JP7096739B2 - Manufacturing method of opaque quartz glass - Google Patents
Manufacturing method of opaque quartz glass Download PDFInfo
- Publication number
- JP7096739B2 JP7096739B2 JP2018160713A JP2018160713A JP7096739B2 JP 7096739 B2 JP7096739 B2 JP 7096739B2 JP 2018160713 A JP2018160713 A JP 2018160713A JP 2018160713 A JP2018160713 A JP 2018160713A JP 7096739 B2 JP7096739 B2 JP 7096739B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- opaque quartz
- particle size
- powder
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Description
本発明は、反射率が高い不透明石英ガラスの製造方法に関する。 The present invention relates to a method for producing opaque quartz glass having high reflectance.
不透明石英ガラスは、半導体装置用部材に使用されるが、一部の半導体装置用部材に使用される不透明石英ガラスには、熱遮断性に優れ、かつ反射率(不透明性)が高い事が要求される。 Opaque quartz glass is used for semiconductor device members, but opaque quartz glass used for some semiconductor device members is required to have excellent heat insulation and high reflectivity (opacity). Will be done.
従来、シリカ粉末を原料とする不透明石英ガラスの製造方法としては、電気溶融法と火炎溶融法が知られており、火炎溶融法によりシリカ粉末から不透明石英ガラスを製造する方法としては、例えば、窒化珪素等の発泡材を添加して溶融する方法が知られている(例えば、特許文献1)。この方法では、シリカ粉末原料とほぼ同程度の純度を有する不透明石英ガラスを製造することができ、比較的高純度の原料を用いれば、比較的高純度の不透明石英ガラスを製造することができる。 Conventionally, an electric melting method and a flame melting method are known as methods for producing opaque quartz glass using silica powder as a raw material, and as a method for producing opaque quartz glass from silica powder by the flame melting method, for example, nitrided A method of adding a foaming material such as silicon to melt it is known (for example, Patent Document 1). In this method, opaque quartz glass having substantially the same purity as the silica powder raw material can be produced, and if a relatively high-purity raw material is used, relatively high-purity opaque quartz glass can be produced.
特許文献1に記載の製造方法で製造された不透明石英ガラスが有する反射率(不透明性)は、特許文献1の図4のAの曲線で示される。しかしながら、不透明石英ガラスを半導体製造装置に用いる場合、製造装置内の均熱性(温度分布の均一性)を高めるために、さらに高い反射率(不透明性)を有する不透明石英ガラスに対する要求がある。 The reflectance (opacity) of the opaque quartz glass manufactured by the manufacturing method described in Patent Document 1 is shown by the curve A in FIG. 4 of Patent Document 1. However, when opaque quartz glass is used in a semiconductor manufacturing apparatus, there is a demand for opaque quartz glass having a higher reflectance (opacity) in order to improve the soaking property (uniformity of temperature distribution) in the manufacturing apparatus.
しかしながら、不透明石英ガラスの反射率と製造条件との相関は、製造条件の変数が多く、かつ不透明石英ガラスの反射率の原因となる不透明石英ガラスの特性(例えば、密度や気泡径など)との関係も必ずしも明らかではない。特許文献1では、発泡材である窒化珪素の添加量及び平均粒子径を制御することの記載はある。しかし、最善の結果と考えられる実施例として記載された不透明石英ガラスの反射率(不透明性)は、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が約45%であり、近時のより高い不透明性に対する要求を満たすには不十分であった。 However, the correlation between the reflectance of opaque quartz glass and the manufacturing conditions has many variables in the manufacturing conditions, and the characteristics of the opaque quartz glass (for example, density and bubble diameter) that cause the reflectance of the opaque quartz glass. The relationship is not always clear either. Patent Document 1 describes that the amount of silicon nitride added as a foaming material and the average particle size are controlled. However, the reflectance (opacity) of the opaque quartz glass described as an example considered to be the best result is such that the average value of the total light reflectance at a wavelength of 0.4 to 2.5 μm at a thickness of 3 mm is about 45%. Yes, it was not enough to meet the recent demand for higher opacity.
