばリン酸水素ビス(2-エチルヘキシル)が挙げられる。当該リチウム含有有機相に対し鉱酸によるスクラビングが実施され、リチウム塩水溶液が回収される。当該リチウム塩水溶液は、前記リン酸リチウム法で得られたリチウム塩水溶液と同様に好ましくは後述するpH調整工程(STEP 5)及び第1の濃縮工程(STEP E)に付され、後述する第1の電解工程(STEP 6)に付される。
(Solvent extraction method)
The pH of the homogeneous mixed solution of the alkali metal mixed salt aqueous solution containing lithium and at least one of sodium and potassium and the organic solvent for lithium extraction is such that the addition of an alkali such as at least one of sodium hydroxide and potassium hydroxide. Preferably adjusted to the range of 5 to 9, and a lithium-containing organic phase and at least one aqueous salt solution of sodium and potassium as an extraction residual liquid are obtained. Examples of the organic solvent for lithium extraction include hydrogen phosphate bis (2-ethylhexyl). The lithium-containing organic phase is scrubbed with a mineral acid, and the lithium salt aqueous solution is recovered. The lithium salt aqueous solution is preferably subjected to a pH adjusting step (STEP 5) and a first concentration step (STEP E), which will be described later, in the same manner as the lithium salt aqueous solution obtained by the lithium phosphate method, and is described later. It is attached to the electrolytic process (STEP 6) of.

リチウムが抽出により分離された塩化ナトリウム及び塩化カリウムの少なくとも1つ等の、ナトリウム塩及びカリウム塩の少なくとも1つが溶解している前記ナトリウム及びカリウムの少なくとも1つの塩水溶液を、イオン交換膜を用いて電解する、後述する第2の電解工程(STEP 7)が実施される。当該ナトリウム及びカリウムの少なくとも1つの塩水溶液は、好ましくは逆浸透膜(RO膜)等を用いて後述する第2の濃縮工程で(STEP 9)で濃縮される。 Using an ion exchange membrane, an aqueous salt solution of at least one of the sodium and potassium in which at least one of the sodium salt and the potassium salt is dissolved, such as at least one of sodium chloride and potassium chloride from which lithium is separated by extraction, is used. A second electrolysis step (STEP 7), which will be described later, is carried out to electrolyze. The aqueous salt solution of at least one of sodium and potassium is preferably concentrated in (STEP 9) in the second concentration step described later using a reverse osmosis membrane (RO membrane) or the like.

<リチウム塩水溶液のpH調整工程>
本発明の回収方法は、前記分離工程で得られるリチウム塩水溶液に水酸化リチウム及び水酸化リチウム水溶液の少なくとも1つを添加し、当該リチウム塩水溶液のpHを調整するpH調整工程(STEP 5)を含んでいてよい。前記リチウム塩水溶液のpHは、好ましくは6~14、より好ましくは6~8に調整される。
<pH adjustment process for aqueous lithium salt solution>
The recovery method of the present invention comprises a pH adjusting step (STEP 5) in which at least one of lithium hydroxide and a lithium hydroxide aqueous solution is added to the lithium salt aqueous solution obtained in the separation step to adjust the pH of the lithium salt aqueous solution. May include. The pH of the aqueous lithium salt solution is preferably adjusted to 6 to 14, more preferably 6 to 8.

<リチウム塩水溶液の濃縮工程>
本発明の回収方法は、前記分離工程で得られ、必要に応じて前記pH調整工程(STEP 5)に付された前記リチウム塩水溶液を濃縮する第1の濃縮工程(STEP E)を含んでいてよい。当該第1の濃縮工程を、例えば逆浸透膜(RO膜)を用いて行うことができる。
<Concentration process of aqueous lithium salt solution>
The recovery method of the present invention includes a first concentration step (STEP E) for concentrating the lithium salt aqueous solution obtained in the separation step and, if necessary, subjected to the pH adjustment step (STEP 5). good. The first concentration step can be performed using, for example, a reverse osmosis membrane (RO membrane).

<第1の電解工程>
本発明の回収方法は、前記分離工程で得られ、必要に応じて前記pH調整工程(STEP 5)及び前記第1の濃縮工程(STEP E)の少なくとも1つに付された前記リチウム塩水溶液を、イオン交換膜を用いて電解し水酸化リチウム水溶液を得る第1の電解工程(STEP 6)を含む。
<First electrolysis step>
The recovery method of the present invention is obtained by adding the lithium salt aqueous solution obtained in the separation step and, if necessary, to at least one of the pH adjusting step (STEP 5) and the first concentration step (STEP E). The first electrolysis step (STEP 6) is included, which electrolyzes using an ion exchange film to obtain an aqueous solution of lithium hydroxide.

