JP7095926B2 - How to improve single-phase self-adaptive reclosing of high-voltage AC transmission line on the inverter side - Google Patents

How to improve single-phase self-adaptive reclosing of high-voltage AC transmission line on the inverter side Download PDF

Info

Publication number
JP7095926B2
JP7095926B2 JP2021120591A JP2021120591A JP7095926B2 JP 7095926 B2 JP7095926 B2 JP 7095926B2 JP 2021120591 A JP2021120591 A JP 2021120591A JP 2021120591 A JP2021120591 A JP 2021120591A JP 7095926 B2 JP7095926 B2 JP 7095926B2
Authority
JP
Japan
Prior art keywords
voltage
phase
failure
adaptive reclosing
inverter side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021120591A
Other languages
Japanese (ja)
Other versions
JP2022021346A (en
Inventor
永麗 李
金▲ざおう▼ 宋
云柯 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Publication of JP2022021346A publication Critical patent/JP2022021346A/en
Application granted granted Critical
Publication of JP7095926B2 publication Critical patent/JP7095926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、インバーター側高電圧交流送電線の単相自己適応再閉路の改善基準に関する。 The present invention relates to a standard for improving a single-phase self-adaptive reclosing of a high-voltage AC transmission line on the inverter side.

単相自己適応再閉路技術は、サーキットブレーカーが閉じる前に交流架空送電線の故障の性質を識別できるため、瞬間的な故障が消えた後にサーキットブレーカーが再び閉じ、永久的な故障の場合は再び閉じないから、電源システムの電源の信頼性を向上させる。同期電源の純粋な交流システムについて、国内外の学者はさまざまな単相自己適応再閉路基準を与えており、これらの基準は故障の性質をより正確に識別することができる。近年、直流送電技術が広く利用されており、我が国は現在、世界最大で、運転状況が最も復雑な交流・直流ハイブリッドシステムを構築している。インバーター側で単相地絡が発生した後の交流・直流ハイブリッドシステムの電気的特性は、同期電源の純粋な交流システムとは異なる。具体的には、純粋な交流システムは、単相接地故障が発生してトリップした後に位相を切断して回復する電圧の振幅は変動しないのに対し、インバーター側の高電圧交流システムは、単相接地故障が発生してトリップした後に位相を切断して回復する電圧の振幅は、位相スイッチング失敗と直流制御システムの非線形調整の影響を受けて短い時間の変動がある。この違いにより、インバーター側の高電圧交流送電線に適用されるいくつかの単相適応一致基準が発生し、故障の性質を正確に特定できなくなる。従来の単相自己適応再閉路基準がインバーター側高圧交流送電線に適用できないという問題については、対応策を示す文献はない。 Single-phase self-adaptive reclosing technology can identify the nature of an AC overhead transmission line failure before the circuit breaker closes, so that the circuit breaker closes again after the momentary failure disappears and again in case of a permanent failure. Since it does not close, it improves the reliability of the power supply of the power supply system. For pure AC systems of synchronous power, domestic and foreign scholars have given various single-phase self-adaptive reclosing criteria, which can more accurately identify the nature of the failure. In recent years, DC power transmission technology has been widely used, and Japan is currently constructing the world's largest AC / DC hybrid system with the most complicated operating conditions. The electrical characteristics of an AC / DC hybrid system after a single-phase ground fault occurs on the inverter side are different from those of a pure AC system with a synchronous power supply. Specifically, in a pure AC system, the amplitude of the voltage recovered by cutting the phase after tripping due to a single-phase ground failure does not fluctuate, whereas in the high-voltage AC system on the inverter side, it is simple. The voltage amplitude recovered by cutting the phase after tripping due to a phase ground failure has a short time fluctuation due to the influence of phase switching failure and non-linear adjustment of the DC control system. This difference creates some single-phase adaptive matching criteria that apply to high-voltage AC transmission lines on the inverter side, making it impossible to pinpoint the nature of the failure. There is no literature showing a countermeasure for the problem that the conventional single-phase self-adaptive reclosing standard cannot be applied to the high-voltage AC transmission line on the inverter side.

上記問題により、本発明は、インバーター側高電圧交流送電線に適合する単相自己適応再閉路の改善基準を与える。本発明の技術的提案は以下の通りである。 Due to the above problems, the present invention provides an improvement standard for a single-phase self-adaptive reclosing line suitable for an inverter-side high-voltage AC transmission line. The technical proposal of the present invention is as follows.