そこで本発明は、反射率(不透明性)のより高い、具体的には、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上、好ましくは55%以上である不透明石英ガラスの製造方法を提供することにある。 Therefore, in the present invention, the average value of the total light reflectance having a higher reflectance (opacity), specifically, a wavelength of 0.4 to 2.5 μm at a thickness of 3 mm is 50% or more, preferably 55% or more. To provide a method for producing a certain opaque quartz glass.
本発明者らは、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上、好ましくは55%以上と、特許文献1に記載の不透明石英ガラスより格段に高い不透明石英ガラスの製造方法について種々検討した。その結果、火炎溶融法において、原料として特定の粒度及び粒子径を有するシリカ粉末を用いることで、前記全光線反射率の平均値を50%以上、好ましくは55%以上とすることができることを見出して、本発明を完成させた。 The present inventors have an average value of total light reflectance of 50% or more, preferably 55% or more at a thickness of 3 mm and a wavelength of 0.4 to 2.5 μm, which is much higher than that of the opaque quartz glass described in Patent Document 1. Various methods for producing opaque quartz glass were examined. As a result, it has been found that the average value of the total light reflectance can be 50% or more, preferably 55% or more by using silica powder having a specific particle size and particle size as a raw material in the flame melting method. The present invention has been completed.
本発明は以下の通りである。
[1]
シリカ粉末と窒化珪素粉末の混合粉末を酸水素火炎で溶融し、石英ガラスをターゲット上に堆積させて、独立した気泡を含有する不透明石英ガラスを製造する方法であって、
前記シリカ粉末の粒度範囲が20~500μmの範囲であり、D50(平均粒子径)が80~160μmの範囲であり、かつ製造される不透明石英ガラスは、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上の範囲である、
前記方法。
[2]
前記シリカ粉末は、粒子径177μm以上の粒子の含有量が30体積%以下である、[1]に記載の方法。
[3]
前記シリカ粉末は、粒子径105μm未満の粒子の含有量が10体積%以上である、[1]又は[2]に記載の方法。
[4]
前記混合粉末中の窒化珪素粉末の含有量は、0.1~1.0質量%の範囲である、[1]~[3]のいずれかに記載の方法。
[5]
前記不透明石英ガラスは、気泡総表面積が50cm2/cm3以上である、[1]~[4]のいずれかに記載の方法。
[6]
前記不透明石英ガラスは、Al含有量が10ppm以下、Ca、Naの各含有量がそれぞれ1.3ppm以下、Cu、Fe、K、Li、Mgの各含有量がそれぞれ1.0ppm以下である、[1]~[5]のいずれかに記載の方法。
The present invention is as follows.
[1]
A method for producing opaque quartz glass containing independent bubbles by melting a mixed powder of silica powder and silicon nitride powder with an acid hydrogen flame and depositing quartz glass on a target.
The particle size range of the silica powder is in the range of 20 to 500 μm, the D50 (average particle size) is in the range of 80 to 160 μm, and the produced opaque quartz glass has a wavelength of 0.4 to 2.5 μm at a thickness of 3 mm. The average value of the total light reflectance is in the range of 50% or more.
The method.
[2]
The method according to [1], wherein the silica powder contains 30% by volume or less of particles having a particle diameter of 177 μm or more.
[3]
The method according to [1] or [2], wherein the silica powder contains 10% by volume or more of particles having a particle size of less than 105 μm.
[4]
The method according to any one of [1] to [3], wherein the content of the silicon nitride powder in the mixed powder is in the range of 0.1 to 1.0% by mass.
[5]
The method according to any one of [1] to [4], wherein the opaque quartz glass has a total surface area of bubbles of 50 cm 2 / cm 3 or more.
[6]
The opaque quartz glass has an Al content of 10 ppm or less, a Ca and Na content of 1.3 ppm or less, and a Cu, Fe, K, Li, and Mg content of 1.0 ppm or less, respectively. 1] The method according to any one of [5].
本発明によれば、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上の不透明石英ガラスを製造することができる。 According to the present invention, it is possible to produce opaque quartz glass having a thickness of 3 mm and a wavelength of 0.4 to 2.5 μm and an average value of total light reflectance of 50% or more.
