JP7096534B2 - Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
JP7096534B2
JP7096534B2 JP2019503096A JP2019503096A JP7096534B2 JP 7096534 B2 JP7096534 B2 JP 7096534B2 JP 2019503096 A JP2019503096 A JP 2019503096A JP 2019503096 A JP2019503096 A JP 2019503096A JP 7096534 B2 JP7096534 B2 JP 7096534B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
crystal alignment
carbon atoms
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019503096A
Other languages
Japanese (ja)
Other versions
JPWO2018159733A1 (en
Inventor
司 藤枝
一平 福田
美希 豊田
雄介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2018159733A1 publication Critical patent/JPWO2018159733A1/en
Priority to JP2022090434A priority Critical patent/JP7409431B2/en
Application granted granted Critical
Publication of JP7096534B2 publication Critical patent/JP7096534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/76Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and etherified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/90Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. amino-diphenylethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/32Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and esterified hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/62Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino groups and at least two carboxyl groups bound to carbon atoms of the same six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0088Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing unsubstituted amino radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、液晶を垂直に配向させる能力に優れる液晶配向剤、液晶配向膜、及び液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element having an excellent ability to orient liquid liquid crystals vertically.

基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)の液晶表示素子には、その製造過程において液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。 A liquid crystal display element of a method (also called a vertical orientation (VA) method) in which liquid crystal molecules oriented perpendicular to a substrate are made to respond by an electric field is irradiated with ultraviolet rays while applying a voltage to the liquid crystal molecules in the manufacturing process. Some include steps to do.

このような垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照。)が知られている。 In such a vertically oriented liquid crystal display element, a photopolymerizable compound is added to the liquid crystal composition in advance, and a polyimide-based vertically oriented film is used to irradiate the liquid crystal cell with ultraviolet rays while applying a voltage. Therefore, a technique for increasing the response speed of a liquid crystal display (PSA (Polymer Sustained Alignment) type element, for example, see Patent Document 1 and Non-Patent Document 1) is known.

かかるPSA方式素子に用いられる液晶配向剤として、特定の環構造を有する側鎖を用いた液晶配向剤が提案されている(特許文献2参照)。この特定の環構造は、液晶を垂直に配向させる能力が高く、この液晶配向剤が用いられた垂直配向方式の液晶表示素子は、表示特性が良好であった。 As a liquid crystal alignment agent used in such a PSA system element, a liquid crystal alignment agent using a side chain having a specific ring structure has been proposed (see Patent Document 2). This specific ring structure has a high ability to orient the liquid crystal vertically, and the vertically oriented liquid crystal display element using this liquid crystal alignment agent has good display characteristics.

特開2003-307720号公報Japanese Patent Application Laid-Open No. 2003-307720 WO2006/070819号公報WO2006 / 070819 Gazette

K.Hanaoka,SID 04 DIGEST、P.1200-1202K.Hanaoka, SID 04 DIGEST, P.1200-1202

しかし、近年の垂直配向方式の液晶表示素子では、用いられる基板の薄型化、大型化の影響で、焼成時に、同じ基板内の異なる部分間で温度差が生じ、過度に加熱された部分の液晶配向膜は、液晶を垂直に配向させる能力が低下し、その結果、得られる液晶表示素子が部分的に表示不良を来す問題が生じる。
また、液晶パネル製造工程において、液晶配向膜とカラムスペーサーが接触し、液晶配向膜に傷がついてしまうことで、その部分に配向欠陥(輝点)が生じることも問題である。
However, in recent years, in the vertical alignment type liquid crystal display element, due to the influence of the thinning and large size of the substrate used, a temperature difference occurs between different parts in the same substrate at the time of firing, and the liquid crystal of the excessively heated part. The alignment film reduces the ability to orient the liquid crystal vertically, resulting in the problem that the resulting liquid crystal display element partially causes display defects.
Further, in the liquid crystal panel manufacturing process, there is a problem that the liquid crystal alignment film and the column spacer come into contact with each other and the liquid crystal alignment film is damaged, so that an orientation defect (bright spot) is generated in the portion.

本発明は、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することにある。
また、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することにある。
The present invention is to provide a liquid crystal alignment agent that can obtain a liquid crystal alignment film that does not reduce the ability to vertically align the liquid crystal even when exposed to excessive heating.
Another object of the present invention is to provide a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film that does not reduce the ability to vertically align the liquid crystal even when some foreign matter comes into contact with the film and is damaged.

発明者らは、下記構成の液晶配向剤により目的を達成できることを見出し、本発明を完成させた。
即ち、本発明の構成は以下の通りである。
1.下記式[1]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤。
The inventors have found that the object can be achieved by the liquid crystal alignment agent having the following constitution, and have completed the present invention.
That is, the configuration of the present invention is as follows.
1. 1. A liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine-containing diamine component represented by the following formula [1] and a tetracarboxylic acid component and a polyimide which is an imidized product thereof. Aligning agent.

Figure 0007096534000001
Figure 0007096534000001

式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
Yはそれぞれ独立して下記式[1-1]の構造を表す。
In the formula [1], X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m -,-. It represents a divalent organic group consisting of SO 2- and any combination thereof, and m represents an integer of 1 to 8.
Y independently represents the structure of the following equation [1-1].

式[1-1]中、Y及びYはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。
は単結合又は-(CH-(bは1~15の整数である)を示す(ただし、Y又はYが単結合、-(CH-である場合、Yは単結合であり、Yが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種であるか、及び/又はYが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種である場合、Yは単結合又は-(CH-である(ただし、Yが-CONH-である場合、Y及びY単結合である))。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
は、水素原子、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。nは0~4の整数を示す。
In the formula [1-1], Y 1 and Y 3 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -O-, and -CH 2 O-. , -CONH-, -NHCO-, -COO- and -OCO- show at least one selected from the group.
Y 2 indicates a single bond or-(CH 2 ) b- (b is an integer from 1 to 15) (where Y 1 or Y 3 is a single bond,-(CH 2 ) a- , then Y 2 is a single bond, is Y 1 at least one selected from the group consisting of -O-, -CH 2 O-, -CONH-, -NHCO-, -COO- and -OCO-, and / Or if Y 3 is at least one selected from the group consisting of -O-, -CH 2 O-, -CONH-, -NHCO-, -COO- and -OCO-, then Y 2 is a single bond or-( CH 2 ) b- (where Y 1 is -CONH-, it is a Y 2 and Y 3 single bond).
Y4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle, or a divalent organic group having a steroid skeleton and a tocophenol skeleton and having 17 to 51 carbon atoms. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms and 1 carbon atom. It may be substituted with an alkoxy group having 3 to 3, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom.
Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 1 to 18 carbon atoms. Shown at least one selected from the group consisting of fluorine-containing alkoxy groups of. n represents an integer from 0 to 4.

本発明により、過度の加熱にさらされた場合であっても、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することができる。
また、本発明により、上記効果に加えて、又は上記効果以外に、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下しない液晶配向膜を得られる液晶配向剤を提供することができる。
さらに、本発明により、上記液晶配向剤から得られる液晶配向膜、上記液晶配向剤を用いて液晶配向膜を得る方法を提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a liquid crystal alignment agent that can obtain a liquid crystal alignment film that does not reduce the ability to orient the liquid crystal vertically even when exposed to excessive heating.
Further, according to the present invention, a liquid crystal alignment agent that can obtain a liquid crystal alignment film that does not reduce the ability to orient the liquid crystal vertically even when some foreign matter comes into contact with the film and is damaged in addition to or other than the above effects. Can be provided.
Further, according to the present invention, it is possible to provide a liquid crystal alignment film obtained from the liquid crystal alignment agent and a method for obtaining a liquid crystal alignment film using the liquid crystal alignment agent.

本発明の液晶配向剤は、上記式[1]で表されるジアミン(以下、「上記式[1]で表されるジアミン」を「特定ジアミン」と略記する場合がある)を含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(以下、「特定重合体」と略記する場合がある)を含有する。 The liquid crystal aligning agent of the present invention is a diamine component containing a diamine represented by the above formula [1] (hereinafter, "diamine represented by the above formula [1]" may be abbreviated as "specific diamine"). And at least one polymer selected from a polyimide precursor which is a reaction product with a tetracarboxylic acid component and a polyimide which is an imidized product thereof (hereinafter, may be abbreviated as "specific polymer").

特定重合体は、特定ジアミンを含有するが、特定ジアミン以外のジアミンを有してもよい。
特定ジアミンとそれ以外のジアミンとの量は、特定重合体中、特定ジアミンが5mol%~70mol%、好ましくは10mol%~50mol%、より好ましくは10mol%~40mol%となる量で特定ジアミンを有するのがよい。
また、本発明の液晶配向剤は、特定重合体以外の「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」を含有してもよい。
以下、「特定ジアミン」について述べ、次いで「特定ジアミン」以外のジアミンについて述べる。
The specific polymer contains a specific diamine, but may have a diamine other than the specific diamine.
The amount of the specific diamine and the other diamines is such that the specific diamine is 5 mol% to 70 mol%, preferably 10 mol% to 50 mol%, and more preferably 10 mol% to 40 mol% in the specific polymer. Is good.
Further, the liquid crystal alignment agent of the present invention may contain "polyimide precursor and / or polyimide which is an imidized product thereof" other than the specific polymer.
Hereinafter, the "specific diamine" will be described, and then the diamines other than the "specific diamine" will be described.

<特定ジアミン>
本発明の液晶配向剤に用いられる特定ジアミンは、下記式[1]で表される。
<Specific diamine>
The specific diamine used in the liquid crystal alignment agent of the present invention is represented by the following formula [1].

Figure 0007096534000002
Figure 0007096534000002

式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表す。
「それらの任意の組み合わせ」として、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-などを挙げることができるがこれらに限定されない。
Xは、好ましくは、単結合、-O-、-NH-、-O-(CH-O-であるのがよい。
In the formula [1], X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m -,-. It represents a divalent organic group consisting of SO 2- and any combination thereof, and m represents an integer of 1 to 8.
As "any combination thereof", -O- (CH 2 ) m -O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m- , -NH- (CH 2 ) m -, -SO 2- (CH 2 ) m- , -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO-, -COO- (CH 2 ) m -OCO-, etc. However, it is not limited to these.
X is preferably single bond, —O—, —NH—, —O— (CH 2 ) m −O—.

式[1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位であるのがよい。即ち、式[1]は、以下の式[1’]であるのが好ましい。 In the formula [1], Y may be in the meta position or the ortho position from the position of X, but is preferably the ortho position. That is, the formula [1] is preferably the following formula [1'].

Figure 0007096534000003
Figure 0007096534000003

上記式[1]における「-NH」の位置は、式[1]に示すとおり、いずれの位置であってもよいが、好ましくは下記式[1]-a1、[1]-a2、[1]-a3で表される位置であるのがよく、より好ましくは[1]-a1であるのがよい。The position of "-NH 2 " in the above formula [1] may be any position as shown in the formula [1], but preferably the following formulas [1] -a1, [1] -a2, [ 1] -a3 is preferable, and [1] -a1 is more preferable.

Figure 0007096534000004
Figure 0007096534000004

上記式[1]-a1~式[1]-a3及び上記式[1’]から、上記式[1]は、下記式から選ばれるいずれかの構造であるのがよく、好ましくは式[1]-a1-1で表される構造であるのがよい。 From the above formulas [1] -a1 to [1] -a3 and the above formula [1'], the above formula [1] may have any structure selected from the following formulas, preferably the formula [1]. ] -A1-1 is preferable.

Figure 0007096534000005
Figure 0007096534000005

Yはそれぞれ独立して下記式[1-1]の構造を表す。 Y independently represents the structure of the following equation [1-1].

Figure 0007096534000006
Figure 0007096534000006

式[1-1]中、Y及びYはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す。
は単結合又は-(CH-(bは1~15の整数である)を示す(ただし、Y又はYが単結合、-(CH-である場合、Yは単結合であり、Yが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種であるか、及び/又はYが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種である場合、Yは単結合又は-(CH-である(ただし、Yが-CONH-である場合、Y及びY単結合である))。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
は、水素原子、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。nは0~4の整数を示す。
In the formula [1-1], Y 1 and Y 3 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -O-, and -CH 2 O-. , -CONH-, -NHCO-, -COO- and -OCO- show at least one selected from the group.
Y 2 indicates a single bond or-(CH 2 ) b- (b is an integer from 1 to 15) (where Y 1 or Y 3 is a single bond,-(CH 2 ) a- , then Y 2 is a single bond, is Y 1 at least one selected from the group consisting of -O-, -CH 2 O-, -CONH-, -NHCO-, -COO- and -OCO-, and / Or if Y 3 is at least one selected from the group consisting of -O-, -CH 2 O-, -CONH-, -NHCO-, -COO- and -OCO-, then Y 2 is a single bond or-( CH 2 ) b- (where Y 1 is -CONH-, it is a Y 2 and Y 3 single bond).
Y4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle, or a divalent organic group having a steroid skeleton and a tocophenol skeleton and having 17 to 51 carbon atoms. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms and 1 carbon atom. It may be substituted with an alkoxy group having 3 to 3, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom.
Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and 1 to 18 carbon atoms. Shown at least one selected from the group consisting of fluorine-containing alkoxy groups of. n represents an integer from 0 to 4.

上記式[1-1]で表される基として、以下の基[1-1]-1~[1-1]-22を挙げることができるがこれらに限定されない。これらのうち、[1-1]-1~[1-1]-4、[1-1]-8、[1-1]-10であるのが好ましい。なお、*は、上記式[1]、上記式[1’]、上記式[1]-a1~上記式[1]-a3におけるフェニル基との結合している位置を示す。mは1~15の整数を示し、nは0~18の整数を示す。 Examples of the group represented by the above formula [1-1] include, but are not limited to, the following groups [1-1] -1 to [1-1] -22. Of these, [1-1] -1 to [1-1] -4, [1-1] -8, and [1-1] -10 are preferable. In addition, * indicates the position which is bonded to the phenyl group in the above formula [1], the above formula [1'], and the above formula [1] -a1 to the above formula [1] -a3. m indicates an integer of 1 to 15, and n indicates an integer of 0 to 18.

Figure 0007096534000007
Figure 0007096534000007

<光反応性の側鎖>
本発明の液晶配向剤に含有される重合体は、光反応性の側鎖を有していてもよい。
該光反応性の側鎖は、「特定重合体」が有していても、「特定重合体」以外の重合体である「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」が有していてもよい。
<光反応性側鎖を含有するジアミン>
光反応性を有する側鎖を「特定重合体」及び/又は「特定重合体」以外の重合体に導入するには、光反応性の側鎖を有するジアミンをジアミン成分の一部に用いるのがよい。光反応性の側鎖を有するジアミンとしては、式[VIII]、又は式[IX]で表される側鎖を有するジアミンを挙げることができるがこれらに限定されない。
<Photoreactive side chain>
The polymer contained in the liquid crystal alignment agent of the present invention may have a photoreactive side chain.
The photoreactive side chain is possessed by a "polyimide precursor and / or an imidized polyimide" which is a polymer other than the "specific polymer" even if the "specific polymer" has it. You may.
<Diamine containing photoreactive side chains>
In order to introduce a photoreactive side chain into a polymer other than the "specific polymer" and / or the "specific polymer", it is recommended to use a diamine having a photoreactive side chain as a part of the diamine component. good. Examples of the diamine having a photoreactive side chain include, but are not limited to, a diamine having a side chain represented by the formula [VIII] or the formula [IX].

Figure 0007096534000008
Figure 0007096534000008

式[VIII]、式[IX]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。The bonding position of the two amino groups (-NH 2 ) in the formula [VIII] and the formula [IX] is not limited. Specifically, with respect to the bonding group of the side chain, 2,3 positions, 2,4 positions, 2,5 positions, 2,6 positions, 3,4 positions, 3, on the benzene ring. The position of 5 is mentioned. Of these, the 2,4 position, the 2,5 position, or the 3,5 position is preferable from the viewpoint of reactivity in synthesizing the polyamic acid. Considering the ease of synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.

式[VIII]中のR、R及びR10の定義は、次のとおりである。
即ち、Rは、単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。特に、Rは、単結合、-O-、-COO-、-NHCO-、又は-CONH-であるのが好ましい。
は、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表し、アルキレン基の-CH-は-CF-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは複素環。
なお、上記二価の炭素環若しくは複素環は、具体的には以下のものを例示することができるが、これらに限定されない。
The definitions of R 8 , R 9 and R 10 in formula [VIII] are as follows.
That is, R 8 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH 2 O-, -N (CH 3 ). -, -CON (CH 3 )-, or -N (CH 3 ) CO-. In particular, R 8 is preferably single bond, —O—, —COO—, —NHCO—, or —CONH—.
R 9 represents a single bond, an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, and the alkylene group -CH 2- is arbitrarily substituted with -CF 2- or -CH = CH-. If any of the following groups are not adjacent to each other, they may be substituted with these groups; -O-, -COO-, -OCO-, -NHCO-, -CONH-,-. NH-, divalent carbocycle or heterocyclic ring.
Specific examples of the divalent carbon ring or heterocycle are as follows, but the divalent ring or the heterocycle is not limited thereto.

Figure 0007096534000009
Figure 0007096534000009

は、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、単結合又は炭素数1~12のアルキレン基が好ましい。
10は、下記式から選択される光反応性基を表す。
R 9 can be formed by an ordinary organic synthetic method, but from the viewpoint of ease of synthesis, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
R 10 represents a photoreactive group selected from the following formula.

Figure 0007096534000010
Figure 0007096534000010

10は、光反応性の点から、メタクリル基、アクリル基又はビニル基であることが好ましい。R 10 is preferably a methacrylic group, an acrylic group or a vinyl group from the viewpoint of photoreactivity.

また、式[IX]中のY1、Y、Y、Y、Y、及びYの定義は、次のとおりである。
即ち、Yは-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。
は、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
は、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、又は単結合を表す。
はシンナモイル基を表す。 Yは単結合、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。
は、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
はアクリル基又はメタクリル基である光重合性基を示す。
Further, the definitions of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 and Y 6 in the formula [IX] are as follows.
That is, Y 1 represents -CH 2- , -O-, -CONH-, -NHCO-, -COO-, -OCO-, -NH-, or -CO-.
Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbon ring or a heterocycle, and one or more hydrogen atoms of the alkylene group, the divalent carbon ring or the heterocycle are fluorine atoms or organic. It may be substituted with a group. In Y 2 , -CH 2- may be substituted with these groups if the following groups are not adjacent to each other; -O-, -NHCO-, -CONH-, -COO-, -OCO-, -NH-, -NHCONH-, -CO-.
Y 3 represents -CH 2- , -O-, -CONH-, -NHCO-, -COO-, -OCO-, -NH-, -CO-, or a single bond.
Y 4 represents a cinnamoyl group. Y5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbon ring or a heterocycle, and one or more hydrogen atoms of the alkylene group, the divalent carbon ring or the heterocycle are fluorine atoms. Alternatively, it may be substituted with an organic group.
In Y5, -CH2- may be substituted with these groups if the following groups are not adjacent to each other; -O-, -NHCO- , -CONH-, -COO-, -OCO-, -NH-, -NHCONH-, -CO-.
Y 6 indicates a photopolymerizable group which is an acrylic group or a methacrylic group.

光反応性の側鎖を有するジアミンは、具体的には以下のものが挙げられるが、これに限定される訳ではない。下記式中、X、X10は、それぞれ独立に、単結合、-O-、-COO-、-NHCO-、又は-NH-である結合基、Yはフッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。Specific examples of the diamine having a photoreactive side chain include, but are not limited to, the following. In the following formula, X 9 and X 10 may be independently substituted with a single bond, a bond group which is -O-, -COO-, -NHCO-, or -NH-, and Y may be substituted with a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.

Figure 0007096534000011
Figure 0007096534000011

また、光反応性の側鎖を有するジアミンとしては、下記式で表わされる光二量化反応を起こす基及び光重合反応を起こす基を側鎖に有するジアミンも挙げられる。 Examples of the diamine having a photoreactive side chain include a diamine having a group that causes a photodimerization reaction represented by the following formula and a group that causes a photopolymerization reaction in the side chain.

Figure 0007096534000012
Figure 0007096534000012

上記式中、Y~Yは、上記定義と同じである。
上記光反応性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
In the above formula, Y 1 to Y 6 are the same as the above definitions.
The diamine having a photoreactive side chain depends on the liquid crystal orientation when it is used as a liquid crystal alignment film, pretilt angle, voltage holding characteristics, characteristics such as accumulated charge, and the response speed of the liquid crystal when it is used as a liquid crystal display element. Therefore, one type or a mixture of two or more types can be used.

また、光反応性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の10~70モル%を用いることが好ましく、より好ましくは20~60モル%、特に好ましくは30~50モル%である。
また、光反応性の側鎖を有するジアミンとしては、紫外線照射により分解しラジカルが発生するラジカル発生構造を有する部位を側鎖に有するジアミンも挙げられる。
Further, as the diamine having a photoreactive side chain, it is preferable to use 10 to 70 mol% of the diamine component used for the synthesis of the polyamic acid, more preferably 20 to 60 mol%, and particularly preferably 30 to 50 mol%. Is.
Further, examples of the diamine having a photoreactive side chain include a diamine having a site having a radical generation structure in which a radical is generated by being decomposed by ultraviolet irradiation in the side chain.

Figure 0007096534000013
Figure 0007096534000013

上記式(1)におけるAr、R、R、T、T、S及びQは、以下の定義を有する。
即ち、Arはフェニレン、ナフチレン、及びビフェニレンから選ばれる芳香族炭化水素基を示し、それらには有機基が置換していても良く、水素原子はハロゲン原子に置換していても良い。
1、Rはそれぞれ独立して炭素原子数1~10のアルキル基もしくはアルコキシ基である。
T1、T2はそれぞれ独立して、単結合又は-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、-N(CH)CO-の結合基である。
Sは単結合もしくは非置換もしくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基。ただしアルキレン基の-CH-または-CF-は-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、二価の複素環。
Qは下記から選ばれる構造(構造式中、Rは水、素原子又は炭素原子数1~4のアルキル基を表し、Rは-CH-、-NR-、-O-、又は-S-を表す。)を表す。
Ar, R 1 , R 2 , T 1 , T 2 , S and Q in the above formula (1) have the following definitions.
That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, which may be substituted with an organic group and a hydrogen atom may be substituted with a halogen atom.
R 1 and R 2 are independently alkyl groups or alkoxy groups having 1 to 10 carbon atoms.
T1 and T2 are independently single-bonded or -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-,-N (CH 3 ) CO-binding group.
S is an alkylene group having 1 to 20 carbon atoms which is single-bonded, unsubstituted or substituted with a fluorine atom. However, the alkylene group -CH 2- or -CF 2- may be arbitrarily replaced with -CH = CH-, and if any of the following groups are not adjacent to each other, they are replaced with these groups. May be; -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, divalent carbocycles, divalent heterocycles.
Q is a structure selected from the following (in the structural formula, R represents water, an elementary atom or an alkyl group having 1 to 4 carbon atoms, and R 3 is -CH 2- , -NR-, -O-, or -S. -Represents.) Represents.

