JP7093148B2 - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
JP7093148B2
JP7093148B2 JP2018227380A JP2018227380A JP7093148B2 JP 7093148 B2 JP7093148 B2 JP 7093148B2 JP 2018227380 A JP2018227380 A JP 2018227380A JP 2018227380 A JP2018227380 A JP 2018227380A JP 7093148 B2 JP7093148 B2 JP 7093148B2
Authority
JP
Japan
Prior art keywords
output window
carbon
diamond
protective film
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018227380A
Other languages
Japanese (ja)
Other versions
JP2020091969A (en
Inventor
利巳 渡邉
準基 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Canon Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electron Tubes and Devices Co Ltd filed Critical Canon Electron Tubes and Devices Co Ltd
Priority to JP2018227380A priority Critical patent/JP7093148B2/en
Publication of JP2020091969A publication Critical patent/JP2020091969A/en
Application granted granted Critical
Publication of JP7093148B2 publication Critical patent/JP7093148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、X線を出力するX線管に関する。 An embodiment of the present invention relates to an X-ray tube that outputs X-rays.

従来、例えば、材料の分析用などに使用されるX線管がある。このX線管の真空外囲器は、先端の径が徐々に細くなり、先端部が平坦になっている。その平坦な先端部に開口部が形成され、この開口部を閉塞するとともにX線を透過する出力窓が設けられている。出力窓にはX線の減衰が少ない材料として例えばベリリウムが使用され、さらに、X線の減衰を少なくするために出力窓の厚さが数10~数100μmと薄くなっている。 Conventionally, there are X-ray tubes used for, for example, analysis of materials. The diameter of the tip of the vacuum enclosure of this X-ray tube is gradually reduced, and the tip is flattened. An opening is formed at the flat tip portion thereof, and an output window that closes the opening and transmits X-rays is provided. For example, beryllium is used for the output window as a material with less X-ray attenuation, and the thickness of the output window is reduced to several tens to several hundreds of μm in order to reduce the attenuation of X-rays.

真空外囲器の開口部の周縁部は出力窓の材料であるベリリウムと熱膨張係数が近く接合性のよいステンレス部品で構成され、このステンレス部品に出力窓がろう材により接合され、真空外囲器の真空気密を保つ構造となっている。ステンレス部品は、X線の減衰が大きいため、真空外囲器の開口部をなるべく大きくしてX線を多く取り出せるようになっている。 The peripheral edge of the opening of the vacuum enclosure is composed of a stainless steel part that has a close thermal expansion coefficient and good bondability with beryllium, which is the material of the output window. It has a structure that keeps the vacuum airtightness of the vessel. Since stainless steel parts have a large attenuation of X-rays, the opening of the vacuum enclosure is made as large as possible so that a large amount of X-rays can be taken out.

X線管を使用するときには、出力窓の外面を試料に接近させるため、試料に含まれる腐食性物質が出力窓の外面に飛散したり、腐食性ガスに出力窓の外面がさらされる。このような環境でX線管を使用すると、出力窓の外面が腐食し、出力窓が薄い場合には早期に孔が開き、真空外囲器の真空気密を保つことができなくなる。このため、出力窓の外面に保護膜を設けることが行われている。保護膜の材料としては、X線の減衰を抑制するためにダイヤモンドライクカーボンのような低元素のものが選ばれている。 When using an X-ray tube, the outer surface of the output window is brought closer to the sample, so that corrosive substances contained in the sample are scattered on the outer surface of the output window, and the outer surface of the output window is exposed to corrosive gas. When an X-ray tube is used in such an environment, the outer surface of the output window is corroded, and if the output window is thin, a hole is opened at an early stage, and the vacuum airtightness of the vacuum enclosure cannot be maintained. Therefore, a protective film is provided on the outer surface of the output window. As the material of the protective film, a material having a low element such as diamond-like carbon is selected in order to suppress the attenuation of X-rays.

特開2014-89906号公報Japanese Unexamined Patent Publication No. 2014-89906

保護膜の材料としては、X線の減衰を抑制するためにダイヤモンドライクカーボンのような低元素のものが選ばれるが、ダイヤモンドライクカーボンは、高温の雰囲気においては、酸素と結合することで劣化し、出力窓から剥離するおそれがある。 As the material of the protective film, a low element such as diamond-like carbon is selected in order to suppress the attenuation of X-rays, but diamond-like carbon deteriorates by combining with oxygen in a high temperature atmosphere. , There is a risk of peeling from the output window.