当該第1の電解工程を、例えば図3に示す電解槽11を用いて行うことができる。
電解槽11は、一方の内側面に陽極板12を備え、陽極板12と対向する内側面に陰極板13を備え、陽極板12は電源の陽極14に接続され、陰極板13は電源の陰極15に接続されている。また、電解槽11は、イオン交換膜16により、陽極板12を備える陽極室17と、陰極板13を備える陰極室18とに区画されている。
The first electrolysis step can be performed using, for example, the electrolytic cell 11 shown in FIG.
The electrolytic cell 11 is provided with an anode plate 12 on one inner side surface and a cathode plate 13 on the inner side surface facing the anode plate 12, the anode plate 12 is connected to the anode 14 of the power supply, and the cathode plate 13 is the cathode of the power supply. It is connected to 15. Further, the electrolytic cell 11 is divided into an anode chamber 17 including an anode plate 12 and a cathode chamber 18 including a cathode plate 13 by an ion exchange membrane 16.

電解槽11では、陽極室17に塩化リチウムが溶解している前記リチウム塩水溶液を供給して電解を行うと、塩化物イオンが陽極板12上で塩素ガス(Cl2)を生成する。一方、リチウムイオンはイオン交換膜16を介して陰極室18に移動する。 In the electrolytic cell 11, when the lithium salt aqueous solution in which lithium chloride is dissolved is supplied to the anode chamber 17 and electrolysis is performed, chloride ions generate chlorine gas (Cl 2 ) on the anode plate 12. On the other hand, lithium ions move to the cathode chamber 18 via the ion exchange membrane 16.

陰極室18では水(H2O)が水酸化物イオン(OH-)と水素イオン(H+)とに電離し、水素イオンが陰極板13上で水素ガス(H2)を生成する一方、水酸化物イオンと、リチウムイオンから、水酸化リチウム水溶液を生成する。 In the cathode chamber 18, water (H 2 O) is ionized into hydroxide ions (OH ) and hydrogen ions (H + ), and hydrogen ions generate hydrogen gas (H 2 ) on the cathode plate 13. An aqueous solution of lithium hydroxide is produced from hydroxide ions and lithium ions.

前記電解に要する電力として、例えば再生可能エネルギー、好ましくは太陽光発電及び風力発電の少なくとも1つが使用される。 As the electric power required for the electrolysis, for example, at least one of renewable energy, preferably solar power generation and wind power generation, is used.

前記第1の電解工程で生成した水素ガス(H2)と塩素ガス(Cl2)を反応させ、塩酸を得ることができる。図3には示されていないが、前記塩化リチウム水溶液が硫酸イオンを含む場合、陽極室17で硫酸を得ることができる。前記塩化リチウム水溶液が硝酸イオンを含む場合、陽極室17で硝酸を得ることができる。すなわち、前記第1の電解工程で鉱酸5を得ることができ、当該鉱酸5はSTEP 1の活物質粉1の溶解、及びSTEP CのpH調整の少なくとも1つに用いてよい。 Hydrochloric acid can be obtained by reacting hydrogen gas (H 2 ) generated in the first electrolysis step with chlorine gas (Cl 2 ). Although not shown in FIG. 3, when the aqueous solution of lithium chloride contains sulfate ions, sulfuric acid can be obtained in the anode chamber 17. When the lithium chloride aqueous solution contains nitrate ions, nitric acid can be obtained in the anode chamber 17. That is, the mineral acid 5 can be obtained in the first electrolysis step, and the mineral acid 5 may be used for at least one of dissolving the active material powder 1 of STEP 1 and adjusting the pH of STEP C.

(水酸化リチウム一水和物の分離)
本発明の回収方法は、前記第1の電解工程で得られた前記水酸化リチウム水溶液を蒸発濃縮して水酸化リチウム一水和物3を晶析する晶析工程(STEP F)を含んでいてよい。
(Separation of lithium hydroxide monohydrate)
The recovery method of the present invention includes a crystallization step (STEP F) in which the lithium hydroxide aqueous solution obtained in the first electrolysis step is evaporated and concentrated to crystallize lithium hydroxide monohydrate 3. good.

(炭酸リチウムの分離)
本発明の回収方法は、二酸化炭素を前記第1の電解工程で得られた前記水酸化リチウム水溶液に吹き込み、炭酸リチウム6を生成させる炭酸化工程(STEP G)を含んでいてもよい。当該炭酸化工程で得られるスラリーをろ過等により固液分離して得られる塩化リチウム等のリチウム塩が溶解している水溶液は、前記第1の濃縮工程(STEP E)で濃縮されてよい。なお、図1及び2には、前記リチウム塩が塩化リチウムである場合が示されている。
(Separation of lithium carbonate)
The recovery method of the present invention may include a carbonization step (STEP G) in which carbon dioxide is blown into the lithium hydroxide aqueous solution obtained in the first electrolysis step to generate lithium carbonate 6. An aqueous solution in which a lithium salt such as lithium chloride obtained by solid-liquid separation of the slurry obtained in the carbonization step by filtration or the like is dissolved may be concentrated in the first concentration step (STEP E). It should be noted that FIGS. 1 and 2 show the case where the lithium salt is lithium chloride.