Figure 0007096534000014
Figure 0007096534000014

上記式(I)において、カルボニルが結合しているArは紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。また、Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。 In the above formula (I), since Ar to which the carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays, a structure having a long conjugated length such as naphthylene or biphenylene is preferable when the wavelength is lengthened. Further, Ar may be substituted with a substituent, and the substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group or an amino group.

式(I)中、Arがナフチレンやビフェニレンのような構造になると溶解性が悪くなり、合成の難易度も高くなる。紫外線の波長が250nm~380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。 In the formula (I), when Ar has a structure like naphthylene or biphenylene, the solubility becomes poor and the difficulty of synthesis becomes high. If the wavelength of ultraviolet rays is in the range of 250 nm to 380 nm, a phenyl group is most preferable because sufficient characteristics can be obtained even with a phenyl group.

また、R、Rは、それぞれ独立して炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R、Rで環を形成していてもよい。Further, R 1 and R 2 are independently alkyl groups having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group, and in the case of an alkyl group or an alkoxy group, the rings are R 1 and R 2 . May be formed.

式(I)中、Qは、電子供与性の有機基が好ましく、上記の基が好ましい。
Qがアミノ誘導体の場合、ポリイミドの前駆体であるポリアミック酸の重合の際に、発生するカルボン酸基とアミノ基が塩を形成するなどの不具合が生じる可能性があるため、より好ましくはヒドロキシル基又はアルコキシル基である。
In the formula (I), Q is preferably an electron-donating organic group, and the above group is preferable.
When Q is an amino derivative, a hydroxyl group is more preferable because problems such as the formation of a salt between the generated carboxylic acid group and the amino group may occur during the polymerization of the polyamic acid which is the precursor of the polyimide. Or it is an alkoxyl group.

式(1)におけるジアミノベンゼンは、o-フェニレンジアミン、m-フェニレンジアミン、又はp-フェニレンジアミンのいずれの構造でもよいが、酸二無水物との反応性の点では、m-フェニレンジアミン、又はp-フェニレンジアミンが好ましい。 The diaminobenzene in the formula (1) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine, but in terms of reactivity with acid dianhydride, m-phenylenediamine or P-phenylenediamine is preferred.

具体的には、合成の容易さ、汎用性の高さ、特性などの点から、下記式で表される構造が最も好ましい。なお、式中nは2~8の整数である。 Specifically, the structure represented by the following formula is most preferable from the viewpoint of ease of synthesis, high versatility, characteristics and the like. In the formula, n is an integer of 2 to 8.

Figure 0007096534000015
Figure 0007096534000015

<その他のジアミン>
特定重合体を得るためのその他のジアミン成分としては、上記[1]式で表される特定ジアミン以外のジアミン(以下、その他のジアミンとも言う)を含有しても良い。そのようなジアミンは、以下の一般式[2]で表される。その他ジアミンは1種又は2種以上を併用することもできる。
<Other diamines>
As the other diamine component for obtaining the specific polymer, a diamine other than the specific diamine represented by the above formula [1] (hereinafter, also referred to as other diamines) may be contained. Such a diamine is represented by the following general formula [2]. Other diamines may be used alone or in combination of two or more.

Figure 0007096534000016
Figure 0007096534000016

上記式[2]中、A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基である。モノマーの反応性の観点から、A及びAは水素原子、又はメチル基が好ましい。Yの構造を例示すると、以下の通りである。In the above formula [2], A 1 and A 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms, alkenyl groups having 2 to 5 carbon atoms, or alkynyl groups having 2 to 5 carbon atoms. Is. From the viewpoint of monomer reactivity, A 1 and A 2 are preferably hydrogen atoms or methyl groups. An example of the structure of Y 1 is as follows.

Figure 0007096534000017
Figure 0007096534000017

Figure 0007096534000018
Figure 0007096534000018

Figure 0007096534000019
Figure 0007096534000019

Figure 0007096534000020
Figure 0007096534000020

Figure 0007096534000021
Figure 0007096534000021

Figure 0007096534000022
Figure 0007096534000022

Figure 0007096534000023
Figure 0007096534000023

Figure 0007096534000024
Figure 0007096534000024

Figure 0007096534000025
Figure 0007096534000025

Figure 0007096534000026
Figure 0007096534000026

Figure 0007096534000027
Figure 0007096534000027

Figure 0007096534000028
Figure 0007096534000028

Figure 0007096534000029
Figure 0007096534000029

Figure 0007096534000030
Figure 0007096534000030

Figure 0007096534000031
Figure 0007096534000031

Figure 0007096534000032
Figure 0007096534000032

Figure 0007096534000033
Figure 0007096534000033

Figure 0007096534000034
Figure 0007096534000034

式中、特記しない限り、nは、1~6の整数である。下記式中、Bocは、tert-ブトキシカルボニル基を表す。 In the formula, n is an integer of 1 to 6 unless otherwise specified. In the following formula, Boc represents a tert-butoxycarbonyl group.

Figure 0007096534000035
Figure 0007096534000035

本発明の液晶配向剤に使用されるその他のジアミン成分は、特に限定されないが、塗布性、電圧保持率特性、残留DC電圧特性などの観点から、(Y-7)、(Y-8)、(Y-16)、(Y-17)、(Y-21)、(Y-22)、(Y-28)、(Y-37)、(Y-38)、(Y-60)、(Y-67)、(Y-68)、(Y-71)~(Y-73)、(Y-160)~(Y-180)から選ばれるジアミンを選定し併用することが特に好ましい。 The other diamine components used in the liquid crystal alignment agent of the present invention are not particularly limited, but are (Y-7), (Y-8), from the viewpoints of coatability, voltage retention characteristics, residual DC voltage characteristics, and the like. (Y-16), (Y-17), (Y-21), (Y-22), (Y-28), (Y-37), (Y-38), (Y-60), (Y) It is particularly preferable to select and use a diamine selected from -67), (Y-68), (Y-71) to (Y-73), and (Y-160) to (Y-180).

(テトラカルボン酸成分)
特定重合体を得るためのテトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドが挙げられ、本発明では、これらを総称してテトラカルボン酸成分ともいう。
テトラカルボン酸成分としては、テトラカルボン酸二無水物、その誘導体である、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド(これらを総称して、第1のテトラカルボン酸成分という。)を用いることもできる。
(Tetracarboxylic acid component)
Examples of the tetracarboxylic acid component for obtaining the specific polymer include tetracarboxylic acid, tetracarboxylic acid dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. Then, these are collectively also referred to as a tetracarboxylic acid component.
Examples of the tetracarboxylic acid component include tetracarboxylic acid dianhydride, its derivatives, tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide (collectively, the first). 1) is also referred to as a tetracarboxylic acid component).

<テトラカルボン酸二無水物>
テトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。 これらの具体例としては、以下の[1]~[5]の群のものなどをそれぞれ挙げることができる。
<Tetracarboxylic acid dianhydride>
Examples of the tetracarboxylic acid dianhydride include an aliphatic tetracarboxylic acid dianhydride, an alicyclic tetracarboxylic acid dianhydride, and an aromatic tetracarboxylic acid dianhydride. Specific examples of these include those in the following groups [1] to [5].

[1] 脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物など; [1] As the aliphatic tetracarboxylic acid dianhydride, for example, 1,2,3,4-butanetetracarboxylic acid dianhydride;

[2] 脂環式テトラカルボン酸二無水物として、例えば下記式(X1-1)~(X1-13)などの酸二無水物、 [2] Examples of the alicyclic tetracarboxylic acid dianhydride include acid dianhydrides having the following formulas (X1-1) to (X1-13).

Figure 0007096534000036
Figure 0007096534000036

式(X1-1)~(X1-4)において、RからR23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基であり、同一でも異なってもよく、
前記式中、Rは水素原子、又はメチル基であり、
Xa、は下記式(Xa-1)~(Xa-7)で表される4価の有機基である。
In the formulas (X1-1) to (X1-4), R 3 to R 23 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms, and carbon. It is an alkynyl group having a number of 2 to 6, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and may be the same or different.
In the above formula, RM is a hydrogen atom or a methyl group.
Xa is a tetravalent organic group represented by the following formulas (Xa-1) to (Xa-7).

Figure 0007096534000037
Figure 0007096534000037

[3] 3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオンなど; [3] 3-Oxabicyclo [3.2.1] Octane-2,4-dione-6-spiro-3'-(tetrahydrofuran-2', 5'-dione), 3,5,6-tricarboxy- 2-Carboxymethylnorbornane-2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.02,6] undecane-3,5,8,10-tetrahydrofuran, etc.;

[4] 芳香族テトラカルボン酸二無水物として、例えばピロメリット酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、下記式(Xb-1)~(Xb-10)で表される酸二無水物など、および [4] As aromatic tetracarboxylic acid dianhydride, for example, pyromellitic acid anhydride, 4,4'-(hexafluoroisopropyridene) diphthalic acid anhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid. Acid dianhydride, acid dianhydride represented by the following formulas (Xb-1) to (Xb-10), and the like, and

Figure 0007096534000038
Figure 0007096534000038

[5] さらに、式(X1-44)~(X1-52)で表される酸二無水物、特開2010-97188号公報に記載のテトラカルボン酸二無水物を挙げることができる。 [5] Further, acid dianhydrides represented by the formulas (X1-44) to (X1-52) and tetracarboxylic acid dianhydrides described in JP-A-2010-97188 can be mentioned.

Figure 0007096534000039
Figure 0007096534000039

なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
本発明の液晶配向剤に使用されるテトラカルボン酸二無水物成分は、特に限定されないが、塗布性、電圧保持率特性、残留DC電圧特性などの観点から、(X1-1)、(X1-2)、(X1-3)、(X1-6)、(X1-7)、(X1-8)、(X1-9)、(Xa-2)、ピロメリット酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、(Xb-6)、(Xb-9)から選ばれるテトラカルボン酸二無水物を選定し用いることが好ましい。
The tetracarboxylic acid dianhydride may be used alone or in combination of two or more.
The tetracarboxylic acid dianhydride component used in the liquid crystal aligning agent of the present invention is not particularly limited, but is (X1-1), (X1-) from the viewpoints of coatability, voltage retention characteristics, residual DC voltage characteristics and the like. 2), (X1-3), (X1-6), (X1-7), (X1-8), (X1-9), (Xa-2), pyromellitic acid anhydride, 3,3', It is preferable to select and use a tetracarboxylic acid dianhydride selected from 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, (Xb-6), and (Xb-9).

<重合体の製造方法>
これらの重合体を製造する方法は、通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミンからなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重縮合させてポリアミック酸を得る方法が用いられる。
<Polymer manufacturing method>
The method for producing these polymers is usually obtained by reacting a diamine component with a tetracarboxylic acid component. Polyamide acid is obtained by reacting at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acid dianhydride and its derivative of tetracarboxylic acid with a diamine component consisting of one or more diamines. The method can be mentioned. Specifically, a method of polycondensing a tetracarboxylic acid dianhydride with a primary or secondary diamine to obtain a polyamic acid is used.

ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、カルボン酸基をハロゲン化したテトラカルボン酸ジハライドと1級又は2級のジアミンとを重縮合させる方法、又はポリアミド酸のカルボキシ基をエステルに変換する方法が用いられる。
ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
In order to obtain a polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by halogenating a carboxylic acid group and a primary acid group are obtained. Alternatively, a method of polycondensing with a secondary diamine or a method of converting the carboxy group of polyamic acid into an ester is used.
In order to obtain polyimide, the method of ring-closing the above-mentioned polyamic acid or polyamic acid alkyl ester to form polyimide is used.

ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D-1]~式[D-3]で表される溶媒を用いることができる。
The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in a solvent. The solvent used at that time is not particularly limited as long as it dissolves the produced polyimide precursor. Specific examples of the solvent used in the reaction are given below, but the present invention is not limited to these examples.
For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. Will be. When the polyimide precursor has high solvent solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the following formulas [D-1] to [D-3]. A solvent can be used.

Figure 0007096534000040
Figure 0007096534000040

式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3]. Among them, D 3 represents an alkyl group having 1 to 4 carbon atoms.

これらの溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。 These solvents may be used alone or in admixture. Further, even if the solvent does not dissolve the polyimide precursor, it may be mixed with the solvent and used as long as the produced polyimide precursor does not precipitate. Further, since the water content in the solvent inhibits the polymerization reaction and further causes the produced polyimide precursor to be hydrolyzed, it is preferable to use a solvent that has been dehydrated and dried.

ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。 When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or after being dispersed or dissolved in the solvent. Methods, conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in a solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, and the like can be mentioned. May be used. Further, when a plurality of diamine components or tetracarboxylic acid components are used for reaction, they may be reacted in a premixed state, may be reacted individually in sequence, or may be further reacted individually as a low molecular weight compound. May be mixed and reacted to form a polymer.

ジアミン成分とテトラカルボン酸成分とを重縮合せしめる温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
The temperature at which the diamine component and the tetracarboxylic acid component are polycondensed can be selected from any temperature of −20 to 150 ° C., but is preferably in the range of −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. .. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then the solvent can be added.
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyimide precursor produced.

ポリイミドは、前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
The polyimide is a polyimide obtained by closing the ring of the above-mentioned polyimide precursor, and in this polyimide, the ring-closing rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and the polyimide does not necessarily have to be 100%. It can be adjusted arbitrarily according to the situation.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.

ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。 The temperature at which the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and a method is preferable in which water generated by the imidization reaction is removed from the system. The catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at −20 to 250 ° C., preferably 0 to 180 ° C.

塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。
塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 3 times the amid acid group. It is 30 mol times.
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. In particular, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.

ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これら中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or the reaction solution of polyimide, the reaction solution may be put into a solvent to precipitate. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like. The polymer put into a solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure. Further, by repeating the operation of re-dissolving the polymer recovered by precipitation in a solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these because the efficiency of purification is further improved.

本発明のポリアミド酸アルキルエステルを製造するための、より具体的な方法を下記(1)~(3)に示す。
(1)ポリアミド酸のエステル化反応で製造する方法
ジアミン成分とテトラカルボン酸成分とからポリアミド酸を製造し、そのカルボキシ基(COOH基)に、化学反応、すなわち、エステル化反応を行い、ポリアミド酸アルキルエステルを製造する方法である。
エステル化反応は、ポリアミド酸とエステル化剤を溶媒の存在下で、-20~150℃(好ましくは0~50℃)において、30分~24時間(好ましくは1~4時間)反応させる方法である。
More specific methods for producing the polyamic acid alkyl ester of the present invention are shown in the following (1) to (3).
(1) Method for producing by esterification reaction of polyamic acid Polyamic acid is produced from a diamine component and a tetracarboxylic acid component, and a chemical reaction, that is, an esterification reaction is carried out on the carboxy group (COOH group) of the polyamic acid. A method for producing an alkyl ester.
The esterification reaction is a method in which a polyamic acid and an esterifying agent are reacted in the presence of a solvent at −20 to 150 ° C. (preferably 0 to 50 ° C.) for 30 minutes to 24 hours (preferably 1 to 4 hours). be.

前記エステル化剤としては、エステル化反応後に、容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド等が挙げられる。エステル化剤の使用量は、ポリアミド酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。なかでも、2~4モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed after the esterification reaction, and is preferably N, N-dimethylformamide dimethylacetal, N, N-dimethylformamide diethylacetal, N, N-dimethylformamide dipropylacetal, N, N-dimethylformamide dineopentylbutyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriasel, 1-ethyl-3-p-tolyltriasel, 1-propyl Examples thereof include -3-p-tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent used is preferably 2 to 6 mol equivalents with respect to 1 mol of the repeating unit of the polyamic acid. Of these, 2 to 4 molar equivalents are preferred.

前記エステル化反応に用いる溶媒としては、ポリアミド酸の溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上を混合して用いてもよい。
前記エステル化反応における溶媒中のポリアミド酸の濃度は、ポリアミド酸の析出が起こりにくい点から、1~30質量%が好ましい。なかでも、5~20質量%が好ましい。
Examples of the solvent used for the esterification reaction include a solvent used for the reaction between the diamine component and the tetracarboxylic acid component from the viewpoint of the solubility of the polyamic acid in the solvent. Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone are preferable. These solvents may be used alone or in admixture of two or more.
The concentration of the polyamic acid in the solvent in the esterification reaction is preferably 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid is unlikely to occur. Of these, 5 to 20% by mass is preferable.

(2)ジアミン成分とテトラカルボン酸ジエステルジクロリドとの反応で製造する方法
具体的には、ジアミン成分とテトラカルボン酸ジエステルジクロリドとを、塩基と溶媒の存在下で、-20~150℃(好ましくは0~50℃)において、30分~24時間(好ましくは1~4時間)反応させる方法である。
塩基は、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等を用いることができる。なかでも、反応が穏和に進行するため、ピリジンが好ましい。塩基の使用量は、反応後に、容易に除去できる量が好ましく、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。なかでも、2~3倍モルがより好ましい。
(2) Method for producing by reaction of diamine component and tetracarboxylic acid diester dichloride Specifically, the diamine component and tetracarboxylic acid diester dichloride are heated at −20 to 150 ° C. (preferably) in the presence of a base and a solvent. It is a method of reacting at 0 to 50 ° C. for 30 minutes to 24 hours (preferably 1 to 4 hours).
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used. Of these, pyridine is preferable because the reaction proceeds moderately. The amount of the base used is preferably an amount that can be easily removed after the reaction, and is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride. Of these, 2 to 3 times the mole is more preferable.

溶媒には、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これらの溶媒は、1種又は2種以上を混合して用いてもよい。
反応における溶媒中のポリアミド酸アルキルエステルの濃度は、ポリアミド酸アルキルエステルの析出が起こりにくい点から、1~30質量%が好ましい。なかでも、5~20質量%が好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミド酸アルキルエステルの作製に用いる溶媒は、できるだけ脱水されていることが好ましい。更に、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
Examples of the solvent include a solvent used for the reaction between the diamine component and the tetracarboxylic acid component from the viewpoint of the solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent. Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone are preferable. These solvents may be used alone or in admixture of two or more.
The concentration of the polyamic acid alkyl ester in the solvent in the reaction is preferably 1 to 30% by mass from the viewpoint that precipitation of the polyamic acid alkyl ester is unlikely to occur. Of these, 5 to 20% by mass is preferable. Further, in order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for producing the polyamic acid alkyl ester is preferably dehydrated as much as possible. Further, it is preferable that the reaction is carried out in a nitrogen atmosphere to prevent contamination with outside air.

(3)ジアミン成分とテトラカルボン酸ジエステルとの反応で製造する方法
具体的には、ジアミン成分とテトラカルボン酸ジエステルとを、縮合剤、塩基及び溶媒の存在下で、0~150℃(好ましくは0~100℃)において、30分~24時間(好ましくは3~15時間)重縮合反応させる方法である。
(3) Method for producing by reaction of diamine component and tetracarboxylic acid diester Specifically, the diamine component and the tetracarboxylic acid diester are heated at 0 to 150 ° C. (preferably) in the presence of a condensing agent, a base and a solvent. It is a method of polycondensation reaction at 0 to 100 ° C. for 30 minutes to 24 hours (preferably 3 to 15 hours).

縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル等を用いることができる。縮合剤の使用量は、テトラカルボン酸ジエステルに対して、2~3倍モルが好ましく、特に、2~2.5倍モルが好ましい。 Condensing agents include triphenylphosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N'-carbonyldiimidazole, dimethoxy-1,3,5-triazinyl. Methylmorpholinium, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium tetrafluoroborate, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl and the like can be used. The amount of the condensing agent to be used is preferably 2 to 3 times mol, and particularly preferably 2 to 2.5 times mol, with respect to the tetracarboxylic acid diester.

塩基には、ピリジン、トリエチルアミン等の3級アミンを用いることができる。塩基の使用量は、重縮合反応後に、容易に除去できる量が好ましく、ジアミン成分に対して、2~4倍モルが好ましく、2~3倍モルがより好ましい。
重縮合反応に用いる溶媒は、得られる重合体、すなわち、ポリアミド酸アルキルエステルの溶媒への溶解性の点から、前記ジアミン成分とテトラカルボン酸成分との反応に用いる溶媒が挙げられる。なかでも、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。これら溶媒は、1種又は2種以上用いてもよい。
As the base, a tertiary amine such as pyridine or triethylamine can be used. The amount of the base used is preferably an amount that can be easily removed after the polycondensation reaction, preferably 2 to 4 times by mole, more preferably 2 to 3 times by mole with respect to the diamine component.
Examples of the solvent used for the polycondensation reaction include the solvent used for the reaction between the diamine component and the tetracarboxylic acid component from the viewpoint of the solubility of the obtained polymer, that is, the polyamic acid alkyl ester in the solvent. Of these, N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone are preferable. These solvents may be used alone or in combination of two or more.

また、重縮合反応においては、ルイス酸を添加剤として加えることで、反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の使用量は、ジアミン成分に対して、0.1~10倍モルが好ましい。なかでも、2.0~3.0倍モルが好ましい。 Further, in the polycondensation reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halide such as lithium chloride and lithium bromide is preferable. The amount of Lewis acid used is preferably 0.1 to 10 times the molar amount of the diamine component. Of these, 2.0 to 3.0 times the molar amount is preferable.

上記(1)~(3)の手法で得られたポリアミド酸アルキルエステルの溶液から、ポリアミド酸アルキルエステルを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等を挙げることができる。溶媒に投入して沈殿させた重合体は、前記で使用した添加剤、触媒類を除去することを目的に、上記溶媒で、複数回洗浄操作を行うことが好ましい。洗浄し、ろ過して回収した後、重合体は常圧或いは減圧下、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すことにより、重合体中の不純物を少なくすることができる。
ポリアミド酸アルキルエステルは、前記(2)又は(3)の製造方法が好ましい。
When recovering the polyamic acid alkyl ester from the polyamic acid alkyl ester solution obtained by the above methods (1) to (3), the reaction solution may be added to a solvent for precipitation. Examples of the solvent used for precipitation include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like. The polymer which has been put into a solvent and precipitated is preferably washed with the above solvent a plurality of times for the purpose of removing the additives and catalysts used above. After washing, filtering and recovering, the polymer can be dried under normal pressure or reduced pressure at room temperature or by heating. Further, by repeating the operation of re-dissolving the polymer recovered by precipitation in a solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced.
As the polyamic acid alkyl ester, the production method of (2) or (3) above is preferable.

