JP7094482B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP7094482B2
JP7094482B2 JP2020173175A JP2020173175A JP7094482B2 JP 7094482 B2 JP7094482 B2 JP 7094482B2 JP 2020173175 A JP2020173175 A JP 2020173175A JP 2020173175 A JP2020173175 A JP 2020173175A JP 7094482 B2 JP7094482 B2 JP 7094482B2
Authority
JP
Japan
Prior art keywords
air
temperature
heat
supply
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020173175A
Other languages
Japanese (ja)
Other versions
JP2022064500A (en
Inventor
恵一 木村
貴之 石田
和也 後藤
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2020173175A priority Critical patent/JP7094482B2/en
Publication of JP2022064500A publication Critical patent/JP2022064500A/en
Application granted granted Critical
Publication of JP7094482B2 publication Critical patent/JP7094482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和装置に関するものである。 The present invention relates to an air conditioner.

恒温恒湿空調用の空気調和装置として、熱源用空気と空調用空気を冷媒を介して熱交換するヒートポンプと、ヒートポンプで熱交換した空調用空気を加熱する電気ヒーターと、空調用空気を加湿する蒸気加湿器と、これらの機器にて目標温湿度に調整した空調用空気を被空調空間に給気する送風機と、を備えたものが知られている。 As an air conditioner for constant temperature and humidity air conditioning, a heat pump that exchanges heat between heat source air and air conditioning air via a refrigerant, an electric heater that heats the air conditioning air exchanged by the heat pump, and humidifying the air conditioning air. Those equipped with a steam humidifier and a blower that supplies air-conditioned air adjusted to a target temperature and humidity to the air-conditioned space by these devices are known.

特開2016-23851号公報Japanese Unexamined Patent Publication No. 2016-23851

このような空冷ヒートポンプでは、熱源空気が低温になるとヒートポンプの熱源用熱交換器に霜付きが発生するため、除霜運転が不可欠となる。除霜運転を行うとヒートポンプの給気用熱交換器で空調用空気を加熱できなくなるため、除霜運転の前後でヒートポンプ加熱と電気ヒーター加熱を切換えているが、両者の立上がりと立下りにズレが生じやすくなる。そのため、給気温度がバラツキを起こして目標給気温度の許容範囲を超える問題があった。 In such an air-cooled heat pump, defrosting operation is indispensable because frosting occurs in the heat exchanger for the heat source of the heat pump when the heat source air becomes low temperature. When the defrosting operation is performed, the air for air conditioning cannot be heated by the heat exchanger for air supply of the heat pump, so the heat pump heating and the electric heater heating are switched before and after the defrosting operation, but the rise and fall of both are different. Is likely to occur. Therefore, there is a problem that the supply air temperature varies and exceeds the allowable range of the target supply air temperature.

本発明は上記課題を解決するため、空調用空気を冷媒で熱交換する空気熱源圧縮式のヒートポンプと、前記空調用空気を加熱するヒーターと、前記空調用空気の給気温度を目標給気温度に調整する制御装置と、を備え、前記制御装置は、前記ヒートポンプの除霜運転の要否を監視して除霜開始信号と除霜終了信号を出す除霜監視部と、前記除霜開始信号を受けて前記ヒートポンプの加熱能力をゼロになるまで下げつつこれに伴う前記給気温度の下降分を相殺させるように前記ヒーターの加熱能力を上げた後に除霜運転を開始すると共に前記除霜終了信号を受けて前記除霜運転を終了した後に前記ヒートポンプの加熱能力をゼロから上げつつこれに伴う前記給気温度の上昇分を相殺させるように前記ヒーターの加熱能力を下げて前記給気温度と前記目標給気温度との差を抑制する除霜時温度抑制部と、を備えたことを最も主要な特徴とする。 In order to solve the above problems, the present invention targets an air heat source compression type heat pump that exchanges heat of air conditioning air with a refrigerant, a heater that heats the air conditioning air, and a supply air temperature of the air conditioning air. The control device includes a defrosting monitoring unit that monitors the necessity of defrosting operation of the heat pump and outputs a defrosting start signal and a defrosting end signal, and the defrosting start signal. In response to this, the heating capacity of the heat pump is lowered to zero, and the heating capacity of the heater is increased so as to offset the decrease in the supply air temperature, and then the defrosting operation is started and the defrosting is completed. After receiving the signal and ending the defrosting operation, the heating capacity of the heat pump is increased from zero, and the heating capacity of the heater is lowered so as to offset the increase in the air supply temperature accompanying the increase to the air supply temperature. The most important feature is that it is provided with a defrosting temperature control unit that suppresses the difference from the target air supply temperature.