<第2の電解工程>
本発明の回収方法は、前記分離工程から得られる、塩化ナトリウム及び塩化カリウムの少なくとも1つ等が溶解しているナトリウム及びカリウムの少なくとも1つの塩水溶液を、イオン交換膜を用いて電解し、水酸化アルカリ金属水溶液を得る第2の電解工程(STEP 7)を含む。当該第2の電解工程を、例えば図4に示す電解槽21を用いて行うことができる。
<Second electrolysis step>
In the recovery method of the present invention, at least one salt aqueous solution of sodium and potassium obtained from the separation step in which at least one of sodium chloride and potassium chloride is dissolved is electrolyzed using an ion exchange membrane and water is used. The second electrolysis step (STEP 7) for obtaining an aqueous solution of alkali metal oxide is included. The second electrolysis step can be performed using, for example, the electrolytic cell 21 shown in FIG.

電解槽21は、一方の内側面に陽極板22を備え、陽極板22と対向する内側面に陰極板23を備え、陽極板22は電源の陽極24に接続され、陰極板23は電源の陰極25に接続されている。また、電解槽21は、イオン交換膜26により、陽極板22を備える陽極室27と、陰極板23を備える陰極室28とに区画されている。 The electrolytic cell 21 is provided with an anode plate 22 on one inner side surface and a cathode plate 23 on the inner side surface facing the anode plate 22, the anode plate 22 is connected to the anode 24 of the power supply, and the cathode plate 23 is the cathode of the power supply. It is connected to 25. Further, the electrolytic cell 21 is divided into an anode chamber 27 including an anode plate 22 and a cathode chamber 28 including a cathode plate 23 by an ion exchange membrane 26.

電解槽21では、塩化ナトリウム及び塩化カリウムの少なくとも1つの前記ナトリウム及びカリウムの少なくとも1つの塩水溶液を陽極室27に供給して電解を行うと、塩化物イオンが陽極板22上で塩素ガス(Cl2)を生成する。一方、ナトリウムイオン及びカリウムイオンの少なくとも1つのアルカリ金属イオンはイオン交換膜26を介して陰極室28に移動する。図4では、陽極室27にナトリウム塩水溶液が供給される場合が示されている。 In the electrolytic tank 21, when at least one aqueous salt solution of sodium chloride and potassium chloride is supplied to the anode chamber 27 to perform electrolysis, chloride ions are generated on the anode plate 22 as chlorine gas (Cl). 2 ) is generated. On the other hand, at least one alkali metal ion of sodium ion and potassium ion moves to the cathode chamber 28 via the ion exchange membrane 26. FIG. 4 shows a case where an aqueous sodium salt solution is supplied to the anode chamber 27.

陰極室28では水(H2O)が水酸化物イオン(OH-)と水素イオン(H+)とに電離し、水素イオンが陰極板23上で水素ガス(H2)を生成する一方、水酸化物イオンと、ナトリウムイオン及びカリウムイオンの少なくとも1つから、水酸化ナトリウム及び水酸化カリウムの少なくとも1つが溶解しているアルカリ金属水溶液を生成する。図1、2及び4では、水酸化ナトリウム水溶液4が生成される場合が示されている。 In the cathode chamber 28, water (H 2 O) is ionized into hydroxide ion (OH ) and hydrogen ion (H + ), and hydrogen ion produces hydrogen gas (H 2 ) on the cathode plate 23, while From the hydroxide ion and at least one of sodium ion and potassium ion, an alkali metal aqueous solution in which at least one of sodium hydroxide and potassium hydroxide is dissolved is produced. FIGS. 1, 2 and 4 show the case where the sodium hydroxide aqueous solution 4 is produced.

前記第2の電解に要する電力として、例えば再生可能エネルギー、好ましくは太陽光発電及び風力発電の少なくとも1つが使用される。 As the electric power required for the second electrolysis, for example, at least one of renewable energy, preferably solar power generation and wind power generation, is used.