本発明は、独立した気泡を含有する不透明石英ガラスを製造する方法である。この本発明の方法では、シリカ粉末と窒化珪素粉末の混合粉末を酸水素火炎で溶融し、ターゲット上に石英ガラスを堆積させ、それにより独立した気泡を含有する不透明石英ガラスを得る。本発明の製造方法では、シリカ粉末と窒化珪素粉末の混合粉末を酸水素火炎で溶融する。酸水素火炎での溶融方法やターゲット上への石英ガラスの堆積方法等については、特許文献1を参照することができる。 The present invention is a method for producing opaque quartz glass containing independent bubbles. In the method of the present invention, a mixed powder of silica powder and silicon nitride powder is melted by an acid hydrogen flame to deposit quartz glass on a target, thereby obtaining opaque quartz glass containing independent bubbles. In the production method of the present invention, a mixed powder of silica powder and silicon nitride powder is melted by an acid hydrogen flame. Patent Document 1 can be referred to for a method of melting with an acid hydrogen flame, a method of depositing quartz glass on a target, and the like.
本発明の製造方法において、シリカ粉末は、粒度範囲が20~500μmの範囲であり、かつD50(平均粒子径)が80~160μmの範囲であるものを用いる。 In the production method of the present invention, the silica powder used has a particle size range of 20 to 500 μm and a D50 (average particle size) of 80 to 160 μm.
粒度範囲とは、シリカ粉末に含まれる個々のシリカ粒子の粒度(粒径)が収まる範囲を意味する。この粒度範囲が20~500μmの範囲である。シリカ粉末に含まれる個々のシリカ粒子は最低でも、20μm以上の粒径を有し、最大でも500μm以下の粒径を有する。シリカ粉末の粒度範囲がこの範囲内であることで、かつD50(平均粒子径)を所定範囲にすることで、本発明所望の不透明石英ガラス(厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上)を得ることができる。シリカ粉末の粒度範囲は、好ましくは30~400μmの範囲であり、より好ましくは30~350μmの範囲である。 The particle size range means a range in which the particle size (particle size) of each silica particle contained in the silica powder is contained. This particle size range is in the range of 20 to 500 μm. The individual silica particles contained in the silica powder have a particle size of at least 20 μm or more, and a maximum particle size of 500 μm or less. By setting the particle size range of the silica powder within this range and setting D50 (average particle size) to a predetermined range, the opaque quartz glass desired by the present invention (with a thickness of 3 mm and a wavelength of 0.4 to 2.5 μm) can be used. The average value of the light reflectance is 50% or more). The particle size range of the silica powder is preferably in the range of 30 to 400 μm, more preferably in the range of 30 to 350 μm.
シリカ粉末としては、D50(平均粒子径)が80~160μmの範囲の粉末を用いる。D50(平均粒子径)がこの範囲のシリカ粉末を用いることで、なおかつシリカ粉末の粒度範囲が上記範囲であることで、本発明所望の高反射率の不透明石英ガラスを得ることができる。粒子が大きくなるとガラス中の気泡径が大きくなる傾向がある。D50は、好ましくは90~150μmの範囲である。シリカ粉末の粒度範囲及びD50(平均粒子径)の測定は、実施例に記載のレーザー回折粒子径分布測定装置を用いて実施することができる。 As the silica powder, a powder having a D50 (average particle size) in the range of 80 to 160 μm is used. By using silica powder having a D50 (average particle size) in this range and having the particle size range of the silica powder in the above range, opaque quartz glass having a high reflectance desired by the present invention can be obtained. The larger the particles, the larger the bubble diameter in the glass tends to be. D50 is preferably in the range of 90 to 150 μm. The measurement of the particle size range and D50 (average particle size) of the silica powder can be carried out by using the laser diffraction particle size distribution measuring device described in the examples.
混合粉末に用いるシリカ粉末は、好ましくは177μm以上の粒子の含有量が30体積%以下であることが、本発明所望の高反射率の不透明石英ガラスを得るという観点から好ましい。177μm以上の粒子の含有量は、より好ましくは18体積%以下である。さらに、混合粉末に用いるシリカ粉末は、好ましくは105μm未満の粒子の含有量が10体積%以上であることが、本発明所望の高反射率の不透明石英ガラスを得るという観点から好ましい。105μm未満の粒子の含有量は、より好ましくは15体積%以上であり、さらに好ましくは20体積%以上である。 The silica powder used for the mixed powder preferably has a particle content of 177 μm or more of 30% by volume or less from the viewpoint of obtaining opaque quartz glass having a high reflectance desired by the present invention. The content of particles of 177 μm or more is more preferably 18% by volume or less. Further, the silica powder used for the mixed powder preferably contains 10% by volume or more of particles having a particle size of less than 105 μm, from the viewpoint of obtaining opaque quartz glass having a high reflectance desired by the present invention. The content of particles less than 105 μm is more preferably 15% by volume or more, still more preferably 20% by volume or more.
