JP7091999B2 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
JP7091999B2
JP7091999B2 JP2018211499A JP2018211499A JP7091999B2 JP 7091999 B2 JP7091999 B2 JP 7091999B2 JP 2018211499 A JP2018211499 A JP 2018211499A JP 2018211499 A JP2018211499 A JP 2018211499A JP 7091999 B2 JP7091999 B2 JP 7091999B2
Authority
JP
Japan
Prior art keywords
battery
control
open end
storage amount
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211499A
Other languages
English (en)
Other versions
JP2020077578A (ja
Inventor
誉幸 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018211499A priority Critical patent/JP7091999B2/ja
Priority to US16/658,304 priority patent/US11095143B2/en
Priority to KR1020190130526A priority patent/KR102271631B1/ko
Priority to EP19204673.8A priority patent/EP3650265B1/en
Priority to CN201911083397.4A priority patent/CN111169323B/zh
Publication of JP2020077578A publication Critical patent/JP2020077578A/ja
Application granted granted Critical
Publication of JP7091999B2 publication Critical patent/JP7091999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、車両に搭載される電池制御装置に関する。
車両に搭載される電池に、リン酸鉄系リチウムイオン電池(LFP電池)を用いることが提案されている。このLFP電池は、開放端電圧(OCV)から蓄電量(SOC)を一意に特定できるSOC-OCV特性曲線にフラットな領域を有するため(図2を参照)、このフラット領域では電池の蓄電状態を高精度に推定することが難しい。
この対策として、特許文献1には、開放端電圧がフラット領域にある場合、電池における実際の充放電積算量を算出して、フラット領域よりも低電圧側の基準SOCに加算することで、電池の蓄電量を推定する技術が開示されている。
特開2010-266221号公報
しかしながら、特許文献1に記載の技術では、例えば電池の状態が長い時間に亘ってフラット領域内に留まっているような場合、充放電による電流の積算量を求めるための電流センサの測定誤差などが累積されて、推定した蓄電量と電池の実際の蓄電量との乖離が大きくなるおそれがある。
本発明は、上記課題を鑑みてなされたものであり、推定した蓄電量と電池の実際の蓄電量との乖離を抑制し、電池の蓄電状態を高精度に管理することができる電池制御装置を提供することを目的とする。
上記課題を解決するために、本発明の一態様は、蓄電量に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性曲線を持つ電池の蓄電状態を管理する車両用電池制御装置であって、電池の開放端電圧を取得する取得部と、取得部が取得した電池の開放端電圧がフラット領域の下限電圧以上かつ上限電圧以下の特定範囲内にあるか否かを判定する第1の判定部と、積算電流量に基づいて電池の蓄電量を推定する第1の推定部と、電池の蓄電量を表す値として参照される制御用蓄電量を設定する設定部と、電池の蓄電量が所定の目標値となるように電池の開放端電圧又は制御用蓄電量に基づいて電池の充放電を制御する制御部とを備え、車両のイグニッションオン時、第1の判定部が電池の開放端電圧が特定範囲内にあると判定した場合、設定部は、特性曲線に基づいてフラット領域の下限電圧から定まる蓄電量未満の第1の蓄電量に制御用蓄電量を設定し、制御部は、制御用蓄電量が第1の蓄電量に設定され、かつ、車両が走行可能な状態になった後、電池の開放端電圧がフラット領域の上限電圧を超える第1の電圧となるまで開放端電圧に基づいて電池を充電し、設定部は、電池の開放端電圧が第1の電圧に達するまでは第1の推定部が推定した蓄電量を制御用蓄電量に設定し、電池の開放端電圧が第1の電圧に達した後に、特性曲線に基づいて電池の開放端電圧から定まる第2の蓄電量を制御用蓄電量に設定する。