前記ナトリウム及びカリウムの少なくとも1つの塩水溶液が塩化物イオンを含む場合、前記第2の電解工程で生成した水素ガス(H2)と塩素ガス(Cl2)を反応させ、塩酸を得ることができる。図4には示されていないが、前記ナトリウム及びカリウムの少なくとも1つの塩水溶液が硫酸イオンを含む場合、陽極室27で硫酸を得ることができる。前記ナトリウム及びカリウムの少なくとも1つの塩水溶液が硝酸イオンを含む場合、陽極室27で硝酸を得ることができる。すなわち、前記第2の電解工程で鉱酸5を得ることができ、当該鉱酸5はSTEP 1の活物質粉1の溶解、及びSTEP CのpH調整の少なくとも1つに用いる。 When at least one aqueous salt solution of sodium and potassium contains chloride ions, hydrogen gas (H 2 ) generated in the second electrolysis step and chlorine gas (Cl 2 ) can be reacted to obtain hydrochloric acid. .. Although not shown in FIG. 4, when at least one aqueous salt solution of sodium and potassium contains sulfate ions, sulfuric acid can be obtained in the anode chamber 27. When at least one aqueous salt solution of sodium and potassium contains nitrate ions, nitric acid can be obtained in the anode chamber 27. That is, the mineral acid 5 can be obtained in the second electrolysis step, and the mineral acid 5 is used for at least one of dissolving the active substance powder 1 of STEP 1 and adjusting the pH of STEP C.

前記第2の電解工程で生成する前記水酸化アルカリ金属水溶液は、前記水酸化アルカリ金属添加工程、前記抽出工程、前記リン酸リチウム法による分離工程、及び前記溶媒抽出法による分離工程の少なくとも1つ工程で再利用される。 The alkali metal hydroxide aqueous solution produced in the second electrolysis step is at least one of the alkali metal hydroxide addition step, the extraction step, the separation step by the lithium phosphate method, and the separation step by the solvent extraction method. Reused in the process.

前記第2の電解工程では、前記ナトリウム及びカリウムの少なくとも1つの塩水溶液が電解される結果、該ナトリウム及びカリウムの少なくとも1つの塩水溶液より希薄なナトリウム及びカリウムの少なくとも1つの塩水溶液が生成する。そこで、本発明の回収方法は、前記希薄なナトリウム及びカリウムの少なくとも1つの塩水溶液を濃縮し、前記分離工程で得られるナトリウム及びカリウムの少なくとも1つの塩水溶液に添加する第2の濃縮工程(STEP 9)を含んでいてよい。当該第2の濃縮工程を、例えば逆浸透膜(RO膜)を用いて行うことができる。 In the second electrolysis step, as a result of electrolysis of at least one salt aqueous solution of sodium and potassium, at least one salt aqueous solution of sodium and potassium diluted from the at least one salt aqueous solution of sodium and potassium is produced. Therefore, the recovery method of the present invention is a second concentration step (STEP) in which the dilute aqueous solution of at least one salt of sodium and potassium is concentrated and added to the aqueous solution of at least one salt of sodium and potassium obtained in the separation step. 9) may be included. The second concentration step can be performed using, for example, a reverse osmosis membrane (RO membrane).

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例において、各種物性は以下のとおりに測定ないし算出された。
<リチウム及びナトリウム混合塩水溶液中の金属の含有量、水酸化リチウム一水和物中の不純物の含有量>
PerkinElmer社製Optima8300を使用し、誘導結合プラズマ発光分光分析(ICP-OES)によりリチウム及びナトリウム混合塩水溶液中の金属の含有量を測定した。
In the examples, various physical properties were measured or calculated as follows.
<Metal content in lithium and sodium mixed salt aqueous solution, impurity content in lithium hydroxide monohydrate>
Using an Optima 8300 manufactured by PerkinElmer, the metal content in the inductively coupled plasma emission spectroscopic analysis (ICP-OES) was measured.

電池製品としての寿命が消尽した使用済みのリチウムイオン電池を放電処理し、残留している電荷を全て放電させた。次いで当該廃リチウムイオン電池を加熱処理(焙焼)した後、ハンマーミルで粉砕し、当該廃リチウムイオン電池を構成する筐体、集電体等を篩分けし、活物質粉を得た。当該活物質粉500gを6mol/Lの塩酸3Lに溶解し、得られた溶液に2mol/Lの水酸化ナトリウム水溶液2.8Lを添加して、当該溶液を中和した。中和した溶液5.8Lと抽出剤としてビス(2,4,4-トリメチルペンチル)ホスフィン酸(Cyanex272、希釈剤はケロシン)5.8Lを混合し、コバルトを溶媒抽出した。5mol/Lの水酸化ナトリウム水溶液を混合液に添加し、pHを4に調整して、コバルト含有有機相と第1の抽出残液を得た。コバルト含有有機相は、薄硫酸でスクラビングした後、1.5mol/Lの硫酸で逆抽出し、硫酸コバルト溶液を得た。当該コバルト抽出工程で使用された有機溶媒と同一の有機溶媒を使用して、第1の抽出残液からニッケルを抽出し、抽出残液としてリチウム及びナトリウム混合塩水溶液を得た。3.5g/Lのリチウム及び38.2g/Lのナトリウムが当該水溶液に含まれていた。 A used lithium-ion battery whose life as a battery product has expired was discharged, and all the remaining charge was discharged. Next, the waste lithium ion battery was heat-treated (roasted), pulverized with a hammer mill, and the housing, current collector, and the like constituting the waste lithium ion battery were screened to obtain an active material powder. 500 g of the active substance powder was dissolved in 3 L of 6 mol / L hydrochloric acid, and 2.8 L of a 2 mol / L sodium hydroxide aqueous solution was added to the obtained solution to neutralize the solution. 5.8 L of the neutralized solution and 5.8 L of bis (2,4,4-trimethylpentyl) phosphinic acid (Cyanex272, diluent is kerosene) as an extractant were mixed, and cobalt was extracted with a solvent. A 5 mol / L aqueous sodium hydroxide solution was added to the mixture and the pH was adjusted to 4 to obtain a cobalt-containing organic phase and a first extraction residue. The cobalt-containing organic phase was scrubbed with dilute sulfuric acid and then back-extracted with 1.5 mol / L sulfuric acid to obtain a cobalt sulfate solution. Nickel was extracted from the first extraction residual liquid using the same organic solvent as the organic solvent used in the cobalt extraction step, and a lithium and sodium mixed salt aqueous solution was obtained as the extraction residual liquid. 3.5 g / L lithium and 38.2 g / L sodium were contained in the aqueous solution.