インバーター側高電圧交流送電線に適合する単相自己適応再閉路の改善方法は、次のステップを含む。 Methods for improving single-phase self-adaptive reclosing that are compatible with inverter-side high-voltage AC transmission lines include the following steps.

(1)電圧変流器を用いてインバーター側変流母線電圧をリアルタイムで取得する。 (1) Acquire the inverter side current transformer bus voltage in real time using a current transformer.

(2)インバーター側交流システムの単相接地故障が発生しトリップ後、高速フーリエアルゴリズムを使用して変流母線の電圧振幅数値Uを計算し、半サイクルのUのピーク値とバレー値の差をリアルタイムで計算しΔUに設定する。 (2) After a single-phase ground failure of the AC system on the inverter side occurs and a trip occurs, the voltage amplitude value U of the turbulent bus is calculated using the high-speed Fourier algorithm, and the difference between the peak value and valley value of U in half a cycle. Is calculated in real time and set to ΔU.

(3)変流母線の電圧をUBに設定し、設定値Gを4%UBに設定し、ΔUをGと比較する。ΔUがGより大きい場合は単相自己適応再閉路を閉鎖し、Gより小さい場合は単相自己適応再閉路を開放し、故障の性質を区別する。 (3) Set the voltage of the current transformer bus to UB , set the set value G to 4% UB, and compare ΔU with G. If ΔU is greater than G, the single-phase self-adaptive reclosing cycle is closed, and if it is less than G, the single-phase self-adaptive reclosing path is opened to distinguish the nature of the failure.

(4)並列リアクトルのない交流架空送電線の場合、次の単相適応再閉路基準が採用される。一時的な故障の場合は回復電圧の振幅が高く、永久的な故障の場合は回復電圧の振幅が低いという現象に回復して設定値UDZを設定する。
UDZ=KkUxl
(4) For AC overhead transmission lines without parallel reactors, the following single-phase adaptive reclosing criteria are adopted. In the case of a temporary failure, the recovery voltage amplitude is high, and in the case of a permanent failure, the recovery voltage amplitude is low, and the set value U DZ is set.
U DZ = K k U xl

上記の式では、Kkは信頼性係数であり、1.2として、Uxlは最大負荷条件の2相動作時の故障相誘導電圧とし、測定した電圧がUDZより大きい場合は一時的故障と判定する。 In the above equation, K k is the reliability coefficient, 1.2, U xl is the fault phase induced voltage during two-phase operation under the maximum load condition, and if the measured voltage is larger than U DZ , it is judged as a temporary fault. do.

並列リアクトルを有する交流架空送電線の場合、次の単相自己適応再閉路基準が採用される。送電線に一時的な故障が発生した場合、回復電圧にはビート周波数特性があり、各ビートサイクルでの関係は次のとおりである。
Umax-Umin=2U1>UxL/2
For AC overhead transmission lines with parallel reactors, the following single-phase self-adaptive reclosing criteria are adopted. When a temporary failure occurs in the transmission line, the recovery voltage has a beat frequency characteristic, and the relationship in each beat cycle is as follows.
U max -U min = 2U 1 > U xL / 2

上記の式で、UmaxとUminはそれぞれ、各ビートサイクルの回復電圧の最大値と最小値であり、UxLは切断された相の電磁結合電圧である。送電線に永久的な故障が発生した場合、回復電圧ビート周波数特性はない。各ビートサイクルでの関係は次のとおりである。
Umax-Umin=0<<UxL/2
In the above equation, U max and U min are the maximum and minimum recovery voltages for each beat cycle, respectively, and U x L is the electromagnetic coupling voltage of the disconnected phase. In the event of a permanent failure of the transmission line, there is no recovery voltage beat frequency characteristic. The relationship in each beat cycle is as follows.
U max -U min = 0 << U xL / 2

設定値UDZをUxL/2に設定し、(Umax-Umin)を計算して設定値UDZと比較し、故障の性質を区別するようにする。 Set the set value U DZ to U xL / 2, calculate (U max -U min ) and compare it with the set value U DZ to distinguish the nature of the failure.

本発明は上記の技術スキームを採用し、以下の利点を有する。それは、インバーター側の高圧交流送電線に適した単相自己適応再閉路の改善された基準を提供する。インバーター側の単相接地故障に対して、改善された基準は、故障の性質を正確に識別できることで、AC-DC相互接続システムの安全で安定した動作を保証する。 The present invention employs the above technical scheme and has the following advantages. It provides an improved standard for single-phase self-adaptive reclosing suitable for high voltage AC transmission lines on the inverter side. For single-phase ground faults on the inverter side, the improved criteria ensure safe and stable operation of AC-DC interconnect systems by being able to accurately identify the nature of the fault.