特許文献1の方法でもシリカ粉末と窒化珪素粉末の混合粉末を用い、酸水素火炎での溶融及びターゲット上への石英ガラスの堆積を行うことで、不透明石英ガラスを製造する。表1に示された実施例1で使用したシリカ粉末は、粒度範囲が50~700μmの範囲(推定)、D50(平均粒子径)が約200μmである。これにより美観上すぐれた白色の不透明石英ガラスを得たと記載している(特許文献1の段落0024)。特許文献1の方法で用いたシリカ粉末は、D50(平均粒子径)が本発明の範囲を大きく上回る。さらに、特許文献1の方法で用いられたシリカ粉末は、177μm以上の粒子の含有量が62.1%であり、105μm未満の粒子の含有量が1.1%である。 Also in the method of Patent Document 1, opaque quartz glass is produced by using a mixed powder of silica powder and silicon nitride powder, melting with an acid hydrogen flame and depositing quartz glass on a target. The silica powder used in Example 1 shown in Table 1 has a particle size range of 50 to 700 μm (estimated) and a D50 (average particle size) of about 200 μm. It is stated that a white opaque quartz glass having an excellent aesthetic appearance was obtained as a result (paragraph 0024 of Patent Document 1). The silica powder used in the method of Patent Document 1 has a D50 (average particle size) far exceeding the range of the present invention. Further, the silica powder used in the method of Patent Document 1 has a content of particles of 177 μm or more of 62.1% and a content of particles of less than 105 μm of 1.1%.
本発明において混合粉末に用いるシリカ粉末は、上記の粒度範囲及びD50以外には特に制限はない。例えば、純化処理した天然水晶粉末やシリコンアルコキシドの加水分解によって製造された非晶質粉末等を用いることが出来る。 The silica powder used for the mixed powder in the present invention is not particularly limited except for the above particle size range and D50. For example, purified natural quartz powder, amorphous powder produced by hydrolysis of silicon alkoxide, or the like can be used.
また、シリカ粉末の純度については、高純度の不透明石英ガラスを得る為には、例えば、Alが10ppm以下、Ca、Naの各々が1.3ppm以下、Cu、Fe、K、Li、Mgの各々が1.0ppm以下であることが好ましい。不透明石英ガラスは、高純度である程、半導体製造装置等に用いる場合には、コンタミ回避の観点で好ましい。 Regarding the purity of the silica powder, in order to obtain high-purity opaque quartz glass, for example, Al is 10 ppm or less, Ca and Na are 1.3 ppm or less, and Cu, Fe, K, Li and Mg are each. Is preferably 1.0 ppm or less. The higher the purity of opaque quartz glass, the more preferable it is from the viewpoint of avoiding contamination when used in semiconductor manufacturing equipment and the like.