187gのリン酸アルミニウムを8.3Lの前記水溶液に添加し、次いで水酸化ナトリウムを添加して前記水溶液のpHを10.5に調整し、2時間反応を行って白色スラリーAを得た。次に当該白色スラリーAを濾過し、洗浄して含水率55%の白色ケーキA614gを得た。当該白色ケーキAを300mLの純水に懸濁させ、35質量%の塩酸を添加して、懸濁液のpHを2.5に調整し、当該懸濁液を60℃に加熱して6時間反応を行い、白色スラリーBを得た。当該白色スラリーBを濾過し、洗浄して含水率60%の白色ケーキB467gと、合計で1060mLのろ液及び洗浄水を得た。前記1060mLのろ液及び洗浄水に水酸化リチウムを添加しpHを7に調整してろ過したろ液(ろ液1)1060mL(塩化リチウム濃度92g/L)を、前記RO膜を用いて濃縮し、得られた塩化リチウム水溶液(塩化リチウム濃度は200g/L)を、イオン交換膜(Chemours社製Nafion N324)を用いて、電流密度40A/dm2、電極面積0.7dm2の条件下で電解し(第1の電解工程)、6.2質量%の水酸化リチウム水溶液1100gを得た。さらに、生成した塩素ガスと水素ガスの反応物を水に吸収させ、30質量%の塩酸350gも得た。当該第1の電解工程におけるリチウムの回収率は70.3%であった。 187 g of aluminum phosphate was added to the 8.3 L aqueous solution, and then sodium hydroxide was added to adjust the pH of the aqueous solution to 10.5, and the reaction was carried out for 2 hours to obtain a white slurry A. Next, the white slurry A was filtered and washed to obtain 614 g of a white cake A having a water content of 55%. The white cake A is suspended in 300 mL of pure water, 35% by mass of hydrochloric acid is added to adjust the pH of the suspension to 2.5, and the suspension is heated to 60 ° C. for 6 hours. The reaction was carried out to obtain a white slurry B. The white slurry B was filtered and washed to obtain 467 g of white cake B having a water content of 60%, and a total of 1060 mL of filtrate and washing water. Lithium hydroxide was added to the 1060 mL filtrate and wash water, the pH was adjusted to 7, and the filtered filtrate (filter 1) was concentrated at 1060 mL (lithium chloride concentration 92 g / L) using the RO membrane. The obtained lithium chloride aqueous solution (lithium chloride concentration is 200 g / L) is electrolyzed using an ion exchange film (Nafion N324 manufactured by Chemours ) under the conditions of a current density of 40 A / dm 2 and an electrode area of 0.7 dm 2. (1st electrolysis step), 1100 g of a 6.2 mass% lithium hydroxide aqueous solution was obtained. Further, the produced reaction product of chlorine gas and hydrogen gas was absorbed into water to obtain 350 g of 30% by mass hydrochloric acid. The recovery rate of lithium in the first electrolysis step was 70.3%.

前記6.2質量%の水酸化リチウム水溶液380gを分取し、水溶液の80質量%を晶析して水酸化リチウム一水和物の結晶19.3g(乾燥後質量)を得た。当該水酸化リチウム一水和物中のナトリウム含有量は50ppm未満、アルミニウムの含有量は10ppm未満、リンの含有量は10ppm未満であった。 380 g of the 6.2 mass% lithium hydroxide aqueous solution was separated, and 80 mass% of the aqueous solution was crystallized to obtain 19.3 g (mass after drying) of lithium hydroxide monohydrate crystals. The sodium content in the lithium hydroxide monohydrate was less than 50 ppm, the aluminum content was less than 10 ppm, and the phosphorus content was less than 10 ppm.