<液晶配向剤>
本発明の液晶配向剤は、上述の特定重合体を含有し、好ましくは液晶配向膜を形成するための溶液であるのがよい。液晶配向剤における重合体の含有量は、液晶配向剤中、2~10質量%が好ましく、3~8質量%がより好ましい。
<Liquid crystal alignment agent>
The liquid crystal alignment agent of the present invention contains the above-mentioned specific polymer, and is preferably a solution for forming a liquid crystal alignment film. The content of the polymer in the liquid crystal alignment agent is preferably 2 to 10% by mass, more preferably 3 to 8% by mass in the liquid crystal alignment agent.

本発明の液晶配向剤における全ての重合体成分は、全てが本発明の特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。それ以外の重合体としては、ポリイミドおよびポリイミド前駆体に加えて、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。それ以外の他の重合体の含有量は、液晶配向剤に含まれる樹脂成分のうち、1~90質量%が好ましく、30~80質量がより好ましい。 All the polymer components in the liquid crystal alignment agent of the present invention may be the specific polymer of the present invention, or may be mixed with other polymers. Examples of other polymers include cellulose-based polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, polysiloxanes, and the like, in addition to polyimides and polyimide precursors. The content of the other polymers is preferably 1 to 90% by mass, more preferably 30 to 80% by mass, among the resin components contained in the liquid crystal alignment agent.

本発明の液晶配向剤に使用される良溶媒は、本発明の特定重合体が溶解するものであれば特に限定されない。下記に、液晶配向剤に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。
また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は上記式[D-1]~式[D-3]で表される溶媒を用いることもできる。
上記良溶媒は1種類で使用してもよいし、塗布方法などに合わせてより適する組み合わせ、および比率で使用してもよい。
本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
The good solvent used for the liquid crystal alignment agent of the present invention is not particularly limited as long as it dissolves the specific polymer of the present invention. Specific examples of the solvent used for the liquid crystal alignment agent are given below, but the present invention is not limited to these examples.
For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. Will be.
When the polyimide precursor has high solvent solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the above formulas [D-1] to [D-3]. It is also possible to use the solvent to be used.
The above-mentioned good solvent may be used alone, or may be used in a more suitable combination and ratio according to the coating method and the like.
The good solvent in the liquid crystal alignment agent of the present invention is preferably 20 to 99% by mass of the total solvent contained in the liquid crystal alignment agent. Of these, 20 to 90% by mass is preferable. More preferably, it is 30 to 80% by mass.

本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を使用できる。下記にその具体例を挙げる。
例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~[D-3]で表される溶媒等を挙げることができる。
As the liquid crystal alignment agent of the present invention, a solvent (also referred to as a poor solvent) that improves the coating film property and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment agent is applied can be used. Specific examples are given below.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-Pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol , 2-Heptanol, 3-Heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Dimethyl-4-heptanol, 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2, 3-Butandiol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, diisopropyl ether, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene Glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyetan, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2- Pentanone, 3-pentanone, 2-hexanone, 2-heptanone, 4-heptanone, 2,6-dimethyl-4-heptanone, 4,6-dimethyl-2-heptanone, 3-ethoxybutyl acetate, 1-methylpentylace Tart, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl Ether, Ethylene Glycol Monohexyl Ether, 2- (Hexyloxy) Ethanol, Flufuryl Alcohol, Diethylene Glycol, Pu Lopyrene glycol, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol Propropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetylate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate , Diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, acetate Ethyl, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate , 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionic acid, butyl 3-methoxypropionic acid, lactic acid methyl ester, lactic acid ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester , Solvents represented by the above formulas [D-1] to [D-3] and the like can be mentioned.

なかでも、好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Among them, the preferred solvent combinations are N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-pyrrolidone and γ-. Butyrolactone and Propylene Glycol Monobutyl Ether, N-Ethyl-2-pyrrolidone and Propylene Glycol Monobutyl Ether, N-Methyl-2-pyrrolidone and γ-Butyrolactone, 4-Hydroxy-4-methyl-2-pentanone and Diethylene Glycol Diethyl Ether, N- Methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2 -Pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone, γ-butyrolactone and dipropylene glycol dimethyl ether, and the like can be mentioned. The poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent. The type and content of such a solvent are appropriately selected depending on the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.

本発明の液晶配向剤には、上記の他、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。 In addition to the above, the liquid crystal alignment agent of the present invention includes polymers other than the polymers described in the present invention, dielectrics for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film, and liquid crystal alignment films. A silane coupling agent for the purpose of improving adhesion to the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film, and heating of the polyimide precursor when firing the coating film. It may contain an imidization accelerator or the like for the purpose of efficiently advancing imidization by the above method.

液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds, and examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and 3-. Glycydoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-) Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-Aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4 , 7-Triazadecane, 10-triethoxysilyl-1,4,7-Triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N -Benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (Oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol Diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5, 6-Tetraglycidyl-2,4-hexanediol, N, N, N', N',-tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane or Examples thereof include N, N, N', N',-tetraglycidyl-4, 4'-diaminodiphenylmethane and the like.

また、本発明の液晶配向剤には、液晶配向膜の機械的強度を上げるために以下のような添加物を添加してもよい。 Further, the following additives may be added to the liquid crystal alignment agent of the present invention in order to increase the mechanical strength of the liquid crystal alignment film.

Figure 0007096534000041
Figure 0007096534000041

上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。 The above additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. If it is less than 0.1 part by mass, the effect cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal is lowered, so that it is more preferably 0.5 to 20 parts by mass.

<液晶配向膜及び液晶表示素子>
本発明の液晶配向膜は、本発明の液晶配向剤を基板上に塗布して焼成することにより形成できる。
例えば、本発明の液晶配向剤を、基板に塗布した後、必要に応じて乾燥し、焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。特に、PSA用配向膜として使用することが有用である。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment film of the present invention can be formed by applying the liquid crystal alignment agent of the present invention on a substrate and firing it.
For example, a cured film obtained by applying the liquid crystal alignment agent of the present invention to a substrate, drying it if necessary, and firing it can be used as it is as a liquid crystal alignment film. In addition, this cured film is rubbed, irradiated with polarized light or light of a specific wavelength, treated with an ion beam, etc., and a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film. It is also possible to irradiate with UV. In particular, it is useful to use it as an alignment film for PSA.

この際、用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。 At this time, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and is a glass plate, polycarbonate, poly (meth) acrylate, polyether sulfone, polyarylate, polyurethane, polysulphon, polyether, polyether ketone. , Trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, acetate butyrate cellulose and other plastic substrates can be used. Further, it is preferable to use a substrate on which an ITO electrode or the like for driving a liquid crystal display is formed from the viewpoint of simplifying the process. Further, in the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used if only one side of the substrate is used, and in this case, a material that reflects light such as aluminum can also be used as the electrode.

液晶配向剤の塗布方法は特に限定されず、スクリーン印刷、オフセット印刷、フレキソ印刷等の印刷法、インクジェット法、スプレー法、ロールコート法や、ディップ、ロールコーター、スリットコーター、スピンナー等が挙げられる。生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 The method for applying the liquid crystal alignment agent is not particularly limited, and examples thereof include printing methods such as screen printing, offset printing, and flexographic printing, inkjet methods, spray methods, roll coating methods, dips, roll coaters, slit coaters, spinners, and the like. From the viewpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.

上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が挙げられる。 The coating film formed by applying the liquid crystal alignment agent by the above method can be fired to form a cured film. The drying step after applying the liquid crystal alignment agent is not always necessary, but if the time from coating to firing is not constant for each substrate, or if firing is not performed immediately after coating, a drying step is performed. Is preferable. The drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by transporting the substrate or the like, and the drying means thereof is not particularly limited. For example, a method of drying on a hot plate having a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes can be mentioned.

液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば100~350℃、好ましくは120~350℃であり、さらに好ましくは150℃~330℃である。焼成時間は5分~240分、好ましくは10分~90分であり、より好ましくは10分~30分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。 The firing temperature of the coating film formed by applying the liquid crystal alignment agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 350 ° C, and more preferably 150 ° C to 330 ° C. The firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 10 minutes to 30 minutes. The heating can be performed by a generally known method, for example, a hot plate, a hot air circulation furnace, an infrared furnace, or the like.

また、焼成して得られる液晶配向膜の厚みは特に限定されないが、好ましくは5~300nm、より好ましくは20~200nmである。 The thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 20 to 200 nm.

液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製できる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。 The liquid crystal display element can produce a liquid crystal cell by a known method after forming a liquid crystal alignment film on a substrate by the above method. Specific examples of the liquid crystal display element include two substrates arranged so as to face each other, a liquid crystal layer provided between the substrates, and the above-mentioned liquid crystal aligning agent provided between the substrates and the liquid crystal layer. It is a vertical alignment type liquid crystal display element including a liquid crystal cell having a liquid crystal alignment film. Specifically, a liquid crystal alignment film is formed by applying a liquid crystal alignment agent on two substrates and firing, and the two substrates are arranged so that the liquid crystal alignment films face each other, and the two substrates are arranged. It is a vertically oriented liquid crystal display element including a liquid crystal cell manufactured by sandwiching a liquid crystal layer made of liquid crystal between substrates.

本発明の特定重合体を含有する液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射して液晶中に含まれる重合性化合物を反応させることにより、垂直配向能が顕著に優れたPSA方式液晶表示素子となる。 Using a liquid crystal alignment film formed by a liquid crystal alignment agent containing the specific polymer of the present invention, the liquid crystal alignment film and the liquid crystal layer are irradiated with ultraviolet rays while applying a voltage to react the polymerizable compound contained in the liquid crystal. As a result, the PSA type liquid crystal display element having a remarkably excellent vertical alignment ability is obtained.

液晶表示素子の基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、PSA方式液晶表示素子においては、本発明のポリイミド系重合体を含有する液晶配向剤を用いているため、片側基板に例えば1から10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate of the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving a liquid crystal is formed. As a specific example, the same substrate as that described in the liquid crystal alignment film can be mentioned. A conventional substrate provided with an electrode pattern or a protrusion pattern may be used, but in the PSA liquid crystal display element, since the liquid crystal alignment agent containing the polyimide-based polymer of the present invention is used, for example, one side of the substrate may be used. It is possible to operate even in a structure in which a line / slit electrode pattern of 1 to 10 μm is formed and no slit pattern or protrusion pattern is formed on the facing substrate. The liquid crystal display element having this structure simplifies the manufacturing process. And high transmittance can be obtained.

また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
Further, in a high-performance element such as a TFT type element, an element having an element such as a transistor formed between an electrode for driving a liquid crystal display and a substrate is used.
In the case of a transmissive liquid crystal display element, it is common to use a substrate as described above, but in a reflective liquid crystal display element, an opaque substrate such as a silicon wafer may be used if only one side of the substrate is used. It is possible. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.

液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えば、メルク社製のMLC-6608やMLC-6609、MLC-3023などのネガ型の液晶を用いることができる。また、PSA方式液晶表示素子では、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element is not particularly limited, and the liquid crystal material used in the conventional vertical orientation method, for example, a negative type such as MLC-6608, MLC-6609, MLC-3023 manufactured by Merck Co., Ltd. Liquid crystal can be used. Further, in the PSA type liquid crystal display element, for example, a liquid crystal containing a polymerizable compound as represented by the following formula can be used.

Figure 0007096534000042
Figure 0007096534000042

液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 As a method of sandwiching the liquid crystal layer between two substrates, a known method can be mentioned. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are sprayed on the liquid crystal alignment film of one substrate so that the surface on the side where the liquid crystal alignment film is formed is on the inside. Another method is to bond the other substrate together and inject the liquid crystal under reduced pressure to seal it. In addition, a pair of substrates on which the liquid crystal alignment film is formed is prepared, spacers such as beads are sprayed on the liquid crystal alignment film of one substrate, liquid crystal is dropped, and then the surface on the side where the liquid crystal alignment film is formed. A liquid crystal cell can also be produced by a method in which the other substrate is bonded and sealed so that the surface is on the inside. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.

液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~30Vp-p、好ましくは5~20Vp-pである。紫外線の照射量は、例えば、1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。 In the process of producing a liquid crystal cell by irradiating a liquid crystal alignment film and a liquid crystal layer with an ultraviolet ray while applying a voltage, for example, an electric field is applied to the liquid crystal alignment film and the liquid crystal layer by applying a voltage between electrodes installed on a substrate. Is applied, and an ultraviolet ray is irradiated while maintaining this electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the more the reliability deterioration caused by the destruction of the members constituting the liquid crystal display element can be suppressed and the ultraviolet irradiation time can be reduced. This is suitable because the manufacturing efficiency is improved.

上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。 As described above, when ultraviolet rays are applied to the liquid crystal alignment film and the liquid crystal layer while applying a voltage, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is memorized by this polymer. , The response speed of the obtained liquid crystal display element can be increased. Further, when ultraviolet rays are applied to the liquid crystal alignment film and the liquid crystal layer while applying a voltage, a polyimide precursor having a side chain for vertically orienting the liquid crystal and a photoreactive side chain, and this polyimide precursor are imide. Since the polymerizable compound reacts with the photoreactive side chains of at least one polymer selected from the polyimide obtained by the conversion, or with the photoreactive side chains of the polymer, the liquid crystal display element obtained can be obtained. The response speed can be increased.

以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略語は、以下の通りである。
(液晶)
MLC-3023(メルク社製、ネガ型重合性化合物含有液晶)
The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto. The abbreviations for the compounds used are as follows.
(liquid crystal)
MLC-3023 (Merck & Co., liquid crystal containing negative polymerizable compound)

(特定側鎖型ジアミン成分)
W-A1:式[W-A1]で表される化合物
W-A2:式[W-A2]で表される化合物
W-A3:式[W-A3]で表される化合物
W-A4:式[W-A4]で表される化合物
W-A5:式[W-A5]で表される化合物
W-A6:式[W-A6]で表される化合物
W-A7:式[W-A7]で表される化合物
W-A8:式[W-A8]で表される化合物
W-A9:式[W-A9]で表される化合物
W-A10:式[W-A10]で表される化合物
(Specific side chain diamine component)
W-A1: Compound W-A2 represented by formula [W-A1]: Compound W-A3 represented by formula [W-A2]: Compound W-A4 represented by formula [W-A3]: Formula Compound W-A5 represented by [W-A4]: Compound W-A6 represented by formula [W-A5]: Compound W-A7 represented by formula [W-A6]: Formula [W-A7] Compound W-A8: Compound represented by formula [W-A8] W-A9: Compound represented by formula [WA9] W-A10: Compound represented by formula [W-A10]

Figure 0007096534000043
Figure 0007096534000043

(その他側鎖型ジアミン化合物)
A1:式[A1]で表される化合物
A2:式[A2]で表される化合物
A3:式[A3]で表される化合物
(Other side chain diamine compounds)
A1: Compound represented by formula [A1] A2: Compound represented by formula [A2] A3: Compound represented by formula [A3]

Figure 0007096534000044
Figure 0007096534000044

(その他のジアミン化合物)
C1:式[C1]で表される化合物
C2:式[C2]で表される化合物
C3:式[C3]で表される化合物
C4:式[C4]で表される化合物
C5:式[C5]で表される化合物
C6:式[C6]で表される化合物
C7:式[C7]で表される化合物
C8:式[C8]で表される化合物
C9:式[C9]で表される化合物
C10:式[C10]で表される化合物
(Other diamine compounds)
C1: Compound represented by formula [C1] C2: Compound represented by formula [C2] C3: Compound represented by formula [C3] C4: Compound represented by formula [C4] C5: Compound represented by formula [C5] Compound C6: Compound represented by formula [C6] C7: Compound represented by formula [C7] C8: Compound represented by formula [C8] C9: Compound represented by formula [C9] C10 : Compound represented by the formula [C10]

Figure 0007096534000045
Figure 0007096534000045

(テトラカルボン酸成分)
D1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
D2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
D3:ピロメリット酸二無水物
D4:2,3,5‐トリカルボキシシクロペンチル酢酸二無水物
D5:3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物
(Tetracarboxylic acid component)
D1: 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride D2: Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid dianhydride D3: pyromellitic acid dianhydride D4: 2,3,5-tricarboxycyclopentylacetic acid dianhydride D5: 3,3', 4,4'-diphenylsulfonetetracarboxylic acid dianhydride

Figure 0007096534000046
Figure 0007096534000046

(溶媒)
NMP:N-メチル-2-ピロリドン
BCS:エチレングリコールモノブチルエーテル
NEP:N-エチル-2-ピロリドン
(架橋剤)
E1:下記式(E1)であらわされる架橋剤
(添加剤)
E2:3-ピコリルアミン
(solvent)
NMP: N-Methyl-2-pyrrolidone BCS: Ethylene glycol monobutyl ether NEP: N-ethyl-2-pyrrolidone (crosslinking agent)
E1: Crosslinking agent (additive) represented by the following formula (E1)
E2: 3-picorylamine

Figure 0007096534000047
Figure 0007096534000047

(分子量測定)
ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
(Measurement of molecular weight)
The molecular weights of the polyimide precursor and the polyimide are as follows using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex). It was measured as follows.
Column temperature: 50 ° C
Eluent: N, N'-dimethylformamide (30 mmol / L (liter) of lithium bromide-hydrate (LiBr · H2O ) as an additive, 30 mmol of phosphoric acid / anhydrous crystals (o-phosphoric acid) / L, tetrahydrofuran (THF) is 10 ml / L)
Flow velocity: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).

(ポリイミドのイミド化率の測定)
ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて、500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization rate of polyimide)
20 mg of polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku Co., Ltd.)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane)). (Mixed product) (0.53 ml) was added and ultrasonically applied to completely dissolve it. This solution was measured for proton NMR at 500 MHz with an NMR measuring machine (JNW-ECA500) (manufactured by JEOL Datum). The imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the integrated value.
Imidization rate (%) = (1-α · x / y) × 100
In the above formula, x is the integrated proton peak value derived from the NH group of amic acid, y is the integrated peak value of the reference proton, and α is one NH group proton of the amic acid in the case of polyamic acid (imidization rate is 0%). It is the number ratio of the reference protons to.

(粘度測定)
合成例または比較合成例において、ポリイミド系重合体の粘度はE型粘度計TVE-22H(東機産業株式会社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
(Viscosity measurement)
In the synthetic example or the comparative synthetic example, the viscosity of the polyimide-based polymer was measured by using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), the sample volume was 1.1 mL, and the cone rotor TE-1 (1 ° 34', R24), measured at a temperature of 25 ° C.

W-A1~W-A3及びW-A4~W-A10は文献等未公開の新規化合物であり、以下に合成法を詳述する。
下記合成例1~3及び合成例4~10に記載の生成物は1H-NMR分析により同定した(分析条件は下記の通り)。
装置:Varian NMR System 400 NB (400 MHz)。
測定溶媒:CDCl3、DMSO-d
基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)。
W-A1 to WA3 and W-A4 to WA10 are novel compounds that have not been published in the literature, and the synthetic method will be described in detail below.
The products described in Synthesis Examples 1 to 3 and Synthesis Examples 4 to 10 below were identified by 1 H-NMR analysis (analytical conditions are as follows).
Equipment: Varian NMR System 400 NB (400 MHz).
Measuring solvent: CDCl 3, DMSO-d 6 .
Reference substance: Tetramethylsilane (TMS) (δ0.0 ppm for 1 H).

<<合成例1 W-A1の合成>> << Synthesis Example 1 W-A1 synthesis >>

Figure 0007096534000048
Figure 0007096534000048

<化合物[1]及び化合物[2]の合成>
テトラヒドロフラン(165.6g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(41.1g、135mmol)とトリエチルアミン(31.5g)を仕込み、窒素雰囲気氷冷条件にてメタンスルホニルクロリド(33.2g)を滴下し、1時間反応させることで化合物[1]を得た。続いて、テトラヒドロフラン(246.6g)に溶解させたp-(trans-4-ヘプチルシクロヘキシル)フェノール(77.8g)を加え、40℃で1時間撹拌後、純水(233g)に溶解させた水酸化カリウム(41.0g)を同温度にて加え、21時間反応させた。反応終了後、1.0M塩酸水溶液(311ml)及び純水(1050g)を加えて粗物を析出させ、ろ過により粗物を回収した。得られた粗物をテトラヒドロフラン(574g)に50℃加熱溶解させ、メタノール(328g)を加えて結晶を析出させ、ろ過、乾燥することで化合物[2]を得た(収量:97.9g、収率:89%)。
H-NMR(400MHz) in CDCl:0.87-0.90ppm(m,6H), 0.96-1.05ppm(m,4H), 1.19-1.39ppm(m,30H), 1.80-1.85ppm(m,8H), 2.33-2.40ppm(m,2H), 4.77ppm(s,4H), 6.66-6.70ppm(m,4H), 7.02-7.06ppm(m,4H),7.40ppm(d,2H,8.4), 8.25ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.54ppm(d,2H,J=2.4Hz).
<Synthesis of compound [1] and compound [2]>
4,4'-Dinitro-1,1'-biphenyl-2,2'-dimethanol (41.1 g, 135 mmol) and triethylamine (31.5 g) were charged in tetrahydrofuran (165.6 g), and nitrogen atmosphere was ice-cooled. Under the conditions, methanesulfonyl chloride (33.2 g) was added dropwise and reacted for 1 hour to obtain compound [1]. Subsequently, p- (trans-4-heptylcyclohexyl) phenol (77.8 g) dissolved in tetrahydrofuran (246.6 g) was added, and the mixture was stirred at 40 ° C. for 1 hour and then dissolved in pure water (233 g). Potassium oxide (41.0 g) was added at the same temperature and reacted for 21 hours. After completion of the reaction, a 1.0 M aqueous hydrochloric acid solution (311 ml) and pure water (1050 g) were added to precipitate a crude product, and the crude product was recovered by filtration. The obtained crude product was dissolved in tetrahydrofuran (574 g) by heating at 50 ° C., methanol (328 g) was added to precipitate crystals, and the mixture was filtered and dried to obtain compound [2] (yield: 97.9 g, yield). Rate: 89%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.19-1.39 ppm (m, 30H), 1.80-1.85ppm (m, 8H), 2.33-2.40ppm (m, 2H), 4.77ppm (s, 4H), 6.66-6.70ppm (m, 4H), 7. 02-7.06ppm (m, 4H), 7.40ppm (d, 2H, 8.4), 8.25ppm (dd, 2H, J = 2.4Hz, J = 8.4Hz), 8.54ppm (d) , 2H, J = 2.4Hz).