本発明は、上記した課題を解決し、高温の雰囲気中での保護膜の劣化を防ぎ、出力窓の腐食を防止できるX線管を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, to prevent deterioration of a protective film in a high temperature atmosphere, and to provide an X-ray tube capable of preventing corrosion of an output window.

本実施形態のX線管は、X線を透過する出力窓を有する真空外囲器と、真空外囲器内の出力窓と対向する位置に配置された陽極ターゲットと、陽極ターゲットに照射する電子を発生する陰極フィラメントと、出力窓の外面に形成された保護膜とを具備する。保護膜は、ダイヤモンドライクカーボンにケイ素を含有した物質で構成され、ダイヤモンドライクカーボン中のケイ素の割合は質量比で5~6%である。 The X-ray tube of the present embodiment has a vacuum enclosure having an output window for transmitting X-rays, an anode target arranged at a position facing the output window in the vacuum enclosure, and electrons irradiating the anode target. The cathode filament is provided with a protective film formed on the outer surface of the output window. The protective film is composed of a substance containing silicon in diamond-like carbon, and the ratio of silicon in diamond-like carbon is 5 to 6 % by mass ratio.

一実施形態を示すX線管の一部拡大断面図である。It is a partially enlarged sectional view of the X-ray tube which shows one Embodiment. 同上X線管装置の断面図である。It is sectional drawing of the X-ray tube apparatus of the same as above.

以下、一実施形態を、図面を参照して説明する。 Hereinafter, one embodiment will be described with reference to the drawings.

図2に、材料の分析用などに使用されるX線管装置10を示す。 FIG. 2 shows an X-ray tube device 10 used for material analysis and the like.

X線管装置10は、円筒状の管容器11と、この管容器11の一端に設けられるX線管12と、管容器11の他端に設けられ高電圧ケーブルを接続する高電圧リセプタクル13と、X線管12と高電圧リセプタクル13を電気的に接続する接続部14と、管容器11内に配置されて冷却液が循環される冷却パイプ15と、管容器11内に充填される絶縁油となどを備えている。 The X-ray tube device 10 includes a cylindrical tube container 11, an X-ray tube 12 provided at one end of the tube container 11, and a high-voltage receptacle 13 provided at the other end of the tube container 11 to connect a high-voltage cable. , The connection portion 14 that electrically connects the X-ray tube 12 and the high voltage receptacle 13, the cooling pipe 15 that is arranged in the tube container 11 and circulates the coolant, and the insulating oil that is filled in the tube container 11. And so on.

図1は、X線管12の一部を示す。なお、図1に示すX線管12は、図2に示すX線管12に対して上下を逆転させて図示している。 FIG. 1 shows a part of the X-ray tube 12. The X-ray tube 12 shown in FIG. 1 is shown upside down with respect to the X-ray tube 12 shown in FIG.

X線管12は、真空外囲器21を備えている。真空外囲器21は、筒部22を有し、この筒部22の先端側に径が徐々に細くなる傾斜部23が形成されているとともに先端面に平坦部24が形成されている。平坦部24には、円形の開口部25が形成され、この開口部25の周縁部で大気側となる外面に出力窓取付部26が形成されている。真空外囲器21の少なくとも出力窓取付部26は、例えばステンレスを材料として形成されている。 The X-ray tube 12 includes a vacuum enclosure 21. The vacuum enclosure 21 has a tubular portion 22, and an inclined portion 23 whose diameter gradually decreases is formed on the tip end side of the tubular portion 22, and a flat portion 24 is formed on the tip end surface. A circular opening 25 is formed in the flat portion 24, and an output window mounting portion 26 is formed on the outer surface facing the atmosphere at the peripheral edge portion of the opening 25. At least the output window mounting portion 26 of the vacuum enclosure 21 is formed of, for example, stainless steel.

真空外囲器21の出力窓取付部26の外面には、X線を出力する出力窓27が開口部25を閉塞して取り付けられている。この出力窓27は、X線の減衰が少ない材料である例えばベリリウムが使用され、さらに、X線の減衰を少なくするためにベリリウムの厚さが数10~数100μmと薄くなっている。 An output window 27 for outputting X-rays is attached to the outer surface of the output window mounting portion 26 of the vacuum enclosure 21 with the opening 25 closed. For the output window 27, for example, beryllium, which is a material with low X-ray attenuation, is used, and the thickness of beryllium is reduced to several tens to several hundreds of μm in order to reduce the attenuation of X-rays.