前記白色スラリーAの濾過及び洗浄で得られたろ液及び洗浄水10.5L(塩化ナトリウム濃度は98g/L)を、前記RO膜を用いて濃縮し、得られた塩化ナトリウム水溶液(塩化ナトリウム濃度は300g/L)を、イオン交換膜(Chemours社製Nafion N324)を用いて、電流密度40A/dm2、電極面積1.75dm2、通電時間4時間の条件下で電解し、21.2質量%の水酸化ナトリウム1.6kgを得た。さらに、生成した塩素ガスと水素ガスの反応物を水に吸収させ、30質量%の塩酸1.04kgも得た。
当該電解工程で生成した水酸化ナトリウムは、水酸化ナトリウム添加工程(STEP 2)、抽出工程(STEP 3)、及び分離工程(STEP 4)で再利用可能であった。さらに当該電解工程で合成された塩酸は溶解工程(STEP 1)で再利用可能であった。当該電解工程における電流効率は81.5%であった。
10.5 L of filtrate and washing water (sodium chloride concentration is 98 g / L) obtained by filtering and washing the white slurry A was concentrated using the RO membrane, and the obtained sodium chloride aqueous solution (sodium chloride concentration was 300 g / L) was electrolyzed using an ion exchange membrane (Nafion N324 manufactured by Chemours) under the conditions of a current density of 40 A / dm 2 , an electrode area of 1.75 dm 2 , and an energization time of 4 hours, and 21.2 mass%. Sodium hydroxide 1.6 kg was obtained. Further, the produced reaction product of chlorine gas and hydrogen gas was absorbed into water to obtain 1.04 kg of 30% by mass hydrochloric acid.
The sodium hydroxide produced in the electrolysis step could be reused in the sodium hydroxide addition step (STEP 2), the extraction step (STEP 3), and the separation step (STEP 4). Furthermore, the hydrochloric acid synthesized in the electrolysis step could be reused in the dissolution step (STEP 1). The current efficiency in the electrolysis step was 81.5%.

本実施例では、使用される鉱酸及びアルカリが再生され、再利用できることが分かった。さらに廃リチウムイオン電池からリチウムを回収する最終段階で得られる水酸化リチウム一水和物の純度、及びリチウムの回収率は非常に高いことも分かった。 In this example, it was found that the mineral acids and alkalis used were regenerated and could be reused. It was also found that the purity of lithium hydroxide monohydrate obtained in the final stage of recovering lithium from waste lithium-ion batteries and the recovery rate of lithium are very high.

本発明の回収方法では、前記アルカリ混合塩水溶液のイオン交換膜を用いる前記第2の電解工程において直接水酸化ナトリウム及び水酸化カリウムの少なくとも1つを得ることができる。該第2の電解工程で生成する鉱酸及びアルカリを本発明の回収方法に循環利用できるから、クローズドループリサイクルプロセスを実現できる。さらに、本発明の回収方法は、鉱酸及びアルカリを循環利用するから、従来通り鉱酸及びアルカリを外部から購入した場合に比較して、鉱酸及びアルカリの物流工程で発生する二酸化炭素の排出量を低減できる。 In the recovery method of the present invention, at least one of sodium hydroxide and potassium hydroxide can be directly obtained in the second electrolysis step using the ion exchange membrane of the alkaline mixed salt aqueous solution. Since the mineral acid and alkali produced in the second electrolysis step can be recycled and used in the recovery method of the present invention, a closed-loop recycling process can be realized. Further, since the recovery method of the present invention recycles mineral acid and alkali, it emits carbon dioxide generated in the distribution process of mineral acid and alkali as compared with the case where the mineral acid and alkali are purchased from the outside as before. The amount can be reduced.

1…活物質粉、 2…金属硫酸塩水溶液、 3…水酸化リチウム一水和物、
4…水酸化ナトリウム水溶液、 5…鉱酸、 6…炭酸リチウム、
11、21…電解槽、12、22…陽極板、 13、23…陰極板、
14、24…陽極、 15、25…陰極、 16、26…イオン交換膜、
17、27…陽極室、 18、28…陰極室。
1 ... Active substance powder, 2 ... Metal sulfate aqueous solution, 3 ... Lithium hydroxide monohydrate,
4 ... Sodium hydroxide aqueous solution, 5 ... Mineral acid, 6 ... Lithium carbonate,
11, 21 ... Electrolytic cell, 12, 22 ... Anode plate, 13, 23 ... Cathode plate,
14, 24 ... Anode, 15, 25 ... Cathode, 16, 26 ... Ion exchange membrane,
17, 27 ... Anode chamber, 18, 28 ... Cathode chamber.