並列リアクトルを使用しない架空送電線の単相自己適応再閉路の改善基準の故障の故障特性判別フローチャートである。It is a failure characteristic determination flowchart of the failure of the improvement standard of the single-phase self-adaptive reclosing of an overhead transmission line which does not use a parallel reactor. 並列リアクトルを備えた架空送電線の単相自己適応再閉路の改善基準の故障の故障特性判別フローチャートである。It is a failure characteristic determination flowchart of the failure of the improvement criteria of the single-phase self-adaptive reclosing of an overhead transmission line equipped with a parallel reactor. Yun-Gguang UHVDCシステムの構造を示す図である。It is a figure which shows the structure of a Yun-Gguang UHVDC system. 無並列リアクトル架空送電線の一時的な故障時のスイッチング母線の電圧振幅である。Parallel reactor This is the voltage amplitude of the switching bus at the time of temporary failure of the overhead transmission line. 無並列リアクトルによる架空送電線の永久的な故障時のスイッチング母線電圧の振幅を示す図である。It is a figure which shows the amplitude of the switching bus voltage at the time of a permanent failure of an overhead transmission line by a parallel reactor. 並列リアクトルを備えた架空送電線の一時的な故障時のスイッチング母線電圧の振幅である。The amplitude of the switching bus voltage during a temporary failure of an overhead transmission line with parallel reactors. 並列リアクトルを備えた架空送電線の永久的な故障時のスイッチング母線電圧の振幅を示す図である。It is a figure which shows the amplitude of the switching bus voltage at the time of a permanent failure of an overhead transmission line equipped with a parallel reactor.

Yun-Gguang UHVDCシステムモデルの次の4つの故障計算例を使用して、並列リアクトルのない交流線と並列リアクトルのある交流線で一時的かつ永久的な接地故障が発生した場合の本発明の具体的な実施方法を紹介する。 Using the following four failure calculation examples of the Yun-Gguang UHVDC system model, the specifics of the present invention when a temporary and permanent ground failure occurs in an AC line without a parallel reactor and an AC line with a parallel reactor. Introducing a typical implementation method.

計算例1:Yun-Guang UHVDC高電圧直流系統のインバーター側の1回交流送電線は長さは100kmであり、並列リアクトルを持っていないで、そのA相は一時的な単相接地故障が発生して、故障位置は線の中点であった。故障発生時刻は1.0sで、故障は0.1s続き、A相ブレーカは1.06sでトリップし、故障は1.1sで消失した。改善された単相自己適応再閉路の基準の実施プロセスは以下の通りである。 Calculation example 1: Yun-Guang UHVDC The single AC transmission line on the inverter side of the high voltage DC system is 100km long and does not have a parallel reactor, and its A phase has a temporary single-phase ground failure. When it occurred, the failure position was at the midpoint of the line. The failure time was 1.0s, the failure lasted 0.1s, the phase A breaker tripped at 1.06s, and the failure disappeared at 1.1s. The implementation process of the improved single-phase self-adaptive reclosing criteria is as follows.

(1)電圧変流器を用いてインバーター側変流母線電圧をリアルタイムで取得した。 (1) The inverter-side current transformer bus voltage was acquired in real time using a current transformer.

(2)インバーター側交流システムの単相接地故障が発生しトリップ後、高速フーリエアルゴリズムを使用して変流母線の電圧振幅数値Uを計算し、振幅曲線を図4に示す。図には丸点がピークポイントで、三角形はバリューポイントである。変流母線電圧振幅数値のピーク値Uとバレー値の差としてのΔUを計算した。 (2) After a single-phase grounding failure of the AC system on the inverter side occurs and a trip occurs, the voltage amplitude value U of the transmutation bus is calculated using the high-speed Fourier algorithm, and the amplitude curve is shown in FIG. In the figure, the circle points are the peak points and the triangles are the value points. The difference between the peak value U and the valley value of the current transformer bus voltage amplitude value was calculated as ΔU.