<W-A1の合成>
テトラヒドロフラン(1783g)中、化合物[2](74.3g,90.9mmol)と3%プラチナカーボン(5.94g)を仕込み、水素雰囲気室温条件で反応させた。反応終了後、反応混合物をろ過し、ろ液を減圧濃縮することで内部総重量を145gとした。続いて、濃縮溶液にメタノール(297g)を加え、氷冷撹拌し、ろ過、乾燥することでW-A1を得た(収量:59.2g、収率:86%)。
H-NMR(400MHz) in CDCl:0.87-0.90ppm(m,6H), 0.96-1.05ppm(m,4H), 1.19-1.40ppm(m,30H), 1.81-1.84ppm(m,8H), 2.32-2.38ppm(m,2H), 3.67ppm(s,4H),4.69ppm(d,2H,J=12.0Hz), 4.74ppm(d,2H,J=11.6Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.70-6.75ppm(m,4H), 6.91ppm(d,2H,J=2.4Hz), 6.97-7.03ppm(m,6H).
<Synthesis of WA1>
Compound [2] (74.3 g, 90.9 mmol) and 3% platinum carbon (5.94 g) were charged in tetrahydrofuran (1783 g) and reacted under hydrogen atmosphere at room temperature. After completion of the reaction, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure to bring the total internal weight to 145 g. Subsequently, methanol (297 g) was added to the concentrated solution, and the mixture was stirred with ice and cooled, filtered and dried to obtain WA1 (yield: 59.2 g, yield: 86%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.19-1.40 ppm (m, 30H), 1.81-1.84ppm (m, 8H), 2.32-2.38ppm (m, 2H), 3.67ppm (s, 4H), 4.69ppm (d, 2H, J = 12.0Hz), 4.74 ppm (d, 2H, J = 11.6 Hz), 6.62 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.70-6.75 ppm (m, 4H), 6 .91 ppm (d, 2H, J = 2.4 Hz), 6.97-7.03 ppm (m, 6H).

<<合成例2 W-A2の合成>> << Synthesis Example 2 W-A2 synthesis >>

Figure 0007096534000049
Figure 0007096534000049

<化合物[3]の合成>
テトラヒドロフラン(327.2g)中、4,4’-ジニトロ-2,2’-ジフェン酸(40.9g、123mmol)とp-(trans-4-ヘプチルシクロヘキシル)フェノール(72.1g)、4-ジメチルアミノピリジン(1.50g)を仕込み、窒素雰囲気室温条件下で1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(56.6g)を投入し、3時間反応させた。反応終了後、純水(1226g)中に反応液を注ぎ込み、粗物を析出させ、ろ過により回収した。続いて、粗物をメタノール(245g)でスラリー洗浄後、ろ過し、得られた粗物をテトラヒドロフラン(245g)に60℃加熱溶解させた。ろ過により不溶物を除去後、減圧濃縮により内部総重量を232gとした後に、メタノール(163g)を加えて結晶を析出させ、氷冷条件下で撹拌後、ろ過、乾燥することで化合物[3]を得た(収量:73.9g、収率:71%)。
H-NMR(400MHz) in CDCl: 0.87-0.90ppm(m,6H), 0.98-1.06ppm(m,4H), 1.18-1.43ppm(m,30H), 1.83-1.86ppm(m,8H), 2.41-2.47ppm(m,2H), 6.89-6.92ppm(m,4H), 7.17-7.20ppm(m,4H), 7.48ppm(d,2H,8.4), 8.49ppm(dd,2H,J=2.4Hz,J=8.4Hz), 9.11ppm(d,2H,J=2.4Hz).
<Synthesis of compound [3]>
4,4'-Dinitro-2,2'-diphenylic acid (40.9 g, 123 mmol) and p- (trans-4-heptylcyclohexyl) phenol (72.1 g), 4-dimethyl in tetrahydrofuran (327.2 g). Aminopyridine (1.50 g) was charged, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (56.6 g) was added under nitrogen atmosphere room temperature conditions, and the mixture was reacted for 3 hours. After completion of the reaction, the reaction solution was poured into pure water (1226 g) to precipitate a crude product, which was recovered by filtration. Subsequently, the crude product was washed with a slurry of methanol (245 g) and then filtered, and the obtained crude product was dissolved in tetrahydrofuran (245 g) by heating at 60 ° C. After removing the insoluble matter by filtration, the total internal weight was adjusted to 232 g by concentration under reduced pressure, and then methanol (163 g) was added to precipitate crystals, which were stirred under ice-cooled conditions, filtered, and dried to form the compound [3]. Was obtained (yield: 73.9 g, yield: 71%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.98-1.06 ppm (m, 4H), 1.18-1.43 ppm (m, 30H), 1.83-1.86ppm (m, 8H), 2.41-2.47ppm (m, 2H), 6.89-6.92ppm (m, 4H), 7.17-7.20ppm (m, 4H) ), 7.48 ppm (d, 2H, 8.4), 8.49 ppm (dd, 2H, J = 2.4 Hz, J = 8.4 Hz), 9.11 ppm (d, 2H, J = 2.4 Hz) ..

<W-A2の合成>
テトラヒドロフラン(443g)及びメタノール(73.9g)中、化合物[3](73.9g、87.4mmol)と5%パラジウムカーボン(8.80g)を仕込み、水素雰囲気室温条件で反応させた。反応終了後、ろ過によりパラジウムカーボンを除去し、減圧濃縮により内部総重量を171gとした。続いて、濃縮溶液にメタノール(222g)を加えて結晶を析出させ、氷冷撹拌し、ろ過、乾燥することでW-A2を得た(収量:66.6g、収率:97%)。
H-NMR(400MHz) in CDCl: 0.87-0.90ppm(m,6H), 0.96-1.05ppm(m,4H), 1.17-1.42ppm(m,30H),1.82-1.85ppm(m,8H), 2.38-2.44ppm(m,2H), 3.77ppm(s,4H), 6.80-6.87ppm(m,6H),7.08-7.13ppm(m,6H), 7.41ppm(d,2H,J=2.4Hz).
<Synthesis of WA2>
Compound [3] (73.9 g, 87.4 mmol) and 5% palladium carbon (8.80 g) were charged in tetrahydrofuran (443 g) and methanol (73.9 g) and reacted under hydrogen atmosphere room temperature conditions. After completion of the reaction, palladium carbon was removed by filtration, and the total internal weight was adjusted to 171 g by concentration under reduced pressure. Subsequently, methanol (222 g) was added to the concentrated solution to precipitate crystals, and the crystals were stirred by ice-cooling, filtered, and dried to obtain WA2 (yield: 66.6 g, yield: 97%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.90 ppm (m, 6H), 0.96-1.05 ppm (m, 4H), 1.17-1.42 ppm (m, 30H), 1.82-1.85 ppm (m, 8H), 2.38-2.44 ppm (m, 2H), 3.77 ppm (s, 4H), 6.80-6.87 ppm (m, 6H), 7. 08-7.13 ppm (m, 6H), 7.41 ppm (d, 2H, J = 2.4 Hz).

<<合成例3 W-A3の合成>> << Synthesis Example 3 W-A3 synthesis >>

Figure 0007096534000050
Figure 0007096534000050

<化合物[4]及び化合物[5]の合成>
トルエン(366g)中、4-(trans-4-ヘプチルシクロヘキシル)-安息香酸(73.1g、242mmol)とN,N-ジメチルホルムアミド(0.73g)を仕込み、窒素雰囲気50℃条件下で塩化チオニル(35.9g)を滴下した。滴下後、同温度で1時間反応させた後、反応溶液を減圧濃縮することで化合物[4]を得た。続いて、テトラヒドロフラン(210g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(35.0g、115mmol)とトリエチルアミン(26.8g)を仕込み、窒素雰囲気氷冷条件下にて、テトラヒドロフラン(73.1g)に溶解させた化合物[4]を滴下した。滴下終了後、反応温度を室温にして18時間反応させた。反応終了後、ろ過によりトリエチルアミン塩酸塩を除去後、減圧濃縮によりオイル状化合物を得た。得られたオイル状化合物を純水(1015g)中に加えることで結晶を析出させ、ろ過により粗物を回収した。続いて、得られた粗物をメタノール(291g)で室温スラリー洗浄、酢酸エチル(175g)で室温スラリー洗浄し、ろ過、乾燥することで化合物[5]を得た(収量:92.7g、 収率:92%)。
H-NMR(400MHz) in CDCl: 0.89-0.91ppm(m,6H), 0.99-1.09ppm(m,4H), 1.20-1.47ppm(m,30H),1.85-1.88ppm(m,8H), 2.46-2.52ppm(m,2H), 5.14ppm(s,4H), 7.23-7.26ppm(m,4H),7.45ppm(d,2H,J=8.4Hz),7.83-7.86ppm(m,4H),8.27ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.47ppm(d,2H,J=2.4Hz).
<Synthesis of compound [4] and compound [5]>
4- (Trans-4-heptylcyclohexyl) -benzoic acid (73.1 g, 242 mmol) and N, N-dimethylformamide (0.73 g) were charged in toluene (366 g), and thionyl chloride was charged under a nitrogen atmosphere of 50 ° C. (35.9 g) was added dropwise. After the dropping, the reaction was carried out at the same temperature for 1 hour, and then the reaction solution was concentrated under reduced pressure to obtain compound [4]. Subsequently, 4,4'-dinitro-1,1'-biphenyl-2,2'-dimethanol (35.0 g, 115 mmol) and triethylamine (26.8 g) were charged in tetrahydrofuran (210 g), and nitrogen atmosphere ice was added. Under cold conditions, compound [4] dissolved in tetrahydrofuran (73.1 g) was added dropwise. After completion of the dropping, the reaction temperature was set to room temperature and the reaction was carried out for 18 hours. After completion of the reaction, triethylamine hydrochloride was removed by filtration, and then concentrated under reduced pressure to obtain an oily compound. The obtained oily compound was added to pure water (1015 g) to precipitate crystals, and the crude product was recovered by filtration. Subsequently, the obtained crude product was washed with methanol (291 g) at room temperature slurry, washed with ethyl acetate (175 g) at room temperature, filtered and dried to obtain compound [5] (yield: 92.7 g, yield). Rate: 92%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.89-0.91 ppm (m, 6H), 0.99-1.09 ppm (m, 4H), 1.20-1.47 ppm (m, 30H), 1.85-1.88ppm (m, 8H), 2.46-2.52ppm (m, 2H), 5.14ppm (s, 4H), 7.23-7.26ppm (m, 4H), 7. 45ppm (d, 2H, J = 8.4Hz), 7.83-7.86ppm (m, 4H), 8.27ppm (dd, 2H, J = 2.4Hz, J = 8.4Hz), 8.47ppm (D, 2H, J = 2.4Hz).

<W-A3の合成>
テトラヒドロフラン(484g)及びメタノール(161g)中、化合物[5](80.5g、92.2mmol)と3%プラチナカーボン(6.44g)を仕込み、水素雰囲気室温条件下で反応させた。反応終了後、ろ過によりプラチナカーボンを除去し、減圧濃縮により溶媒を除去することで内部総重量を96.6gとした。続いて、濃縮溶液にメタノール(322g)を加えて結晶を析出させ、氷冷撹拌し、ろ過することで粗物を得た。続いて、得られた粗物を酢酸エチル(322g)で60℃加熱溶解させ、メタノール(700g)を加え、氷冷条件下で結晶を析出させ、ろ過、乾燥することでW-A3を得た(収量:67.9g、収率:91%)。
H-NMR(400MHz) in CDCl: 0.87-0.91ppm(m,6H), 0.98-1.08ppm(m,4H), 1.19-1.47ppm(m,30H),1.84-1.87ppm(m,8H), 2.44-2.51ppm(m,2H), 3.71ppm(s,4H), 5.02ppm(d,2H,J=12.8Hz), 5.09ppm(d,2H,J=12.4Hz),6.66ppm(dd,2H,J=2.4Hz,J=8.0Hz),6.84ppm(d,2H,J=2.4Hz),7.03ppm(d,2H,J=8.0Hz),7.19-7.25ppm(m,4H),7.89-7.92ppm(m,4H).
<Synthesis of WA3>
Compound [5] (80.5 g, 92.2 mmol) and 3% platinum carbon (6.44 g) were charged in tetrahydrofuran (484 g) and methanol (161 g) and reacted under hydrogen atmosphere room temperature conditions. After completion of the reaction, platinum carbon was removed by filtration, and the solvent was removed by concentration under reduced pressure to bring the total internal weight to 96.6 g. Subsequently, methanol (322 g) was added to the concentrated solution to precipitate crystals, and the mixture was stirred with ice and filtered to obtain a crude product. Subsequently, the obtained crude product was dissolved by heating at 60 ° C. with ethyl acetate (322 g), methanol (700 g) was added, crystals were precipitated under ice-cooled conditions, and the crystals were filtered and dried to obtain WA3. (Yield: 67.9 g, yield: 91%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.91 ppm (m, 6H), 0.98-1.08 ppm (m, 4H), 1.19-1.47 ppm (m, 30H), 1.84-1.87 ppm (m, 8H), 2.44-2.51 ppm (m, 2H), 3.71 ppm (s, 4H), 5.02 ppm (d, 2H, J = 12.8 Hz), 5.09 ppm (d, 2H, J = 12.4 Hz), 6.66 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.84 ppm (d, 2H, J = 2.4 Hz) , 7.03 ppm (d, 2H, J = 8.0 Hz), 7.19-7.25 ppm (m, 4H), 7.89-7.92 ppm (m, 4H).

<<合成例4 W-A4の合成>> << Synthesis Example 4 W-A4 synthesis >>

Figure 0007096534000051
Figure 0007096534000051

<化合物[6]及び化合物[7]の合成>
トルエン(134g)中、trans, trans-4’-アミルビシクロヘキシル-4-カルボン酸(26.7g、95.1mmol)とN,N-ジメチルホルムアミド(0.401g)を仕込み、窒素雰囲気50℃条件下で塩化チオニル(13.6g、114mmol)を滴下した。滴下後、同温度で1時間反応させた後、反応溶液を減圧濃縮することで化合物[6]を得た。続いて、テトラヒドロフラン(63.0g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(12.6g、41.4mmol)とトリエチルアミン(10.9g、108mmol)を仕込み、窒素雰囲気氷冷条件下にて、テトラヒドロフラン(12.6g)に溶解させた化合物[6]を滴下した。滴下終了後、反応温度を室温にして17時間反応させた。反応終了後、純水(731g)中に反応液を加える事で結晶を析出させ、ろ過、純水洗浄、メタノール洗浄した後に粗物を回収した。続いて、得られた粗物をトルエン(56.0g)に加熱溶解させ、ヘキサン(112g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥することで化合物[7]を得た(収量:17.0g、20.6mmol、収率:50%)。
H-NMR(400MHz) in CDCl:0.82―1.38ppm(m,44H), 1.67-1.81ppm(m,12H), 1.90-1.98ppm(m,4H), 2.19-2.25ppm(m,2H), 4.82ppm(d,2H,J=13.6Hz), 4.88ppm(d,2H,J=13.6Hz), 7.39ppm(d,2H,J=8.4Hz), 8.26ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.38ppm(d,2H,J=2.0Hz)
<Synthesis of compound [6] and compound [7]>
In toluene (134 g), trans, trans-4'-amylbicyclohexyl-4-carboxylic acid (26.7 g, 95.1 mmol) and N, N-dimethylformamide (0.401 g) were charged, and the nitrogen atmosphere was 50 ° C. Below, thionyl chloride (13.6 g, 114 mmol) was added dropwise. After the dropping, the reaction was carried out at the same temperature for 1 hour, and then the reaction solution was concentrated under reduced pressure to obtain compound [6]. Subsequently, in tetrahydrofuran (63.0 g), 4,4'-dinitro-1,1'-biphenyl-2,2'-dimethanol (12.6 g, 41.4 mmol) and triethylamine (10.9 g, 108 mmol). Was charged, and the compound [6] dissolved in tetrahydrofuran (12.6 g) was added dropwise under ice-cooled conditions in a nitrogen atmosphere. After completion of the dropping, the reaction temperature was set to room temperature and the reaction was carried out for 17 hours. After completion of the reaction, crystals were precipitated by adding a reaction solution to pure water (731 g), and after filtration, washing with pure water and washing with methanol, the crude product was recovered. Subsequently, the obtained crude product was heated and dissolved in toluene (56.0 g), hexane (112 g) was added to precipitate crystals, and the mixture was stirred under room temperature conditions, filtered, and dried to obtain the compound [7]. Obtained (yield: 17.0 g, 20.6 mmol, yield: 50%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.82-1.38 ppm (m, 44H), 1.67-1.81 ppm (m, 12H), 1.90-1.98 ppm (m, 4H), 2.19-2.25ppm (m, 2H), 4.82ppm (d, 2H, J = 13.6Hz), 4.88ppm (d, 2H, J = 13.6Hz), 7.39ppm (d, 2H) , J = 8.4Hz), 8.26ppm (dd, 2H, J = 2.4Hz, J = 8.4Hz), 8.38ppm (d, 2H, J = 2.0Hz)

<W-A4の合成>
テトラヒドロフラン(136g)及びメタノール(34.0g)中、化合物[7](17.0g、20.6mmol)と3%プラチナカーボン(1.36g)を仕込み、水素雰囲気室温条件下で約41時間反応させた。反応終了後、ろ過、減圧濃縮により内部総重量を40gとした。続いて、メタノール(68.0g)を加えて結晶を析出させ、ろ過、乾燥する事でW-A4を得た(収量:15.2g、19.9mmol、収率:97%)。
H-NMR(400MHz) in CDCl:0.81-1.39ppm(m,44H), 1.67-1.78ppm(m,12H), 1.90-1.97ppm(m,4H), 2.14-2.20ppm(m,2H), 3.71ppm(br,4H), 4.73ppm(d,2H,J=12.4Hz), 4.78ppm(d,2H,J=12.4Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.73ppm(d,2H,J=2.8Hz), 6.94ppm(d,2H,J=8.0Hz)
<Synthesis of W-A4>
Compound [7] (17.0 g, 20.6 mmol) and 3% platinum carbon (1.36 g) were charged in tetrahydrofuran (136 g) and methanol (34.0 g), and reacted under normal temperature conditions in a hydrogen atmosphere for about 41 hours. rice field. After completion of the reaction, the total internal weight was adjusted to 40 g by filtration and concentration under reduced pressure. Subsequently, methanol (68.0 g) was added to precipitate crystals, and the crystals were filtered and dried to obtain W-A4 (yield: 15.2 g, 19.9 mmol, yield: 97%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.81-1.39 ppm (m, 44H), 1.67-1.78 ppm (m, 12H), 1.90-1.97 ppm (m, 4H), 2.14-2.20ppm (m, 2H), 3.71ppm (br, 4H), 4.73ppm (d, 2H, J = 12.4Hz), 4.78ppm (d, 2H, J = 12.4Hz) ), 6.62 ppm (dd, 2H, J = 2.4 Hz, J = 8.0 Hz), 6.73 ppm (d, 2H, J = 2.8 Hz), 6.94 ppm (d, 2H, J = 8. 0Hz)

<<合成例5 W-A5の合成>> << Synthesis Example 5 W-A5 Synthesis >>

Figure 0007096534000052
Figure 0007096534000052

<化合物[8]の合成>
トルエン(227g)中、trans-1-ブロモ-4-(4-ヘプチルシクロヘキシル)ベンゼン(45.4g、135mmol)とリチウムビス(トリメチルシリル)アミド (約26%テトラヒドロフラン溶液、 約1.30mol/L、218mL) 、トリ-tert-ブチルホスホニウムテトラフルオロボラート(1.58g、5.44mmol)、ビス(ジベンジリデンアセトン)パラジウム(0)(3.14g、5.46mmol)を仕込み、窒素雰囲気室温条件下で17時間反応させた。反応終了後、5.7mol/L塩酸水溶液(80.0mL)を加えて結晶を析出させ、ろ過により化合物[8]の塩酸塩を回収した。得られた塩酸塩をトルエン(300g)及び酢酸エチル(200g)、テトラヒドロフラン(100g)混合溶液に分散させ、3.0 mol/L水酸化ナトリウム水溶液(200g)で分液し、更に有機相を飽和食塩水で洗浄した。続いて、有機相に活性炭(銘柄:特製白鷺、2.27g)を加えて撹拌した後、ろ過により活性炭を除去した。得られたろ液を減圧濃縮する事でオイル状化合物を得た。オイル状化合物をヘキサン(100g)に分散させ、ドライアイス/エタノール冷却条件下で結晶を析出させ、ろ過、乾燥する事で化合物[8]を得た(収量:27.5g、101mmol、収率:75%)。
H-NMR(400MHz) in CDCl:0.87-1.43ppm(m,20H), 1.83-1.85ppm(m,4H), 2.31-2.38ppm(m,1H), 3.54ppm(br,2H), 6.62-6.65ppm(m,2H), 6.99-7.02ppm(m,2H)
<Synthesis of compound [8]>
Trans-1-bromo-4- (4-heptylcyclohexyl) benzene (45.4 g, 135 mmol) and lithium bis (trimethylsilyl) amide (about 26% tetrahydrofuran solution, about 1.30 mol / L, 218 mL) in toluene (227 g). ), Tri-tert-butylphosphonium tetrafluoroborate (1.58 g, 5.44 mmol), bis (dibenzylideneacetone) palladium (0) (3.14 g, 5.46 mmol), and nitrogen atmosphere at room temperature. It was reacted for 17 hours. After completion of the reaction, 5.7 mol / L aqueous hydrochloric acid solution (80.0 mL) was added to precipitate crystals, and the hydrochloride salt of compound [8] was recovered by filtration. The obtained hydrochloride is dispersed in a mixed solution of toluene (300 g), ethyl acetate (200 g) and tetrahydrofuran (100 g), separated by a 3.0 mol / L sodium hydroxide aqueous solution (200 g), and further saturated the organic phase. It was washed with saline solution. Subsequently, activated carbon (brand: special Shirasagi, 2.27 g) was added to the organic phase and stirred, and then the activated carbon was removed by filtration. An oily compound was obtained by concentrating the obtained filtrate under reduced pressure. The oily compound was dispersed in hexane (100 g), crystals were precipitated under dry ice / ethanol cooling conditions, filtered, and dried to obtain compound [8] (yield: 27.5 g, 101 mmol, yield:). 75%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.43 ppm (m, 20H), 1.83-1.85 ppm (m, 4H), 2.31-2.38 ppm (m, 1H), 3.54 ppm (br, 2H), 6.62-6.65 ppm (m, 2H), 6.99-7.02 ppm (m, 2H)