シリカ粉末と窒化珪素粉末の混合粉末に用いる窒化珪素粉末は、酸水素火炎での溶融及びターゲット上への石英ガラスの堆積に際して、熱分解して、泡の形成を補助する。但し、泡の形成は、窒化珪素粉末によってのみ生じるものではなく、泡の形成状況(泡の数や大きさの変動)は、シリカ粉末の性状及び堆積条件等によっても変動する。混合粉末に含まれる窒化珪素粉末の含有量は、0.1~1.0質量%の範囲とすることが好ましい。混合粉末に含まれる窒化珪素粉末の含有量が、0.1~1.0質量%の範囲であれば、所望の全光線反射率を有する不透明石英ガラスを比較的容易に得ることができる。混合粉末に含まれる窒化珪素粉末の含有量は、好ましくは0.1~0.5質量%、より好ましくは0.10~0.30質量%、さらに好ましくは0.10~0.20質量%の範囲である。窒化珪素粉末の添加量は、少なすぎるとガラスの密度が高くなり気泡個数や気泡総表面積が減少し高反射率の不透明石英ガラスを得られ難くなる傾向がある。一方、添加量が多すぎると、密度の低下および大きな気泡の含有がある為、ガラスの強度の低下や、部材の洗浄工程等で浸食されやすい等の問題が発生し易くなる傾向がある。 The silicon nitride powder used in the mixed powder of the silica powder and the silicon nitride powder is thermally decomposed during melting in a hydrogen acid flame and depositing quartz glass on the target to assist the formation of bubbles. However, the formation of bubbles does not occur only by the silicon nitride powder, and the formation state of bubbles (variation in the number and size of bubbles) also changes depending on the properties of the silica powder, the deposition conditions, and the like. The content of the silicon nitride powder contained in the mixed powder is preferably in the range of 0.1 to 1.0% by mass. When the content of the silicon nitride powder contained in the mixed powder is in the range of 0.1 to 1.0% by mass, opaque quartz glass having a desired total light reflectance can be obtained relatively easily. The content of the silicon nitride powder contained in the mixed powder is preferably 0.1 to 0.5% by mass, more preferably 0.10 to 0.30% by mass, and further preferably 0.10 to 0.20% by mass. Is the range of. If the amount of the silicon nitride powder added is too small, the density of the glass increases, the number of bubbles and the total surface area of the bubbles decrease, and it tends to be difficult to obtain opaque quartz glass having high reflectance. On the other hand, if the amount added is too large, the density is lowered and large bubbles are contained, so that problems such as a decrease in the strength of the glass and easy erosion in the cleaning process of the member tend to occur.
窒化珪素粉末は、既知の材料を、粒子径などの調整を除いては、そのまま利用できる。例えば四塩化珪素、シリコン、シリカ等を原料とし、それらを窒化することにより得られた粉末等を用いることが出来る。 As the silicon nitride powder, a known material can be used as it is except for adjustment of particle size and the like. For example, silicon tetrachloride, silicon, silica and the like can be used as raw materials, and powder or the like obtained by nitriding them can be used.
本発明の製造方法においては、原料となるシリカ粉末及び窒化珪素粉末を混合する。混合方法は限定されず、ロッキングミキサー、クロスミキサー、ポットミル、ボールミル、V型混合器等を用いることができる。次に、得られた混合粉末をターゲット上に酸水素火炎バーナーで溶融堆積し、不透明石英ガラスを製造する。 In the production method of the present invention, silica powder and silicon nitride powder as raw materials are mixed. The mixing method is not limited, and a locking mixer, a cross mixer, a pot mill, a ball mill, a V-type mixer and the like can be used. Next, the obtained mixed powder is melt-deposited on the target with an oxyhydrogen flame burner to produce opaque quartz glass.
本発明の方法で製造される不透明石英ガラスは、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上であり、好ましくは50~75%の範囲である。全光線反射率の平均値は、シリカ粉末種類(特に粒度)、窒化珪素粉末の種類(特に粒度)等の条件により変動する。本発明では、シリカ粉末の平均粒子径が比較的小さい80~160μmの範囲であるので、全光線反射率の平均値は比較的高くなる傾向があり、全光線反射率の平均値は、例えば、55%以上の範囲とすることもできる。 The opaque quartz glass produced by the method of the present invention has an average total light reflectance of 50% or more, preferably 50 to 75%, at a thickness of 3 mm and a wavelength of 0.4 to 2.5 μm. The average value of the total light reflectance varies depending on conditions such as the type of silica powder (particularly the particle size) and the type of silicon nitride powder (particularly the particle size). In the present invention, since the average particle size of the silica powder is in the range of 80 to 160 μm, the average value of the total light reflectance tends to be relatively high, and the average value of the total light reflectance is, for example, It can be in the range of 55% or more.
本発明の方法で製造される不透明石英ガラスは、全光線反射率の平均値が上記値であること以外に気泡総表面積が50cm2/cm3以上であることが、高反射率の不透明石英ガラスであるという観点から好ましい。気泡総表面積は、好ましくは60cm2/cm3以上、より好ましくは70cm2/cm3以上である。 The opaque quartz glass produced by the method of the present invention has a high reflectance opaque quartz glass having a total air bubble surface area of 50 cm 2 / cm 3 or more in addition to the above-mentioned average value of total light reflectance. It is preferable from the viewpoint of. The total surface area of the bubbles is preferably 60 cm 2 / cm 3 or more, more preferably 70 cm 2 / cm 3 or more.