(3)Yun-Gguang UHVDC高圧直流インバーター側の交流システムの定格電圧は525kV、設定値Gは21kVであり、ΔUをGと比較した。単相トリップの初期段階で、ΔUがGより大きい場合、単相自己適応再閉路基準とする。位相スイッチングプロセスの回復につれて、ΔUが徐々に減少する。ΔUがGより小さい場合は単相自己適応再閉路基準を開放した。図4では、単相自己適応再閉路の開始基準が矢印で示されている。 (3) Yun-Gguang UHVDC The rated voltage of the AC system on the high-voltage DC inverter side was 525kV, the set value G was 21kV, and ΔU was compared with G. If ΔU is greater than G at the initial stage of a single-phase trip, it is used as a single-phase self-adaptive reclosing reference. As the phase switching process recovers, ΔU gradually decreases. When ΔU was smaller than G, the single-phase self-adaptive reclosing criterion was opened. In Figure 4, the starting criteria for single-phase self-adaptive reclosing are indicated by arrows.

(4)位相回復電圧振幅値をオフに基づく基準を使用して、故障の性質を区別した。このモデルでは、故障バイパスの最大負荷電流は4.41kAであり、2相動作中の最大ゼロシーケンス電流は0.85kAであり、ラインパラメータによってUxl=49.9kV、Kkが1.2と計算でき、UDZ=59.88kVになる。切断された相の回復電圧は66.1kVと測定され、これはUDZよりも大きい。したがって、故障の性質を一時的な故障と判定することができた。判定結果はシミュレーション条件と一致した。 (4) The nature of the failure was distinguished using a criterion based on the phase retrieval voltage amplitude value off. In this model, the maximum load current for fault bypass is 4.41 kA, the maximum zero sequence current during two-phase operation is 0.85 kA, and the line parameters can be calculated as U xl = 49.9 kV, K k 1.2, U DZ . = 59.88kV. The recovery voltage of the disconnected phase is measured at 66.1 kV, which is higher than U DZ . Therefore, the nature of the failure could be determined to be a temporary failure. The judgment result matched the simulation conditions.

計算例2:Yun-Gguang UHVDC高電圧直流システムのインバーター側の1回路交流送電線が100kmの長さで、並列リアクトルがなく、そのA相に永久的な単相接地故障が発生して、故障位置が中間点であった。故障発生時刻は1.0sで、遷移抵抗は2Ω、A相サーキットブレーカーは1.06秒でトリップする。改良された単相自己適応再閉路法の実装プロセスは次のとおりである。 Calculation example 2: The one-circuit AC transmission line on the inverter side of the Yun-Gguang UHVDC high-voltage DC system is 100 km long, has no parallel reactor, and has a permanent single-phase ground failure in its A phase. The failure position was the midpoint. The failure occurrence time is 1.0s, the transition resistance is 2Ω, and the A-phase circuit breaker trips in 1.06 seconds. The implementation process of the improved single-phase self-adaptive reclosing method is as follows.

(1)電圧変流器を用いてインバーター側変流母線電圧をリアルタイムで取得した。 (1) The voltage of the current transformer on the inverter side was acquired in real time using a current transformer.

(2)インバーター側交流システムの単相接地故障が発生しトリップ後、高速フーリエアルゴリズムを使用して変流母線の電圧振幅数値Uを計算し、振幅曲線を図5に示す。図には丸点がピークポイントで、三角形はバリューポイントである。変流母線電圧振幅数値のピーク値Uとバレー値の差としてのΔUを計算した。 (2) After a single-phase grounding failure of the AC system on the inverter side occurs and the trip occurs, the voltage amplitude value U of the transmutation bus is calculated using the high-speed Fourier algorithm, and the amplitude curve is shown in FIG. In the figure, the circle points are the peak points and the triangles are the value points. The difference between the peak value U and the valley value of the current transformer bus voltage amplitude value was calculated as ΔU.

(3)Yun-Gguang UHVDC高圧直流インバーター側の交流システムの定格電圧は525kV、設定値Gは21kVであり、ΔUをGと比較した。単相トリップの初期段階で、ΔUがGより大きい場合、単相自己適応再閉路基準とする。位相スイッチングプロセスの回復につれて、ΔUが徐々に減少する。ΔUがGより小さい場合は単相自己適応再閉路基準を開放する。図5では、単相自己適応再閉路の開始基準が矢印で示されている。 (3) Yun-Gguang UHVDC The rated voltage of the AC system on the high-voltage DC inverter side was 525kV, the set value G was 21kV, and ΔU was compared with G. If ΔU is greater than G at the initial stage of a single-phase trip, it is used as a single-phase self-adaptive reclosing reference. As the phase switching process recovers, ΔU gradually decreases. If ΔU is less than G, the single-phase self-adaptive reclosing criterion is opened. In FIG. 5, the starting criteria for single-phase self-adaptive reclosing is indicated by arrows.