Claims (6)

廃リチウムイオン電池からリチウムを回収する方法であって、
廃リチウムイオン電池を前処理して得られた活物質粉を鉱酸により溶解する溶解工程と、
前記溶解工程で得られる溶液に、水酸化ナトリウム及び水酸化カリウムの少なくとも1つを添加する水酸化アルカリ添加工程と、
前記水酸化アルカリ添加工程で得られる溶液から溶媒抽出により、前記活物質粉に含まれる鉄、アルミニウム、マンガン、コバルト、及びニッケルの少なくとも1つを有機溶媒で抽出する抽出工程と、
前記抽出工程で得られるアルカリ混合塩水溶液からリチウム塩と、ナトリウム及びカリウムの少なくとも1つの塩のそれぞれを分離する分離工程と、
前記分離工程で得られるリチウム塩水溶液を、イオン交換膜を用いて電解し水酸化リチウム水溶液を得る第1の電解工程と、
前記分離工程から得られるナトリウム及びカリウムの少なくとも1つの塩水溶液を、イオン交換膜を用いて電解し水酸化アルカリ水溶液を得る第2の電解工程を含み、
前記第2の電解工程で得られる水酸化アルカリ水溶液を、前記水酸化アルカリ添加工程、前記抽出工程、及び前記分離工程の少なくとも1つの工程で再利用し、
前記第2の電解工程で生成する気体を回収して得られる鉱酸、及び前記第2の電解工程の陽極室で得られる鉱酸の少なくとも1つを前記溶解工程で再利用する、廃リチウムイオン電池からリチウムを回収する方法。
It is a method of recovering lithium from waste lithium-ion batteries.
A dissolution step in which the active material powder obtained by pretreating a waste lithium-ion battery is dissolved with mineral acid, and
An alkali hydroxide addition step of adding at least one of sodium hydroxide and potassium hydroxide to the solution obtained in the dissolution step,
An extraction step of extracting at least one of iron, aluminum, manganese, cobalt, and nickel contained in the active material powder with an organic solvent by solvent extraction from the solution obtained in the alkali hydroxide addition step.
A separation step of separating each of the lithium salt and at least one salt of sodium and potassium from the alkaline mixed salt aqueous solution obtained in the extraction step.
In the first electrolysis step, the lithium salt aqueous solution obtained in the separation step is electrolyzed using an ion exchange membrane to obtain a lithium hydroxide aqueous solution.
A second electrolysis step of electrolyzing at least one aqueous salt solution of sodium and potassium obtained from the separation step using an ion exchange membrane to obtain an alkaline hydroxide aqueous solution is included.
The alkaline hydroxide aqueous solution obtained in the second electrolysis step is reused in at least one step of the alkali hydroxide addition step, the extraction step, and the separation step.
Waste lithium ion that reuses at least one of the mineral acid obtained by recovering the gas generated in the second electrolysis step and the mineral acid obtained in the anode chamber of the second electrolysis step in the dissolution step. How to recover lithium from a battery.
前記分離工程が、リン酸リチウム法、蒸発濃縮法、及び溶媒抽出法の少なくとも1つにより行われる、請求項1に記載された廃リチウムイオン電池からリチウムを回収する方法。 The method for recovering lithium from a waste lithium ion battery according to claim 1, wherein the separation step is performed by at least one of a lithium phosphate method, an evaporative concentration method, and a solvent extraction method. ナトリウム及びカリウムの少なくとも1つの前記塩水溶液を濃縮し、濃縮されたナトリウム及びカリウムの少なくとも1つの塩水溶液を前記第2の電解工程で電解する、請求項1又は2に記載された廃リチウムイオン電池からリチウムを回収する方法。 The waste lithium ion battery according to claim 1 or 2, wherein the aqueous salt solution of at least one sodium and potassium is concentrated, and the concentrated aqueous salt solution of sodium and potassium is electrolyzed in the second electrolysis step. How to recover lithium from. 前記溶解工程で使用される前記鉱酸は、塩酸、硫酸、及び硝酸の少なくとも1つを含む、請求項1~3のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法。 The method for recovering lithium from a waste lithium ion battery according to any one of claims 1 to 3, wherein the mineral acid used in the dissolution step contains at least one of hydrochloric acid, sulfuric acid, and nitric acid. 前記第1の電解工程及び第2の電解工程の少なくとも1つで使用される電力として再生可能エネルギーを使用する、請求項1~4のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法。 Lithium from the waste lithium ion battery according to any one of claims 1 to 4, which uses renewable energy as the electric power used in at least one of the first electrolysis step and the second electrolysis step. How to collect. 前記第1の電解工程及び第2の電解工程の少なくとも1つで使用される電力として太陽光発電及び風力発電の少なくとも1つを使用する、請求項1~5のいずれか1項に記載された廃リチウムイオン電池からリチウムを回収する方法。 The invention according to any one of claims 1 to 5, wherein at least one of photovoltaic power generation and wind power generation is used as the electric power used in at least one of the first electrolysis step and the second electrolysis step. A method of recovering lithium from waste lithium-ion batteries.
JP2022005152A 2021-09-30 2022-01-17 How to recover lithium from waste lithium-ion batteries Active JP7097130B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022005152A JP7097130B1 (en) 2022-01-17 2022-01-17 How to recover lithium from waste lithium-ion batteries
JP2022086581A JP2023104845A (en) 2022-01-17 2022-05-27 Method for recovering lithium from waste lithium ion battery
PCT/JP2022/036663 WO2023054667A1 (en) 2021-09-30 2022-09-30 Method for recovering lithium from waste lithium-ion batteries
KR1020247008226A KR20240048004A (en) 2021-09-30 2022-09-30 How to recover lithium from waste lithium ion batteries
CA3230515A CA3230515A1 (en) 2021-09-30 2022-09-30 Method for recovering lithium from waste lithium-ion batteries
CN202280059655.9A CN117897508A (en) 2021-09-30 2022-09-30 Method for recovering lithium from waste lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022005152A JP7097130B1 (en) 2022-01-17 2022-01-17 How to recover lithium from waste lithium-ion batteries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022086581A Division JP2023104845A (en) 2022-01-17 2022-05-27 Method for recovering lithium from waste lithium ion battery