<化合物[9]の合成>
テトラヒドロフラン(120g)及び塩化メチレン(60.0g)中、4,4’-ジニトロ-2,2’-ジフェン酸(14.9g、45.0mmol)と化合物[8](25.8g、94.3mmol)、4-ジメチルアミノピリジン(0.550g、4.50mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(20.0g、104mmol)を仕込み、窒素雰囲気室温条件下で14時間反応させた。反応終了後、酢酸エチル(375g)で希釈し、純水(149g)で有機相を3回洗浄後、得られた有機相を硫酸マグネシウム脱水処理した。続いて、有機相を減圧濃縮し、内部総重量を112gとした後にメタノール(120g)を加えて結晶を析出させ、ろ過、乾燥する事で化合物[9]を得た(収量:28.0g、33.2mmol、収率:74%)
H-NMR(400MHz) in CDCl:0.87-1.43ppm(m,40H), 1.82-1.84ppm(m,8H), 2.37-2.44ppm(m,2H), 7.10ppm(d,4H,J=8.8Hz), 7.26-7.30ppm(m,4H), 7.40ppm(d,2H,J=8.4Hz), 8.27ppm(dd,2H,J=2.4Hz,J=8.4Hz), 8.53ppm(d,2H,J=2.4Hz), 9.10ppm(s,2H)
<Synthesis of compound [9]>
4,4'-Dinitro-2,2'-diphenylic acid (14.9 g, 45.0 mmol) and compound [8] (25.8 g, 94.3 mmol) in tetrahydrofuran (120 g) and methylene chloride (60.0 g). ), 4-Dimethylaminopyridine (0.550 g, 4.50 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (20.0 g, 104 mmol), and nitrogen atmosphere at room temperature. Reacted for time. After completion of the reaction, the reaction was diluted with ethyl acetate (375 g), the organic phase was washed 3 times with pure water (149 g), and the obtained organic phase was dehydrated with magnesium sulfate. Subsequently, the organic phase was concentrated under reduced pressure to bring the total internal weight to 112 g, and then methanol (120 g) was added to precipitate crystals, which were then filtered and dried to obtain compound [9] (yield: 28.0 g,). 33.2 mmol, yield: 74%)
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87 to 1.43 ppm (m, 40H), 1.82-1.84 ppm (m, 8H), 2.37-2.44 ppm (m, 2H), 7.10ppm (d, 4H, J = 8.8Hz), 7.26-7.30ppm (m, 4H), 7.40ppm (d, 2H, J = 8.4Hz), 8.27ppm (dd, 2H) , J = 2.4Hz, J = 8.4Hz), 8.53ppm (d, 2H, J = 2.4Hz), 9.10ppm (s, 2H)

<W-A5の合成>
テトラヒドロフラン(140g)及びメタノール(56.0g)中、化合物[9](28.0g、33.2mmol)と5%パラジウムカーボン(2.10g)を仕込み、水素雰囲気室温条件下で約3日間反応させた。反応終了後、ろ過することでパラジウムカーボンを除去し、減圧濃縮する事で内部総重量を122gとした。得られた溶液にメタノール(168g)を加えて結晶を析出させ、ろ過、乾燥する事でW-A5を得た(収量:23.8g、30.4mmol、収率:92%)。
H-NMR(400MHz) in CDCl:0.87-1.42ppm(m,40H), 1.81-1.84ppm(m,8H), 2.36-2.42ppm(m,2H), 3.73ppm(br,4H), 6.58-6.60ppm(m,2H), 6.88-6.90ppm(m,4H), 7.07-7.09ppm(m,4H), 7.34-7.36ppm(m,4H), 8.85ppm(s,2H)
<Synthesis of WA5>
Compound [9] (28.0 g, 33.2 mmol) and 5% palladium carbon (2.10 g) were charged in tetrahydrofuran (140 g) and methanol (56.0 g) and reacted under normal temperature conditions in a hydrogen atmosphere for about 3 days. rice field. After completion of the reaction, palladium carbon was removed by filtration and concentrated under reduced pressure to bring the total internal weight to 122 g. Methanol (168 g) was added to the obtained solution to precipitate crystals, and the crystals were filtered and dried to obtain WA5 (yield: 23.8 g, 30.4 mmol, yield: 92%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-1.42 ppm (m, 40H), 1.81-1.84 ppm (m, 8H), 2.36-2.42 ppm (m, 2H), 3.73 ppm (br, 4H), 6.58-6.60 ppm (m, 2H), 6.88-6.90 ppm (m, 4H), 7.07-7.09 ppm (m, 4H), 7. 34-7.36ppm (m, 4H), 8.85ppm (s, 2H)

<<合成例6 W-A6の合成>> << Synthesis Example 6 W-A6 Synthesis >>

Figure 0007096534000053
Figure 0007096534000053

<化合物[10]の合成>
テトラヒドロフラン(113g)及び塩化メチレン(113g)中、4,4’-ジニトロ-2,2’-ジフェン酸(25.0g、75.4mmol)とコレステロール(61.7g、160mmol)、4-ジメチルアミノピリジン(0.919g、7.54mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(33.6g、175mmol)を仕込み、窒素雰囲気室温条件下で18時間反応させた。反応終了後、反応溶液に塩化メチレン(375g)を加え、有機相を飽和食塩水(200g)で3回洗浄後、有機相を硫酸マグネシウム脱水処理した。続いて、得られた溶液を減圧濃縮することで褐色オイル状化合物とし、酢酸エチル(200g)及びイソプロピルアルコール(200g)混合溶液を加えて結晶を析出させ、ろ過する事で粗物を得た。得られた粗物をクロロホルム(500g)及びメタノール(600g)混合溶液で2度再結晶し、ろ過、乾燥する事で化合物[10]を得た(収量:41.8g、39.1mmol、収率:52%)。
H-NMR(400MHz) in CDCl:0.67-2.21ppm(m,86H), 4.58-4.63ppm(m,2H), 5.31-5.33ppm(m,2H), 7.37-7.39ppm(m,2H), 8.42-8.44ppm(m,2H), 8.93ppm(m,2H)
<Synthesis of compound [10]>
4,4'-Dinitro-2,2'-diphenylic acid (25.0 g, 75.4 mmol) and cholesterol (61.7 g, 160 mmol), 4-dimethylaminopyridine in tetrahydrofuran (113 g) and methylene chloride (113 g). (0.919 g, 7.54 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (33.6 g, 175 mmol) was charged and reacted under nitrogen atmosphere room temperature conditions for 18 hours. After completion of the reaction, methylene chloride (375 g) was added to the reaction solution, the organic phase was washed 3 times with saturated brine (200 g), and the organic phase was dehydrated with magnesium sulfate. Subsequently, the obtained solution was concentrated under reduced pressure to give a brown oily compound, and a mixed solution of ethyl acetate (200 g) and isopropyl alcohol (200 g) was added to precipitate crystals, and the mixture was filtered to obtain a crude product. The obtained crude product was recrystallized twice with a mixed solution of chloroform (500 g) and methanol (600 g), filtered and dried to obtain compound [10] (yield: 41.8 g, 39.1 mmol, yield). : 52%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.67-2.21 ppm (m, 86H), 4.58-4.63 ppm (m, 2H), 5.31-5.33 ppm (m, 2H), 7.37-7.39ppm (m, 2H), 8.42-8.44ppm (m, 2H), 8.93ppm (m, 2H)

<W-A6の合成>
テトラヒドロフラン(320g)及びメタノール(80.8g)中、化合物[10](40.4g、37.8mmol)と5%パラジウムカーボン(3.03g)を仕込み、水素雰囲気室温条件下で約3日間反応させた。反応終了後、ろ過することでパラジウムカーボンを除去し、減圧濃縮する事で内部総重量を112gとした。得られた溶液にメタノール(160g)を加えて結晶を析出させ、ろ過、乾燥する事でW-A6を得た(収量:35.0g、34.7mmol、収率:92%)。
H-NMR(400MHz) in CDCl:0.66-2.17ppm(m,86H), 3.74ppm(br,4H), 4.50-4.56ppm(m,2H), 5.28ppm(m,2H), 6.78-6.80ppm(m,2H), 6.95-6.97ppm(m,2H), 7.26-7.28ppm(m,2H)
<Synthesis of WA6>
Compound [10] (40.4 g, 37.8 mmol) and 5% palladium carbon (3.03 g) were charged in tetrahydrofuran (320 g) and methanol (80.8 g) and reacted under hydrogen atmosphere room temperature conditions for about 3 days. rice field. After completion of the reaction, palladium carbon was removed by filtration and concentrated under reduced pressure to bring the total internal weight to 112 g. Methanol (160 g) was added to the obtained solution to precipitate crystals, and the crystals were filtered and dried to obtain WA6 (yield: 35.0 g, 34.7 mmol, yield: 92%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.66-2.17 ppm (m, 86H), 3.74 ppm (br, 4H), 4.50-4.56 ppm (m, 2H), 5.28 ppm ( m, 2H), 6.78-6.80ppm (m, 2H), 6.95-6.97ppm (m, 2H), 7.26-7.28ppm (m, 2H)

<<合成例7 W-A7の合成>> << Synthesis Example 7 W-A7 synthesis >>

Figure 0007096534000054
Figure 0007096534000054

<化合物[11]及び化合物[12]の合成>
テトラヒドロフラン(152g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(40.0g、132mmol)とトリエチルアミン(36.6g、362mmol)を仕込み、窒素雰囲気下氷冷条件にてエタンスルホニルクロリド(44.4g、 345mmol)を滴下した。滴下終了後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(240g)に溶解させたp-(trans-4-プロピルシクロヘキシル)フェノール(63.1g、289mmol)と純水(228g)に溶解させた水酸化カリウム(85.0%品、45.1g、683mmol)を化合物[11]の反応溶液に加え、50℃に加熱し39時間反応させた。反応終了後、純水(1500g)中に反応液を注ぎ込み、粗物を析出させ、濾過および純水洗浄を行った。続いて、純水(378g)及びメタノール(378g)混合溶液でスラリー洗浄を行い、再度濾過およびメタノールで洗浄した。得られた結晶粗物をテトラヒドロフラン(600g)に60℃加熱溶解させ、メタノール(400g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過、乾燥する事で化合物[12]を得た(収量:77.7g、110mmol、収率:83%)。
H-NMR(400MHz) in CDCl:0.87-0.97ppm(m,6H), 0.97-1.05ppm(m,4H), 1.12-1.62ppm(m,14H), 1.81-1.87ppm(m,8H), 2.34-2.40ppm(m,2H), 4.77ppm(s,4H),6.67-6.69ppm(m,4H), 7.00-7.05ppm(m,4H), 7.40ppm(d,2H,J=8.0Hz), 8.25ppm(dd,2H,J=2.0Hz,J=8.4Hz), 8.54ppm(s,2H).
<Synthesis of compound [11] and compound [12]>
4,4'-Dinitro-1,1'-biphenyl-2,2'-dimethanol (40.0 g, 132 mmol) and triethylamine (36.6 g, 362 mmol) were charged in tetrahydrofuran (152 g), and ice under a nitrogen atmosphere was charged. Ethanesulfonyl chloride (44.4 g, 345 mmol) was added dropwise under cold conditions. After completion of the dropping, the reaction temperature was stirred at 40 ° C. for 3 hours to obtain compound [11]. Subsequently, p- (trans-4-propylcyclohexyl) phenol (63.1 g, 289 mmol) dissolved in tetrahydrofuran (240 g) and potassium hydroxide (85.0% product, 45) dissolved in pure water (228 g) were added. .1 g, 683 mmol) was added to the reaction solution of compound [11], heated to 50 ° C., and reacted for 39 hours. After completion of the reaction, the reaction solution was poured into pure water (1500 g) to precipitate crude products, which were then filtered and washed with pure water. Subsequently, the slurry was washed with a mixed solution of pure water (378 g) and methanol (378 g), and again filtered and washed with methanol. The obtained crude crystal was dissolved in tetrahydrofuran (600 g) by heating at 60 ° C., methanol (400 g) was added to precipitate crystals, and the mixture was stirred under room temperature conditions, filtered and dried to obtain the compound [12]. (Yield: 77.7 g, 110 mmol, yield: 83%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.87-0.97 ppm (m, 6H), 0.97-1.05 ppm (m, 4H), 1.12-1.62 ppm (m, 14H), 1.81-1.87 ppm (m, 8H), 2.34-2.40 ppm (m, 2H), 4.77 ppm (s, 4H), 6.67-6.69 ppm (m, 4H), 7. 00-7.05ppm (m, 4H), 7.40ppm (d, 2H, J = 8.0Hz), 8.25ppm (dd, 2H, J = 2.0Hz, J = 8.4Hz), 8.54ppm (S, 2H).

<W-A7の合成>
テトラヒドロフラン(741g)及びメタノール(155g)中、化合物[12](77.7g、110mmol)と3%プラチナカーボン(6.22g)を仕込み、水素雰囲気下室温条件で約2日間反応させた。反応終了後、濾過することでプラチナカーボンを除去し、濾液を減圧濃縮した。得られた濃縮粗物にテトラヒドロフラン(122g)を加えて60℃加熱溶解させ、アセトニトリル(159g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過、乾燥する事でW-A7を得た(収量:58.6g、88.1mmol、収率:80%)。
H-NMR(400MHz) in CDCl:0.86-0.91ppm(m,6H), 0.96-1.06ppm(m,4H), 1.12-1.44ppm(m,14H), 1.81-1.84ppm(m,8H), 2.32-2.34ppm(m,2H), 3.71-3.75ppm(br,4H), 4.67-4.76ppm(q,4H,J=10.0Hz), 6.61-6.64ppm(m,2H), 6.71-6.75ppm(m,4H), 6.91-6.92ppm(m,2H), 6.97-7.03ppm(m,6H).
<Synthesis of WA7>
Compound [12] (77.7 g, 110 mmol) and 3% platinum carbon (6.22 g) were charged in tetrahydrofuran (741 g) and methanol (155 g), and reacted under hydrogen atmosphere at room temperature for about 2 days. After completion of the reaction, platinum carbon was removed by filtration, and the filtrate was concentrated under reduced pressure. Tetrahydrofuran (122 g) is added to the obtained concentrated crude product to dissolve it by heating at 60 ° C., acetonitrile (159 g) is added to precipitate crystals, and the mixture is stirred under room temperature conditions, filtered, and dried to obtain WA7. (Yield: 58.6 g, 88.1 mmol, yield: 80%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.86-0.91 ppm (m, 6H), 0.96-1.06 ppm (m, 4H), 1.12-1.44 ppm (m, 14H), 1.81-1.84ppm (m, 8H), 2.32-2.34ppm (m, 2H), 3.71-3.75ppm (br, 4H), 4.67-4.76ppm (q, 4H) , J = 10.0Hz), 6.61-6.64ppm (m, 2H), 6.71-6.75ppm (m, 4H), 6.91-6.92ppm (m, 2H), 6.97 -7.03 ppm (m, 6H).

<<合成例8 W-A8の合成>> << Synthesis Example 8 W-A8 Synthesis >>

Figure 0007096534000055
Figure 0007096534000055

<化合物[11]及び化合物[13]の合成>
テトラヒドロフラン(156g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(39.2g、129mmol)とトリエチルアミン(35.0g、346mmol)を仕込み、窒素雰囲気下氷冷条件にてエタンスルホニルクロリド(34.8g、 271mmol)を滴下した。滴下後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(230g)に溶解させた4-シクロヘキシルフェノール(50.0g、284mmol)と純水(231g)に溶解させた水酸化カリウム(85.0%品、47.1g、714mmol)を化合物[11]の反応溶液に加え、50℃に加熱し39時間反応させた。反応終了後、純水(660g)中に反応液を注ぎ込み、クロロホルム(588g×4回)で分液抽出した。回収した有機相を減圧濃縮し、粗物をテトラヒドロフラン(118g)に60℃加熱溶解させ、メタノール(235g)を加えて結晶を析出させ、室温条件で撹拌後、濾過した。結晶を純水/メタノール=1/1混合溶媒(118g)、メタノール(118g×2回)でケーキ洗浄し、乾燥する事で化合物[13]を得た(収量:67.6g、120mmol、収率:93%)。
H-NMR(400MHz) in CDCl:1.18-1.30ppm(m,2H), 1.31-1.38ppm(m,8H), 1.71-1.75ppm(m,2H), 1.80-1.82ppm(m,8H), 2.36-2.44ppm(m,2H), 4.77ppm(s,4H),6.67-6.70ppm(m,4H), 7.03-7.06ppm(m,4H), 7.40ppm(d,2H,J=8.4Hz), 8.24ppm(d,1H,J=2.0Hz), 8.26ppm(d,1H,J=2.0Hz), 8.54ppm(d,2H,J=2.0Hz).
<Synthesis of compound [11] and compound [13]>
In tetrahydrofuran (156 g), 4,4'-dinitro-1,1'-biphenyl-2,2'-dimethanol (39.2 g, 129 mmol) and triethylamine (35.0 g, 346 mmol) were charged, and ice under a nitrogen atmosphere was charged. Ethanesulfonyl chloride (34.8 g, 271 mmol) was added dropwise under cold conditions. After the dropping, the reaction temperature was stirred at 40 ° C. for 3 hours to obtain compound [11]. Subsequently, 4-cyclohexylphenol (50.0 g, 284 mmol) dissolved in tetrahydrofuran (230 g) and potassium hydroxide (85.0% product, 47.1 g, 714 mmol) dissolved in pure water (231 g) were compounded. In addition to the reaction solution of [11], the mixture was heated to 50 ° C. and reacted for 39 hours. After completion of the reaction, the reaction solution was poured into pure water (660 g), and the solution was separated and extracted with chloroform (588 g × 4 times). The recovered organic phase was concentrated under reduced pressure, the crude product was dissolved in tetrahydrofuran (118 g) by heating at 60 ° C., methanol (235 g) was added to precipitate crystals, and the mixture was stirred under room temperature conditions and then filtered. The crystals were cake-washed with pure water / methanol = 1/1 mixed solvent (118 g) and methanol (118 g x 2 times) and dried to obtain compound [13] (yield: 67.6 g, 120 mmol, yield). : 93%).
1 1 H-NMR (400 MHz) in CDCl 3 : 1.18-1.30 ppm (m, 2H), 1.31-1.38 ppm (m, 8H), 1.71-1.75 ppm (m, 2H), 1.80-1.82ppm (m, 8H), 2.36-2.44ppm (m, 2H), 4.77ppm (s, 4H), 6.67-6.70ppm (m, 4H), 7. 03-7.06ppm (m, 4H), 7.40ppm (d, 2H, J = 8.4Hz), 8.24ppm (d, 1H, J = 2.0Hz), 8.26ppm (d, 1H, J) = 2.0Hz), 8.54ppm (d, 2H, J = 2.0Hz).

<W-A8の合成>
テトラヒドロフラン(325g)及びメタノール(65.0g)中、化合物[13](65.0g、105mmol)と3%プラチナカーボン(5.20g)を仕込み、水素雰囲気下室温条件で約2日間反応させた。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物をテトラヒドロフラン(70.4g)に60℃加熱溶解させ、メタノール(130g)を加えて結晶を析出させ、室温条件下で撹拌後、濾過した。結晶をメタノール(130g×2回)でケーキ洗浄し、乾燥する事でW-A8を得た(収量:54.2g、96.7mmol、収率:92%)。
H-NMR(400MHz) in CDCl:1.19-1.28ppm(m,2H), 1.31-1.41ppm(m,8H), 1.70-1.73ppm(m,2H), 1.79-1.87ppm(m,8H), 1.87-2.39ppm(m,2H), 3.60-3.79ppm(br,4H), 4.67-4.76ppm(q,4H,J=9.6Hz), 6.61-6.64ppm(m,2H), 6.72-6.75ppm(m,4H), 6.91-6.92ppm(d,2H,J=2.4Hz), 6.97-7.03ppm(m,6H).
<Synthesis of WA8>
Compound [13] (65.0 g, 105 mmol) and 3% platinum carbon (5.20 g) were charged in tetrahydrofuran (325 g) and methanol (65.0 g), and reacted under hydrogen atmosphere at room temperature for about 2 days. After completion of the reaction, platinum carbon was removed by filtration and concentrated under reduced pressure. The crude product was dissolved in tetrahydrofuran (70.4 g) by heating at 60 ° C., methanol (130 g) was added to precipitate crystals, and the crystals were stirred under room temperature conditions and then filtered. The crystals were cake-washed with methanol (130 g × 2 times) and dried to obtain WA8 (yield: 54.2 g, 96.7 mmol, yield: 92%).
1 1 H-NMR (400 MHz) in CDCl 3 : 1.19-1.28 ppm (m, 2H), 1.31-1.41 ppm (m, 8H), 1.70-1.73 ppm (m, 2H), 1.79-1.87ppm (m, 8H), 1.87-2.39ppm (m, 2H), 3.60-3.79ppm (br, 4H), 4.67-4.76ppm (q, 4H) , J = 9.6Hz), 6.61-6.64ppm (m, 2H), 6.72-6.75ppm (m, 4H), 6.91-6.92ppm (d, 2H, J = 2. 4 Hz), 6.97-7.03 ppm (m, 6H).