(4)位相回復電圧振幅値をオフに基づく基準を使用して、故障の性質を区別した。このモデルでは、故障バイパスの最大負荷電流は4.41kAであり、2相動作中の最大ゼロシーケンス電流は0.85kAであり、ラインパラメータによってUxl=49.9kV、Kkが1.2と計算でき、UDZ=59.88kVになる。切断された相の回復電圧は3.7kVと測定され、これはUDZよりも大きい。したがって、故障の性質を永久的な故障と判定することができた。判定結果はシミュレーション条件と一致した。 (4) The nature of the failure was distinguished using a criterion based on the phase retrieval voltage amplitude value off. In this model, the maximum load current for fault bypass is 4.41 kA, the maximum zero sequence current during two-phase operation is 0.85 kA, and the line parameters can be calculated as U xl = 49.9 kV, K k 1.2, U DZ . = 59.88kV. The recovery voltage of the disconnected phase is measured as 3.7 kV, which is higher than U DZ . Therefore, the nature of the failure could be determined to be a permanent failure. The judgment result matched the simulation conditions.

計算例3:Yun-Guang UHVDC高電圧直流システムのインバーター側の1回路交流送電線が358kmの長さで、両端に並列リアクトルを備えて、そのA相に一時的な単相接地故障が発生して、故障位置は変流母線から322kmであり、故障発生時刻は1.0sであり、遷移抵抗は2Ωであり、A相サーキットブレーカーは1.06秒でトリップする。故障は1.1sで消失した。改良された単相自己適応再閉路法の実装プロセスは次のとおりである。 Calculation example 3: One circuit AC transmission line on the inverter side of the Yun-Guang UHVDC high-voltage DC system is 358 km long and has parallel reactors at both ends, and a temporary single-phase ground failure occurs in its A phase. The failure position is 322km from the current transformer line, the failure occurrence time is 1.0s, the transition resistance is 2Ω, and the A-phase circuit breaker trips in 1.06 seconds. The failure disappeared in 1.1s. The implementation process of the improved single-phase self-adaptive reclosing method is as follows.

(1)電圧変流器を用いてインバーター側変流母線電圧をリアルタイムで取得した。 (1) The inverter-side current transformer bus voltage was acquired in real time using a current transformer.

(2)インバーター側交流システムの単相接地故障が発生しトリップ後、高速フーリエアルゴリズムを使用して変流母線の電圧振幅数値Uを計算し、振幅曲線を図6に示す。図には丸点がピークポイントで、三角形はバリューポイントである。変流母線電圧振幅数値のピーク値Uとバレー値の差としてのΔUを計算した。 (2) After a single-phase grounding failure of the AC system on the inverter side occurs and the trip occurs, the voltage amplitude value U of the transmutation bus is calculated using the high-speed Fourier algorithm, and the amplitude curve is shown in FIG. In the figure, the circle points are the peak points and the triangles are the value points. The difference between the peak value U and the valley value of the current transformer bus voltage amplitude value was calculated as ΔU.

(3)Yun-Gguang UHVDC高圧直流インバーター側の交流システムの定格電圧は525kV、設定値Gは21kVであり、ΔUをGと比較する。単相トリップの初期段階で、ΔUがGより大きい場合、単相自己適応再閉路基準とした。位相スイッチングプロセスの回復につれて、ΔUが徐々に減少した。ΔUがGより小さい場合は単相自己適応再閉路基準を開放した。図6では、単相自己適応再閉路の開始基準が矢印で示されている。 (3) Yun-Gguang UHVDC The rated voltage of the AC system on the high-voltage DC inverter side is 525kV, the set value G is 21kV, and ΔU is compared with G. If ΔU was greater than G in the early stages of a single-phase trip, it was used as a single-phase self-adaptive reclosing criterion. As the phase switching process recovered, ΔU gradually decreased. When ΔU was smaller than G, the single-phase self-adaptive reclosing criterion was opened. In FIG. 6, the starting criteria for the single-phase self-adaptive reclosing cycle are indicated by arrows.