本発明により形成された不透明石英ガラスは、高反射率であることから、半導体製造装置用部材に利用することができる。具体的には、フランジ、断熱フィン、ライナーなどが挙げられる。 Since the opaque quartz glass formed by the present invention has a high reflectance, it can be used as a member for semiconductor manufacturing equipment. Specific examples thereof include flanges, heat insulating fins, and liners.
上記のような部材は、不透明石英ガラス単独で使用してもよいし、透明石英ガラスと不透明石英ガラスを組合せてもよい。組合せの方法は、単純に不透明石英ガラスと透明石英ガラスを配置したり、不透明石英ガラスの表面に透明石英ガラス層を付与したりする方法等が挙げられる。 As the member as described above, the opaque quartz glass may be used alone, or the transparent quartz glass and the opaque quartz glass may be combined. Examples of the method of combination include a method of simply arranging an opaque quartz glass and a transparent quartz glass, a method of imparting a transparent quartz glass layer to the surface of the opaque quartz glass, and the like.
以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。なおシリカ粉末の粒度等は以下により行った。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are examples of the present invention, and the present invention is not intended to be limited to the examples. The particle size of the silica powder was adjusted as follows.
~シリカ粉末の粒度~
シリカ粉末の粒度測定は、マイクロトラック・ベル(株)製、レーザー回折粒子径分布測定装置、商品名「MT3000II」を用いて測定した。
~ Particle size of silica powder ~
The particle size of the silica powder was measured using a laser diffraction particle size distribution measuring device manufactured by Microtrac Bell Co., Ltd., trade name "MT3000II".
~不純物の分析~
シリカ粉末及び不透明石英ガラスの不純物分析は、公知の方法であるICP発光分析法により分析した。
~ Analysis of impurities ~
Impurity analysis of silica powder and opaque quartz glass was performed by ICP emission analysis method, which is a known method.
~不透明石英ガラスの密度~
不透明石英ガラスを切断し試料を作製した。公知の方法であるアルキメデス法により密度を求めた。
~ Density of opaque quartz glass ~
A sample was prepared by cutting opaque quartz glass. The density was determined by the Archimedes method, which is a known method.
~不透明石英ガラスの平均気泡径~
不透明石英ガラスを切断し試料を作製した。(株)キーエンス製、デジタルマイクロスコープ、商品名「VHX-900F」を使用し撮影した画像を解析し、平均気泡径、平均気泡表面積、平均気泡体積を求めた。
-Average bubble diameter of opaque quartz glass-
A sample was prepared by cutting opaque quartz glass. Images taken using a digital microscope manufactured by KEYENCE CORPORATION, trade name "VHX-900F" were analyzed, and the average cell diameter, average cell surface area, and average cell volume were obtained.
上記測定した密度と平均気泡体積から気泡個数(個/cm3)を求めた。平均気泡表面積と気泡個数から気泡総表面積(cm2/cm3)を求めた。 The number of bubbles (pieces / cm 3 ) was obtained from the measured density and average bubble volume. The total surface area of bubbles (cm 2 / cm 3 ) was calculated from the average surface area of bubbles and the number of bubbles.
~不透明石英ガラスの全光線反射率~
不透明石英ガラスを切断機と研削装置を用いて30mm×3mm(厚さ)の大きさに加工して測定用サンプルとした。これを(株)島津製作所製、真空紫外分光光度計、商品名「UV-3100PC」を使用し、波長0.4~2.5μmの全光線反射率を測定した。
-Total light reflectance of opaque quartz glass-
The opaque quartz glass was processed into a size of 30 mm × 3 mm (thickness) using a cutting machine and a grinding device to prepare a sample for measurement. Using a vacuum ultraviolet spectrophotometer manufactured by Shimadzu Corporation, trade name "UV-3100PC", the total light reflectance with a wavelength of 0.4 to 2.5 μm was measured.