<<合成例9 W-A9の合成>> << Synthesis Example 9 W-A9 synthesis >>

Figure 0007096534000056
Figure 0007096534000056

<化合物[11]及び化合物[14]の合成>
テトラヒドロフラン(83.6g)中、4,4’-ジニトロ-1,1’-ビフェニル-2,2’-ジメタノール(20.9g,68.7mmol)とトリエチルアミン(15.3g、151mmol)を仕込み、窒素雰囲気氷冷条件にてエタンスルホニルクロリド(18.6g、145mmol)を滴下した。滴下後、反応温度を40℃で3時間撹拌する事で化合物[11]を得た。続いて、テトラヒドロフラン(188g)に溶解させた4-[(trans, trans)-4‘-ペンチル[1,1’-ビシクロヘキシル]-4-イル]フェノール(48.6g、149mmol)と純水(119.2g)に溶解させた水酸化カリウム(85.0%品、20.9g、317mmol)を化合物[11]の反応溶液に加え、20時間反応させた。反応終了後、純水(800g)中に反応液を注ぎ込み、粗物を析出させ、ろ過、純水洗浄を行った。続いて、純水(100g)及びメタノール(100g)混合溶液でスラリー洗浄を行い、再度ろ過、純水及びメタノールで洗浄した。粗物をテトラヒドロフラン(400g)に60℃加熱溶解させ、メタノール(100g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥する事で化合物[14]を得た(収量:49.7g、53.9mmol、収率:78%)。
H-NMR(400MHz) in CDCl:0.83-1.34ppm(m,44H), 1.71-1.85ppm(m,16H), 2.29-2.36ppm(m,2H), 4.77ppm(s,4H), 6.66-6.68ppm(m,4H), 7.01-7.03ppm(m,4H), 7.39ppm(d,2H,J=8.0Hz), 8.24ppm(dd,2H,J=2.0Hz,J=8.4Hz), 8.54ppm(d,2H,J=2.4Hz)
<Synthesis of compound [11] and compound [14]>
In tetrahydrofuran (83.6 g), 4,4'-dinitro-1,1'-biphenyl-2,2'-dimethanol (20.9 g, 68.7 mmol) and triethylamine (15.3 g, 151 mmol) were charged. Ethanesulfonyl chloride (18.6 g, 145 mmol) was added dropwise under ice-cooled conditions in a nitrogen atmosphere. After the dropping, the reaction temperature was stirred at 40 ° C. for 3 hours to obtain compound [11]. Subsequently, 4-[(trans, trans) -4'-pentyl [1,1'-bicyclohexyl] -4-yl] phenol (48.6 g, 149 mmol) and pure water (48.6 g, 149 mmol) dissolved in tetrahydrofuran (188 g) and pure water ( Potassium hydroxide (85.0% product, 20.9 g, 317 mmol) dissolved in 119.2 g) was added to the reaction solution of compound [11] and reacted for 20 hours. After completion of the reaction, the reaction solution was poured into pure water (800 g) to precipitate crude products, which were then filtered and washed with pure water. Subsequently, the slurry was washed with a mixed solution of pure water (100 g) and methanol (100 g), filtered again, and washed with pure water and methanol. The crude product was dissolved in tetrahydrofuran (400 g) by heating at 60 ° C., methanol (100 g) was added to precipitate crystals, and the mixture was stirred under room temperature conditions, filtered and dried to obtain compound [14] (yield: 49). .7 g, 53.9 mmol, yield: 78%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.83-1.34 ppm (m, 44H), 1.71-1.85 ppm (m, 16H), 2.29-2.36 ppm (m, 2H), 4.77ppm (s, 4H), 6.66-6.68ppm (m, 4H), 7.01-7.03ppm (m, 4H), 7.39ppm (d, 2H, J = 8.0Hz), 8.24 ppm (dd, 2H, J = 2.0 Hz, J = 8.4 Hz), 8.54 ppm (d, 2H, J = 2.4 Hz)

<W-A9の合成>
テトラヒドロフラン(361g)及びメタノール(90.2g)中、化合物[14](45.1g、48.7mmol)と3%プラチナカーボン(3.60g)を仕込み、0.4MPa水素圧雰囲気40℃条件下で約9時間反応させた。反応終了後、ろ過、減圧濃縮により溶媒を除去し、メタノール(135g)を加えてスラリー洗浄を実施した。続いて、ろ過により得られた粗物をテトラヒドロフラン(180g)に60℃加熱溶解させ、酢酸エチル(120g)を加え、室温条件下で撹拌する事で結晶を析出させ、ろ過、乾燥する事でW-A9を得た(収量:17.8g、20.7mmol、収率:43%)。
H-NMR(400MHz) in CDCl:0.88-1.34ppm(m,44H), 1.71-1.86ppm(m,16H), 2.29-2.36ppm(m,2H), 3.69ppm(br,4H), 4.70ppm(d,2H,J=12.4Hz), 4.76ppm(d,2H,J=12.4Hz), 6.62ppm(dd,2H,J=2.4Hz,J=8.0Hz), 6.71-6.73ppm(m,4H), 6.91ppm(d,2H,J=2.4Hz), 6.96-6.99ppm(m,6H)
<Synthesis of WA9>
Compound [14] (45.1 g, 48.7 mmol) and 3% platinum carbon (3.60 g) were charged in tetrahydrofuran (361 g) and methanol (90.2 g) under a 0.4 MPa hydrogen pressure atmosphere at 40 ° C. The reaction was carried out for about 9 hours. After completion of the reaction, the solvent was removed by filtration and concentration under reduced pressure, and methanol (135 g) was added to carry out slurry washing. Subsequently, the crude product obtained by filtration is dissolved in tetrahydrofuran (180 g) by heating at 60 ° C., ethyl acetate (120 g) is added, and the crystals are precipitated by stirring under room temperature conditions, and then filtered and dried to obtain W. -A9 was obtained (yield: 17.8 g, 20.7 mmol, yield: 43%).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.88-1.34 ppm (m, 44H), 1.71-1.86 ppm (m, 16H), 2.29-2.36 ppm (m, 2H), 3.69ppm (br, 4H), 4.70ppm (d, 2H, J = 12.4Hz), 4.76ppm (d, 2H, J = 12.4Hz), 6.62ppm (dd, 2H, J = 2) .4Hz, J = 8.0Hz), 6.71-6.73ppm (m, 4H), 6.91ppm (d, 2H, J = 2.4Hz), 6.96-6.99ppm (m, 6H)

<<合成例10 W-A10の合成>> << Synthesis Example 10 W-A10 synthesis >>

Figure 0007096534000057
Figure 0007096534000057

<化合物[15]の合成>
N-メチルピロリドン(540g)中、2-フルオロ-5-ニトロトルエン(91.0g、587mmol)、1,3-プロパンジオール(22.3g、291mmol)、水酸化カリウム(85.0%品、71.6g、1.08mol)を仕込み、窒素雰囲気下80℃で20時間撹拌した。反応終了後、純水(1440g)を加えて水割り晶析を行い、濾過後、結晶を純水(540g×3回)、メタノール(360g×2回)でそれぞれケーキ洗浄し、乾燥する事で化合物[15]を得た(収量:57.2g、165mmol、収率:54%)。
<Synthesis of compound [15]>
In N-methylpyrrolidone (540 g), 2-fluoro-5-nitrotoluene (91.0 g, 587 mmol), 1,3-propanediol (22.3 g, 291 mmol), potassium hydroxide (85.0% product, 71. 6 g, 1.08 mol) was charged, and the mixture was stirred at 80 ° C. for 20 hours under a nitrogen atmosphere. After completion of the reaction, pure water (1440 g) is added to perform water split crystallization, and after filtration, the crystals are cake-washed with pure water (540 g x 3 times) and methanol (360 g x 2 times), and dried to form a compound. [15] was obtained (yield: 57.2 g, 165 mmol, yield: 54%).

<化合物[16]の合成>
1,2-ジクロロエタン(540g)中、化合物[15](40.0g、116mmol)、N-ブロモスクシンイミド(45.2g、254mmol)、2,2’-アゾビス(イソブチロニトリル)(3.79g、23.1mmol)を仕込み、窒素置換した後100℃で約7日間撹拌した。反応液を濾過し不溶のコハク酸イミドを除去後、濾液に酢酸エチル(250g)を加え、純水(250g×3回)で分液抽出および洗浄を行い、有機相を回収して濃縮した。得られた濃縮物に対し酢酸エチル(346g)およびヘキサン(395g)で晶析および濾過し、結晶を回収した。さらに、濾液を濃縮し、クロロホルム(223g)およびヘキサン(434g)で再度晶析および濾過し、それぞれ乾燥する事で化合物[16]の粗物を得た(粗収量:21.3g,粗収率:37%)。
<Synthesis of compound [16]>
In 1,2-dichloroethane (540 g), compound [15] (40.0 g, 116 mmol), N-bromosuccinimide (45.2 g, 254 mmol), 2,2'-azobis (isobutyronitrile) (3.79 g). , 23.1 mmol) was charged, substituted with nitrogen, and then stirred at 100 ° C. for about 7 days. After filtering the reaction solution to remove insoluble succinimide, ethyl acetate (250 g) was added to the filtrate, and the liquid was separated and washed with pure water (250 g × 3 times), and the organic phase was recovered and concentrated. The obtained concentrate was crystallized and filtered with ethyl acetate (346 g) and hexane (395 g), and the crystals were recovered. Further, the filtrate was concentrated, crystallized and filtered again with chloroform (223 g) and hexane (434 g), and dried to obtain a crude product of compound [16] (crude yield: 21.3 g, crude yield). : 37%).

<化合物[17]の合成>
N,N-ジメチルアセトアミド(96.0g)中、p-(trans-4-ヘプチルシクロヘキシル)フェノール(24.0g、87.5mmol)、炭酸カリウム(12.1g、87.5mmol)を仕込み100℃で撹拌した。N,N-ジメチルアセトアミド(54.0g)に溶解させた化合物[16]粗物(20.0g)を滴下し、24時間反応させた。反応液から析出した結晶を濾過で分離し、メタノール(66.0g)、純水(67.0g)でそれぞれスラリー洗浄した後再度濾過、乾燥する事で化合物[17]を得た(収量:4.23g、4.75mmol、収率:4.1%(仕込み化合物[15]を基準とした収率))。
H-NMR(400MHz) in CDCl:0.89ppm(t,6H,J=6.8Hz), 0.99-1.07ppm(m,4H), 1.19-1.43ppm(m,30H), 1.84-1.87ppm(m,8H), 2.36-2.44ppm(m,4H), 4.29ppm(t,4H,J=6.0Hz), 5.04ppm(s,4H), 6.84-6.90ppm(m,6H), 7.10-7.13ppm(m,4H), 8.17ppm(dd,2H,J=3.2Hz,9.0Hz), 8.38ppm(d,2H,J=2.8Hz).
<Synthesis of compound [17]>
In N, N-dimethylacetamide (96.0 g), p- (trans-4-heptylcyclohexyl) phenol (24.0 g, 87.5 mmol) and potassium carbonate (12.1 g, 87.5 mmol) were charged at 100 ° C. Stirred. A crude compound [16] dissolved in N, N-dimethylacetamide (54.0 g) was added dropwise, and the mixture was reacted for 24 hours. The crystals precipitated from the reaction solution were separated by filtration, washed with methanol (66.0 g) and pure water (67.0 g), and then filtered again and dried to obtain compound [17] (yield: 4). .23 g, 4.75 mmol, yield: 4.1% (yield based on the charged compound [15]).
1 1 H-NMR (400 MHz) in CDCl 3 : 0.89 ppm (t, 6H, J = 6.8 Hz), 0.99-1.07 ppm (m, 4H), 1.19-1.43 ppm (m, 30H) ), 1.84-1.87 ppm (m, 8H), 2.36-2.44 ppm (m, 4H), 4.29 ppm (t, 4H, J = 6.0 Hz), 5.04 ppm (s, 4H) ), 6.84-6.90ppm (m, 6H), 7.10-7.13ppm (m, 4H), 8.17ppm (dd, 2H, J = 3.2Hz, 9.0Hz), 8.38ppm (D, 2H, J = 2.8Hz).

<W-A10の合成>
テトラヒドロフラン(28.8g)及びメタノール(7.5g)中、化合物[17](3.60g、4.04mmol)と3%プラチナカーボン(0.290g)を仕込み、水素雰囲気0.4MPa加圧条件下、40℃で3時間撹拌した。反応終了後、濾過することでプラチナカーボンを除去し、減圧濃縮した。粗物を酢酸エチルおよびメタノールを加えて結晶を析出させ、室温条件下で撹拌後、濾過し、乾燥する事でW-A10を得た(収量:2.05g、2.47mmol、収率:54%)。
H-NMR(400MHz) in CDCl:0.89ppm(t,6H,J=6.8Hz), 0.98-1.06ppm(m,4H), 1.18-1.44ppm(m,30H), 1.83-1.86ppm(m,8H), 2.15-2.21ppm(m,2H), 2.36-2.42ppm(m,2H), 3.42ppm(br,4H), 4.09ppm(t,4H,J=6.0Hz), 5.00ppm(s,4H), 6.55-6.57ppm(m,2H), 6.70ppm(d,2H,J=8.8Hz), 6.82-6.89ppm(m,6H), 7.07-7.10ppm(m,4H).
<Synthesis of WA10>
Compound [17] (3.60 g, 4.04 mmol) and 3% platinum carbon (0.290 g) were charged in tetrahydrofuran (28.8 g) and methanol (7.5 g), and hydrogen atmosphere was 0.4 MPa under pressure. , 40 ° C. for 3 hours. After completion of the reaction, platinum carbon was removed by filtration and concentrated under reduced pressure. Crystals were precipitated by adding ethyl acetate and methanol to the crude product, stirred under room temperature conditions, filtered, and dried to obtain WA10 (yield: 2.05 g, 2.47 mmol, yield: 54). %).
1 1 H-NMR (400MHz) in CDCl 3 : 0.89ppm (t, 6H, J = 6.8Hz), 0.98-1.06ppm (m, 4H), 1.18-1.44ppm (m, 30H) ), 1.83-1.86ppm (m, 8H), 2.15-2.21ppm (m, 2H), 2.36-2.42ppm (m, 2H), 3.42ppm (br, 4H), 4.09ppm (t, 4H, J = 6.0Hz), 5.00ppm (s, 4H), 6.55-6.57ppm (m, 2H), 6.70ppm (d, 2H, J = 8.8Hz) ), 6.82-6.89 ppm (m, 6H), 7.07-7.10 ppm (m, 4H).

<ポリイミド系重合体の合成>
[合成例1]
D2(2.50g,10.0mmol)、W-A1(3.03g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(36.2g)中で混合し、60℃で3時間反応させた後、D1(1.78g,9.10mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、840mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.43g)及びピリジン(1.37g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(1)を得た。このポリイミドのイミド化率は76.4%であり、数平均分子量は16,165であり、重量平均分子量は49,988であった。
<Synthesis of polyimide polymer>
[Synthesis Example 1]
D2 (2.50 g, 10.0 mmol), WA1 (3.03 g, 4.00 mmol), C1 (1.73 g, 16.0 mmol) were mixed in NMP (36.2 g) and 3 at 60 ° C. After the time reaction, D1 (1.78 g, 9.10 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 840 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (4.43 g) and pyridine (1.37 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (382 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (1). The imidization ratio of this polyimide was 76.4%, the number average molecular weight was 16,165, and the weight average molecular weight was 49,988.

[合成例2]
D2(2.50g,10.0mmol)、W-A2(3.14g,4.00mmol)、C1(1.84g,16.0mmol)をNMP(36.9g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.38mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、658mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.38g)及びピリジン(1.36g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は75.8%であり、数平均分子量は15,430であり、重量平均分子量は45,756であった。
[Synthesis Example 2]
D2 (2.50 g, 10.0 mmol), WA2 (3.14 g, 4.00 mmol), C1 (1.84 g, 16.0 mmol) were mixed in NMP (36.9 g) and 3 at 60 ° C. After the time reaction, D1 (1.84 g, 9.38 mmol) was added, and the reaction was carried out at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 658 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (4.38 g) and pyridine (1.36 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (382 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (2). The imidization ratio of this polyimide was 75.8%, the number average molecular weight was 15,430, and the weight average molecular weight was 45,756.

[合成例3]
D2(2.50g,10.0mmol)、W-A3(3.25g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(37.3g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.38mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、656mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.32g)及びピリジン(1.34g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は74.7%であり、数平均分子量は13,340であり、重量平均分子量は41,948であった。
[Synthesis Example 3]
D2 (2.50 g, 10.0 mmol), WA3 (3.25 g, 4.00 mmol), C1 (1.73 g, 16.0 mmol) were mixed in NMP (37.3 g) and 3 at 60 ° C. After the time reaction, D1 (1.84 g, 9.38 mmol) was added, and the reaction was carried out at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 656 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (4.32 g) and pyridine (1.34 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (382 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (3). The imidization ratio of this polyimide was 74.7%, the number average molecular weight was 13,340, and the weight average molecular weight was 41,948.

[コントロール合成例1]
D2(1.50g、 6.0mmol)、C2(1.83g、12.0mmol)、C3(2.18g、9.0mmol)、A1(3.43g、9.0mmol)をNMP(41.1g)中で溶解し、60℃で3時間反応させたのち、D3(1.31g、6.0mmol)、続いてD1(3.47g、17.7mmol)とNMP(13.71g)を加え、25℃で10時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(50g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(11.1g)、およびピリジン(3.4g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(700ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は79%であり、数平均分子量は11000、重量平均分子量は24000であった。
[Control synthesis example 1]
D2 (1.50 g, 6.0 mmol), C2 (1.83 g, 12.0 mmol), C3 (2.18 g, 9.0 mmol), A1 (3.43 g, 9.0 mmol) NMP (41.1 g) After dissolving in and reacting at 60 ° C. for 3 hours, D3 (1.31 g, 6.0 mmol) was added, followed by D1 (3.47 g, 17.7 mmol) and NMP (13.71 g), and 25 ° C. The reaction was carried out for 10 hours to obtain a polyamic acid solution.
NMP is added to this polyamic acid solution (50 g) to dilute it to 6.5% by mass, acetic anhydride (11.1 g) and pyridine (3.4 g) are added as imidization catalysts, and the mixture is reacted at 60 ° C. for 3 hours. rice field. This reaction solution was put into methanol (700 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (4). The imidization ratio of this polyimide was 79%, the number average molecular weight was 11,000, and the weight average molecular weight was 24,000.

[比較合成例1]
D2(2.88g,11.5mmol)、A1(3.50g,9.20mmol)、C1(1.49g,13.8mmol)をNMP(40.2g)中で混合し、60℃で3時間反応させた後、D1(2.19g,11.2mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、680mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.64g)及びピリジン(1.44g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(382ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R1)を得た。このポリイミドのイミド化率は75.1%であり、数平均分子量は15,322であり、重量平均分子量は45,800であった。
[Comparative synthesis example 1]
D2 (2.88 g, 11.5 mmol), A1 (3.50 g, 9.20 mmol) and C1 (1.49 g, 13.8 mmol) were mixed in NMP (40.2 g) and reacted at 60 ° C. for 3 hours. After that, D1 (2.19 g, 11.2 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 680 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (4.64 g) and pyridine (1.44 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (382 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R1). The imidization ratio of this polyimide was 75.1%, the number average molecular weight was 15,322, and the weight average molecular weight was 45,800.

[合成例5]
D2(2.50g,10.0mmol)、W-A4(4.62g,6.00mmol)、C1(1.51g,14.0mmol)をNMP(24.5g)中で混合し、60℃で3時間反応させた後、D1(1.92g,9.80mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、783mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.86g)及びピリジン(1.20g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(233ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は76.7%であり、数平均分子量は14,399であり、重量平均分子量は38,573であった。
[Synthesis Example 5]
D2 (2.50 g, 10.0 mmol), W-A4 (4.62 g, 6.00 mmol) and C1 (1.51 g, 14.0 mmol) were mixed in NMP (24.5 g) and 3 at 60 ° C. After the time reaction, D1 (1.92 g, 9.80 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 783 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (3.86 g) and pyridine (1.20 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (233 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (5). The imidization ratio of this polyimide was 76.7%, the number average molecular weight was 14,399, and the weight average molecular weight was 38,573.

[合成例6]
D2(2.50g,10.0mmol)、W-A5(4.70g,6.00mmol)、C1(1.51g,14.0mmol)をNMP(24.9g)中で混合し、60℃で3時間反応させた後、D1(1.92g,9.80mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、769mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.83g)及びピリジン(1.19g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(232ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は73.4%であり、数平均分子量は13,841であり、重量平均分子量は37,284であった。
[Synthesis Example 6]
D2 (2.50 g, 10.0 mmol), WA5 (4.70 g, 6.00 mmol) and C1 (1.51 g, 14.0 mmol) were mixed in NMP (24.9 g) and 3 at 60 ° C. After the time reaction, D1 (1.92 g, 9.80 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 769 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (3.83 g) and pyridine (1.19 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (232 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (6). The imidization ratio of this polyimide was 73.4%, the number average molecular weight was 13,841, and the weight average molecular weight was 37,284.

[合成例7]
D2(6.26g,25.0mmol)、W-A6(5.05g,5.00mmol)、C1(4.87g,45.0mmol)をNMP(62.0g)中で混合し、60℃で3時間反応させた後、D1(4.51g,23.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、658mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.2g)及びピリジン(5.6g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は72.9%であり、数平均分子量は13,362であり、重量平均分子量は38,725であった。
[Synthesis Example 7]
D2 (6.26 g, 25.0 mmol), WA6 (5.05 g, 5.00 mmol) and C1 (4.87 g, 45.0 mmol) were mixed in NMP (62.0 g) and 3 at 60 ° C. After the time reaction, D1 (4.51 g, 23.0 mmol) was added, and the reaction was carried out at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 658 mPa · s.
To the obtained polyamic acid solution (75.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (18.2 g) and pyridine (5.6 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (1000 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (7). The imidization ratio of this polyimide was 72.9%, the number average molecular weight was 13,362, and the weight average molecular weight was 38,725.

[合成例8]
D2(6.26g,25.0mmol)、W-A7(8.06g,12.5mmol)、C1(4.06g,37.5mmol)をNMP(69.2g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、725mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.5g)及びピリジン(5.1g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は73.1%であり、数平均分子量は13,628であり、重量平均分子量は39,937であった。
[Synthesis Example 8]
D2 (6.26 g, 25.0 mmol), WA7 (8.06 g, 12.5 mmol) and C1 (4.06 g, 37.5 mmol) were mixed in NMP (69.2 g) and 3 at 60 ° C. After the time reaction, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 725 mPa · s.
To the obtained polyamic acid solution (75.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (16.5 g) and pyridine (5.1 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (1000 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (8). The imidization ratio of this polyimide was 73.1%, the number average molecular weight was 13,628, and the weight average molecular weight was 39,937.