上記本発明の電池制御装置は、電池の開放端電圧がフラット領域にある場合には、直ちに所定の充電を実施して電池の開放端電圧をフラット領域外まで上昇させた後に、電池の蓄電量を表す値として参照される制御用蓄電量を可及的速やかに設定し直すので、制御用蓄電量と電池の実際の蓄電量との乖離を抑制し、電池の蓄電状態を高精度に管理することができる。
本実施形態に係る電池制御装置を含んだ車両用の冗長電源システムの概略構成例を示す図 リチウムイオン電池のSOC-OCV特性の一例を示す図 初期SOC飛ばし制御の処理を説明するフローチャート 図3のステップS304による詳細な処理を説明するフローチャート 自動運転が許可される処理を説明するフローチャート 通常SOC飛ばし制御の処理を説明するフローチャート 第2電池の実SOCがフラット領域内にある場合の初期SOC飛ばし制御を説明するタイミングチャート 第2電池の実SOCがフラット領域上側にある場合の初期SOC飛ばし制御及び通常SOC飛ばし制御を説明するタイミングチャート 第2電池の実SOCがフラット領域下側にある場合の初期SOC飛ばし制御及び通常SOC飛ばし制御を説明するタイミングチャート
<実施形態>
本発明の電池制御装置は、電池の蓄電量を表す値として参照される制御用蓄電量を用いる。車両のIG-ON時に取得した電池の開放端電圧からSOC-OCV特性曲線に基づいて一意に特定できる蓄電量に、制御用蓄電量を設定する。電池の開放端電圧が蓄電量を一意に特定できないフラット領域にある場合には、充放電制御によって電池の蓄電状態をフラット領域外に動かした後、開放端電圧から特定した蓄電量に制御用蓄電量を設定する。これにより、制御用蓄電量と電池の実際の蓄電量との乖離を抑制できる。
以下の実施形態では、蓄電状態を高精度に管理する必要がある電池の1つである、自動運転システムを備えた車両に搭載される自動運転バックアップ用電池に、本発明の電池制御装置を適用した場合を一例に説明する。
[構成]
図1は、本実施形態に係る電池制御装置50を含んだ車両用の冗長電源システム1の概略構成例を示す図である。図1に例示した冗長電源システム1は、第1DCDCコンバーター(以下「第1DDC」と記す)11、第1電池12、第1自動運転システム13、及び車載機器14を含む第1電源系統と、第2DCDCコンバーター(以下「第2DDC」と記す)21、第2電池22及び第2自動運転システム23を含む第2電源系統と、電力供給部30と、第1リレー装置41と、第2リレー装置42と、電池制御装置50と、を備えている。第1電源系統の第1電池12、第1自動運転システム13、及び車載機器14は、第1電源ライン15によって第1DDC11の出力側に接続されている。第2電源系統の第2電池22及び第2自動運転システム23は、第2電源ライン25によって第2DDC21の出力側に接続されている。
この冗長電源システム1では、第1電源系統と第2電源系統とによる冗長電源構成を採用している。第1電源系統と第2電源系統とは、暗電流供給用の第1リレー装置41を介して接続されている。第2電池22は、電池保護用の第2リレー装置42を介して第2電源系統と接続されている。この第1リレー装置41及び第2リレー装置42は、電池制御装置50によって接続/遮断が制御される。
電力供給部30は、第1DDC11及び第2DDC21へ並列に電力を供給することができる。この電力供給部30には、例えばリチウムイオン電池などの、充放電可能に構成された高圧電池が用いられる。
第1DDC11は、電力供給部30から供給される電力を変換し、第1電源ライン15を介して、第1電池12、第1自動運転システム13、及び車載機器14に出力することができる。
第1電池12は、例えば鉛電池などの充放電可能に構成された二次電池である。この第1電池12は、第1DDC11から出力される電力を蓄えること(充電)ができ、また自らが蓄えている電力を第1自動運転システム13及び車載機器14に出力(放電)することができる。さらに、第1電池12は、第1リレー装置41及び第2リレー装置42を介して、第2電池22から放出される電力を蓄えること(充電)ができる。