Figure 0007095926000001
Figure 0007095926000001

計算例4:Yun-Guang UHVDC高電圧直流システムのインバーター側の1回路交流送電線が358kmの長さで、両端に並列リアクトルを備えて、そのA相に永久的な単相接地故障が発生して、故障位置は変流母線から322km。故障発生時刻は1.0sで、遷移抵抗は2Ω、A相サーキットブレーカーは1.06秒でトリップした。改良された単相自己適応再閉路法の実装プロセスは次のとおりである。 Calculation example 4: One circuit AC transmission line on the inverter side of the Yun-Guang UHVDC high-voltage DC system is 358 km long and has parallel reactors at both ends, and a permanent single-phase ground failure occurs in its A phase. The location of the failure is 322km from the current bus. The failure time was 1.0s, the transition resistance was 2Ω, and the A-phase circuit breaker tripped in 1.06 seconds. The implementation process of the improved single-phase self-adaptive reclosing method is as follows.

(1)電圧変流器を用いてインバーター側変流母線電圧をリアルタイムで取得した。 (1) The voltage of the current transformer on the inverter side was acquired in real time using a current transformer.

(2)インバーター側交流システムの単相接地故障が発生しトリップ後、高速フーリエアルゴリズムを使用して変流母線の電圧振幅数値Uを計算し、振幅曲線を図7に示す。図には丸点がピークポイントで、三角形はバリューポイントである。変流母線電圧振幅数値のピーク値Uとバレー値の差としてのΔUを計算した。 (2) After a single-phase grounding failure of the AC system on the inverter side occurs and the trip occurs, the voltage amplitude value U of the transmutation bus is calculated using the high-speed Fourier algorithm, and the amplitude curve is shown in FIG. In the figure, the circle points are the peak points and the triangles are the value points. The difference between the peak value U and the valley value of the current transformer bus voltage amplitude value was calculated as ΔU.

(3)Yun-Gguang UHVDC高圧直流インバーター側の交流システムの定格電圧は525kV、設定値Gは21kVであり、ΔUをGと比較した。単相トリップの初期段階で、ΔUがGより大きい場合、単相自己適応再閉路基準とした。位相スイッチングプロセスの回復につれて、ΔUが徐々に減少する。ΔUがGより小さい場合は単相自己適応再閉路基準を開放した。図7では、単相自己適応再閉路の開始基準が矢印で示されている。 (3) Yun-Gguang UHVDC The rated voltage of the AC system on the high-voltage DC inverter side was 525kV, the set value G was 21kV, and ΔU was compared with G. If ΔU was greater than G in the early stages of a single-phase trip, it was used as a single-phase self-adaptive reclosing criterion. As the phase switching process recovers, ΔU gradually decreases. When ΔU was smaller than G, the single-phase self-adaptive reclosing criterion was opened. In Figure 7, the starting criteria for single-phase self-adaptive reclosing are indicated by arrows.

Figure 0007095926000002
Figure 0007095926000002

Claims (1)