そして、出力窓27の周辺部が出力窓取付部26にろう材によって接合され、開口部25を閉塞し、真空外囲器21の真空気密を保つ構造となっている。 The peripheral portion of the output window 27 is joined to the output window mounting portion 26 by a brazing material to close the opening 25 and maintain the vacuum airtightness of the vacuum enclosure 21.

また、真空外囲器21の内部には、出力窓27の内面と対向して陽極ターゲット28が配置され、この陽極ターゲット28の外面に図示しない集束電極が配置され、この集束電極の外側に陰極フィラメント29が配置されている。そして、陰極フィラメント29から放出された電子30が陽極ターゲット28に照射され、これにより陽極ターゲット28から放射されるX線31が出力窓27を透過して外部に取り出される。 Further, inside the vacuum enclosure 21, an anode target 28 is arranged facing the inner surface of the output window 27, a focusing electrode (not shown) is arranged on the outer surface of the anode target 28, and a cathode is arranged outside the focusing electrode. The filament 29 is arranged. Then, the electrons 30 emitted from the cathode filament 29 irradiate the anode target 28, whereby the X-rays 31 emitted from the anode target 28 pass through the output window 27 and are taken out to the outside.

また、出力窓27の大気側となる外面には、分析時において出力窓27の外面に腐食性物質が飛散したり出力窓27の外面が腐食性ガスにさらされても、出力窓27の腐食を防止し、出力窓27を保護する保護膜32が形成されている。保護膜32は、ダイヤモンドライクカーボンの材料を主材料として形成され、その厚さは例えば0.5~1μmに形成されている。保護膜32は、例えば蒸着によって成膜されている。 Further, on the outer surface of the output window 27 on the atmospheric side, even if a corrosive substance is scattered on the outer surface of the output window 27 at the time of analysis or the outer surface of the output window 27 is exposed to a corrosive gas, the output window 27 is corroded. A protective film 32 is formed to prevent the problem and protect the output window 27. The protective film 32 is formed of a diamond-like carbon material as a main material, and its thickness is formed to, for example, 0.5 to 1 μm. The protective film 32 is formed by, for example, thin film deposition.

また、X線管12の製造プロセスにおいては真空外囲器21内の真空度を高めるためのガス抜き工程があるが、このガス抜き工程ではX線管12が例えば500℃程度の高温の雰囲気にさらされることになる。この高温の雰囲気においては、ダイヤモンドライクカーボンが酸素と結合することで劣化し、保護膜32が出力窓27から剥離するおそれがある。そこで、保護膜32の高温雰囲気中での劣化を防ぐために、ダイヤモンドライクカーボン中にケイ素(Si)が含有され、耐熱性が向上されている。 Further, in the manufacturing process of the X-ray tube 12, there is a degassing step for increasing the degree of vacuum in the vacuum enclosure 21, but in this degassing step, the X-ray tube 12 has a high temperature atmosphere of, for example, about 500 ° C. You will be exposed. In this high temperature atmosphere, diamond-like carbon may deteriorate due to binding with oxygen, and the protective film 32 may peel off from the output window 27. Therefore, in order to prevent the protective film 32 from deteriorating in a high temperature atmosphere, silicon (Si) is contained in the diamond-like carbon, and the heat resistance is improved.

しかし、ケイ素の含有量を高めれば、ダイヤモンドライクカーボンの耐熱性が向上するものの、ケイ素はベリリウムやカーボンに比べて原子番号が大きいので、あまりにケイ素の含有量を高め過ぎると、X線の減衰が大きく、X線が保護膜32を透過する際に不純線が発生しやすくなる。ケイ素の最適な含有量は、耐熱性とX線減衰のトレードオフによって決定される。 However, although increasing the silicon content improves the heat resistance of diamond-like carbon, silicon has a larger atomic number than beryllium and carbon, so if the silicon content is increased too much, X-ray attenuation will occur. It is large, and impure rays are likely to be generated when X-rays pass through the protective film 32. The optimum content of silicon is determined by the trade-off between heat resistance and X-ray attenuation.

そして、ダイヤモンドライクカーボン中のケイ素の割合を変えた保護膜32のサンプルについて、耐熱性とX線減衰について検証した。サンプルは、同条件で成膜するとともに高温雰囲気にさらし、X線透過測定を行った。 Then, the heat resistance and X-ray attenuation of the sample of the protective film 32 in which the ratio of silicon in diamond-like carbon was changed were verified. The sample was formed into a film under the same conditions and exposed to a high temperature atmosphere, and X-ray transmission measurement was performed.