(実施例1)
市販品の純化処理した天然水晶粉末と窒化珪素粉末を出発原料とした。この天然水晶粉末の粒度は40~400μmの範囲で平均粒子径(D50)は129μmであった。また、窒化珪素は、市販品を使用した。窒化珪素の添加量を0.12質量%とした。天然水晶粉末と窒化珪素の混合はポットミルで十分行った。
(Example 1)
The starting materials were purified natural quartz powder and silicon nitride powder, which are commercially available products. The particle size of this natural quartz powder was in the range of 40 to 400 μm, and the average particle size (D50) was 129 μm. As the silicon nitride, a commercially available product was used. The amount of silicon nitride added was 0.12% by mass. The natural quartz powder and silicon nitride were sufficiently mixed with a pot mill.
得られた混合粉末を酸水素火炎にフィードし、ターゲット上に堆積させた。φ160mm×300mm(長さ)の不透明石英ガラスを製造した。 The resulting mixed powder was fed into an oxyhydrogen flame and deposited on the target. An opaque quartz glass having a diameter of 160 mm × 300 mm (length) was manufactured.
製造した不透明石英ガラスの不純物分析を上記方法により行い、結果を表1に示す。原料に用いた天然水晶粉末の不純物分析結果も表1に併記する。 Impurity analysis of the produced opaque quartz glass was performed by the above method, and the results are shown in Table 1. Table 1 also shows the results of impurity analysis of the natural quartz powder used as a raw material.
製造した不透明石英ガラスを加工し、上記方法により密度、平均気泡径、平均気泡表面積、平均気泡体積、全光線反射率の測定を行った。さらに、測定した密度と平均気泡径、平均気泡表面積の値から気泡数と気泡総表面積を求めた。 The produced opaque quartz glass was processed, and the density, average cell diameter, average cell surface area, average cell volume, and total light reflectance were measured by the above method. Furthermore, the number of bubbles and the total surface area of bubbles were obtained from the measured densities, the average bubble diameter, and the average cell surface area.
この不透明石英ガラスの気泡総表面積及び均全光線反射率を表2に示す。この不透明石英ガラスの平均全光線反射率は、61.3%と高い値であった。 Table 2 shows the total surface area of bubbles and the uniform light reflectance of this opaque quartz glass. The average total light reflectance of this opaque quartz glass was as high as 61.3%.
(実施例2)
窒化珪素の添加量を0.15質量%としたこと以外は実施例1と同様にして不透明石英ガラスを得た。実験条件及び不透明石英ガラスの物性を表2に示す。この不透明石英ガラスの平均全光線反射率は、66.0%と高い値であった。
(Example 2)
Opaque quartz glass was obtained in the same manner as in Example 1 except that the amount of silicon nitride added was 0.15% by mass. Table 2 shows the experimental conditions and the physical characteristics of the opaque quartz glass. The average total light reflectance of this opaque quartz glass was as high as 66.0%.
(実施例3)
φ550mm×1000mm(長さ)の不透明石英ガラスを製造したこと以外は実施例1と同様にして不透明石英ガラスを得た。実験条件及び不透明石英ガラスの物性を表2に示す。この不透明石英ガラスの平均全光線反射率は、56.9%と高い値であった。
(Example 3)
An opaque quartz glass was obtained in the same manner as in Example 1 except that an opaque quartz glass having a diameter of 550 mm × 1000 mm (length) was produced. Table 2 shows the experimental conditions and the physical characteristics of the opaque quartz glass. The average total light reflectance of this opaque quartz glass was as high as 56.9%.
(比較例1)
特許文献1の実施例1に記載の方法の条件及び得られた不透明石英ガラスの物性を、推定値も含めて表2に示す。
(Comparative Example 1)
Table 2 shows the conditions of the method described in Example 1 of Patent Document 1 and the physical characteristics of the obtained opaque quartz glass, including estimated values.
上記実施例1~3の実験結果から、本発明によれば、平均全光線反射率が50%以上と高い不透明性を有する不透明石英ガラスが得られることが分かる。 From the experimental results of Examples 1 to 3, it can be seen that according to the present invention, opaque quartz glass having a high opacity with an average total light reflectance of 50% or more can be obtained.
本発明は、石英ガラスの製造分野において有用である。 The present invention is useful in the field of manufacturing quartz glass.