インバーター側高電圧交流送電線の単相自己適応再閉路の改善方法であって、下記のステップを含み、
(1)電圧変流器を用いてインバーター側変流母線電圧をリアルタイムで取得し、
(2)インバーター側交流システムの単相接地故障が発生しトリップ後、高速フーリエアルゴリズムを使用して変流母線の電圧振幅数値Uを計算し、半サイクルのUのピーク値とバレー値の差をリアルタイムで計算し、ΔUに設定し、
(3)変流母線の電圧をUBに設定し、設定値Gを4%UBに設定し、ΔUをGと比較し、ΔUがGより大きい場合は単相自己適応再閉路を閉鎖し、Gより小さい場合は単相自己適応再閉路を開放し、故障の性質を区別し、
(4)並列リアクトルのない交流架空送電線の場合、次の単相適応再閉路基準が採用され、一時的な故障の場合は回復電圧の振幅が高く、永久的な故障の場合は回復電圧の振幅が低いという現象に回復して設定値UDZを設定し、
UDZ=KkUxl
上記の式では、Kkは信頼性係数であり、1.2として、Uxlは最大負荷条件の2相動作時の故障相誘導電圧で、測定した電圧がUDZより大きい場合は一時的故障と判定し、
並列リアクトルを有する交流架空送電線の場合、次の単相自己適応再閉路基準が採用され、送電線に一時的な故障が発生した場合、回復電圧にはビート周波数特性があり、各ビートサイクルでの関係は次のとおりであり、
Umax-Umin=2U1>UxL/2
上記の式で、UmaxとUminはそれぞれ、各ビートサイクルの回復電圧の最大値と最小値であり、UxLは切断された相の電磁結合電圧であり、送電線に永久的な故障が発生した場合、回復電圧ビート周波数特性はなく、各ビートサイクルでの関係は次のとおりであり、
Umax-Umin=0<<UxL/2
設定値UDZをUxL/2に設定し、(Umax-Umin)を計算して設定値UDZと比較し、故障の性質を区別するようにする、ことを特徴とするインバーター側高電圧交流送電線の単相自己適応再閉路の改善方法。
A method for improving the single-phase self-adaptive reclosing of high-voltage AC transmission lines on the inverter side, including the following steps.
(1) Acquire the inverter side current transformer bus voltage in real time using a current transformer.
(2) After a single-phase grounding failure of the AC system on the inverter side occurs and a trip occurs, the voltage amplitude value U of the turbulent bus is calculated using the high-speed Fourier algorithm, and the difference between the peak value and valley value of U in half a cycle. Is calculated in real time, set to ΔU, and
(3) Set the voltage of the turbulent bus to UB, set the set value G to 4% UB, compare ΔU with G, and if ΔU is larger than G, close the single - phase self - adaptive reclosing cycle. , If smaller than G, open the single-phase self-adaptive reclosing cycle to distinguish the nature of the failure,
(4) In the case of an AC overhead transmission line without parallel reactors, the following single-phase adaptive reclosing criteria are adopted, the amplitude of the recovery voltage is high in the case of a temporary failure, and the recovery voltage in the case of a permanent failure. Recover to the phenomenon that the amplitude is low, set the set value U DZ , and
U DZ = K k U xl
In the above equation, K k is the reliability coefficient, and 1.2 is U xl , which is the fault phase induced voltage during two-phase operation under the maximum load condition. death,
For AC overhead transmission lines with parallel reactors, the following single-phase self-adaptive reclosing criteria are adopted, and in the event of a temporary failure of the transmission line, the recovery voltage has a beat frequency characteristic and at each beat cycle. The relationship is as follows:
U max -U min = 2U 1 > U xL / 2
In the above equation, U max and U min are the maximum and minimum recovery voltages for each beat cycle, respectively, and U x L is the electromagnetic coupling voltage of the disconnected phase, resulting in a permanent failure of the transmission line. When it occurs, there is no recovery voltage beat frequency characteristic, and the relationship at each beat cycle is as follows:
U max -U min = 0 << U xL / 2
Inverter side height characterized by setting the set value U DZ to U xL / 2, calculating (U max -U min ) and comparing it with the set value U DZ to distinguish the nature of the failure. How to improve single-phase self-adaptive reclosing of voltage-AC transmission lines.
JP2021120591A 2020-07-21 2021-07-21 How to improve single-phase self-adaptive reclosing of high-voltage AC transmission line on the inverter side Active JP7095926B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010704278.2A CN111834979B (en) 2020-07-21 2020-07-21 Single-phase self-adaptive reclosing improvement method for high-voltage alternating-current transmission line on inversion side
CN202010704278.2 2020-07-21

Publications (2)

Publication Number Publication Date
JP2022021346A JP2022021346A (en) 2022-02-02
JP7095926B2 true JP7095926B2 (en) 2022-07-05

Family

ID=72923820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021120591A Active JP7095926B2 (en) 2020-07-21 2021-07-21 How to improve single-phase self-adaptive reclosing of high-voltage AC transmission line on the inverter side

Country Status (2)

Country Link
JP (1) JP7095926B2 (en)
CN (1) CN111834979B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593762B (en) * 2023-07-17 2023-09-08 烟台东方威思顿电气有限公司 In-situ feeder automatic instantaneous voltage detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868137A (en) 2012-09-27 2013-01-09 沈阳工业大学 Method and device for controlling ultrahigh-voltage transmission line single-phase automatic reclosing
US8744637B1 (en) 2013-09-12 2014-06-03 Deepak Maragal Methods and apparatus for detecting the clearance of fault in shunt reactor compensated transmission lines
CN109309380A (en) 2018-10-09 2019-02-05 珠海许继电气有限公司 Adaptive three_phase reclosing method and system based on shunt reactor current characteristic