その結果、ダイヤモンドライクカーボン中のケイ素の割合が質量比で30%よりも高くなると、耐熱性が高く、高温の雰囲気中でのダイヤモンドライクカーボンの劣化を防ぐことが可能となるが、X線の減衰が大きくなり、不純線も多く発生し、分析が困難となる。 As a result, when the ratio of silicon in diamond-like carbon is higher than 30% by mass ratio, the heat resistance is high and it is possible to prevent the deterioration of diamond-like carbon in a high temperature atmosphere. The attenuation becomes large and many impure lines are generated, which makes analysis difficult.

一方、ダイヤモンドライクカーボン中のケイ素の割合が質量比で2%よりも低くなると、X線の減衰が小さいが、耐熱性が低く、高温の雰囲気中でのダイヤモンドライクカーボンの劣化を防ぐ効果が少なくなる。 On the other hand, when the ratio of silicon in diamond-like carbon is lower than 2% by mass ratio, the attenuation of X-rays is small, but the heat resistance is low, and the effect of preventing the deterioration of diamond-like carbon in a high temperature atmosphere is small. Become.

そのため、ダイヤモンドライクカーボン中のケイ素の割合を質量比で2~30%とすることにより、耐熱性の向上とX線減衰の抑制を図ることが可能となる。 Therefore, by setting the ratio of silicon in diamond-like carbon to 2 to 30% by mass ratio, it is possible to improve heat resistance and suppress X-ray attenuation.

さらに、ダイヤモンドライクカーボン中のケイ素の割合を質量比で2~30%の中でも、重量比が5.4%や5.7%のサンプルでは、耐熱性を確保しながら、X線の減衰が小さくなって、高い分析精度を得られるため、耐熱性の向上とX線減衰の抑制とのバランスが最適となる。したがって、より好ましくは、ダイヤモンドライクカーボン中のケイ素の割合は質量比で5~6%とすることにより、耐熱性の向上とX線減衰の抑制とのバランスを最適にすることが可能となる。 Furthermore, among the samples with a mass ratio of 2 to 30% of silicon in diamond-like carbon and a weight ratio of 5.4% or 5.7%, X-ray attenuation is small while ensuring heat resistance. As a result, high analysis accuracy can be obtained, and the balance between the improvement of heat resistance and the suppression of X-ray attenuation is optimal. Therefore, more preferably, by setting the ratio of silicon in diamond-like carbon to 5 to 6% by mass ratio, it is possible to optimize the balance between the improvement of heat resistance and the suppression of X-ray attenuation.

このように、本実施形態のX線管12によれば、保護膜32のダイヤモンドライクカーボンにケイ素を含有することにより、保護膜32の劣化を防ぎ、出力窓27の腐食を防止できる。 As described above, according to the X-ray tube 12 of the present embodiment, by containing silicon in the diamond-like carbon of the protective film 32, deterioration of the protective film 32 can be prevented and corrosion of the output window 27 can be prevented.

さらに、保護膜32のダイヤモンドライクカーボン中のケイ素の割合を質量比で2~30%とすることにより、耐熱性の向上とX線減衰の抑制とのバランスを良好にできる。 Further, by setting the ratio of silicon in the diamond-like carbon of the protective film 32 to 2 to 30% by mass ratio, it is possible to improve the balance between the improvement of heat resistance and the suppression of X-ray attenuation.

しかも、保護膜32のダイヤモンドライクカーボン中のケイ素の割合を質量比で5~6%とすることにより、耐熱性の向上とX線減衰の抑制とのバランスを最適にすることができる。 Moreover, by setting the ratio of silicon in the diamond-like carbon of the protective film 32 to 5 to 6% by mass ratio, it is possible to optimize the balance between the improvement of heat resistance and the suppression of X-ray attenuation.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

12 X線管
21 真空外囲器
27 出力窓
28 陽極ターゲット
29 陰極フィラメント
30 電子
31 X線
32 保護膜
12 X-ray tube
21 Vacuum enclosure
27 Output window
28 Anode target
29 Cathode filament
30 electronics
31 X-ray
32 Protective film

Claims (1)