請求項1の発明によれば、除霜時温度抑制部によって目標給気温度の許容範囲を超えるバラツキを抑制でき、ヒートポンプを用いて常時安定した恒温恒湿空調を行える。恒温恒湿空調のみならず、除霜運転が不可欠となる一般的な室内空調など広範囲に利用できる。空気熱源圧縮式のヒートポンプを用いた空気調和装置なので、冷温水式と比べて設備及び施工の簡略化を図れてコストダウンできる。ヒートポンプと比べてエネルギー効率の低いヒーターの使用を最小限に抑えながら、ヒートポンプの加熱による給気温度のオーバーシュートを防止でき、省エネで高精度な恒温恒湿空調を行える。 According to the first aspect of the present invention, the defrosting temperature suppressing unit can suppress the variation exceeding the allowable range of the target air supply temperature, and the heat pump can be used to perform constant temperature and humidity constant air conditioning at all times. It can be used not only for constant temperature and humidity air conditioning, but also for general indoor air conditioning where defrosting operation is indispensable. Since it is an air conditioner that uses an air heat source compression type heat pump, the equipment and construction can be simplified and the cost can be reduced compared to the cold / hot water type. While minimizing the use of heaters, which are less energy efficient than heat pumps, overshoot of the supply air temperature due to heating of the heat pump can be prevented, and energy-saving and highly accurate constant temperature and humidity air conditioning can be performed.

請求項2の発明によれば、ヒートポンプの出力変化に伴う空調用空気の給気温度変化を、最小限界出力がなく制御性が良いヒーターの加熱で補填するので追従性が良く、オーバーシュートやハンチングのない高精度な恒温恒湿空調を行える。
請求項3の発明によれば、熱源用熱交換器を複数の冷凍サイクルで共用しているので部品点数の削減とコンパクト化を図れる。複数の冷凍サイクルを、正サイクル(給気冷却)と逆サイクル(給気加熱)を混在させて運転する場合、共用する熱源用熱交換器の内部で高温冷媒と低温冷媒が熱交換して熱エネルギーが相殺されるので省エネとなる。
請求項4の発明によれば、給気用熱交換器と熱源用熱交換器の伝熱管群の死水領域が減少し、伝熱管群の通風抵抗が小さくて省エネとなり、空調用空気及び熱源用空気との接触面積(貫流熱量)が増して熱交換効率が向上する。
According to the invention of claim 2, since the change in the supply air temperature of the air conditioning air due to the change in the output of the heat pump is compensated by the heating of the heater having no minimum limit output and good controllability, the followability is good, and overshoot and hunting are performed. Highly accurate constant temperature and humidity air conditioning can be performed.
According to the third aspect of the present invention, since the heat exchanger for the heat source is shared by a plurality of refrigeration cycles, the number of parts can be reduced and the size can be reduced. When operating multiple refrigeration cycles in a mixture of forward cycle (supply air cooling) and reverse cycle (supply air heating), the high-temperature refrigerant and low-temperature refrigerant exchange heat inside the shared heat source heat exchanger to generate heat. Energy is offset, which saves energy.
According to the invention of claim 4, the dead water region of the heat transfer tube group of the air supply heat exchanger and the heat source heat exchanger is reduced, the ventilation resistance of the heat transfer tube group is small, and energy is saved, and the air for air conditioning and the heat source are used. The contact area with air (the amount of heat flowing through) increases and the heat exchange efficiency improves.

本発明の空気調和装置の構成を示す簡略説明図である。It is a simplified explanatory drawing which shows the structure of the air conditioner of this invention. 熱交換器の簡略説明図である。It is a simplified explanatory drawing of a heat exchanger. 除霜運転時の空気調和装置の制御例を示す説明図である。It is explanatory drawing which shows the control example of the air conditioner at the time of defrosting operation. 空気調和装置の運転パターン例を示す空気線図である。It is an air diagram which shows the operation pattern example of the air conditioner. 空気調和装置の加熱制御例を示す空気線図である。It is an air diagram which shows the heating control example of an air conditioner.

図1は本発明の空気調和装置の一実施例で、この空気調和装置は、空気熱源圧縮式のヒートポンプ1と、ヒーター2と、加湿器3と、給気用送風機4と、熱源用送風機5と、制御装置6と、ケーシング7と、を備えている。ヒートポンプ1、ヒーター2、加湿器3、給気用送風機4及び熱源用送風機5は、ケーシング7に内装する。制御装置6をケーシング7に内装できない場合は外付けにしてもよい。図の太い点線の矢印は空調用空気と熱源用空気の気流方向を示しており、前記空気調和装置から、空調用空気を被空調空間Sに給気し、熱源用空気を屋外等に排気する。 FIG. 1 is an embodiment of the air conditioner of the present invention, in which the air conditioner includes an air heat source compression type heat pump 1, a heater 2, a humidifier 3, an air supply blower 4, and a heat source blower 5. A control device 6 and a casing 7. The heat pump 1, the heater 2, the humidifier 3, the air supply blower 4, and the heat source blower 5 are housed in the casing 7. If the control device 6 cannot be installed inside the casing 7, it may be externally attached. The thick dotted arrow in the figure indicates the flow direction of the air conditioning air and the heat source air. From the air conditioner, the air conditioning air is supplied to the air-conditioned space S, and the heat source air is exhausted to the outside or the like. ..

ヒートポンプ1は冷凍サイクル8を2つ備え、空調用空気を冷媒で熱交換して冷却又は加熱する。冷凍サイクル8は、冷媒を圧縮して搬送する圧縮機9、空調用空気に冷媒の熱を授受させる給気用熱交換器10、冷媒に熱源用空気の熱を授受させる熱源用熱交換器11、膨張弁12、四方弁13、その他の機器で構成された冷媒循環回路で、冷媒に対して圧縮・凝縮・膨張・蒸発の工程順を繰返し、冷媒と熱交換する空気に対して冷媒蒸発工程で吸熱(空気冷却)を、冷媒凝縮工程で放熱(空気加熱)を、各々行う。2つの冷凍サイクル8は、各々が独自に空気冷却と空気加熱を四方弁13にて切換できるように構成する。 The heat pump 1 includes two refrigerating cycles 8 and exchanges heat with a refrigerant for air conditioning air to cool or heat the air. The refrigeration cycle 8 includes a compressor 9 that compresses and conveys the refrigerant, an air supply heat exchanger 10 that transfers the heat of the refrigerant to the air conditioning air, and a heat source heat exchanger 11 that transfers the heat of the heat source air to the refrigerant. In a refrigerant circulation circuit composed of an expansion valve 12, a four-way valve 13, and other equipment, the steps of compression, condensation, expansion, and evaporation of the refrigerant are repeated, and the refrigerant evaporation process is applied to the air that exchanges heat with the refrigerant. It absorbs heat (air cooling) and dissipates heat (air heating) in the refrigerant condensation process. The two refrigeration cycles 8 are configured so that each of them can independently switch between air cooling and air heating by the four-way valve 13.

図1と図2に示すように、給気用熱交換器10と熱源用熱交換器11は、伝熱管群14にフィン群15を接続して成る。伝熱管群14の内部に冷媒が流通し、伝熱管群14の外面及びフィン群15を空調用空気と熱源用空気が通過する。伝熱管群14は楕円管で構成するのが望ましいが円形管としてもよい。給気用熱交換器10は、外気又は還気を空調用空気として冷媒で熱交換したり、外気と還気の混合空気を空調用空気として冷媒で熱交換する。熱源用熱交換器11は、外気又は外気と還気の混合空気を熱源用空気として冷媒を熱交換する。図例では、1つの熱源用熱交換器11を2つの冷凍サイクル8で共用しているが、共用せずに冷凍サイクル8毎に別個の熱源用熱交換器を設けてもよい。 As shown in FIGS. 1 and 2, the air supply heat exchanger 10 and the heat source heat exchanger 11 are formed by connecting the fin group 15 to the heat transfer tube group 14. Refrigerant flows inside the heat transfer tube group 14, and air conditioning air and heat source air pass through the outer surface of the heat transfer tube group 14 and the fin group 15. The heat transfer tube group 14 is preferably formed of an elliptical tube, but may be a circular tube. The supply air heat exchanger 10 exchanges heat between the outside air or the return air as air conditioning air with a refrigerant, or exchanges heat between the mixed air of the outside air and the return air with a refrigerant as air conditioning air. The heat source heat exchanger 11 exchanges heat with the outside air or a mixed air of the outside air and the return air as the heat source air. In the illustrated example, one heat source heat exchanger 11 is shared by two refrigeration cycles 8, but a separate heat source heat exchanger may be provided for each refrigeration cycle 8 without sharing.

ヒーター2は、電熱で空調用空気を加熱する電気加熱式とする。加湿器3は、蒸気で空調用空気を加湿する蒸気式とする。ヒートポンプ1の給気用熱交換器10とヒーター2は、空調用空気を給気用熱交換器10で熱交換した後にヒーター2で加熱するようにを設置する。給気用送風機4は、機内に空調用空気を取込んで、ヒートポンプ1の給気用熱交換器10とヒーター2と加湿器3に通過させ、図示省略のダクト等を介して被空調空間Sに給気する。熱源用送風機5は、機内に熱源用空気を取込んで、熱源用空気をヒートポンプ1の熱源用熱交換器11に通過させ、機外に排気する。 The heater 2 is an electric heating type that heats the air for air conditioning by electric heating. The humidifier 3 is a steam type that humidifies the air for air conditioning with steam. The air supply heat exchanger 10 and the heater 2 of the heat pump 1 are installed so as to heat the air conditioning air with the heater 2 after heat exchange with the air supply heat exchanger 10. The air-conditioning blower 4 takes in air-conditioning air into the machine, passes it through the air-conditioning heat exchanger 10, the heater 2, and the humidifier 3 of the heat pump 1, and passes the air-conditioned space S through a duct or the like (not shown). To supply air to. The heat source blower 5 takes in the heat source air into the machine, passes the heat source air through the heat source heat exchanger 11 of the heat pump 1, and exhausts the heat source air to the outside of the machine.

制御装置6は、被空調空間Sの目標温度及び目標湿度を設定する設定部16と、被空調空間Sの温度及び湿度を検出する検出部17と、空調制御部18と、除霜監視部19と、除霜時温度抑制部20と、ヒーター制御部21と、加熱補償部22と、冷却補償部23と、を備えており、これらはマイクロプロセッサ、各種センサー、スイッチ、その他の制御機器にて構成する。 The control device 6 includes a setting unit 16 that sets a target temperature and a target humidity of the air-conditioned space S, a detection unit 17 that detects the temperature and humidity of the air-conditioned space S, an air-conditioning control unit 18, and a defrost monitoring unit 19. A defrosting temperature control unit 20, a heater control unit 21, a heat compensation unit 22, and a cooling compensation unit 23 are provided, and these are used in a microprocessor, various sensors, switches, and other control devices. Configure.

空調制御部18は、検出部17で検出した被空調空間Sの温度及び湿度が、設定部16で設定した被空調空間Sの目標温度及び目標湿度になるように、ヒートポンプ1、ヒーター2及び加湿器3の能力と、給気用送風機4と熱源用送風機5の風量を増減させて、空調用空気の給気温度を目標給気温度及び目標給気湿度に調整する。被空調空間Sの温度及び湿度は、被空調空間Sに設けた図示省略の温温度センサーなどにて検出する。 The air conditioning control unit 18 has a heat pump 1, a heater 2, and a humidification so that the temperature and humidity of the air-conditioned space S detected by the detection unit 17 become the target temperature and humidity of the air-conditioned space S set by the setting unit 16. The capacity of the device 3 and the air volume of the air supply blower 4 and the heat source blower 5 are increased or decreased to adjust the air supply temperature of the air conditioning air to the target air supply temperature and the target air supply humidity. The temperature and humidity of the air-conditioned space S are detected by a temperature / temperature sensor (not shown) provided in the air-conditioned space S.

除霜監視部19は、ヒートポンプ1の除霜運転の要否を監視して除霜開始信号と除霜終了信号を出力する。ヒートポンプ1の除霜運転の要否は、熱源用熱交換器11に霜付きが発生するときの熱源用空気の温度や冷媒圧力、冷媒温度などが検出される否かによって除霜運転の要否を判断する。これらの温度や圧力は、ヒートポンプ1に設けた図示省略の温度センサーや冷媒圧力センサー、冷媒温度センサーなどにて検出する。除霜方式は、冷凍サイクル8にバイパス弁24を設けて、熱源用熱交換器11と圧縮機9のみに高温の冷媒を循環させて除霜を行うホットガスバイパス方式とするが、他の除霜方式としてもよい。 The defrosting monitoring unit 19 monitors the necessity of the defrosting operation of the heat pump 1 and outputs a defrosting start signal and a defrosting end signal. Whether or not the heat pump 1 needs to be defrosted depends on whether or not the temperature, refrigerant pressure, refrigerant temperature, etc. of the heat source air when frosting occurs in the heat source heat exchanger 11 is detected. To judge. These temperatures and pressures are detected by a temperature sensor, a refrigerant pressure sensor, a refrigerant temperature sensor, etc. (not shown) provided in the heat pump 1. The defrosting method is a hot gas bypass method in which a bypass valve 24 is provided in the refrigerating cycle 8 and a high-temperature refrigerant is circulated only in the heat exchanger 11 for the heat source and the compressor 9 to defrost, but other defrosting methods are used. It may be a frost method.

図1と図3に示すように、除霜時温度抑制部20は、除霜監視部19の除霜開始信号を受けてヒートポンプ1の加熱能力(HP出力)をゼロになるまで漸次下げつつこれに伴う空調用空気の給気温度の下降分を相殺させるようにヒーター2の加熱能力(HT出力)を漸次上げた後に除霜運転を開始すると共に、除霜監視部19の除霜終了信号を受けて除霜運転を終了した後にヒートポンプ1の加熱能力(HP出力)をゼロから漸次上げつつこれに伴う空調用空気の給気温度の上昇分を相殺させるようにヒーター2の加熱能力(HT出力)を漸次下げて給気温度と目標給気温度との差を抑制する。 As shown in FIGS. 1 and 3, the defrosting temperature suppressing unit 20 receives the defrosting start signal of the defrosting monitoring unit 19 and gradually lowers the heating capacity (HP output) of the heat pump 1 until it becomes zero. After gradually increasing the heating capacity (HT output) of the heater 2 so as to offset the decrease in the supply air temperature of the air conditioning air, the defrosting operation is started and the defrosting end signal of the defrosting monitoring unit 19 is sent. After receiving and finishing the defrosting operation, the heating capacity (HT output) of the heater 2 is gradually increased from zero to offset the increase in the supply air temperature of the air conditioning air. ) Is gradually lowered to suppress the difference between the supply air temperature and the target supply air temperature.

図3(a)は除霜時温度抑制部20によるヒートポンプ1のHP出力とヒーター2のHT出力の変化を示し、図3(b)はヒートポンプ1による空気加熱温度(HP温度)とヒーター2による空気加熱温度(HT温度)の変化を示す。除霜時温度抑制部20はヒーター制御部21を備えており、ヒーター制御部21は、ヒートポンプ1による空気加熱温度と目標給気温度との差の絶対値K(K1、K2)が変動する毎に絶対値K(K1、K2)をヒーター2による目標空気加熱温度T(T1、T2)に設定し直してヒーター2の加熱能力を増減させる。 FIG. 3A shows changes in the HP output of the heat pump 1 and the HT output of the heater 2 by the defrosting temperature suppressing unit 20, and FIG. 3B shows the air heating temperature (HP temperature) by the heat pump 1 and the heater 2. The change of the air heating temperature (HT temperature) is shown. The defrosting temperature control unit 20 includes a heater control unit 21, and the heater control unit 21 changes every time the absolute value K (K1, K2) of the difference between the air heating temperature by the heat pump 1 and the target air supply temperature fluctuates. The absolute value K (K1, K2) is reset to the target air heating temperature T (T1, T2) by the heater 2 to increase or decrease the heating capacity of the heater 2.

図4は本発明の空気調和装置の代表的な運転パターンを示した空気線図である。黒丸で示すポイントAは目標給気温湿度、白丸で示すポイントB、C及びDは機内に取込んだときの空調用空気の温湿度を示している。ポイントBの場合は、ヒートポンプ1でポイントAの目標湿度まで冷却減湿した後にポイントAの目標温度までヒートポンプ1又はヒーター2で加熱(再熱)する。ポイントCの場合は、ヒートポンプ1又はヒーター2でポイントAの目標温度まで加熱した後にポイントAの目標湿度まで加湿する。ポイントDの場合は、ヒートポンプ1でポイントAの目標温度まで冷却した後にポイントAの目標湿度まで加湿する。このように空調用空気を目標給気温度に調整して被空調空間Sに給気する。 FIG. 4 is a psychrometric chart showing a typical operation pattern of the air conditioner of the present invention. The points A indicated by black circles indicate the target air temperature and humidity, and the points B, C and D indicated by white circles indicate the temperature and humidity of the air conditioning air when taken into the machine. In the case of point B, the heat pump 1 cools and dehumidifies to the target humidity of point A, and then heats (reheats) the heat pump 1 or the heater 2 to the target temperature of point A. In the case of point C, after heating to the target temperature of point A with the heat pump 1 or the heater 2, humidification is performed to the target humidity of point A. In the case of point D, the heat pump 1 cools to the target temperature of point A and then humidifies to the target humidity of point A. In this way, the air conditioning air is adjusted to the target air supply temperature and supplied to the air-conditioned space S.

図1と図5に示すように、ヒートポンプ1の圧縮機9は、構造上運転可能な最低出力(最小限界出力)があるため、ヒートポンプ1で空調用空気を加熱する際に、ポイントAの目標給気温度を超える(ポイントEまでオーバーシュートする)場合がある。そこで、加熱補償部22にて、ヒートポンプ1の最小限界出力で加熱したときの空調用空気の予測給気温度がポイントAの目標給気温度を上回るか否かを判断して上回る場合はヒートポンプ1で加熱せずにヒーター2で空調用空気をポイントAの目標給気温度まで加熱する。 As shown in FIGS. 1 and 5, since the compressor 9 of the heat pump 1 has a structurally operable minimum output (minimum limit output), the target of point A is when the heat pump 1 heats the air for air conditioning. The supply air temperature may be exceeded (overshoot to point E). Therefore, when the heat compensation unit 22 determines whether or not the predicted air supply temperature of the air conditioning air when heated at the minimum limit output of the heat pump 1 exceeds the target air supply temperature of the point A, the heat pump 1 The air-conditioning air is heated to the target air supply temperature at point A by the heater 2 without heating with.

また、図4のポイントDからヒートポンプ1の最小限界出力で空調用空気を冷却する際に、目標給気温度を下回る(アンダーシュートする)場合は、冷却補償部23にて、ヒートポンプ1の最小限界出力で冷却したときの空調用空気の予測給気温度が目標給気温度を下回るか否かを判断して下回る場合はヒートポンプ1の最小限界出力で冷却してから、空調用空気を目標給気温度までヒートポンプ1で加熱せずにヒーター2で加熱(再熱)する。 Further, when cooling the air conditioning air with the minimum limit output of the heat pump 1 from the point D in FIG. 4, if the temperature falls below the target supply air temperature (undershoot), the cooling compensation unit 23 performs the minimum limit of the heat pump 1. If the predicted air-conditioning air temperature when cooled by the output is lower than the target air-conditioning temperature after judging whether it is lower than the target air-conditioning temperature, cool it with the minimum limit output of the heat pump 1 and then set the air-conditioning air to the target air supply. It is heated (reheated) by the heater 2 without being heated by the heat pump 1 to the temperature.

なお、本発明は上述の実施例に限定されない。それぞれ図示省略するが、ヒートポンプ1の冷凍サイクル8の数の増減は自由である。ヒートポンプ1の冷凍サイクル8は、圧縮機9、熱源用熱交換器11及び熱源用送風機5のセットを屋外に設置し、この屋外セットと、ケーシング7内の給気用熱交換器10などの残りの冷凍サイクル8の構成部品である屋内セットと、を冷媒配管でつないだセパレート形としてもよい。また、気化式加湿器を加湿器3と給気用熱交換器10の間に設けてもよく、気化式加湿器のみで加湿不足となる場合、その不足分を蒸気加湿器で加湿するように構成するも自由である。 The present invention is not limited to the above-mentioned examples. Although not shown, the number of refrigerating cycles 8 of the heat pump 1 can be freely increased or decreased. In the refrigeration cycle 8 of the heat pump 1, a set of a compressor 9, a heat exchanger 11 for a heat source, and a blower 5 for a heat source is installed outdoors, and the outdoor set and the rest of the air supply heat exchanger 10 in the casing 7 and the like. It may be a separate type in which the indoor set, which is a component of the refrigeration cycle 8 of the above, is connected by a refrigerant pipe. Further, a vaporization type humidifier may be provided between the humidifier 3 and the air supply heat exchanger 10. If the humidification is insufficient only with the vaporization type humidifier, the shortage is humidified with the steam humidifier. It is free to configure.

1 ヒートポンプ
2 ヒーター
6 制御装置
8 冷凍サイクル
10 給気用熱交換器
11 熱源用熱交換器
14 伝熱管群
19 除霜監視部
20 除霜時温度抑制部
21 ヒーター制御部
22 加熱補償部
S 被空調空間
1 Heat pump 2 Heater 6 Control device 8 Refrigeration cycle 10 Air supply heat exchanger 11 Heat source heat exchanger 14 Heat transfer tube group 19 Defrost monitoring unit 20 Defrosting temperature control unit 21 Heater control unit 22 Heat compensation unit S Air-conditioned space

Claims (4)

空調用空気を冷媒で熱交換する空気熱源圧縮式のヒートポンプ(1)と、前記空調用空気を加熱するヒーター(2)と、前記空調用空気の給気温度を目標給気温度に調整する制御装置(6)と、を備え、
前記制御装置(6)は、前記ヒートポンプ(1)の除霜運転の要否を監視して除霜開始信号と除霜終了信号を出す除霜監視部(19)と、前記除霜開始信号を受けて前記ヒートポンプ(1)の加熱能力をゼロになるまで下げつつこれに伴う前記給気温度の下降分を相殺させるように前記ヒーター(2)の加熱能力を上げた後に除霜運転を開始すると共に前記除霜終了信号を受けて前記除霜運転を終了した後に前記ヒートポンプ(1)の加熱能力をゼロから上げつつこれに伴う前記給気温度の上昇分を相殺させるように前記ヒーター(2)の加熱能力を下げて前記給気温度と前記目標給気温度との差を抑制する除霜時温度抑制部(20)と、前記ヒートポンプ(1)の最小限界出力で加熱したときの前記空調用空気の予測給気温度が前記目標給気温度を上回るか否かを判断して上回る場合は前記ヒートポンプ(1)で加熱せずに前記ヒーター(2)で前記空調用空気を前記目標給気温度まで加熱する加熱補償部(22)と、を備えたことを特徴とする空気調和装置。
An air heat source compression type heat pump (1) that exchanges heat with air conditioning air with a refrigerant, a heater (2) that heats the air conditioning air, and control that adjusts the supply air temperature of the air conditioning air to the target supply air temperature. Equipped with the device (6)
The control device (6) monitors the necessity of the defrosting operation of the heat pump (1) and outputs a defrosting start signal and a defrosting end signal to the defrosting monitoring unit (19) and the defrosting start signal. In response to this, the defrosting operation is started after increasing the heating capacity of the heater (2) so as to offset the decrease in the supply air temperature accompanying the decrease in the heating capacity of the heat pump (1) to zero. At the same time, after receiving the defrosting end signal and ending the defrosting operation, the heater (2) increases the heating capacity of the heat pump (1) from zero and offsets the increase in the supply air temperature accompanying the increase. For defrosting temperature control unit (20) that lowers the heating capacity of the above to suppress the difference between the supply air temperature and the target supply air temperature, and for the air conditioning when heated at the minimum limit output of the heat pump (1). If the predicted air supply temperature of the air exceeds the target air supply temperature by judging whether or not it exceeds the target air supply temperature, the air conditioning air is heated by the heater (2) without heating by the heat pump (1). An air conditioner including a heat compensating unit (22) for heating up to .
前記除霜時温度抑制部(20)は、前記ヒートポンプ(1)の空気加熱温度と目標給気温度との差の絶対値(K)が変動する毎に前記絶対値(K)を前記ヒーター(2)の目標空気加熱温度(T)に設定し直してヒーター(2)の加熱能力を増減させるヒーター制御部(21)を、備えた請求項1に記載の空気調和装置。 The defrosting temperature suppressing unit (20) sets the absolute value (K) to the heater (K) every time the absolute value (K) of the difference between the air heating temperature of the heat pump (1) and the target air supply temperature fluctuates. The air conditioner according to claim 1, further comprising a heater control unit (21) that resets the target air heating temperature (T) of 2) to increase or decrease the heating capacity of the heater (2). 前記ヒートポンプ(1)は冷凍サイクル(8)を複数備え、前記冷凍サイクル(8)は、前記空調用空気に前記冷媒の熱を授受させる給気用熱交換器(10)と、前記冷媒に熱源用空気の熱を授受させる熱源用熱交換器(11)と、を備え、前記熱源用熱交換器(11)を複数の前記冷凍サイクル(8)にて共用した請求項1又は2に記載の空気調和装置。 The heat pump (1) includes a plurality of refrigerating cycles (8), and the refrigerating cycle (8) includes an air supply heat exchanger (10) that transfers heat of the refrigerant to the air conditioning air, and a heat source to the refrigerant. The invention according to claim 1 or 2, further comprising a heat source heat exchanger (11) for exchanging heat from the air, and sharing the heat source heat exchanger (11) in a plurality of the refrigeration cycles (8). Air conditioner. 前記給気用熱交換器(10)と前記熱源用熱交換器(11)は、楕円管で構成した伝熱管群(14)を備えた請求項1から3のいずれかに記載の空気調和装置。 The air conditioner according to any one of claims 1 to 3, wherein the air supply heat exchanger (10) and the heat source heat exchanger (11) include a heat transfer tube group (14) composed of an elliptical tube. ..
JP2020173175A 2020-10-14 2020-10-14 Air conditioner Active JP7094482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020173175A JP7094482B2 (en) 2020-10-14 2020-10-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173175A JP7094482B2 (en) 2020-10-14 2020-10-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2022064500A JP2022064500A (en) 2022-04-26
JP7094482B2 true JP7094482B2 (en) 2022-07-04

Family

ID=81385807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173175A Active JP7094482B2 (en) 2020-10-14 2020-10-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP7094482B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327684A (en) 2006-06-07 2007-12-20 Kimura Kohki Co Ltd Desiccant air conditioner
CN101943471A (en) 2009-07-09 2011-01-12 陈则韶 Dual heat-source heat-pump hot water device with extremely simple refrigerating loop
JP2016099032A (en) 2014-11-19 2016-05-30 シャープ株式会社 Heater and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327684A (en) 2006-06-07 2007-12-20 Kimura Kohki Co Ltd Desiccant air conditioner
CN101943471A (en) 2009-07-09 2011-01-12 陈则韶 Dual heat-source heat-pump hot water device with extremely simple refrigerating loop
JP2016099032A (en) 2014-11-19 2016-05-30 シャープ株式会社 Heater and air conditioner

Also Published As

Publication number Publication date
JP2022064500A (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US11867413B2 (en) HVAC unit with hot gas reheat
US6427461B1 (en) Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space
CN108800375B (en) Air heat source heat pump type air conditioner
WO2014122922A1 (en) Heating system
CN104220818B (en) Air conditioner
US11168931B2 (en) Vapor compression system with reheat coil
JP5831467B2 (en) Heating system
JP2016138666A (en) Air conditioner
KR101756090B1 (en) Providing air conditioning heat pump hot air dryer and its operation control method
JP7094482B2 (en) Air conditioner
KR20170138703A (en) Air conditioner system and its control method
US20220299215A1 (en) Water source heat pump dual functioning condensing coil
US20160146477A1 (en) Hvac systems and methods for reheat operation
KR101794449B1 (en) Air conditioner
JP4505486B2 (en) Heat pump air conditioner
US11378290B2 (en) Water source heat pump dual functioning condensing coil
JP2020201007A (en) Refrigerant cycle system
KR20060066839A (en) Method for controlling indoor unit of multi-air conditioner
CN112839495A (en) Cabinet air conditioning device capable of stepless outputting refrigerating capacity
JPH03199858A (en) Air-conditioner
KR101303237B1 (en) Air conditioner and method for controlling the same
JP3014110U (en) Air conditioner
GB2033621A (en) Air conditioning unit with heater biased control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7094482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150