第1自動運転システム13は、車両を自動運転させるために必要な車載機器を含んだシステムである。自動運転に必要な車載機器には、一例として自動運転ECU(Electronic Control Unit)、電動ブレーキ装置(EBS)、電動パワーステアリング装置(EPS)などが含まれる。
車載機器14は、車両の自動運転に関わらない1つ以上の車載機器を含む。この車載機器14には、一例としてヘッドランプやワイパーなどの装置が含まれる。
第2DDC21は、電力供給部30から供給される電力を変換し、第2電源ライン25を介して、第2電池22及び第2自動運転システム23に出力することができる。
第2電池22は、例えばリチウムイオン電池などの充放電可能に構成された二次電池である。一例として、図2に示すような蓄電量(SOC)に対する開放端電圧(OCV)の変化率が隣接する領域よりも小さいフラット領域を有するSOC-OCV特性曲線を持つリン酸鉄系リチウムイオン電池(LFP電池)を、第2電池22として用いることができる。この第2電池22は、第2リレー装置42を介して、第2DDC21から出力される電力を蓄えること(充電)ができ、また自らが蓄えている電力を第2自動運転システム23などに出力(放電)することができる。この第2電池22は、第2自動運転システム23に電力を供給することに加え、車両の自動運転中に第1電池12の失陥が生じた場合に車両の自動運転に関わる機能をバックアップする予備電池としての役割も有する、バックアップ兼用電池である。
第2自動運転システム23は、第1自動運転システム13と同じシステムを冗長的に設けたものであり、第1自動運転システム13と同様に、車両を自動運転させるために必要な車載機器を含んだシステムである。
第1リレー装置41は、第1電源ライン15と第2電源ライン25との間に設けられ、電池制御装置50の制御によって、第1電源ライン15と第2電源ライン25との接続及び遮断が可能なように構成されている。この第1リレー装置41は、駐車時などの車両電源がオフされた時に接続状態となり、第1電池12から第2自動運転システム23へ暗電流を供給する経路を形成する。第1リレー装置41は、上記以外の時は遮断状態となり、第1電源系統と第2電源系統とを電気的に分離している。
第2リレー装置42は、第2電源ライン25と第2電池22との間に設けられ、電池制御装置50の制御によって、第2電源ライン25と第2電池22との接続及び遮断が可能なように構成されている。この第2リレー装置42は、駐車時などの車両電源がオフされた時には遮断状態となり、第2電池22から第2自動運転システム23への電流消費を防止する。第2リレー装置42は、上記以外の時は接続状態となり、第2自動運転システム23へ電力を供給する。
電池制御装置50は、第1DDC11、第2DDC21、第1電池12、第2電池22、第1リレー装置41、及び第2リレー装置42の状態や動作などを管理して、冗長電源システム1の状態を制御することができる。本実施形態の電池制御装置50では、第2電池22の蓄電状態を高精度に推定するための制御を実行する。
電池制御装置50は、典型的にはCPU(Central Processing Unit)、メモリ、及び入出力インタフェースなどを含んだECU(Electronic Control Unit)として構成され得る。この電池制御装置50には、第2電池22の電圧、電流、及び温度を監視する監視ECUや、第2DDC21の出力電圧を制御したり、第1リレー装置41の接続/遮断状態を制御したりすることができる電源ECUなど、車両に搭載されるECUの一部又は全部を含むことができる。本実施形態の電池制御装置50は、メモリに格納されたプログラムをCPUが読み出して実行することによって、制御部51、推定部52、設定部53、取得部54、及び判定部55の機能を実現する。
制御部51は、第2DDC21の電圧指示値を適切に制御して、第2電池22の蓄電量が所定の目標値(例えば最大蓄電容量の90%)となるように、第2電池22の開放端電圧に基づいて第2電池22の充電及び放電を行う、いわゆる通常充電を実施する。また、制御部51は、後述する所定の条件を満足した場合には、第2DDC21の電圧指示値を適切に制御して、所定の蓄電量(例えば最大蓄電容量の98%)に達するまで一定の電流で第2電池22を充電し(CC充電)、この所定の蓄電量に達した後は一定の電圧で第2電池22を充電する(CV充電)、いわゆるCCCV充電を実施する。このCCCV充電は、第2電池22の蓄電量を表す値として参照される制御用蓄電量(以下「制御用SOC」という)に基づいて、車両が走行可能な状態であるREADY-ONの期間に実施される。