Publications (2)

Publication Number Publication Date
JP7097130B1 true JP7097130B1 (en) 2022-07-07
JP2023104271A JP2023104271A (en) 2023-07-28

Family

ID=82320491

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022005152A Active JP7097130B1 (en) 2021-09-30 2022-01-17 How to recover lithium from waste lithium-ion batteries
JP2022086581A Pending JP2023104845A (en) 2022-01-17 2022-05-27 Method for recovering lithium from waste lithium ion battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022086581A Pending JP2023104845A (en) 2022-01-17 2022-05-27 Method for recovering lithium from waste lithium ion battery

Country Status (2)

Country Link
JP (2) JP7097130B1 (en)
CN (1) CN117897508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229045A1 (en) * 2022-01-14 2023-11-30 株式会社アサカ理研 Method for recovering lithium from waste lithium ion batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157913A (en) 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
US20140227154A1 (en) 2009-04-24 2014-08-14 Simbol Inc. Preparation of Lithium Carbonate From Lithium Chloride Containing Brines
CN111778401A (en) 2020-05-26 2020-10-16 常州大学 Waste ternary power lithium ion battery green recovery method based on electrolytic sodium sulfate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157913A (en) 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
US20140227154A1 (en) 2009-04-24 2014-08-14 Simbol Inc. Preparation of Lithium Carbonate From Lithium Chloride Containing Brines
CN111778401A (en) 2020-05-26 2020-10-16 常州大学 Waste ternary power lithium ion battery green recovery method based on electrolytic sodium sulfate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229045A1 (en) * 2022-01-14 2023-11-30 株式会社アサカ理研 Method for recovering lithium from waste lithium ion batteries

Also Published As

Publication number Publication date
JP2023104845A (en) 2023-07-28
CN117897508A (en) 2024-04-16
JP2023104271A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US6261712B1 (en) Method of reclaiming cathodic active material of lithium ion secondary battery
EP2450991B1 (en) Plant and process for the treatment of exhausted accumulators and batteries
JP7084669B1 (en) How to recover lithium from waste lithium-ion batteries
WO2017118955A1 (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
CN111411366B (en) Method for recovering metal ions in lithium iron phosphate waste through solid-phase electrolysis
CN110468279B (en) Method for recovering lead from lead plaster material of waste lead storage battery
KR100644902B1 (en) High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
JP7097130B1 (en) How to recover lithium from waste lithium-ion batteries
WO2023195533A1 (en) Method for recovering lithium from waste lithium ion batteries
CN111020194A (en) Method for synthesizing titanium-aluminum alloy from waste lithium titanate anode and cathode powder
WO2023054667A1 (en) Method for recovering lithium from waste lithium-ion batteries
CN111807413B (en) Method for recycling manganese sulfate by using power battery
WO2024043228A1 (en) Method for producing lithium hydroxide aqueous solution
CN109216821A (en) A kind of recovery method of waste and old lithium titanate battery
CN114717414A (en) Preparation method of manganese sulfate for battery
WO2024057307A1 (en) Precursor preparation from recycled rechargeable batteries
JP2023553863A (en) Method for regenerating LI and NI from solution
KR101256624B1 (en) Method for manufacturing with high purity aqueous solution of lithium from brine
CN117625996A (en) Method for recycling lithium from lithium iron phosphate battery positive electrode waste powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7097130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150