[合成例9]
D2(6.26g,25.0mmol)、W-A8(7.01g,12.5mmol)、C1(4.06g,37.5mmol)をNMP(66.1g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、674mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.2g)及びピリジン(5.3g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は73.2%であり、数平均分子量は10,425であり、重量平均分子量は37,759であった。
[Synthesis Example 9]
D2 (6.26 g, 25.0 mmol), WA8 (7.01 g, 12.5 mmol), C1 (4.06 g, 37.5 mmol) were mixed in NMP (66.1 g) and 3 at 60 ° C. After the time reaction, D1 (4.71 g, 24.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 674 mPa · s.
To the obtained polyamic acid solution (75.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (17.2 g) and pyridine (5.3 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (1000 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (9). The imidization ratio of this polyimide was 73.2%, the number average molecular weight was 10,425, and the weight average molecular weight was 37,759.

[合成例10]
D2(6.26g,25.0mmol)、W-A9(2.16g,2.5mmol)、C1(5.14g,47.5mmol)をNMP(54.8g)中で混合し、60℃で3時間反応させた後、D1(4.71g,24.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、823mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(20.7g)及びピリジン(6.4g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は71.5%であり、数平均分子量は13,732であり、重量平均分子量は38,921であった。
[Synthesis Example 10]
D2 (6.26 g, 25.0 mmol), WA9 (2.16 g, 2.5 mmol) and C1 (5.14 g, 47.5 mmol) were mixed in NMP (54.8 g) and 3 at 60 ° C. After the time reaction, D1 (4.71 g, 24.0 mmol) was added, and the reaction was carried out at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 823 mPa · s.
To the obtained polyamic acid solution (75.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (20.7 g) and pyridine (6.4 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (1000 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (10). The imidization ratio of this polyimide was 71.5%, the number average molecular weight was 13,732, and the weight average molecular weight was 38,921.

[合成例11]
D2(2.50g,10.0mmol)、W-A10(3.31g,4.00mmol)、C1(1.73g,16.0mmol)をNMP(30.2g)中で混合し、60℃で3時間反応させた後、D1(1.84g,9.40mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、695mPa・sであった。
得られたポリアミド酸溶液(20.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.35g)及びピリジン(1.35g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(235ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は76.1%であり、数平均分子量は12,913であり、重量平均分子量は39,182であった。
[Synthesis Example 11]
D2 (2.50 g, 10.0 mmol), WA10 (3.31 g, 4.00 mmol) and C1 (1.73 g, 16.0 mmol) were mixed in NMP (30.2 g) and 3 at 60 ° C. After the time reaction, D1 (1.84 g, 9.40 mmol) was added, and the reaction was carried out at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 695 mPa · s.
To the obtained polyamic acid solution (20.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (4.35 g) and pyridine (1.35 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (235 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (11). The imidization ratio of this polyimide was 76.1%, the number average molecular weight was 12,913, and the weight average molecular weight was 39,182.

[合成例12]
D2(25.0g,100mmol)、W-A1(37.9g,50.0mmol)、C3(12.1g,50.0mmol)、C8(33.0g,100mmol)をNMP(432g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、721mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.0g)及びピリジン(4.96g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は75.1%であり、数平均分子量は14,736、重量平均分子量は39,645であった。
[Synthesis Example 12]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C3 (12.1 g, 50.0 mmol), C8 (33.0 g, 100 mmol) were mixed in NMP (432 g). After reacting at 60 ° C. for 3 hours, D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 721 mPa · s.
To the obtained polyamic acid solution (100 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (16.0 g) and pyridine (4.96 g) were added as imidization catalysts, and the temperature was 80 ° C. for 3 hours. It was reacted. This reaction solution was put into methanol (1150 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (12). The imidization ratio of this polyimide was 75.1%, the number average molecular weight was 14,736, and the weight average molecular weight was 39,645.

[合成例13]
D2(25.0g,100mmol)、W-A1(37.9g,50.0mmol)、C6(20.5g,60.0mmol)、C8(6.61g,20,0mmol)、C7(27.9g,70,0mmol)をNMP(471g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、771mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(14.9g)及びピリジン(4.63g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は76.2%であり、数平均分子量は15,835、重量平均分子量は39,145であった。
[Synthesis Example 13]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C6 (20.5 g, 60.0 mmol), C8 (6.61 g, 20,0 mmol), C7 (27.9 g, 70,0 mmol) was mixed in NMP (471 g) and reacted at 60 ° C. for 3 hours, then D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours, and the resin solid content concentration was 20. A mass% polyamic acid solution was obtained. The viscosity of this polyamic acid solution was measured and found to be 771 mPa · s.
To the obtained polyamic acid solution (100 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (14.9 g) and pyridine (4.63 g) were added as imidization catalysts, and the temperature was 80 ° C. for 3 hours. It was reacted. This reaction solution was put into methanol (1150 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder (13). The imidization ratio of this polyimide was 76.2%, the number average molecular weight was 15,835, and the weight average molecular weight was 39,145.

[合成例14]
D2(25.0g,100mmol)、W-A1(37.9g,50.0mmol)、C6(17.0g,50.0mmol)、C8(16.5g,50.0mmol)、C3(12.1g,50.0mmol)をNMP(434g)中で混合し、60℃で3時間反応させた後、D1(18.8g,96.0mmol)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、701mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(16.0g)及びピリジン(4.97g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1150ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は74.8%であり、数平均分子量は17,635、重量平均分子量は41,647であった。
[Synthesis Example 14]
D2 (25.0 g, 100 mmol), W-A1 (37.9 g, 50.0 mmol), C6 (17.0 g, 50.0 mmol), C8 (16.5 g, 50.0 mmol), C3 (12.1 g, 50.0 mmol) was mixed in NMP (434 g) and reacted at 60 ° C. for 3 hours, then D1 (18.8 g, 96.0 mmol) was added and reacted at 40 ° C. for 3 hours, and the resin solid content concentration was 20. A mass% polyamic acid solution was obtained. The viscosity of this polyamic acid solution was measured and found to be 701 mPa · s.
To the obtained polyamic acid solution (100 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (16.0 g) and pyridine (4.97 g) were added as imidization catalysts, and the temperature was 80 ° C. for 3 hours. It was reacted. This reaction solution was put into methanol (1150 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder (14). The imidization ratio of this polyimide was 74.8%, the number average molecular weight was 17,635, and the weight average molecular weight was 41,647.

[合成例15]
D4(43.9g,196mmol)、W-A1(30.3g,40.0mmol)、C4(13.9g,70.0mmol)、C8(16.5g,50.0mmol)、C5(7.59g,40.0mmol)をNMP(455g)中で混合し、60℃で15時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、662mPa・sであった。
得られたポリアミド酸溶液(100g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.9g)及びピリジン(5.55g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(1160ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は71.7%であり、数平均分子量は13,329、重量平均分子量は40,527であった。
[Synthesis Example 15]
D4 (43.9 g, 196 mmol), W-A1 (30.3 g, 40.0 mmol), C4 (13.9 g, 70.0 mmol), C8 (16.5 g, 50.0 mmol), C5 (7.59 g, 40.0 mmol) was mixed in NMP (455 g) and reacted at 60 ° C. for 15 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 662 mPa · s.
To the obtained polyamic acid solution (100 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (17.9 g) and pyridine (5.55 g) were added as imidization catalysts, and the temperature was 100 ° C. for 3 hours. It was reacted. This reaction solution was put into methanol (1160 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder (15). The imidization ratio of this polyimide was 71.7%, the number average molecular weight was 13,329, and the weight average molecular weight was 40,527.

[合成例16]
D2(25.0g、100mmol)、C2(21.3g、140mmol)、C10(24.6g、60.0mmol)をNMP(284g)中で溶解し、60℃で3時間反応させたのち、D5(14.3g、40.0mmol)、続いてD1(11.0g、56.0mmol)とNMP(100g)を加え、25℃で10時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(21.0g)、およびピリジン(6.52g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1170ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は75.8%であり、数平均分子量は14679、重量平均分子量は35747であった。
[Synthesis Example 16]
D2 (25.0 g, 100 mmol), C2 (21.3 g, 140 mmol) and C10 (24.6 g, 60.0 mmol) were dissolved in NMP (284 g), reacted at 60 ° C. for 3 hours, and then D5 (23.6 g, 60.0 mmol). 14.3 g, 40.0 mmol), followed by D1 (11.0 g, 56.0 mmol) and NMP (100 g) were added and reacted at 25 ° C. for 10 hours to obtain a polyamic acid solution.
NMP is added to this polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (21.0 g) and pyridine (6.52 g) are added as imidization catalysts, and the mixture is reacted at 80 ° C. for 3 hours. rice field. This reaction solution was put into methanol (1170 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (16). The imidization ratio of this polyimide was 75.8%, the number average molecular weight was 14679, and the weight average molecular weight was 35747.

[合成例17]
D2(25.0g、100mmol)、C6(50.0g、120mmol)、C9(15.1g、60.0mmol)、W-A1(15.1g、20.0mmol)をNMP(385g)中で溶解し、60℃で3時間反応させたのち、D1(18.8g、96.0mmol)とNMP(75.3g)を加え、40℃で3時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、753mPa・sであった。
このポリアミック酸溶液(100g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(17.6g)、およびピリジン(5.47g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1160ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末(17)を得た。このポリイミドのイミド化率は71.1%であり、数平均分子量は17635、重量平均分子量は38427であった。
[Synthesis Example 17]
D2 (25.0 g, 100 mmol), C6 (50.0 g, 120 mmol), C9 (15.1 g, 60.0 mmol) and WA1 (15.1 g, 20.0 mmol) were dissolved in NMP (385 g). After reacting at 60 ° C. for 3 hours, D1 (18.8 g, 96.0 mmol) and NMP (75.3 g) were added, and the mixture was reacted at 40 ° C. for 3 hours to prepare a polyamic acid solution having a resin solid content concentration of 20% by mass. Got The viscosity of this polyamic acid solution was measured and found to be 753 mPa · s.
NMP is added to this polyamic acid solution (100 g) to dilute it to 6.5% by mass, acetic anhydride (17.6 g) and pyridine (5.47 g) are added as imidization catalysts, and the mixture is reacted at 80 ° C. for 3 hours. rice field. This reaction solution was put into methanol (1160 ml), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder (17). The imidization ratio of this polyimide was 71.1%, the number average molecular weight was 17635, and the weight average molecular weight was 38427.

[比較合成例2]
D2(6.26g,25.0mmol)、A2(12.23g,30.0mmol)、C1(2.16g,20.0mmol)をNMP(76.7g)中で混合し、80℃で5時間反応させた後、D1(4.90g,25.0mmol)を加え、40℃で12時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、338mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(15.0g)及びピリジン(4.6g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R2)を得た。このポリイミドのイミド化率は73.0%であり、数平均分子量は10,175であり、重量平均分子量は23,642であった。
[Comparative synthesis example 2]
D2 (6.26 g, 25.0 mmol), A2 (12.23 g, 30.0 mmol) and C1 (2.16 g, 20.0 mmol) were mixed in NMP (76.7 g) and reacted at 80 ° C. for 5 hours. After that, D1 (4.90 g, 25.0 mmol) was added and reacted at 40 ° C. for 12 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 338 mPa · s.
To the obtained polyamic acid solution (75.0 g), NMP was added and diluted to 6.5% by mass, acetic anhydride (15.0 g) and pyridine (4.6 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (1000 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R2). The imidization ratio of this polyimide was 73.0%, the number average molecular weight was 10,175, and the weight average molecular weight was 23,642.

[比較合成例3]
D2(6.26g,25.0mmol)、A3(7.06g,25.0mmol)、C1(2.70g,25.0mmol)をNMP(62.8g)中で混合し、80℃で5時間反応させた後、D1(4.90g,25.0mmol)を加え、40℃で12時間反応させ、樹脂固形分濃度20質量%のポリアミド酸溶液を得た。このポリアミド酸溶液の粘度を測定したところ、446mPa・sであった。
得られたポリアミド酸溶液(75.0g)に、NMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(18.3g)及びピリジン(5.7g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(R3)を得た。このポリイミドのイミド化率は72.2%であり、数平均分子量は11,636であり、重量平均分子量は24,624であった。
合成例および比較合成例にて得られたポリイミド粉末の組成を表1にまとめる。
[Comparative synthesis example 3]
D2 (6.26 g, 25.0 mmol), A3 (7.06 g, 25.0 mmol) and C1 (2.70 g, 25.0 mmol) were mixed in NMP (62.8 g) and reacted at 80 ° C. for 5 hours. After that, D1 (4.90 g, 25.0 mmol) was added and reacted at 40 ° C. for 12 hours to obtain a polyamic acid solution having a resin solid content concentration of 20% by mass. The viscosity of this polyamic acid solution was measured and found to be 446 mPa · s.
To the obtained polyamic acid solution (75.0 g), NMP was added and diluted to 6.5% by mass, then acetic anhydride (18.3 g) and pyridine (5.7 g) were added as imidization catalysts, and the temperature was 80 ° C. The reaction was carried out for 3 hours. This reaction solution was put into methanol (1000 ml), and the obtained precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (R3). The imidization ratio of this polyimide was 72.2%, the number average molecular weight was 11,636, and the weight average molecular weight was 24,624.
Table 1 summarizes the compositions of the polyimide powders obtained in the synthetic example and the comparative synthetic example.

Figure 0007096534000058
Figure 0007096534000058

<液晶配向処理剤の調製>
実施例及び比較例では、液晶配向処理剤の調製例を記載する。実施例及び比較例で得られた液晶配向処理剤を用い、液晶表示素子の作製、及び各種評価を行った。
<Preparation of liquid crystal alignment treatment agent>
Examples and Comparative Examples describe preparation examples of the liquid crystal alignment treatment agent. Using the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples, liquid crystal display elements were manufactured and various evaluations were performed.

<実施例1>
合成例1で得られたポリイミド粉末(1)(3.00g)に、NMP(28.2g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、NMP(g)、BCS(18.8g)を加え、室温で5時間攪拌して、液晶配向処理剤(V-1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
NMP (28.2 g) was added to the polyimide powder (1) (3.00 g) obtained in Synthesis Example 1 and stirred at 70 ° C. for 24 hours to dissolve. NMP (g) and BCS (18.8 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment treatment agent (V-1). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was uniform.

<実施例2>及び<実施例3>
実施例1において、ポリイミド粉末(1)の代わりにポリイミド粉末(2)及び(3)を用いて、実施例1と同様の手順により、液晶配向処理剤(V-2)及び(V-3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2> and <Example 3>
In Example 1, the polyimide powders (2) and (3) were used instead of the polyimide powder (1), and the liquid crystal alignment treatment agents (V-2) and (V-3) were used in the same procedure as in Example 1. Got No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was uniform.

<コントロール1>
実施例1において、ポリイミド粉末(1)の代わりに、コントロール合成例1で得たポリイミド粉末(4)を用いて、実施例1と同様の手順により、液晶配向処理剤(V-4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Control 1>
In Example 1, the polyimide powder (4) obtained in Control Synthesis Example 1 was used instead of the polyimide powder (1) to obtain a liquid crystal alignment treatment agent (V-4) by the same procedure as in Example 1. rice field. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was uniform.

<実施例4>
実施例1から得られた液晶配向処理剤(V-1)を第一成分として3.0g、コントロール1で得られた液晶配向処理剤(V-4)を第2成分として7.0g混合し、1時間撹拌することにより液晶配向処理剤(V-5)を得た。
<Example 4>
3.0 g of the liquid crystal alignment treatment agent (V-1) obtained from Example 1 was mixed as the first component, and 7.0 g of the liquid crystal alignment treatment agent (V-4) obtained in Control 1 was mixed as the second component. The liquid crystal alignment treatment agent (V-5) was obtained by stirring for 1 hour.

<実施例5>~<実施例6>
実施例4において、第一成分として液晶配向処理剤(V-1)の代わりに液晶配向処理剤(V-2)又は(V-3)を用いて、実施例4と同様の手順により、それぞれ液晶配向処理剤(V-6)及び(V-7)を得た。
<Example 5> to <Example 6>
In Example 4, a liquid crystal alignment treatment agent (V-2) or (V-3) was used instead of the liquid crystal alignment treatment agent (V-1) as the first component, and the procedure was the same as in Example 4, respectively. Liquid crystal alignment treatment agents (V-6) and (V-7) were obtained.

<比較例1>
比較合成例1で得られたポリイミド粉末(R1)(3.00g)に、NMP(28.2g)及びBCS(18.8g)を加え、70℃で24時間攪拌して、液晶配向処理剤(R-V1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
得られた液晶配向処理剤(R-V1)を用いて、液晶表示素子の作製、垂直配向性の評価、プレチルト角の評価、電圧保持率の評価、残像特性の評価を行った。
<Comparative Example 1>
NMP (28.2 g) and BCS (18.8 g) were added to the polyimide powder (R1) (3.00 g) obtained in Comparative Synthesis Example 1, and the mixture was stirred at 70 ° C. for 24 hours to prepare a liquid crystal alignment treatment agent (38.0 g). R-V1) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was uniform.
Using the obtained liquid crystal alignment treatment agent (R-V1), a liquid crystal display element was manufactured, vertical orientation was evaluated, pretilt angle was evaluated, voltage retention was evaluated, and afterimage characteristics were evaluated.

<実施例7>
合成例5で得られたポリイミド粉末(5)(3.00g)に、NMP(22.0g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、E2 (1wt%NMP溶液)3.0g、BCS(20.0g)を加え、室温で5時間攪拌して、液晶配向処理剤(V-8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることを確認した。
<Example 7>
NMP (22.0 g) was added to the polyimide powder (5) (3.00 g) obtained in Synthesis Example 5 and stirred at 70 ° C. for 24 hours to dissolve. To this solution, 3.0 g of E2 (1 wt% NMP solution) and BCS (20.0 g) were added, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment treatment agent (V-8). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was uniform.

<実施例8~13、15~17、19、20、比較例2~4>
実施例7と同様の操作で合成例6~11、13~15、17、比較合成例1~3、コントロール合成例1で得られたポリイミド粉末(6)~(11)、(13)~(15)、(17)、(R1~R3)、(4)を用いて液晶配向処理剤(V-9~V-21)、(R-V2~R-V4)を調製した。
<Examples 8 to 13, 15 to 17, 19, 20, Comparative Examples 2 to 4>
Polyimide powders (6) to (11), (13) to (13) to obtained in Synthesis Examples 6 to 11, 13 to 15, 17, Comparative Synthesis Examples 1 to 3, and Control Synthesis Example 1 by the same operation as in Example 7. 15), (17), (R1 to R3), and (4) were used to prepare liquid crystal alignment treatment agents (V-9 to V-21) and (R-V2 to R-V4).

<実施例14>
合成例12で得られたポリイミド粉末(12)(3.00g)に、NEP(22.0g)を加え70℃にて24時間撹拌して溶解させた。この溶液に、NEP(3.0g)、BCS(20.0g)を加え、室温で5時間攪拌して、液晶配向処理剤(V-15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることを確認した。
<Example 14>
NEP (22.0 g) was added to the polyimide powder (12) (3.00 g) obtained in Synthesis Example 12 and stirred at 70 ° C. for 24 hours to dissolve. NEP (3.0 g) and BCS (20.0 g) were added to this solution, and the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal alignment treatment agent (V-15). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and it was confirmed that the solution was uniform.

<実施例18>
合成例16で得られたポリイミド粉末(16)についても実施例14と同様の操作を行い、液晶配向膜処理剤(V-19)を得た。
<Example 18>
The polyimide powder (16) obtained in Synthesis Example 16 was also subjected to the same operation as in Example 14 to obtain a liquid crystal alignment film treating agent (V-19).

Figure 0007096534000059
Figure 0007096534000059

<実施例21>
実施例14から得られた液晶配向処理剤(V-15)を第一成分として3.0g、実施例18で得られた液晶配向処理剤(V-19)を第2成分として7.0g、架橋剤E1を液晶配向膜剤中の樹脂成分に対し5重量%となるように混合し、1時間撹拌することで液晶配向処理剤(W-2)を得た。
<Example 21>
3.0 g of the liquid crystal alignment treatment agent (V-15) obtained from Example 14 as the first component, 7.0 g of the liquid crystal alignment treatment agent (V-19) obtained in Example 18 as the second component. The cross-linking agent E1 was mixed so as to be 5% by weight with respect to the resin component in the liquid crystal alignment film agent, and the mixture was stirred for 1 hour to obtain a liquid crystal alignment treatment agent (W-2).

<実施例22~24>
実施例15~20で得られた液晶配向処理剤(V-16)~(V-21)について実施例21と同様の操作で液晶配向処理剤(W-3)~(W-5)を得た。
<Examples 22 to 24>
Regarding the liquid crystal alignment treatment agents (V-16) to (V-21) obtained in Examples 15 to 20, the liquid crystal alignment treatment agents (W-3) to (W-5) are obtained by the same operation as in Example 21. rice field.

Figure 0007096534000060
Figure 0007096534000060

実施例で得られた液晶配向処理剤及び比較例で得られた液晶配向処理剤を用いて、液晶表示素子の作製、垂直配向性の評価、スクラッチ試験、プレチルト角の評価、電圧保持率の評価、残像特性の評価を行った。 Using the liquid crystal alignment treatment agent obtained in the examples and the liquid crystal alignment treatment agent obtained in the comparative example, fabrication of a liquid crystal display element, evaluation of vertical orientation, scratch test, evaluation of pretilt angle, evaluation of voltage retention rate. , Afterimage characteristics were evaluated.

<電圧保持率測定用液晶表示素子の作製>
実施例で得られた液晶配向処理剤及び比較例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した40mm×30mmのITO電極付きガラス基板(縦:40mm、横:30mm、厚さ:1.1mm)のITO面上にスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布した。
次に、シール剤(三井化学製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作成した。
その後、得られた液晶セルに15Vの直流電圧を印加した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を15J/cm照射して、垂直配向型液晶表示素子を得た。なお、紫外線照射量の測定にはORC社製UV-M03AにUV-35の受光器を接続し用いた。
<Manufacturing of liquid crystal display element for voltage retention measurement>
The liquid crystal alignment treatment agent obtained in Examples and the liquid crystal alignment treatment agent obtained in Comparative Examples were pressure-filtered with a membrane filter having a pore diameter of 1 μm. The obtained solution was spin-coated on the ITO surface of a 40 mm × 30 mm glass substrate with an ITO electrode (length: 40 mm, width: 30 mm, thickness: 1.1 mm) washed with pure water and IPA (isopropyl alcohol). Heat treatment was performed on a hot plate at 70 ° C. for 90 seconds and in a heat circulation type clean oven at 230 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm. Two ITO substrates with the obtained liquid crystal alignment film were prepared, and a bead spacer having a diameter of 4 μm (manufactured by JGC Catalysts and Chemicals Co., Ltd., silk ball, SW-D1) was applied to the liquid crystal alignment film surface of one of the substrates.
Next, the periphery was coated with a sealing agent (XN-1500T manufactured by Mitsui Chemicals). Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after laminating with the previous substrate, the sealing material was cured to create an empty cell. A liquid crystal MLC-3023 (trade name manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell.
Then, with a DC voltage of 15 V applied to the obtained liquid crystal cell, an ultraviolet irradiation device using a high-pressure mercury lamp as a light source was used to irradiate 15 J / cm 2 of ultraviolet rays through a bandpass filter having a wavelength of 365 nm. A vertically oriented liquid crystal display element was obtained. For the measurement of the ultraviolet irradiation amount, a UV-35 receiver was connected to the UV-M03A manufactured by ORC.