X線を透過する出力窓を有する真空外囲器と、
前記真空外囲器内の前記出力窓と対向する位置に配置された陽極ターゲットと、
前記陽極ターゲットに照射する電子を発生する陰極フィラメントと、
前記出力窓の外面に形成された保護膜と
を具備し、
前記保護膜は、ダイヤモンドライクカーボンにケイ素を含有した物質で構成され、ダイヤモンドライクカーボン中のケイ素の割合は質量比で5~6%である
ことを特徴とするX線管
A vacuum enclosure with an output window that allows X-rays to pass through,
An anode target located in the vacuum enclosure at a position facing the output window,
A cathode filament that generates electrons to irradiate the anode target, and
A protective film formed on the outer surface of the output window is provided.
The protective film is an X-ray tube characterized in that the protective film is composed of a substance containing silicon in diamond-like carbon, and the ratio of silicon in diamond-like carbon is 5 to 6 % by mass ratio .
JP2018227380A 2018-12-04 2018-12-04 X-ray tube Active JP7093148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018227380A JP7093148B2 (en) 2018-12-04 2018-12-04 X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018227380A JP7093148B2 (en) 2018-12-04 2018-12-04 X-ray tube

Publications (2)

Publication Number Publication Date
JP2020091969A JP2020091969A (en) 2020-06-11
JP7093148B2 true JP7093148B2 (en) 2022-06-29

Family

ID=71013045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018227380A Active JP7093148B2 (en) 2018-12-04 2018-12-04 X-ray tube

Country Status (1)

Country Link
JP (1) JP7093148B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120466A1 (en) 2002-09-13 2004-06-24 Moxtek, Inc. Radiation window and method of manufacture
JP2010005744A (en) 2008-06-27 2010-01-14 Hitachi Tool Engineering Ltd Hard carbon film-coated tool
JP2014089906A (en) 2012-10-31 2014-05-15 Toshiba Corp X-ray tube and process of manufacturing the same
JP2016037637A (en) 2014-08-07 2016-03-22 国立大学法人豊橋技術科学大学 Dlc film formation method and dlc film formation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636718A (en) * 1992-07-15 1994-02-10 Sumitomo Electric Ind Ltd X-ray tubular bulb for diffraction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120466A1 (en) 2002-09-13 2004-06-24 Moxtek, Inc. Radiation window and method of manufacture
JP2005539351A (en) 2002-09-13 2005-12-22 モックステック・インコーポレーテッド Radiation window and manufacturing method thereof
JP2010005744A (en) 2008-06-27 2010-01-14 Hitachi Tool Engineering Ltd Hard carbon film-coated tool
JP2014089906A (en) 2012-10-31 2014-05-15 Toshiba Corp X-ray tube and process of manufacturing the same
JP2016037637A (en) 2014-08-07 2016-03-22 国立大学法人豊橋技術科学大学 Dlc film formation method and dlc film formation device

Also Published As

Publication number Publication date
JP2020091969A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US5860584A (en) Method of bonding amorphous carbon material with metal material or ceramic material and electron tube device
EP2887380B1 (en) Transmitting-type target and X-ray generation tube provided with transmitting-type target
US9484178B2 (en) Target and X-ray generating tube including the same, X-ray generating apparatus, X-ray imaging system
US10229808B2 (en) Transmission-type target for X-ray generating source, and X-ray generator and radiography system including transmission-type target
KR101705849B1 (en) Transmission type target, radiation generating tube including the same, radiation generating apparatus, and radiography system
JP2000306533A (en) Transmissive radiation-type x-ray tube and manufacture of it
JP5136346B2 (en) X-ray device electrode
US9818571B2 (en) X-ray generation tube, X-ray generation apparatus, and radiography system
JP6230389B2 (en) X-ray generator tube, X-ray generator and X-ray imaging system using the same
JP7093148B2 (en) X-ray tube
US2340362A (en) Window construction for X-ray tubes
JP2015232944A (en) X-ray tube device
KR102195101B1 (en) X-ray tube
JPH077655B2 (en) Electro-optical device having graphite material
US20220406557A1 (en) X-Ray Tube Anode with Integrated Collimator
JP6025378B2 (en) Electron microscope and sample observation method
EP3664121A1 (en) High voltage vacuum feedthrough
JP2015060731A (en) Radiation generating tube and radiation generator using the same, radiographic system
CN109671605B (en) Fixed anode type X-ray tube
JP2018107148A (en) X-ray target and manufacturing method of x-ray target
JP6272539B1 (en) X-ray generator tube, X-ray generator and X-ray imaging system using the same
JP2002208367A (en) X-ray tube
JP4753032B2 (en) Thermionic emission gun
JP2014089906A (en) X-ray tube and process of manufacturing the same
JP2004227807A (en) X-ray image tube, x-ray image tube manufacturing device, and manufacturing method of x-ray image tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220615

R150 Certificate of patent or registration of utility model

Ref document number: 7093148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150