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316036B (en) * 2008-07-16 2011-06-08 天津大学 Self-adapting three-phase reclosure decision method of ultra-high voltage electric power line with shunt reactor
KR101467249B1 (en) * 2014-03-11 2014-12-02 성균관대학교산학협력단 Apparatus and method for adaptive auto-reclosing based on transient stability
CN104502744B (en) * 2014-11-26 2017-06-20 国家电网公司 A kind of transmission line of electricity single-phase fault property method of discrimination with shunt reactor
BR102015023940B1 (en) * 2015-09-17 2022-03-03 Universidade Estadual De Campinas - Unicamp Adaptive control method for three-pole reclosing of compensated lines subjected to internal faults
KR101883558B1 (en) * 2016-09-20 2018-07-30 한국전력공사 Isolation of faulted section for short-circuit fault in inverter-based remote micro-grid
CN108155630B (en) * 2017-12-22 2019-03-08 南京南瑞继保工程技术有限公司 A kind of adaptive reclosing method of the double loop with shunt reactor
CN109038634B (en) * 2018-07-17 2020-09-01 南方电网科学研究院有限责任公司 Method and device for inhibiting secondary commutation failure of high-voltage direct-current transmission and storage medium
CN109217263A (en) * 2018-08-21 2019-01-15 华北电力大学 A kind of adaptive reclosing method realized with shunt reactor transmission line of electricity
CN110474307B (en) * 2019-08-30 2021-07-27 天津大学 Self-adaptive fault component current differential protection method based on current sag detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868137A (en) 2012-09-27 2013-01-09 沈阳工业大学 Method and device for controlling ultrahigh-voltage transmission line single-phase automatic reclosing
US8744637B1 (en) 2013-09-12 2014-06-03 Deepak Maragal Methods and apparatus for detecting the clearance of fault in shunt reactor compensated transmission lines
CN109309380A (en) 2018-10-09 2019-02-05 珠海许继电气有限公司 Adaptive three_phase reclosing method and system based on shunt reactor current characteristic

Also Published As

Publication number Publication date
CN111834979B (en) 2022-04-19
JP2022021346A (en) 2022-02-02
CN111834979A (en) 2020-10-27

Similar Documents

Publication Publication Date Title
CN107390010B (en) Method for rapidly detecting trailing current of current transformer
CN112003235B (en) Split-phase self-adaptive reclosing time sequence method for power transmission line
CN110474358B (en) Control method for inhibiting continuous commutation failure in extra-high voltage direct current hierarchical access mode
Lee et al. A study on wind-turbine generator system sizing considering overcurrent relay coordination with SFCL
CN114563659A (en) Injection signal-based three-phase short-circuit fault property identification method
CN110794340B (en) Disconnection protection method and circuit for high-voltage overhead line
JP7095926B2 (en) How to improve single-phase self-adaptive reclosing of high-voltage AC transmission line on the inverter side
CN110224382B (en) Micro-grid relay protection method and device
CN107255774B (en) Line selection method based on trip and closing information of mistakenly selected line
CN112952775A (en) Method for protecting voltage quantity of power distribution network containing distributed photovoltaic power supply
CN113949049B (en) Self-adaptive single-phase reclosing method for 220kV power transmission line
CN112398091A (en) Reactor control winding turn-to-turn protection method and system based on multi-dimensional feature identification
CN111711180B (en) Method and system for preventing zero sequence overcurrent protection misoperation of ultrahigh voltage spare power automatic switching induction line
Rezaei et al. A Novel Differential-based Protection Scheme for Intertie Zone of Large-Scale Centralized DFIG Wind Farms
LIANG et al. Research on phase-by-phase adaptive reclosing sequence for transmission lines
CN112072619A (en) Self-adaptive reclosing method for single-phase earth fault in bipolar direct current website
Akter et al. Impedance based directional relaying for smart power networks integrating with converter interfaced photovoltaic plants
CN114389244B (en) Device and method for suppressing secondary current of UPFC circuit and self-adaptive reclosing
Aiming et al. An Active Protection Scheme for Microgrids Based on the Harmonic Injection
Jia et al. Overview of adaptive reclosing technique and the challenge faced in AC/DC hybrid power grid
He et al. Fault Analysis of the Misoperation of 220kv Transformer Differential Protection Caused by Restorative Inrush Current
Zheng et al. Adaptive Reclosing Strategy for Distribution Network Based on Three-Phase Additional Inductance
Huang et al. A Cosine Similarity Based Pilot Protection Method for MTDC Grid
Yan et al. Process and Protection Action of Commissioning Fault of Offshore Wind Farm Grid-Connected Transmission Lines
CN116466266A (en) Novel short-circuit fault identification method based on sequence impedance difference angle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220616

R150 Certificate of patent or registration of utility model

Ref document number: 7095926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150