<プレチルト角及び残像評価用液晶表示素子の作製>
実施例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した、画素サイズが200μm×600μmでライン/スペースがそれぞれ3μmのITO電極パターンが形成されているITO電極基板(縦:35mm、横:30mm、厚さ:0.7mm)と、高さ3.2μmのフォトスペーサーがパターニングされているITO電極付きガラス基板(縦:35mm、横:30mm、厚さ:0.7mm)のITO面上にそれぞれスピンコートし、ホットプレート上にて70℃で90秒間、熱循環型クリーンオーブンにて230℃で30分間の加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
なお、このITO電極パターンが形成されているITO電極基板は、クロスチェッカー(市松)模様に4分割されており4つのエリアごとで別々に駆動ができるようになっている。
次に、シール剤(三井化学製XN-1500T)で周囲を塗布した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール材を硬化させて空セルを作成した。この空セルに液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作成した。
その後、得られた液晶セルに15Vの直流電圧を印加し、全ての画素エリアが駆動した状態で、光源に高圧水銀ランプを使用した紫外線照射装置を用いて、波長365nmのバンドパスフィルターを通した紫外線を10J/cm照射して、垂直配向型液晶表示素子を得た。紫外線照射量の測定にはORC社製UV-M03AにUV-35の受光器を接続し用いた。
更に、実施例1~3、比較例1では、上記の標準条件に加えて、過酷条件として、加熱処理を230℃で120分間として液晶配向膜を形成した以外は、上記と同条件で垂直配向型液晶表示素子を作成した。
<Manufacturing of liquid crystal display element for pre-tilt angle and afterimage evaluation>
The liquid crystal alignment treatment agent obtained in the examples was pressure-filtered with a membrane filter having a pore diameter of 1 μm. The obtained solution was washed with pure water and IPA (isopropyl alcohol), and an ITO electrode substrate having an ITO electrode pattern having a pixel size of 200 μm × 600 μm and a line / space of 3 μm was formed (length: 35 mm, width: 30 mm). , Thickness: 0.7 mm) and a glass substrate with an ITO electrode (length: 35 mm, width: 30 mm, thickness: 0.7 mm) in which a photospacer with a height of 3.2 μm is patterned, respectively, on the ITO surface. It was spin-coated and heat-treated at 70 ° C. for 90 seconds on a hot plate and at 230 ° C. for 30 minutes in a heat-circulating clean oven to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.
The ITO electrode substrate on which this ITO electrode pattern is formed is divided into four in a cross checker (checkerboard) pattern, and can be driven separately in each of the four areas.
Next, the periphery was coated with a sealing agent (XN-1500T manufactured by Mitsui Chemicals). Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and after laminating with the previous substrate, the sealing material was cured to create an empty cell. A liquid crystal MLC-3023 (trade name manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell.
After that, a DC voltage of 15 V was applied to the obtained liquid crystal cell, and the band pass filter having a wavelength of 365 nm was passed through an ultraviolet irradiation device using a high-pressure mercury lamp as a light source in a state where all the pixel areas were driven. A vertically oriented liquid crystal display element was obtained by irradiating with ultraviolet rays at 10 J / cm 2 . For the measurement of the ultraviolet irradiation amount, a UV-35 receiver was connected to the UV-M03A manufactured by ORC.
Further, in Examples 1 to 3 and Comparative Example 1, in addition to the above standard conditions, vertical alignment is performed under the same conditions as above, except that a liquid crystal alignment film is formed by heat treatment at 230 ° C. for 120 minutes as a harsh condition. A type liquid crystal display element was created.

<評価>
(垂直配向性)
液晶表示素子の液晶配向性は、偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶の流動による不良や配向欠陥による輝点が見られていないものを、良好とした。評価結果を、表2に示す。
<Evaluation>
(Vertical orientation)
The liquid crystal orientation of the liquid crystal display element was observed with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation), and it was confirmed whether or not the liquid crystal was vertically oriented. Specifically, those in which no defects due to liquid crystal flow or bright spots due to orientation defects were observed were considered good. The evaluation results are shown in Table 2.

(電圧保持率)
上記で作製した電圧保持率評価用の液晶表示素子に、1Vの電圧を60マイクロ秒の印加時間、1667ミリ秒の間隔で印加した後、印加解除から1667ミリ秒後の電圧保持率(%)を測定した。測定装置は東陽テクニカ製VHR-1を使用した。評価結果を、表2に示す。
(Voltage retention rate)
After applying a voltage of 1V to the liquid crystal display element for voltage retention evaluation manufactured above at an application time of 60 microseconds and an interval of 1667 ms, the voltage retention rate (%) 1667 ms after the application is released. Was measured. The measuring device used was VHR-1 manufactured by Toyo Corporation. The evaluation results are shown in Table 2.

(プレチルト角)
LCDアナライザー(名菱テクニカ社製LCA-LUV42A)を使用して、上記で作製したプレチルト角評価用の液晶表示素子の内、液晶の流動による不良が見られていない液晶表示素子について測定を行った。評価結果を表2に示す。
(Pre-tilt angle)
Using an LCD analyzer (LCA-LUV42A manufactured by Meiryo Technica), measurements were made on the liquid crystal display element for pre-tilt angle evaluation manufactured above, in which no defect due to the flow of liquid crystal was observed. .. The evaluation results are shown in Table 2.

(残像特性)
上記で作製した残像評価用液晶表示素子を用いて、4つの画素エリアのうち対角線の2つのエリアに60Hz、20Vp-pの交流電圧を印加し、23℃の温度下で168時間駆動させた。その後、4つの画素エリアすべてを5Vp-pの交流電圧で駆動させ、画素の輝度差を目視で観察した。輝度差がほぼ確認できない状態を良好とした。評価結果を表3に示す。
(Afterimage characteristics)
Using the liquid crystal display element for afterimage evaluation produced above, an AC voltage of 60 Hz and 20 Vpp was applied to two diagonal areas out of the four pixel areas, and the mixture was driven at a temperature of 23 ° C. for 168 hours. After that, all four pixel areas were driven by an AC voltage of 5 Vp-p, and the difference in the brightness of the pixels was visually observed. The condition in which the difference in brightness could hardly be confirmed was considered good. The evaluation results are shown in Table 3.

(スクラッチ試験)
実施例で得たポリイミド塗膜付き基板の配向膜面に対して、UMT-2(ブルカー・エイエックスエス株式会社製)を用いてスクラッチ試験を行った。
UMT-2のセンサーにはFVLを選択し、スクラッチ部先端には1.6mmのサファイア球を取り付けた。
スクラッチ部先端を液晶配向膜表面に荷重1mNで接触させた状態で、横0.5mm、縦2.0mmの範囲を、100秒間かけて1mNから20mNまで荷重を変化させスクラッチ試験をおこなった。この時スクラッチ部先端の移動方向は横への往復とし、移動速度は5.0mm/秒で行った。スクラッチエリアの縦方向への移動は、液晶配向膜付きの基板を縦方向に20μm/秒で移動させ行った。
スクラッチ試験後、MLC-3022(メルク社製ネガ型液晶)をスクラッチ試験済の液晶配向膜面へ滴下した。そこへ実施例1で得たもう1枚の液晶配向膜付き基板に4μmのスペーサーを散布したものを、互いの液晶配向膜面が向かい合うように重ね合わせ、滴下したMLC-3022を挟み込んだ。
偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)の上下の偏光板の偏光軸が90°(クロスニコル)となるようにした状態で、スクラッチ試験を行った箇所を観察し、光が透過するかを観察した。スクラッチ試験を行った箇所について、輝点や光抜けが全く見られない状態を○、僅かな輝点や光抜けが見られる状態を△、スクラッチした箇所全体が光抜けとなった状態を×として表6に示す。
(Scratch test)
A scratch test was performed on the alignment film surface of the polyimide coated substrate obtained in the examples using UMT-2 (manufactured by Bruker AXS Co., Ltd.).
FVL was selected for the UMT-2 sensor, and a 1.6 mm sapphire ball was attached to the tip of the scratch portion.
A scratch test was performed in a state where the tip of the scratch portion was in contact with the surface of the liquid crystal alignment film with a load of 1 mN, and the load was changed from 1 mN to 20 mN over a range of 0.5 mm in width and 2.0 mm in length over 100 seconds. At this time, the moving direction of the tip of the scratch portion was a lateral reciprocation, and the moving speed was 5.0 mm / sec. The scratch area was moved in the vertical direction by moving the substrate with the liquid crystal alignment film in the vertical direction at 20 μm / sec.
After the scratch test, MLC-3022 (Negative liquid crystal manufactured by Merck & Co., Inc.) was dropped onto the surface of the liquid crystal alignment film that had been scratch-tested. A 4 μm spacer was sprayed on another substrate with a liquid crystal alignment film obtained in Example 1 and superposed on the substrate so that the liquid crystal alignment film surfaces faced each other, and the dropped MLC-3022 was sandwiched therein.
With the polarization axes of the upper and lower polarizing plates of the polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation) set to 90 ° (cross Nicol), observe the scratch test and see if light is transmitted. Observed. For the parts where the scratch test was performed, the state where no bright spots or light omissions were seen was marked with ○, the state where slight bright spots or light leaks were seen was marked with △, and the state where the entire scratched spot was marked with light spots was marked with ×. It is shown in Table 6.

Figure 0007096534000061
Figure 0007096534000061

Figure 0007096534000062
Figure 0007096534000062

Figure 0007096534000063
Figure 0007096534000063

上記の結果、具体的には、表4に示す実施例1~3と比較例1との比較からわかるように、本発明の液晶配向処理剤から得られる液晶配向膜を用いた液晶表示素子は、過酷条件においてもプレチルト角に変化はなく、液晶配向性が良好であることがわかった。
また、表5に示すように液晶配向処理剤(V-4)を混合した実施例4~実施例6では残像特性は良好な結果になることがわかった。
さらに、本実施例から、特定の側鎖型ジアミンを用いて得られる液晶配向膜は過酷な条件で焼成された場合でもプレチルト角の安定性に優れることがわかった。また、スクラッチ試験のように液晶配向膜へ物理的接触があった場合でも、配向膜へのダメージが少なく良好な垂直配向性を維持できることも確認された。
As a result of the above, specifically, as can be seen from the comparison between Examples 1 to 3 and Comparative Example 1 shown in Table 4, the liquid crystal display element using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is It was found that the pretilt angle did not change even under harsh conditions, and the liquid crystal orientation was good.
Further, as shown in Table 5, it was found that the afterimage characteristics were good in Examples 4 to 6 in which the liquid crystal alignment treatment agent (V-4) was mixed.
Furthermore, from this example, it was found that the liquid crystal alignment film obtained by using a specific side chain diamine is excellent in the stability of the pretilt angle even when fired under harsh conditions. It was also confirmed that even when there is physical contact with the liquid crystal alignment film as in the scratch test, there is little damage to the alignment film and good vertical alignment can be maintained.

本発明の液晶配向処理剤から得られる液晶配向膜を用いた液晶表示素子は、液晶表示素子に、好適に用いることができる。そして、これらの素子は、表示を目的とする液晶ディスプレイ、さらには、光の透過と遮断を制御する調光窓や光シャッターなどにおいても有用である。 A liquid crystal display element using a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention can be suitably used for a liquid crystal display element. These elements are also useful in liquid crystal displays for display purposes, as well as in dimming windows and optical shutters that control the transmission and blocking of light.

Claims (9)

下記式[1]で表されるジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体を含有する液晶配向剤:
式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-(CH-、-SO-、及びそれらの任意の組み合わせからなる2価の有機基を表し、mは1~8の整数を表し、Yはそれぞれ独立して下記式[1-1]の構造を表す;
式[1-1]中、Y及びYはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種を示す;
は単結合又は-(CH-(bは1~15の整数である)を示す(ただし、Y又はYが単結合、-(CH-である場合、Yは単結合であり、Yが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種であるか、及び/又はYが-O-、-CHO-、-CONH-、-NHCO-、-COO-及び-OCO-からなる群から選ばれる少なくとも1種である場合、Yは単結合又は-(CH-である(ただし、Yが-CONH-である場合、Y及びY単結合である));
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格およびトコフェノール骨格を有する炭素数17~51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい;
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい;
は炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す;
nは0~4の整数を示す。
Figure 0007096534000064
A liquid crystal containing at least one polymer selected from a polyimide precursor which is a reaction product of a diamine-containing diamine component represented by the following formula [1] and a tetracarboxylic acid component and a polyimide which is an imidized product thereof. Aligning agent:
In formula [1], X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-,-(CH 2 ) m- , -SO 2- , and any of them. Represents a divalent organic group consisting of a combination of, m represents an integer of 1 to 8, and Y independently represents the structure of the following formula [1-1];
In the formula [1-1], Y 1 and Y 3 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -O-, and -CH 2 O-. , -CONH-, -NHCO-, -COO- and -OCO- show at least one selected from the group;
Y 2 indicates a single bond or-(CH 2 ) b- (b is an integer from 1 to 15) (where Y 1 or Y 3 is a single bond,-(CH 2 ) a- , then Y 2 is a single bond, is Y 1 at least one selected from the group consisting of -O-, -CH 2 O-, -CONH-, -NHCO-, -COO- and -OCO-, and / Or if Y 3 is at least one selected from the group consisting of -O-, -CH 2 O-, -CONH-, -NHCO-, -COO- and -OCO-, then Y 2 is a single bond or-( CH 2 ) b- (where Y 1 is -CONH-, it is a Y 2 and Y 3 single bond);
Y4 represents at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle, or a divalent organic group having a steroid skeleton and a tocophenol skeleton and having 17 to 51 carbon atoms. Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom;
Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms and 1 carbon atom. It may be substituted with an alkoxy group having 3 to 3, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom;
Y 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Shows at least one species selected from the group consisting of groups;
n represents an integer from 0 to 4.
Figure 0007096534000064
前記式[1]で表されるジアミンが、下記式[1’]で表される請求項1に記載の液晶配向剤。
Figure 0007096534000065
The liquid crystal alignment agent according to claim 1, wherein the diamine represented by the formula [1] is represented by the following formula [1'].
Figure 0007096534000065
前記式[1]で表されるジアミンが、下記式[1]-a1、下記式[1]-a2、又は下記式[1]-a3で表される請求項1に記載の液晶配向剤。
Figure 0007096534000066
The liquid crystal alignment agent according to claim 1, wherein the diamine represented by the formula [1] is represented by the following formula [1] -a1, the following formula [1] -a2, or the following formula [1] -a3.
Figure 0007096534000066
前記式[1]で表されるジアミンが、下記式[1]-a1-1、下記式[1]-a2-1~下記式[1]-a2-4、下記式[1]-a3-1又は下記式[1]-a3-2で表される請求項1に記載の液晶配向剤。
Figure 0007096534000067
The diamine represented by the above formula [1] is the following formula [1] -a1-1, the following formula [1] -a2-1 to the following formula [1] -a2-4, the following formula [1] -a3-. 1 or the liquid crystal alignment agent according to claim 1 represented by the following formula [1] -a3-2.
Figure 0007096534000067
前記式[1-1]の構造で表されるYが、下記式[1-1]-1~[1-1]-22(式中、*は、前記式[1]、前記式[1’]、前記式[1]-a1~前記式[1]-a3におけるフェニル基との結合している位置を示す;mは1~15の整数を示し、nは0~18の整数を示す)のいずれかで表される請求項1~4のいずれか一項に記載の液晶配向剤。
Figure 0007096534000068
Y represented by the structure of the formula [1-1] is the following formulas [1-1] -1 to [1-1] -22 (in the formula, * is the formula [1] and the formula [1]. '], Indicates the position where the phenyl group is bonded in the above formula [1] -a1 to the above formula [1] -a3; m indicates an integer of 1 to 15, and n indicates an integer of 0 to 18. ), The liquid crystal alignment agent according to any one of claims 1 to 4.
Figure 0007096534000068
前記ジアミン成分が、下記式[2]で表されるジアミンをさらに含有する
(式[2]中、A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基を表す;
は、2価の有機基を表す。)
請求項1~5のいずれか一項に記載の液晶配向剤。
Figure 0007096534000069
The diamine component further contains a diamine represented by the following formula [2] (in the formula [2], A 1 and A 2 are independently hydrogen atoms or alkyl groups having 1 to 5 carbon atoms. Represents an alkenyl group having 2 to 5 carbon atoms or an alkynyl group having 2 to 5 carbon atoms;
Y 1 represents a divalent organic group. )
The liquid crystal alignment agent according to any one of claims 1 to 5.
Figure 0007096534000069
請求項1~6のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed by using the liquid crystal alignment agent according to any one of claims 1 to 6. 請求項1~6のいずれか一項に記載の液晶配向剤を基板上に塗布して塗膜を形成する工程;
前記塗膜を焼成する工程;及び
焼成して得られた膜を配向処理する工程;
を有することにより、液晶配向膜を形成する、液晶配向膜の製造方法。
A step of applying the liquid crystal alignment agent according to any one of claims 1 to 6 onto a substrate to form a coating film;
A step of firing the coating film; and a step of orienting the film obtained by firing;
A method for producing a liquid crystal alignment film, which forms a liquid crystal alignment film.
請求項7に記載の液晶配向膜;又は請求項8に記載の製造方法により得られた液晶配向膜;を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 7; or the liquid crystal alignment film obtained by the manufacturing method according to claim 8.
JP2019503096A 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element Active JP7096534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022090434A JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017039880 2017-03-02
JP2017039880 2017-03-02
PCT/JP2018/007686 WO2018159733A1 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022090434A Division JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2018159733A1 JPWO2018159733A1 (en) 2019-12-26
JP7096534B2 true JP7096534B2 (en) 2022-07-06

Family

ID=63370317

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019503096A Active JP7096534B2 (en) 2017-03-02 2018-03-01 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2022090434A Active JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022090434A Active JP7409431B2 (en) 2017-03-02 2022-06-02 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP7096534B2 (en)
KR (1) KR102588036B1 (en)
CN (2) CN110573952B (en)
TW (2) TWI767870B (en)
WO (1) WO2018159733A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438157A1 (en) * 2017-08-02 2019-02-06 Samsung Electronics Co., Ltd. Monomer, polymer, compensation film, optical film, and display device
US11518734B2 (en) 2017-08-02 2022-12-06 Samsung Electronics Co., Ltd. Monomer and polymer, compensation film, optical film, and display device
CN113168052A (en) * 2018-11-19 2021-07-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20210099110A (en) * 2018-12-10 2021-08-11 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
KR20210145744A (en) * 2019-03-29 2021-12-02 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element and diamine
KR20230027062A (en) * 2020-06-26 2023-02-27 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
WO2022014467A1 (en) * 2020-07-17 2022-01-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN114545668B (en) * 2022-02-23 2024-04-23 深圳市尊绅投资有限公司 Screen impurity processing method, device and system and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034102A2 (en) 2001-10-16 2003-04-24 Lightwave Microsystems Corporation Waveplate and optical circuit formed from mesogen-containing polymer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117152A1 (en) * 1981-04-30 1982-11-18 Merck Patent Gmbh, 6100 Darmstadt "FLUORINE 4,4'-BIS (CYCLOHEXYL) BIPHENYL DERIVATIVES, THESE DIELECTRICS AND ELECTRO-OPTICAL DISPLAY ELEMENT"
JPH11322927A (en) * 1998-05-11 1999-11-26 Mitsui Toatsu Chem Inc Polyamic acid copolymer, polyimide copolymer, and heat-resistant adhesive
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
KR101235412B1 (en) 2004-12-28 2013-02-20 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material for vertical alignment, liquid-crystal alignment film, and liquid-crystal display element employing the same
JP4788896B2 (en) * 2006-02-22 2011-10-05 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP2010101999A (en) * 2008-10-22 2010-05-06 Chisso Corp Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP2013011755A (en) * 2011-06-29 2013-01-17 Sony Corp Liquid crystal display and method of manufacturing the same
JP6102745B2 (en) * 2011-11-30 2017-03-29 日産化学工業株式会社 Method for producing liquid crystal alignment film
KR102234876B1 (en) * 2013-09-03 2021-03-31 닛산 가가쿠 가부시키가이샤 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element
KR102241786B1 (en) * 2013-10-23 2021-04-16 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
CN107533259B (en) * 2015-03-04 2024-06-21 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20220147158A (en) * 2016-09-29 2022-11-02 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034102A2 (en) 2001-10-16 2003-04-24 Lightwave Microsystems Corporation Waveplate and optical circuit formed from mesogen-containing polymer

Also Published As

Publication number Publication date
CN110573952B (en) 2022-03-22
TW202214749A (en) 2022-04-16
TWI767870B (en) 2022-06-11
JP7409431B2 (en) 2024-01-09
KR20190125992A (en) 2019-11-07
CN110573952A (en) 2019-12-13
JPWO2018159733A1 (en) 2019-12-26
TW201842172A (en) 2018-12-01
WO2018159733A1 (en) 2018-09-07
TWI752177B (en) 2022-01-11
JP2022113743A (en) 2022-08-04
CN114609830A (en) 2022-06-10
KR102588036B1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
JP7096534B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR101742838B1 (en) Liquid crystal aligning agent and liquid crystal display element using same
TWI588181B (en) A liquid crystal alignment film, a manufacturing method of a liquid crystal alignment film, and a liquid crystal display element
JP7093059B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
JP7255486B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2019103042A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, and liquid crystal display element
JP7428145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7348597B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2021060270A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN115968453A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI683857B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN112352191A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element using same, method for producing liquid crystal display element, and diamine compound
JP7409375B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
JP7161147B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element using the same, and method for producing the liquid crystal alignment film
WO2021059999A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, polymer, and diamine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R151 Written notification of patent or utility model registration

Ref document number: 7096534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151