Claims (4)
前記シリカ粉末の粒度範囲が20~500μmの範囲であり、D50(平均粒子径)が80~160μmの範囲であり、粒子径177μm以上の粒子の含有量が30体積%以下であり、粒子径105μm未満の粒子の含有量が10体積%以上であり、かつ製造される不透明石英ガラスは、厚み3mmにおいて波長0.4~2.5μmの全光線反射率の平均値が50%以上の範囲である、
前記方法。 A method for producing opaque quartz glass containing independent bubbles by melting a mixed powder of silica powder and silicon nitride powder with an acid hydrogen flame and depositing quartz glass on a target.
The particle size range of the silica powder is in the range of 20 to 500 μm, the D50 (average particle size) is in the range of 80 to 160 μm, the content of particles having a particle size of 177 μm or more is 30% by volume or less, and the particle size is 105 μm. The opaque quartz glass produced having a particle content of less than 10% by volume and having a thickness of 3 mm has an average value of total light reflectance of 0.4 to 2.5 μm in the range of 50% or more. ,
The method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160713A JP7096739B2 (en) | 2018-08-29 | 2018-08-29 | Manufacturing method of opaque quartz glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018160713A JP7096739B2 (en) | 2018-08-29 | 2018-08-29 | Manufacturing method of opaque quartz glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020033221A JP2020033221A (en) | 2020-03-05 |
JP7096739B2 true JP7096739B2 (en) | 2022-07-06 |
Family
ID=69667005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018160713A Active JP7096739B2 (en) | 2018-08-29 | 2018-08-29 | Manufacturing method of opaque quartz glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7096739B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023166547A1 (en) * | 2022-03-01 | 2023-09-07 | 東ソ-・エスジ-エム株式会社 | Opaque quartz glass and production method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3043032B2 (en) * | 1990-07-06 | 2000-05-22 | 日本石英硝子株式会社 | Manufacturing method of opaque quartz glass |
-
2018
- 2018-08-29 JP JP2018160713A patent/JP7096739B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020033221A (en) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10843954B2 (en) | Synthetic opaque quartz glass and method for producing the same | |
JP4799536B2 (en) | High-purity quartz glass crucible for pulling up large-diameter silicon single crystal ingots that can reduce pinhole defects in large-diameter silicon single crystal ingots | |
JPH05105577A (en) | Quartz glass crucible for pulling up silicon single crystal and its production | |
JP4038137B2 (en) | Dispersion containing silicon-titanium-mixed oxide powder, method for producing the same, molded product produced thereby, method for producing the same, glass molded article, method for producing the same, and use thereof | |
KR101495692B1 (en) | Polycrystalline silicon rod and process for production thereof | |
JP2012116710A (en) | Method for manufacturing silica glass crucible, and silica glass crucible | |
JPH08169798A (en) | Quartz-glass crucible for pulling up silicon single crystal | |
TW201119958A (en) | Silica container and method for producing the same | |
TW200936820A (en) | Quartz glass crucible, method for manufacturing the same and single crystal pulling method | |
JP7096739B2 (en) | Manufacturing method of opaque quartz glass | |
JP2015502322A (en) | Polycrystalline silicon rod and method for producing polysilicon | |
TWI433969B (en) | Vitreous silica crucible | |
CN113966316B (en) | Opaque quartz glass and method for producing same | |
JP7046764B2 (en) | Manufacturing method of opaque quartz glass | |
JP2005231986A (en) | Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same | |
JPH11310423A (en) | Synthetic quartz glass and its production | |
JP5143367B2 (en) | Opaque sintered body | |
JP2824883B2 (en) | Quartz glass crucible manufacturing method | |
JP2019182691A (en) | Quartz glass ingot and method for manufacturing quartz glass product | |
JP4176872B2 (en) | Opaque silica glass, method for producing the same, and silica glass molding | |
US20240217866A1 (en) | Opaque Quartz Glass and Method for Producing the Same | |
WO2023049228A1 (en) | Opaque quartz and method of making the same | |
JP2881930B2 (en) | Manufacturing method of quartz glass for optical transmission | |
JP2692446B2 (en) | N-type silicon single crystal manufacturing method | |
WO2012104948A1 (en) | Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7096739 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |