JP7093902B1 - Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device - Google Patents

Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device Download PDF

Info

Publication number
JP7093902B1
JP7093902B1 JP2022035704A JP2022035704A JP7093902B1 JP 7093902 B1 JP7093902 B1 JP 7093902B1 JP 2022035704 A JP2022035704 A JP 2022035704A JP 2022035704 A JP2022035704 A JP 2022035704A JP 7093902 B1 JP7093902 B1 JP 7093902B1
Authority
JP
Japan
Prior art keywords
heat conductive
drum
composition
sleeve
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022035704A
Other languages
Japanese (ja)
Other versions
JP2022176076A (en
Inventor
任澤明
王号
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Suqun New Material Co Ltd
Original Assignee
Guangdong Suqun New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Suqun New Material Co Ltd filed Critical Guangdong Suqun New Material Co Ltd
Application granted granted Critical
Publication of JP7093902B1 publication Critical patent/JP7093902B1/en
Publication of JP2022176076A publication Critical patent/JP2022176076A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Abstract

【課題】高方向性、高熱伝導性及び均一性を有する方向性熱伝導シートの製造方法を提供する。【解決手段】熱伝導シート用流体組成物を調製するステップS1で得られた流体組成物を配向成形装置内に置き、流体組成物に対して層ごとに円運動をする高速せん断力を加え、流体組成物内の熱伝導フィラーをせん断方向に沿って配向させ、配向された薄層組成物を形成し、薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成するステップS2と、多層集合体を熱硬化し、配向組成物ブロックを得るステップS3と、配向組成物ブロックを配向に垂直な方向に沿ってスライスし、方向性熱伝導シートを得るステップS4と、を含む。本発明の方法で製造された集合体は配向性が高く、欠陥が少なく、効率が高く、スライス処理により得られた熱伝導性シートは高指向性、高熱伝導性及び均一性を有し、また、当該熱伝導性シートは半導体放熱装置に好適に適用することができる。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for manufacturing a directional heat conductive sheet having high directional, high heat conductivity and uniformity. SOLUTION: The fluid composition obtained in step S1 for preparing a fluid composition for a heat conductive sheet is placed in an alignment molding apparatus, and a high-speed shearing force that makes a circular motion for each layer is applied to the fluid composition. The heat conductive filler in the fluid composition is oriented along the shear direction to form an oriented thin layer composition, and the thin layer composition is collected layer by layer in a mold to form a continuous multi-layer aggregate. Step S2 to heat-cure the multilayer aggregate to obtain an alignment composition block, and step S4 to slice the alignment composition block along the direction perpendicular to the orientation to obtain a directional heat conductive sheet. including. The aggregate produced by the method of the present invention has high orientation, few defects, high efficiency, and the thermally conductive sheet obtained by slicing has high directivity, high thermal conductivity and uniformity, and also. , The heat conductive sheet can be suitably applied to a semiconductor heat dissipation device. [Selection diagram] Fig. 1

Description

本発明は熱伝導シートの製造技術及び半導体放熱分野に関し、具体的には方向性熱伝導シートの製造方法及び半導体放熱装置に関する。 The present invention relates to a heat conductive sheet manufacturing technique and a semiconductor heat dissipation field, and specifically to a directional heat conductive sheet manufacturing method and a semiconductor heat dissipation device.

5G技術の発展に伴い、チップの電力密度は絶えず増加し、チップの放熱に対する要求はより高くなる。放熱モジュールにおいて、一般的に熱伝導シリコーンゴムスペーサーを用いてチップと放熱器との間の界面熱抵抗を低減させ、放熱効率を向上させる。 With the development of 5G technology, the power density of chips is constantly increasing, and the demand for heat dissipation of chips is higher. In the heat dissipation module, a heat conductive silicone rubber spacer is generally used to reduce the interfacial thermal resistance between the chip and the heatsink and improve the heat dissipation efficiency.

現在、通常の熱伝導シリコーンゴムスペーサーはシリコーンゴムマトリックス内に等方性の球状熱伝導フィラー(酸化アルミニウム、窒化アルミニウム、酸化亜鉛など)を充填して実現されるものであり、球状セラミックフィラーの固有熱伝導率が低いため、スペーサーの熱伝導率は一般的に10W/m・kを超えることが困難である。 Currently, ordinary heat conductive silicone rubber spacers are realized by filling an isotropic spherical heat conductive filler (aluminum oxide, aluminum nitride, zinc oxide, etc.) in a silicone rubber matrix, which is unique to spherical ceramic fillers. Due to its low thermal conductivity, it is generally difficult for the spacer to exceed 10 W / m · k.

異方性熱伝導フィラーのうち、繊維状又はシート状の熱伝導フィラーは、繊維の長手方向又はシートの面内方向において高い熱伝導性を有することが多く、例えば、メソフェーズピッチ系炭素繊維の軸方向熱伝導率は900W/m・kに達することができ、六方晶窒化ホウ素マイクロシートの面内熱伝導率は400W/m・kに達することができる。このため、異方性熱伝導フィラーを用いて、スペーサーの厚さ方向に沿って配向させることは、高熱伝導シリコーンゴムスペーサーを製造する有効な方法の一つである。 Among the anisotropic heat conductive fillers, the fibrous or sheet-shaped heat conductive filler often has high heat conductivity in the longitudinal direction of the fiber or the in-plane direction of the sheet, for example, the shaft of the mesophase pitch carbon fiber. The directional thermal conductivity can reach 900 W / m · k and the in-plane thermal conductivity of the hexagonal boron nitride microsheet can reach 400 W / m · k. Therefore, using an anisotropic heat conductive filler and orienting the spacer along the thickness direction is one of the effective methods for producing a high heat conductive silicone rubber spacer.

既に開示された特許では、磁場法、押出法及び流体せん断法を用いて異方性フィラーを配向させることが一般的である。特許CN100548099Cはポリマテック株式会社によって開示され、超伝導磁場を用い一定の周波数の振動を印加することで高充填の炭素繊維を高粘度組成物内において磁場方向に沿って配向させ、添加された酸化アルミニウムと炭素繊維フィラーの密度はそれぞれシリコーン樹脂マトリックスの密度の3、8倍と2倍であるため、振動を印加すると、フィラーが沈降することとなり、組成物全体の不均一を引き起こし、最終的に熱伝導特性の均一性に影響を与える。また、超伝導磁石の価格及び操業費用が高く、コストを増加させる。また、CN107004651A、CN108463882A及びCN109891577Aはデクセリアルズ株式会社によって開示され、当該方法は押出法により、炭素繊維を押出方向に沿って配向させ、試験によると、高熱伝導性シートを製造するために、充填された炭素繊維と樹脂の質量比が1.3より大きい場合、組成物の粘度が高く、流動性が低くなり、押出加工が困難である。また、中空金型内で成形する際には、流動性が低く、隣接する押出体間に隙間が発生しやすいため、押出法は高充填の組成物の配向に適しない。既に開示されたた特許CN110734562Aは環状溝を用いて円運動をし、溝内の組成物中の繊維を回転方向に沿って配向させ、当該方法には、1、得た環状硬化物の寸法が環状溝の寸法によって制限され、そのため、環状硬化物を半径方向に沿ってスライスして得た熱伝導性シートの幅も環状溝の幅によって制限され、幅の広い熱伝導シートを得ることができないことと、2、環状溝の幅が大きくなると、環状溝の壁の両側に近い組成物しか配向されず、組成物の内部が溝の壁との摩擦力を受けることができないため、特に高粘度の組成物において、組成物の配向が不十分となり、最終的に高配向性かつ高熱伝導性の熱伝導シートを得ることができなくなることとの2つの欠点が存在する。 In the patents already disclosed, it is common to orient the anisotropic filler using a magnetic field method, an extrusion method and a fluid shear method. Patent CN15048099C is disclosed by Polymatec Co., Ltd., and aluminum oxide is added by orienting highly filled carbon fibers along the magnetic field direction in a high-viscosity composition by applying vibration of a constant frequency using a superconducting magnetic field. And the density of the carbon fiber filler is 3 to 8 times and 2 times the density of the silicone resin matrix, respectively, so when vibration is applied, the filler will settle, causing non-uniformity in the entire composition, and finally heat. Affects the uniformity of conduction properties. In addition, the price and operating cost of superconducting magnets are high, which increases the cost. Also, CN107004651A, CN108463882A and CN109891577A were disclosed by Dexerials Co., Ltd., in which carbon fibers were oriented along the extrusion direction by an extrusion method and, according to tests, filled to produce a highly thermally conductive sheet. When the mass ratio of the carbon fiber to the resin is larger than 1.3, the viscosity of the composition is high, the fluidity is low, and extrusion processing is difficult. Further, when molding in a hollow mold, the fluidity is low and gaps are likely to be generated between adjacent extruders, so that the extrusion method is not suitable for the orientation of highly filled compositions. The patent CN110734562A, which has already been disclosed, makes a circular motion using an annular groove to orient the fibers in the composition in the groove along the direction of rotation. It is limited by the size of the annular groove, so that the width of the thermally conductive sheet obtained by slicing the annular cured product along the radial direction is also limited by the width of the annular groove, and a wide thermal conductive sheet cannot be obtained. In addition, when the width of the annular groove is increased, only the composition close to both sides of the annular groove wall is oriented, and the inside of the composition cannot receive the frictional force with the groove wall, so that the viscosity is particularly high. In the above composition, there are two drawbacks that the orientation of the composition becomes insufficient, and finally a heat conductive sheet having high orientation and high heat conductivity cannot be obtained.

従来技術に存在する問題に対して、本発明は、高速せん断配向及び連続成形装置と結びつけ、製造した方向性熱伝導シートが高配向性、高熱伝導性及び均一性を有する方向性熱伝導シートの製造方法を提供することを目的とする。 In response to the problems existing in the prior art, the present invention relates to a high-speed shear alignment and continuous molding apparatus, and the manufactured directional heat conductive sheet is a directional heat conductive sheet having high orientation, high heat conductivity and uniformity. The purpose is to provide a manufacturing method.

本発明は方向性熱伝導シートを提供することを別の目的とする。 Another object of the present invention is to provide a directional heat conductive sheet.

本発明は半導体放熱装置を提供することをさらに別の目的とする。 Another object of the present invention is to provide a semiconductor heat dissipation device.

具体的な解決手段は以下のとおりである。
方向性熱伝導シートの製造方法は、
熱伝導シート用流体組成物を調製するステップS1と、
配向成形であって、ステップS1で得られた流体組成物を配向成形装置内に置き、流体組成物に対して層ごとに円運動をする高速せん断力を加え、流体組成物内の熱伝導フィラーをせん断方向に沿って配向させ、配向された薄層組成物を形成し、前記薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成するステップS2と、
硬化であって、ステップS2で得られた多層集合体を熱硬化し、配向組成物ブロックを得るステップS3と、
スライスであって、ステップS3で得られた配向組成物ブロックを配向に垂直な方向に沿ってスライスし、方向性熱伝導シートを得るステップS4と、を含むことを特徴とする。さらに、ステップS1は具体的に、付加型シリコーンオイル、熱伝導フィラーを撹拌及び脱泡した後に一定の粘度の流体組成物を形成することであり、前記流体組成物の粘度は20万~300万mPa・sであることが好ましい。前記付加型シリコーンオイルはビニルシリコーンオイル及び水素含有シリコーンオイルが触媒の作用で付加反応(加熱)を行った後にシリコーンゴムを得るものであり、前記付加型シリコーンオイルはビニルシリコーンオイルと水素含有シリコーンオイルと白金触媒との混合物であることが好ましい。
The specific solutions are as follows.
The manufacturing method of the directional heat conductive sheet is
Step S1 to prepare a fluid composition for a heat conductive sheet,
In the alignment molding, the fluid composition obtained in step S1 is placed in the alignment molding apparatus, a high-speed shearing force that makes a circular motion for each layer is applied to the fluid composition, and a heat conductive filler in the fluid composition is applied. To form an oriented thin-layer composition, and the thin-layer composition is collected in a mold layer by layer to form a continuous multi-layer aggregate.
In step S3, which is curing, the multilayer aggregate obtained in step S2 is thermally cured to obtain an orientation composition block.
It is a slice, and is characterized by including a step S4 in which the orientation composition block obtained in step S3 is sliced along a direction perpendicular to the orientation to obtain a directional heat conductive sheet. Further, step S1 is specifically to form a fluid composition having a constant viscosity after stirring and defoaming the additive type silicone oil and the heat conductive filler, and the viscosity of the fluid composition is 200,000 to 3,000,000. It is preferably mPa · s. The additive-type silicone oil is obtained by subjecting a vinyl silicone oil and a hydrogen-containing silicone oil to an addition reaction (heating) by the action of a catalyst to obtain a silicone rubber. The additive-type silicone oil is a vinyl silicone oil and a hydrogen-containing silicone oil. It is preferably a mixture of silicon and a platinum catalyst.

さらに、ステップS1において、前記熱伝導フィラーは2種類の熱伝導フィラーを含み、1つは繊維状高熱伝導フィラー及び/又はシート状高熱伝導フィラーであり、もう1つは球状熱伝導フィラーである。本発明は球状熱伝導フィラーを添加して、隣接する高熱伝導フィラー間の接触をかけ、熱伝導ネットワークをより豊富にさせる。 Further, in step S1, the heat conductive filler contains two types of heat conductive fillers, one is a fibrous high heat conductive filler and / or a sheet high heat conductive filler, and the other is a spherical heat conductive filler. The present invention adds a spherical heat transfer filler to make contact between adjacent high heat transfer fillers to enrich the heat transfer network.

さらに、前記繊維状高熱伝導フィラーは炭素繊維、カーボンナノチューブ繊維又はグラフェン繊維であり、前記シート状高熱伝導フィラーは六方晶窒化ホウ素マイクロシート又はグラファイトマイクロシートであり、前記球状熱伝導フィラーは酸化アルミニウム、窒化アルミニウム、炭化ケイ素の1種又は複数種である。 Further, the fibrous high thermal conductive filler is a carbon fiber, a carbon nanotube fiber or a graphene fiber, the sheet-shaped high thermal conductive filler is a hexagonal boron nitride microsheet or a graphite microsheet, and the spherical thermal conductive filler is aluminum oxide. One or more of aluminum nitride and silicon carbide.

さらに、ステップS1において、前記繊維状又はシート状高熱伝導フィラーとシリコーンオイルとの質量比は0.5~2.5であり、球状熱伝導フィラーは組成物全質量の50~80%を占める。 Further, in step S1, the mass ratio of the fibrous or sheet-like high thermal conductive filler to the silicone oil is 0.5 to 2.5, and the spherical thermal conductive filler occupies 50 to 80% of the total mass of the composition.

さらに、ステップS2において、配向成形装置は、円運動をするように流体組成物を駆動し、円運動の過程において、円周に沿った流体組成物に層ごとに高速せん断力を加え、流体組成物中の熱伝導フィラーをせん断方向に沿って配向させ、配向された薄層組成物を形成する。 Further, in step S2, the alignment forming apparatus drives the fluid composition so as to make a circular motion, and in the process of the circular motion, a high-speed shearing force is applied to the fluid composition along the circumference for each layer to form the fluid composition. The heat conductive filler in the object is oriented along the shear direction to form an oriented thin layer composition.

さらに、ステップS2において、本発明は配向成形装置を用い、前記配向成形装置は、
円筒状ドラムであって、前記ドラムの中心軸線に回転軸が固定的に設けられ、回転軸の一端は第1のモータであり、前記第1のモータは回転軸によって前記ドラムの回転を駆動し、前記ドラムに材料入れ領域が設けられ、前記材料入れ領域のドラム底部側面にドラム開口が設けられる円筒状ドラムと、
スリーブであって、前記スリーブがドラムの外に嵌設され、前記ドラムはスリーブの内部で回転でき、前記ドラム開口に対向するスリーブの側面にドラム開口の大きさに一致するスリーブ開口が設けられるスリーブと、
金型であって、前記金型に内部キャビティと内部キャビティ開口が設けられ、前記内部キャビティ開口の縁はドラム開口の縁と面一でありかつ密接に設けられ、ドラムの中心軸線に垂直な方向を水平方向とし、前記内部キャビティ開口の縁は水平方向に沿って内向きに延びて前記内部キャビティの側壁を形成し、前記金型内にピストンと第2のモータが内部キャビティの壁に密接に設けるように設けられ、前記第2のモータはスリーブ開口方向から離れるようにピストンを駆動し、前記ピストンの開始位置はスリーブ開口と面一である金型と、
金型の内部キャビティを加熱するように設けられる電気加熱モジュールと、を含む。
Further, in step S2, the present invention uses an alignment molding apparatus, and the alignment molding apparatus is used.
In a cylindrical drum, a rotating shaft is fixedly provided on the central axis of the drum, one end of the rotating shaft is a first motor, and the first motor drives the rotation of the drum by the rotating shaft. A cylindrical drum having a material filling area provided on the drum and a drum opening provided on the side surface of the bottom of the drum in the material filling area.
A sleeve in which the sleeve is fitted outside the drum, the drum can rotate inside the sleeve, and a sleeve opening corresponding to the size of the drum opening is provided on the side surface of the sleeve facing the drum opening. When,
The mold is provided with an internal cavity and an internal cavity opening in the mold, and the edge of the internal cavity opening is flush with and closely provided with the edge of the drum opening in a direction perpendicular to the central axis of the drum. The edge of the internal cavity opening extends inward along the horizontal direction to form the side wall of the internal cavity, and the piston and the second motor are in close contact with the wall of the internal cavity in the mold. The second motor is provided so as to drive the piston away from the sleeve opening direction, and the starting position of the piston is a mold flush with the sleeve opening.
Includes an electric heating module provided to heat the internal cavity of the mold.

さらに、前記ドラムとスリーブとの間に隙間があり、前記隙間のピッチは0.1~5mmである。 Further, there is a gap between the drum and the sleeve, and the pitch of the gap is 0.1 to 5 mm.

さらに、前記材料入れ領域は前記ドラムの中心軸線に沿って対称に設けられ、前記材料入れ領域はドラムの中心軸線に対して対称に設けられる2つの扇形円柱領域であることが好ましい。 Further, it is preferable that the material filling region is provided symmetrically along the central axis of the drum, and the material filling region is two fan-shaped cylindrical regions provided symmetrically with respect to the central axis of the drum.

さらに、本発明の前記ピストンはモータの駆動で間欠的にスリーブ開口から離れ、好ましくは、その間欠的な間隔時間をt(min)とし、前記t≧π/ω、ωはドラムの角速度(r/min)である。 Further, the piston of the present invention is intermittently separated from the sleeve opening by the drive of the motor, preferably the intermittent interval time is t (min), and t ≧ π / ω and ω are the angular velocities of the drum (r). / Min).

さらに、好ましくは、本発明は前記ピストンが毎回スリーブ開口から離れる速度がv(mm/min)であり、前記v≦D・ω/2、D(mm)はドラムとスリーブとの間の間隔距離であり、ωはドラムの角速度(r/min)である。 Further, preferably, in the present invention, the speed at which the piston separates from the sleeve opening each time is v (mm / min), and v ≦ D · ω / 2, D (mm) is the distance between the drum and the sleeve. And ω is the angular velocity (r / min) of the drum.

さらに、前記スリーブ内に中間層が設けられ、前記中間層内に冷却媒体が充填される。好ましくは、前記冷却媒体は水である。 Further, an intermediate layer is provided in the sleeve, and the cooling medium is filled in the intermediate layer. Preferably, the cooling medium is water.

本発明は上記方向性熱伝導シートの製造方法で製造される方向性熱伝導シートをさらに開示する。 The present invention further discloses a directional heat conductive sheet manufactured by the above-mentioned method for manufacturing a directional heat conductive sheet.

本発明は、上記方向性熱伝導シートの製造方法で製造される方向性熱伝導シートを含み、前記方向性熱伝導シートがパッケージングされたチップと放熱器との間に挟持される半導体放熱装置をさらに開示する。 The present invention includes a directional heat conductive sheet manufactured by the method for manufacturing a directional heat conductive sheet, and the semiconductor heat radiating device in which the directional heat conductive sheet is sandwiched between a packaged chip and a radiator. Will be further disclosed.

さらに、前記放熱器はフィン放熱器又はベイパーチャンバーである。 Further, the radiator is a fin radiator or a vapor chamber.

従来技術に比べて、本発明の有益な効果は以下のとおりである。
本発明は連続的薄層流体せん断配向法を創造的に用い、当該方法は高速せん断配向と連続成形装置を結合し、高速せん断配向技術を用いることで、各薄層組成物中の繊維状又はシート状高熱伝導フィラーを十分に配向されるように効果的にさせることができ、適用する組成物の粘度範囲が広く、連続成形装置を用いて十分に配向された各薄層組成物が緻密な集合体になるようにさせ、そのため当該方法により製造される集合体は配向性が高く、欠陥が少なく、効率が高く、スライス処理により得られた熱伝導シートは高配向性、高熱伝導性及び均一性を有し、また、当該熱伝導シートは半導体放熱装置に好適に適用することができる。
Compared with the prior art, the beneficial effects of the present invention are as follows.
The present invention creatively uses a continuous thin-layer fluid shear orientation method, which combines high-speed shear orientation with a continuous forming apparatus and uses high-speed shear alignment technology to form fibrous or fibrous in each thin-layer composition. The sheet-like high thermal conductivity filler can be effectively oriented to be sufficiently oriented, the composition to be applied has a wide range of viscosity, and each thin layer composition sufficiently oriented using a continuous forming apparatus is dense. The aggregate is made to be an aggregate, so that the aggregate produced by the method has high orientation, few defects, high efficiency, and the heat conductive sheet obtained by the slicing process has high orientation, high heat conductivity and uniformness. Moreover, the heat conductive sheet can be suitably applied to a semiconductor heat dissipation device.

本発明の一部を構成する図面は本発明へのさらなる理解を提供するために用いられ、本発明の例示的な実施例及びその説明は本発明を説明するために用いられ、本発明を不適切に限定するものではない。
実施例1における配向成形装置の断面概略図である。 実施例1における配向成形装置の平面概略図である。 方向性熱伝導シートの製造過程において実施例1における配向成形装置を用いて配向させた後の集合体の概略図である。 方向性熱伝導シートの製造過程において実施例1における配向成形装置を用いて集合体を硬化しスライスした後に得た方向性熱伝導シートの概略図である。 実施例2で得られた方向性熱伝導シートの電子顕微鏡写真である(図Aは方向性熱伝導シートの断面走査電子顕微鏡写真であり、図Bは図A中の指定部分の部分拡大走査電子顕微鏡写真である)。 実施例7に係る半導体放熱装置の断面概略図である。
The drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and exemplary examples and explanations thereof of the present invention are used to explain the present invention, and the present invention is not used. It is not an appropriate limitation.
It is sectional drawing of the cross section of the alignment molding apparatus in Example 1. FIG. It is a plan view of the alignment molding apparatus in Example 1. FIG. It is a schematic diagram of the aggregate after being oriented by using the alignment molding apparatus in Example 1 in the manufacturing process of the directional heat conductive sheet. It is a schematic diagram of the directional heat conductive sheet obtained after curing and slicing an aggregate by using the orientation forming apparatus in Example 1 in the manufacturing process of a directional heat conductive sheet. It is an electron micrograph of the directional heat conduction sheet obtained in Example 2 (FIG. A is a cross-sectional scanning electron micrograph of the directional heat conduction sheet, and FIG. B is a partially magnified scanning electron of a designated portion in FIG. A. It is a micrograph). It is sectional drawing of the semiconductor heat radiating apparatus which concerns on Example 7. FIG.

以下、図面を参照しながら本発明を詳細に説明し、本部分の説明は例示的及び説明的なものに過ぎず、本発明の保護範囲を制限するものではない。さらに、当業者であれば、本明細書の説明に基づいて、本明細書の実施例及び様々な実施例における特徴を適宜組み合わせることができる。 Hereinafter, the present invention will be described in detail with reference to the drawings, and the description of this part is merely exemplary and descriptive, and does not limit the scope of protection of the present invention. Further, one of ordinary skill in the art can appropriately combine the features of the examples of the present specification and various embodiments based on the description of the present specification.

実施例1
本実施例は配向成形装置を提供し、図1及び図2に示すように、当該配向成形装置は円筒状ドラム2と、スリーブ3と、金型9と、電気加熱モジュール13とを含む。
Example 1
The present embodiment provides an alignment molding apparatus, which includes a cylindrical drum 2, a sleeve 3, a mold 9, and an electric heating module 13, as shown in FIGS. 1 and 2.

前記ドラム2の中心軸線に回転軸5が固定的に設けられ、回転軸5の一端は第1のモータ6であり、前記第1のモータ6は回転軸5によって前記ドラム2の回転を駆動し、前記ドラム2に軸対称となる材料入れ領域1が設けられ、前記材料入れ領域1は2つの扇形円柱領域であり、前記2つの扇形円柱領域はドラムの中心軸線に対して対称に設けられる。前記材料入れ領域1におけるドラム2の底部側面にドラム開口が設けられる。 A rotary shaft 5 is fixedly provided on the central axis of the drum 2, one end of the rotary shaft 5 is a first motor 6, and the first motor 6 drives the rotation of the drum 2 by the rotary shaft 5. The drum 2 is provided with an axially symmetric material filling region 1, the material filling region 1 is two fan-shaped cylindrical regions, and the two fan-shaped cylindrical regions are provided symmetrically with respect to the central axis of the drum. A drum opening is provided on the bottom side surface of the drum 2 in the material filling region 1.

前記スリーブ3内に中間層が設けられ、前記中間層内に冷却媒体4が充填される。前記スリーブ3はドラム2の外に嵌設され、本実施例において、ドラム2とスリーブ3との間に隙間14が設けられ、前記隙間14のピッチは0.1~5mmである。前記ドラム2はスリーブ3の内部で回転でき、前記ドラム開口に対向するスリーブ3の側面にドラム開口の大きさに一致するスリーブ開口が設けられる。 An intermediate layer is provided in the sleeve 3, and the cooling medium 4 is filled in the intermediate layer. The sleeve 3 is fitted outside the drum 2, and in this embodiment, a gap 14 is provided between the drum 2 and the sleeve 3, and the pitch of the gap 14 is 0.1 to 5 mm. The drum 2 can rotate inside the sleeve 3, and a sleeve opening corresponding to the size of the drum opening is provided on the side surface of the sleeve 3 facing the drum opening.

前記金型9に内部キャビティと内部キャビティ開口が設けられ、前記内部キャビティ開口の縁はドラム開口の縁と面一でありかつ密接に設けられ、ドラム2の中心軸線に垂直な方向を水平方向とし、前記内部キャビティ開口の縁は水平方向に沿って内向きに延びて前記内部キャビティの側壁を形成し、前記金型9内にピストン12と第2のモータ11が内部キャビティの壁に密接に設けるように設けられ、前記第2のモータ11の出力端はボルト10であり、前記ボルトはピストン12に連結され、前記第2のモータ11はスリーブ開口方向から離れるようにピストン12をボルト10によって駆動し、前記ピストン12の開始位置はスリーブ開口と面一であり、本実施例の配向成形装置の運転中に、前記ピストンはモータの駆動で間欠的にスリーブ開口から離れ、その間欠的な間隔時間をt(min)とし、前記t≧π/ω、ωはドラムの角速度(r/min)であり、毎回スリーブ開口から離れる速度はv(mm/min)であり、v≦D・ω/2を満たし、D(mm)はドラムとスリーブとの間のピッチであり、ωはドラムの角速度(r/min)である。 The mold 9 is provided with an internal cavity and an internal cavity opening, and the edge of the internal cavity opening is flush with and closely provided with the edge of the drum opening, and the direction perpendicular to the central axis of the drum 2 is the horizontal direction. The edge of the internal cavity opening extends inward along the horizontal direction to form a side wall of the internal cavity, and the piston 12 and the second motor 11 are closely provided on the wall of the internal cavity in the mold 9. The output end of the second motor 11 is a bolt 10, the bolt is connected to the piston 12, and the second motor 11 drives the piston 12 by the bolt 10 so as to be separated from the sleeve opening direction. However, the starting position of the piston 12 is flush with the sleeve opening, and during the operation of the alignment molding apparatus of the present embodiment, the piston is intermittently separated from the sleeve opening by the drive of the motor, and the intermittent interval time thereof. Is t (min), and t ≧ π / ω and ω are the angular velocities of the drum (r / min), and the speed away from the sleeve opening is v (mm / min) each time, and v ≦ D · ω / 2. Is satisfied, D (mm) is the pitch between the drum and the sleeve, and ω is the angular velocity (r / min) of the drum.

電気加熱モジュール13は金型9の内部キャビティを加熱するように設けられる。 The electric heating module 13 is provided so as to heat the internal cavity of the mold 9.

具体的に本実施例の配向成形装置を用いて方向性熱伝導シートを製造する際に、具体的な操作ステップは以下のとおりである。
調製された流体組成物を配向成形装置のドラム2における対称となる材料入れ領域1内に置き、ドラム2の角速度をωに設定して円運動をするようにさせ、固定的に配置されたスリーブ3内の中間層に循環冷却媒体4を充填し、円運動の過程において、材料入れ領域1における流体組成物は遠心力の作用を受けてドラム2の底部側面のドラム開口部からドラム2とスリーブ3との隙間14に入り、具体的には図2に示すとおりであり、隙間14において、流体組成物は高速せん断されて炭素繊維がせん断方向に沿って配向された薄層組成物7を形成し、ピストン12がスリーブ開口から離れる間隔時間をt、毎回スリーブ開口から離れる速度をvに設定し、この場合、図3に示すように、薄層組成物7は内部キャビティ開口を経由して層ごとに金型9の内部キャビティ内に集合し、連続的な多層集合体8を形成し、本実施例において、流体組成物は繊維状又はシート状高熱伝導フィラー15と、球状熱伝導フィラー16と、シリコーンゴムマトリックス17で構成され、図2及び図3に示す多層集合体8を参照すると、繊維状又はシート状高熱伝導フィラー15と球状熱伝導フィラー16とシリコーンゴムマトリックス17はせん断力方向に向かって多層集合体8中に均一に分散していることが分かり、多層集合体8を形成した後、電気加熱モジュール13をオンにし、適切な温度と時間になるまで金型9を電気的に加熱し、金型9の内部の多層集合体8を熱硬化させ、配向組成物ブロックを得て、続いてスライスプロセスを行い、図4に示すように、超音波切断刃18を用いて配向組成物ブロックを厚さ方向に沿ってステッピングスライスし、毎回のステッピング増分を設定し、特定の厚さの方向性熱伝導シート19を得る。
Specifically, when manufacturing a directional heat conductive sheet using the orientation molding apparatus of this embodiment, specific operation steps are as follows.
The prepared fluid composition is placed in a symmetrical material container region 1 in the drum 2 of the alignment forming apparatus, and the angular velocity of the drum 2 is set to ω to cause a circular motion, and a sleeve is fixedly arranged. The intermediate layer in 3 is filled with the circulating cooling medium 4, and in the process of circular motion, the fluid composition in the material filling region 1 is subjected to the action of centrifugal force to the drum 2 and the sleeve from the drum opening on the bottom side surface of the drum 2. It enters the gap 14 with 3 and is specifically as shown in FIG. 2. In the gap 14, the fluid composition is sheared at high speed to form a thin layer composition 7 in which carbon fibers are oriented along the shearing direction. Then, the interval time at which the piston 12 leaves the sleeve opening is set to t, and the speed at which the piston 12 leaves the sleeve opening is set to v each time. In this case, as shown in FIG. 3, the thin layer composition 7 is layered via the internal cavity opening. Each unit is assembled in the internal cavity of the mold 9 to form a continuous multilayer aggregate 8, and in this embodiment, the fluid composition is composed of a fibrous or sheet-like high thermal conductive filler 15 and a spherical thermal conductive filler 16. , A silicone rubber matrix 17, and referring to the multilayer aggregate 8 shown in FIGS. 2 and 3, the fibrous or sheet-like high heat conductive filler 15, the spherical heat conductive filler 16, and the silicone rubber matrix 17 are directed in the shearing force direction. After forming the multilayer assembly 8, the electric heating module 13 was turned on, and the mold 9 was electrically heated until the appropriate temperature and time were reached. Then, the multilayer aggregate 8 inside the mold 9 is thermally cured to obtain an alignment composition block, followed by a slicing process, and as shown in FIG. 4, the alignment composition is prepared using an ultrasonic cutting blade 18. The blocks are stepped and sliced along the thickness direction and each stepping increment is set to obtain a directional heat transfer sheet 19 of a particular thickness.

実施例2
本実施例は方向性熱伝導シートの製造方法を提供し、実施例1における配向成形装置を用い、具体的な実施ステップは以下のS1~S5である。
Example 2
The present embodiment provides a method for manufacturing a directional heat conductive sheet, the orientation molding apparatus in the first embodiment is used, and specific implementation steps are the following S1 to S5.

S1、配合において、付加型シリコーンオイル100g(ビニルシリコーンオイル55gと水素含有シリコーンオイル44.9gと白金触媒0.1gとの混合物)と、炭素繊維粉体75g(長さ0.1mm、直径15μm)と、球状酸化アルミニウム300gを、30min混合撹拌し、5min真空脱泡した後に粘度が20万mPa・sの流体組成物を形成する。 S1, in the formulation, 100 g of add-on silicone oil (a mixture of 55 g of vinyl silicone oil, 44.9 g of hydrogen-containing silicone oil, and 0.1 g of platinum catalyst) and 75 g of carbon fiber powder (length 0.1 mm, diameter 15 μm). And 300 g of spherical aluminum oxide are mixed and stirred for 30 minutes and vacuum defoamed for 5 minutes to form a fluid composition having a viscosity of 200,000 mPa · s.

S2、配向成形において、ステップS1で得られた流体組成物を配向成形装置のドラムにおける対称となる材料入れ領域内に置き、ドラムの角速度を70r/minに設定して円運動をするようにさせ、円運動の過程において、組成物は遠心力の作用を受けてドラムの底部開口部からドラムとスリーブとの隙間に入り、ドラムとスリーブとの間隔距離を0.1mmとし、スリーブに循環冷却水を充填し、当該組成物を高速せん断して炭素繊維がせん断方向にそって配向された薄層組成物を形成し、ピストンがスリーブから離れる間隔を3s、毎回スリーブから離れる速度を3mm/minに設定し、薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成する。 S2, In the alignment molding, the fluid composition obtained in step S1 is placed in a symmetrical material filling region in the drum of the alignment molding apparatus, and the angular velocity of the drum is set to 70 r / min to cause a circular motion. In the process of circular motion, the composition is affected by centrifugal force and enters the gap between the drum and the sleeve through the opening at the bottom of the drum, the distance between the drum and the sleeve is set to 0.1 mm, and the circulating cooling water is applied to the sleeve. To form a thin layer composition in which the carbon fibers are oriented along the shear direction by high-speed shearing of the composition, the interval at which the piston separates from the sleeve is 3 s, and the speed at which the piston separates from the sleeve is 3 mm / min each time. The thin layer composition is set and collected layer by layer in a mold to form a continuous multi-layer aggregate.

S3、硬化において、ステップS2の金型を120℃まで加熱し、30min加熱し、金型内部の多層集合体を熱硬化させ、配向組成物ブロックを得て、金型から取り出す。 In S3 and curing, the mold in step S2 is heated to 120 ° C. and heated for 30 minutes to thermally cure the multilayer aggregate inside the mold to obtain an orientation composition block and remove it from the mold.

S4、スライスにおいて、超音波切断刃を用いてステップS3で得られた配向組成物ブロックを厚さ方向に沿ってステッピングスライスし、毎回のステッピング増分を2mmに設定し、厚さが2mmの方向性熱伝導シートを得る。 In S4, slicing, the alignment composition block obtained in step S3 is stepped and sliced along the thickness direction using an ultrasonic cutting blade, the stepping increment is set to 2 mm each time, and the thickness is 2 mm. Obtain a heat conductive sheet.

図5は実施例で得られた方向性熱伝導シートの電子顕微鏡写真である。ここで、図Aは方向性熱伝導シートの断面走査電子顕微鏡写真であり、図Bは図A中の指定部分の部分拡大走査電子顕微鏡写真であり、本実施例で得られた方向性熱伝導シート中の炭素繊維が十分に配向されることが分かる。 FIG. 5 is an electron micrograph of the directional heat conduction sheet obtained in the example. Here, FIG. A is a cross-sectional scanning electron micrograph of the directional heat conduction sheet, and FIG. B is a partially enlarged scanning electron micrograph of a designated portion in FIG. A, and the directional heat conduction obtained in this embodiment is shown. It can be seen that the carbon fibers in the sheet are sufficiently oriented.

実施例3
本実施例は方向性熱伝導シートの製造方法を提供し、実施例1における配向成形装置を用い、具体的な実施ステップは以下のS1~S5である。
Example 3
The present embodiment provides a method for manufacturing a directional heat conductive sheet, the orientation molding apparatus in the first embodiment is used, and specific implementation steps are the following S1 to S5.

S1、配合において、反応性シリコーンオイル100g(ビニルシリコーンオイル55gと水素含有シリコーンオイル44.9gと白金触媒0.1gとの混合物)と、炭素繊維粉体120g(長さ0.1mm、直径15μm)と、球状酸化アルミニウム300gと、球状窒化アルミニウム50gを、30min混合撹拌し、5min真空脱泡した後に粘度が65万mPa・sの流体組成物を形成する。 S1, in the formulation, 100 g of reactive silicone oil (a mixture of 55 g of vinyl silicone oil, 44.9 g of hydrogen-containing silicone oil and 0.1 g of platinum catalyst) and 120 g of carbon fiber powder (length 0.1 mm, diameter 15 μm). , 300 g of spherical aluminum oxide and 50 g of spherical aluminum nitride are mixed and stirred for 30 min, and vacuum defoamed for 5 min to form a fluid composition having a viscosity of 650,000 mPa · s.

S2、配向成形において、ステップS1で得られた流体組成物を配向成形装置のドラムにおける対称となる材料入れ領域内に置き、ドラムの角速度を90r/minに設定して円運動をするようにさせ、円運動の過程において、組成物は遠心力の作用を受けてドラムの底部開口部からドラムとスリーブとの隙間に入り、ドラムとスリーブとの間隔距離を0.2mmとし、スリーブに循環冷却水を充填し、当該組成物を高速せん断して炭素繊維がせん断方向にそって配向された薄層組成物を形成し、ピストンがスリーブから離れる間隔時間を5s、毎回スリーブから離れる速度を4mm/minに設定し、薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成する。 S2, In the alignment molding, the fluid composition obtained in step S1 is placed in a symmetrical material filling region in the drum of the alignment molding apparatus, and the angular velocity of the drum is set to 90 r / min to cause a circular motion. In the process of circular motion, the composition enters the gap between the drum and the sleeve through the opening at the bottom of the drum under the action of centrifugal force, the distance between the drum and the sleeve is set to 0.2 mm, and the circulating cooling water is applied to the sleeve. To form a thin layer composition in which the carbon fibers are oriented along the shearing direction by high-speed shearing the composition, the interval time for the piston to separate from the sleeve is 5 s, and the speed at which the piston separates from the sleeve is 4 mm / min each time. The thin layer composition is collected in a mold layer by layer to form a continuous multi-layer aggregate.

S3、硬化において、ステップS2の金型を120℃まで加熱し、30min加熱し、金型内部の多層集合体を熱硬化させ、配向組成物ブロックを得て、金型から取り出す。 In S3 and curing, the mold in step S2 is heated to 120 ° C. and heated for 30 minutes to thermally cure the multilayer aggregate inside the mold to obtain an orientation composition block and remove it from the mold.

S4、スライスにおいて、超音波切断刃を用いてステップS3で得られた配向組成物ブロックを厚さ方向に沿ってステッピングスライスし、毎回のステッピング増分を2mmに設定し、厚さが2mmの方向性熱伝導シートを得る。 In S4, slicing, the alignment composition block obtained in step S3 is stepped and sliced along the thickness direction using an ultrasonic cutting blade, the stepping increment is set to 2 mm each time, and the thickness is 2 mm. Obtain a heat conductive sheet.

実施例4
本実施例は方向性熱伝導シートの製造方法を提供し、実施例1における配向成形装置を用い、具体的な実施ステップは以下のS1~S5である。
Example 4
The present embodiment provides a method for manufacturing a directional heat conductive sheet, the orientation molding apparatus in the first embodiment is used, and specific implementation steps are the following S1 to S5.

S1、配合において、反応性シリコーンオイル100g(ビニルシリコーンオイル55gと水素含有シリコーンオイル44.9gと白金触媒0.1gとの混合物)と、窒化ホウ素マイクロシート85gと、球状酸化アルミニウム350gと、球状炭化珪素50gを、30min混合撹拌し、5min真空脱泡した後に粘度が100万mPa・sの流体組成物を形成する。 S1, in the formulation, 100 g of reactive silicone oil (a mixture of 55 g of vinyl silicone oil, 44.9 g of hydrogen-containing silicone oil and 0.1 g of platinum catalyst), 85 g of boron nitride microsheet, 350 g of spherical aluminum oxide, and spherical carbonization. After mixing and stirring 50 g of silicon for 30 min and vacuum defoaming for 5 min, a fluid composition having a viscosity of 1 million mPa · s is formed.

S2、配向成形において、ステップS1で得られた流体組成物を配向成形装置のドラムにおける対称となる材料入れ領域内に置き、ドラムの角速度を90r/minに設定して円運動をするようにさせ、円運動の過程において、組成物は遠心力の作用を受けてドラムの底部開口部からドラムとスリーブとの隙間に入り、ドラムとスリーブとの間隔を1mmとし、スリーブに循環冷却水を充填し、当該組成物を高速せん断して窒化ホウ素マイクロシートがせん断方向に沿って配向された薄層組成物を形成し、ピストンがスリーブから離れる間隔時間を5s、毎回スリーブから離れる速度を40mm/minに設定し、薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成する。 S2, In the alignment molding, the fluid composition obtained in step S1 is placed in a symmetrical material filling region in the drum of the alignment molding apparatus, and the angular velocity of the drum is set to 90 r / min to cause a circular motion. In the process of circular motion, the composition is affected by centrifugal force and enters the gap between the drum and the sleeve through the opening at the bottom of the drum, the distance between the drum and the sleeve is set to 1 mm, and the sleeve is filled with circulating cooling water. The composition is sheared at high speed to form a thin layer composition in which boron nitride microsheets are oriented along the shearing direction, the interval time for the piston to separate from the sleeve is 5 s, and the speed at which the piston separates from the sleeve is 40 mm / min each time. The thin layer composition is set and collected layer by layer in a mold to form a continuous multi-layer aggregate.

S3、硬化において、ステップS2の金型を120℃まで加熱し、30min加熱し、金型内部の多層集合体を熱硬化させ、配向組成物ブロックを得て、金型から取り出す。 In S3 and curing, the mold in step S2 is heated to 120 ° C. and heated for 30 minutes to thermally cure the multilayer aggregate inside the mold to obtain an orientation composition block and remove it from the mold.

S4、スライスにおいて、超音波切断刃を用いてステップS3で得られた配向組成物ブロックを厚さ方向に沿ってステッピングスライスし、毎回のステッピング増分を2mmに設定し、厚さが2mmの方向性熱伝導シートを得る。 In S4, slicing, the alignment composition block obtained in step S3 is stepped and sliced along the thickness direction using an ultrasonic cutting blade, the stepping increment is set to 2 mm each time, and the thickness is 2 mm. Obtain a heat conductive sheet.

実施例5
本実施例は方向性熱伝導シートの製造方法を提供し、実施例1における配向成形装置を用い、具体的な実施ステップは以下のS1~S5である。
Example 5
The present embodiment provides a method for manufacturing a directional heat conductive sheet, the orientation molding apparatus in the first embodiment is used, and specific implementation steps are the following S1 to S5.

S1、配合において、反応性シリコーンオイル100g(ビニルシリコーンオイル55gと水素含有シリコーンオイル44.9gと白金触媒0.1gとの混合物)と、炭素繊維粉体150g(長さ0.1mm、直径15μm)と、球状酸化アルミニウム400gを、30min混合撹拌し、5min真空脱泡した後に粘度が200万mPa・sの流体組成物を形成する。 S1, in the formulation, 100 g of reactive silicone oil (a mixture of 55 g of vinyl silicone oil, 44.9 g of hydrogen-containing silicone oil and 0.1 g of platinum catalyst) and 150 g of carbon fiber powder (length 0.1 mm, diameter 15 μm). , 400 g of spherical aluminum oxide is mixed and stirred for 30 minutes, and after 5 min vacuum defoaming, a fluid composition having a viscosity of 2 million mPa · s is formed.

S2、配向成形において、ステップS1で得られた流体組成物を配向成形装置のドラムにおける対称となる材料入れ領域内に置き、ドラムの角速度を150r/minに設定して円運動をするようにさせ、円運動の過程において、組成物は遠心力の作用を受けてドラムの底部開口部からドラムとスリーブとの隙間に入り、ドラムとスリーブとの間隔を2mmとし、スリーブに循環冷却水を充填し、当該組成物を高速せん断して炭素繊維がせん断方向にそって配向された薄層組成物を形成し、ピストンがスリーブから離れる間隔時間を2s、毎回スリーブから離れる速度を140mm/minに設定し、薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成する。 S2, In the alignment molding, the fluid composition obtained in step S1 is placed in a symmetrical material filling region in the drum of the alignment molding apparatus, and the angular velocity of the drum is set to 150 r / min to cause a circular motion. In the process of circular motion, the composition is affected by centrifugal force and enters the gap between the drum and the sleeve through the opening at the bottom of the drum, the distance between the drum and the sleeve is set to 2 mm, and the sleeve is filled with circulating cooling water. , The composition is sheared at high speed to form a thin layer composition in which carbon fibers are oriented along the shear direction, and the interval time at which the piston separates from the sleeve is set to 2 s, and the speed at which the piston separates from the sleeve is set to 140 mm / min each time. , The thin layer composition is collected layer by layer in a mold to form a continuous multi-layer aggregate.

S3、硬化において、ステップS2の金型を120℃まで加熱し、30min加熱し、金型内部の多層集合体を熱硬化させ、配向組成物ブロックを得て、金型から取り出す。 In S3 and curing, the mold in step S2 is heated to 120 ° C. and heated for 30 minutes to thermally cure the multilayer aggregate inside the mold to obtain an orientation composition block and remove it from the mold.

S4、スライスにおいて、超音波切断刃を用いてステップS3で得られた配向組成物ブロックを厚さ方向に沿ってステッピングスライスし、毎回のステッピング増分を2mmに設定し、厚さが2mmの方向性熱伝導シートを得る。 In S4, slicing, the alignment composition block obtained in step S3 is stepped and sliced along the thickness direction using an ultrasonic cutting blade, the stepping increment is set to 2 mm each time, and the thickness is 2 mm. Obtain a heat conductive sheet.

実施例6 特性測定試験
本実施例は実施例2-5で製造された方向性熱伝導シートに対して熱伝導特性測定を行う。熱伝導特性の測定方法は熱安定状態法を用い、測定標準はASTM D5470であり、ステップは、厚さ2mmの熱伝導スペーサーを26*26mmの角片に裁断し、Long Win社のLW-9389熱伝導率測定器に置き、圧力を10psiに設定し、熱伝導率を測定することである。結果を以下の表に示す。

Figure 0007093902000002
Example 6 Characteristic measurement test In this example, heat conduction characteristics are measured for the directional heat conduction sheet manufactured in Example 2-5. The method for measuring the heat conduction characteristics is the heat stable state method, the measurement standard is ASTM D5470, and the step is to cut a heat conduction spacer with a thickness of 2 mm into 26 * 26 mm square pieces, and LW-9389 from Long Win. Place it in a thermal conductivity measuring device, set the pressure to 10 psi, and measure the thermal conductivity. The results are shown in the table below.
Figure 0007093902000002

以上から分かるように、本発明の方法で製造された方向性熱伝導シートは高熱伝導性を有する。 As can be seen from the above, the directional heat conductive sheet produced by the method of the present invention has high heat conductivity.

実施例7
本実施例は実施例2~5で得られた方向性熱伝導シートを適用する半導体放熱装置を提供し、本実施例に記載の半導体放熱装置は方向性熱伝導シート19が放熱器20とパッケージングされたチップ21に対向する面との間に固定され、図6に示すように、前記半導体放熱装置は回路基板23のパッケージングされたチップ21に設けられ、前記半導体放熱装置はチップ21に設けられた方向性熱伝導シート19と、方向性熱伝導シート19に設けられた放熱器20とを含み、前記パッケージングされたチップ21の側面にピン22が設けられる。
Example 7
The present embodiment provides a semiconductor heat dissipation device to which the directional heat conductive sheet obtained in Examples 2 to 5 is applied, and in the semiconductor heat radiating device described in this embodiment, the directional heat conductive sheet 19 is packaged with the radiator 20. The semiconductor heat radiating device is provided on the packaged chip 21 of the circuit board 23, and the semiconductor heat radiating device is provided on the chip 21 as shown in FIG. A directional heat conductive sheet 19 provided and a radiator 20 provided on the directional heat conductive sheet 19 are included, and a pin 22 is provided on the side surface of the packaged chip 21.

以上は本発明の好ましい実施形態に過ぎず、当業者は、本発明の原理から逸脱することなく、いくつかの改善及び修飾を行うことができることが指摘されるべきであり、これらの改善及び修飾も本発明の保護範囲として見なされるべきである。 It should be pointed out that the above are merely preferred embodiments of the present invention, and that those skilled in the art can make some improvements and modifications without departing from the principles of the present invention. Should also be considered as the scope of protection of the present invention.

1...材料入れ領域、2...ドラム、3...スリーブ、4...冷却媒体、5...回転軸、6...第1のモータ、7...配向薄層組成物、8...集合体、9...金型、10...ボルト、11...第2のモータ、12...ピストン、13...電気加熱モジュール、14...隙間、15...繊維状又はシート状高熱伝導フィラー、16...球状熱伝導フィラー、17...シリコーンゴムマトリックス、18...超音波切断刃、19...方向性熱伝導シート、20...放熱器、21...パッケージングされたチップ、22...ピン、23...回路基板。 1 ... Material filling area, 2 ... Drum, 3 ... Sleeve, 4 ... Cooling medium, 5 ... Rotating shaft, 6 ... First motor, 7 ... Oriented thin layer Composition, 8 ... aggregate, 9 ... mold, 10 ... volt, 11 ... second motor, 12 ... piston, 13 ... electric heating module, 14 ... Gap, 15 ... fibrous or sheet-like high heat conductive filler, 16 ... spherical heat conductive filler, 17 ... silicone rubber matrix, 18 ... ultrasonic cutting blade, 19 ... directional heat conductive sheet , 20 ... radiator, 21 ... packaged chip, 22 ... pins, 23 ... circuit board.

Claims (8)

熱伝導シート用流体組成物を調製するステップS1と、
配向成形であって、ステップS1で得られた流体組成物を配向成形装置内に置き、流体組成物に対して層ごとに円運動をする高速せん断力を加え、流体組成物内の熱伝導フィラーをせん断方向に沿って配向させ、配向された薄層組成物を形成し、前記薄層組成物を層ごとに金型内に集め、連続的な多層集合体を形成するステップS2と、
硬化であって、ステップS2で得られた多層集合体を熱硬化し、配向組成物ブロックを得るステップS3と、
スライスであって、ステップS3で得られた配向組成物ブロックを配向に垂直な方向に沿ってスライスし、方向性熱伝導シートを得るステップS4と、を含み、
前記配向成形装置は、
円筒状ドラムであって、前記ドラムの中心軸線に回転軸が固定的に設けられ、回転軸の一端は第1のモータであり、前記第1のモータは回転軸によって前記ドラムの回転を駆動し、前記ドラムに材料入れ領域が設けられ、前記材料入れ領域のドラム底部側面にドラム開口が設けられる円筒状ドラムと、
スリーブであって、前記スリーブがドラムの外に嵌設され、前記ドラムはスリーブの内部で回転でき、前記ドラム開口に対向するスリーブの側面にドラム開口の大きさに一致するスリーブ開口が設けられるスリーブと、
金型であって、前記金型に内部キャビティと内部キャビティ開口が設けられ、前記内部キャビティ開口の縁はドラム開口の縁と面一でありかつ密接に設けられ、ドラムの中心軸線に垂直な方向を水平方向とし、前記内部キャビティ開口の縁は水平方向に沿って内向きに延びて前記内部キャビティの側壁を形成し、前記金型内にピストンと第2のモータが内部キャビティの壁に密接に設けるように設けられ、前記第2のモータはスリーブ開口方向から離れるようにピストンを駆動し、前記ピストンの開始位置はスリーブ開口と面一である金型と、
金型の内部キャビティを加熱するように設けられる電気加熱モジュールと、を含み、
前記ドラムとスリーブとの間に隙間があり、前記隙間のピッチは0.1~5mmであり、
前記ピストンはモータの駆動で間欠的にスリーブ開口から離れることを特徴とする方向性熱伝導シートの製造方法。
Step S1 to prepare a fluid composition for a heat conductive sheet,
In the alignment molding, the fluid composition obtained in step S1 is placed in the alignment molding apparatus, a high-speed shearing force that makes a circular motion for each layer is applied to the fluid composition, and a heat conductive filler in the fluid composition is applied. To form an oriented thin-layer composition, and the thin-layer composition is collected in a mold layer by layer to form a continuous multi-layer aggregate.
In step S3, which is curing, the multilayer aggregate obtained in step S2 is thermally cured to obtain an orientation composition block.
A slice comprising the step S4, wherein the alignment composition block obtained in step S3 is sliced along a direction perpendicular to the orientation to obtain a directional heat conductive sheet.
The alignment molding apparatus is
In a cylindrical drum, a rotating shaft is fixedly provided on the central axis of the drum, one end of the rotating shaft is a first motor, and the first motor drives the rotation of the drum by the rotating shaft. A cylindrical drum having a material filling area provided on the drum and a drum opening provided on the side surface of the bottom of the drum in the material filling area.
A sleeve in which the sleeve is fitted outside the drum, the drum can rotate inside the sleeve, and a sleeve opening corresponding to the size of the drum opening is provided on the side surface of the sleeve facing the drum opening. When,
The mold is provided with an internal cavity and an internal cavity opening in the mold, and the edge of the internal cavity opening is flush with and closely provided with the edge of the drum opening in a direction perpendicular to the central axis of the drum. The edge of the internal cavity opening extends inward along the horizontal direction to form the side wall of the internal cavity, and the piston and the second motor are in close contact with the wall of the internal cavity in the mold. The second motor is provided so as to drive the piston away from the sleeve opening direction, and the starting position of the piston is a mold flush with the sleeve opening.
Includes an electric heating module, which is provided to heat the internal cavity of the mold.
There is a gap between the drum and the sleeve, and the pitch of the gap is 0.1 to 5 mm.
A method for manufacturing a directional heat conductive sheet, wherein the piston is intermittently separated from the sleeve opening by driving a motor.
ステップS1は具体的に、付加型シリコーンオイル、熱伝導フィラーを撹拌及び脱泡した後に一定の粘度の流体組成物を形成することであることを特徴とする請求項1に記載の方向性熱伝導シートの製造方法。 The directional heat conduction according to claim 1, wherein step S1 specifically forms a fluid composition having a constant viscosity after stirring and defoaming an add-on silicone oil and a heat conduction filler. How to make a sheet. ステップS1において、前記熱伝導フィラーは2種類の熱伝導フィラーを含み、1つは繊維状高熱伝導フィラー及び/又はシート状高熱伝導フィラーであり、もう1つは球状熱伝導フィラーであることを特徴とする請求項2に記載の方向性熱伝導シートの製造方法。 In step S1, the heat conductive filler contains two types of heat conductive fillers, one is a fibrous high heat conductive filler and / or a sheet high heat conductive filler, and the other is a spherical heat conductive filler. The method for manufacturing a directional heat conductive sheet according to claim 2. 前記繊維状高熱伝導フィラーは炭素繊維、カーボンナノチューブ繊維又はグラフェン繊維であり、前記シート状高熱伝導フィラーは六方晶窒化ホウ素マイクロシート又はグラファイトマイクロシートであり、前記球状熱伝導フィラーは酸化アルミニウム、窒化アルミニウム、炭化ケイ素の1種又は複数種であることを特徴とする請求項3に記載の方向性熱伝導シートの製造方法。 The fibrous high thermal conductive filler is carbon fiber, carbon nanotube fiber or graphene fiber, the sheet high thermal conductive filler is hexagonal boron nitride microsheet or graphite microsheet, and the spherical thermal conductive filler is aluminum oxide, aluminum nitride. The method for producing a directional heat conductive sheet according to claim 3, wherein the material is one or more types of silicon carbide. ステップS1において、前記繊維状又はシート状高熱伝導フィラーとシリコーンオイルとの質量比は0.5~2.5であり、球状熱伝導フィラーは前記流体組成物全質量の50~80%を占めることを特徴とする請求項3に記載の方向性熱伝導シートの製造方法。 In step S1, the mass ratio of the fibrous or sheet-like high thermal conductive filler to the silicone oil is 0.5 to 2.5, and the spherical thermal conductive filler occupies 50 to 80% of the total mass of the fluid composition. The method for manufacturing a directional heat conductive sheet according to claim 3. ステップS1において、前記流体組成物の粘度は20万~300万mPa・sであることを特徴とする請求項1に記載の方向性熱伝導シートの製造方法。 The method for producing a directional heat conductive sheet according to claim 1, wherein in step S1, the viscosity of the fluid composition is 200,000 to 3 million mPa · s. ステップS2において、配向成形装置は、円運動をするように流体組成物を駆動し、円運動の過程において、円周に沿った流体組成物に層ごとに高速せん断力を加え、流体組成物中の熱伝導フィラーをせん断方向に沿って配向させ、配向された薄層組成物を形成することを特徴とする請求項1に記載の方向性熱伝導シートの製造方法。 In step S2, the alignment molding apparatus drives the fluid composition so as to make a circular motion, and in the process of the circular motion, a high-speed shearing force is applied to the fluid composition along the circumference for each layer, and the fluid composition is contained. The method for producing a directional heat conductive sheet according to claim 1, wherein the heat conductive filler of No. 1 is oriented along a shearing direction to form an oriented thin layer composition. 前記材料入れ領域は前記ドラムの中心軸線に沿って対称に設けられ、
ここで、前記材料入れ領域はドラムの中心軸線に対して対称に設けられる2つの扇形円柱領域であり、
前記スリーブ内に中間層が設けられ、前記中間層内に冷却媒体が充填されることを特徴とする請求項1に記載の方向性熱伝導シートの製造方法。
The material filling area is provided symmetrically along the central axis of the drum.
Here, the material filling region is two fan-shaped cylindrical regions provided symmetrically with respect to the central axis of the drum.
The method for manufacturing a directional heat conductive sheet according to claim 1, wherein an intermediate layer is provided in the sleeve, and the cooling medium is filled in the intermediate layer.
JP2022035704A 2021-05-12 2022-03-08 Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device Active JP7093902B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110514873.4A CN113150558B (en) 2021-05-12 2021-05-12 Directional heat conducting sheet, preparation method thereof and semiconductor heat dissipation device
CN202110514873.4 2021-05-12

Publications (2)

Publication Number Publication Date
JP7093902B1 true JP7093902B1 (en) 2022-06-30
JP2022176076A JP2022176076A (en) 2022-11-25

Family

ID=76874535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022035704A Active JP7093902B1 (en) 2021-05-12 2022-03-08 Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device

Country Status (2)

Country Link
JP (1) JP7093902B1 (en)
CN (1) CN113150558B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116208867A (en) * 2023-04-27 2023-06-02 合肥岭雁科技有限公司 Enterprise gateway capable of efficiently radiating heat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133744A (en) * 2021-12-14 2022-03-04 广东思泉新材料股份有限公司 Directional heat conducting sheet, preparation method thereof and semiconductor heat dissipation device
CN115448745B (en) * 2022-09-21 2023-04-25 亚太中碳(山西)新材料科技有限公司 Preparation method of directional heat-conducting and electric-conducting graphite carbon film and directional heat-conducting carbon piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066817A (en) 2007-09-11 2009-04-02 Nippon Valqua Ind Ltd Thermally-conductive sheet
WO2016104169A1 (en) 2014-12-25 2016-06-30 デクセリアルズ株式会社 Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device
JP2017135211A (en) 2016-01-26 2017-08-03 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device
JP2018046073A (en) 2016-09-12 2018-03-22 デクセリアルズ株式会社 Thermally conductive sheet and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548057A4 (en) * 2002-09-30 2006-02-15 Bridgestone Corp Orientated carbon nanotube composite, process for producing orientated carbon nanotube composite, and, produced using orientated carbon nanotube composite, pneumatic tire, wheel for vehicle, tire wheel assembly and disk brake
JP4680979B2 (en) * 2007-12-25 2011-05-11 住友電気工業株式会社 Polyimide tube, manufacturing method thereof, and fixing belt
JP2010189523A (en) * 2009-02-17 2010-09-02 Polymatech Co Ltd Oriented molding and method for manufacturing the same
CN110734562B (en) * 2019-11-22 2020-07-03 江苏鸿凌达科技有限公司 Graphene fiber oriented heat conducting sheet and preparation method thereof
CN112659578B (en) * 2020-12-10 2022-08-16 苏州鸿凌达电子科技有限公司 Preparation method of silica gel sheet with low dielectric constant and high heat conductivity coefficient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066817A (en) 2007-09-11 2009-04-02 Nippon Valqua Ind Ltd Thermally-conductive sheet
WO2016104169A1 (en) 2014-12-25 2016-06-30 デクセリアルズ株式会社 Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device
JP2017135211A (en) 2016-01-26 2017-08-03 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device
JP2018046073A (en) 2016-09-12 2018-03-22 デクセリアルズ株式会社 Thermally conductive sheet and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116208867A (en) * 2023-04-27 2023-06-02 合肥岭雁科技有限公司 Enterprise gateway capable of efficiently radiating heat
CN116208867B (en) * 2023-04-27 2023-06-30 合肥岭雁科技有限公司 Enterprise gateway capable of efficiently radiating heat

Also Published As

Publication number Publication date
CN113150558A (en) 2021-07-23
JP2022176076A (en) 2022-11-25
CN113150558B (en) 2021-11-26

Similar Documents

Publication Publication Date Title
JP7093902B1 (en) Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device
JP6532047B2 (en) Thermal conductive sheet
Xiao et al. Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure
JP5541400B2 (en) Manufacturing method of heat conductive sheet
CN110128792A (en) A kind of hot interface composites and its preparation method and application
CN109666263A (en) The preparation method and product of a kind of boron nitride/epoxy resin composite material and application
CN101604727B (en) Electrostrictive composite material and preparation method thereof
CN109354874A (en) A kind of preparation of new type silicone rubber heat-conducting pad and cutting process
JP6650176B1 (en) Thermal conductive sheet
CN111978732B (en) Thermal interface material with three-dimensional heat conduction network structure
KR20210092744A (en) Thermally conductive sheet and manufacturing method thereof
CN101781461B (en) Electrostriction composite material and preparation method thereof
CN110734644A (en) heat-conducting insulating boron nitride polymer composite material and preparation method thereof
KR20220054713A (en) Thermally conductive sheet and method for manufacturing the same
CN109943075A (en) A kind of preparation method of the graphene thermally conductive silicone rubber composite material of magnetic aligning
Zhang et al. Ultrahigh thermal conductive polymer composites by the 3D printing induced vertical alignment of carbon fiber
JPWO2020050334A1 (en) Thermal conductivity sheet
JP2020196864A (en) Composite resin block object and its manufacturing method and heat conductive resin compact therewith and its manufacturing method
CN114133744A (en) Directional heat conducting sheet, preparation method thereof and semiconductor heat dissipation device
CN112250996A (en) Micro-nano epoxy resin electronic packaging material and preparation method and application thereof
JP2020074431A (en) Thermally conductive sheet
WO2022070680A1 (en) Thermally conductive sheet
CN115418015A (en) Preparation method of composite material heat-conducting pad
CN114407330A (en) Thermal interface material and preparation method thereof
CN112724680A (en) Preparation method of graphite orientation type thermal interface material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220308

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7093902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150