推定部52は、制御部51が実施する充放電制御に応じて生じる充電電流及び放電電流を積算し、積算した電流量に基づいて第2電池22の蓄電量を推定する(第1の推定)。充電電流及び放電電流は、第2電池22に設けられた電流センサで取得可能である。
また、推定部52は、電池の充電量の推定誤差の積算値及び放電量の推定誤差の積算値を含んだ第2電池22の蓄電量の最大値(以下「SOC_MAX」という)及び最小値(以下「SOC_MIN」という)を推定する(第2の推定)。SOC_MAXは、電流センサで測定される電流値が第2電池22に実際に流れる電流値よりも多くなる推定誤差を含んだ最大の蓄電量である。SOC_MINは、電流センサで測定される電流値が第2電池22に実際に流れる電流値よりも少なくなる推定誤差を含んだ最小の蓄電量である。電流センサで生じる誤差は、予め実測で取得することで推定しもよいし、電流センサの製品規格に基づいて推定してもよい。
設定部53は、第2電池22の蓄電量を表す値として参照される制御用SOCを設定する。この制御用SOCには、推定部52で推定された第2電池22の蓄電量が設定される。また、設定部53は、第2電池22の実際の蓄電量(以下「実SOC」という)と制御用SOCとの乖離が大きくならないように随時設定を見直すことを行う。制御用SOCの設定手法の詳細は、後述する。
取得部54は、第2電池22の開放端電圧(OCV)を取得する。第2電池22の開放端電圧は、第2電池22に設けられた電圧センサなどで取得可能である。
判定部55は、車両のイグニッションがオン(IG-ON)されたときに取得部54によって取得された第2電池22の開放端電圧が、上述したSOC-OCV特性曲線のフラット領域の下限電圧以上かつ上限電圧以下の特定範囲内にあるか否かを判定する(第1の判定)。このフラット領域の下限電圧及び上限電圧は、第2電池22のSOC-OCV特性曲線において開放端電圧から蓄電量を一意に特定できるか否かに基づいて設定することができる。例えば、図2に示したSOC-OCV特性曲線の場合には、下限電圧を3.28Vと上限電圧を3.31Vとすることができる。
また、判定部55は、推定部52で推定されたSOC_MAXとSOC_MINとの差(=SOC_MAX-SOC_MIN)が、所定の閾値を越えるか否かを判定する(第2の判定)。このSOC_MIN及びSOC_MAXは、周知の電流積算法を用いて積算していくごとに誤差が累積され、第2電池22の実SOCとの乖離がそれぞれ増大するものと考えられる。そこで、判定部55は、第2電池22の実SOCとSOC_MIN及びSOC_MAXとの乖離を許容する限界となる値に基づいて所定の閾値を適切に設定し、SOC_MINとSOC_MAXとの差が所定の閾値を越えた場合には、設定部53に第2電池22の実SOCと制御用SOCとの乖離を修正させる。なお、判定部55は、設定部53が後述するSOC飛ばし制御を行って制御用SOCを新たな蓄電量に設定してから所定の時間が経過したか否かを判定し(第3の判定)、所定の時間が経過した場合に設定部53に第2電池22の実SOCと制御用SOCとの乖離を修正させてもよい。
さらに、判定部55は、推定部52で推定されたSOC_MINが所定の蓄電量に達したか否かを判定し(第4の判定)、SOC_MINが所定の蓄電量に達した場合に車両の自動運転を許可することを行う。所定の蓄電量は、車両の自動運転に関わる機能をバックアップするために第2電池22に必要な最低蓄電量に設定される。
これらの制御部51、推定部52、設定部53、取得部54、及び判定部55の詳細な制御については、以降に説明する。
[制御]
次に、図3乃至図9をさらに参照して、本実施形態に係る電池制御装置50が実行する制御を説明する。図3は、初期SOC飛ばし制御の処理を説明するフローチャートである。図4は、図3のステップS304による詳細な処理を説明するフローチャートである。図5は、自動運転システムを備えた車両において自動運転が許可される処理を説明するフローチャートである。図6は、通常SOC飛ばし制御の処理を説明するフローチャートである。図7乃至図9は、初期SOC飛ばし制御及び通常SOC飛ばし制御の一例を説明するタイミングチャートである。
1.初期SOC飛ばし制御
図3、図4、図7、図8、及び図9を参照して、初期SOC飛ばし制御を説明する。この初期SOC飛ばし制御は、車両がIG-ON状態となった後に最初に実施される第2電池22の実SOCと制御用SOCとの乖離を修正する制御である。
前回のIG-OFF後から今回のIG-ONまでの車両が使用されていない間、自己放電や電池セルの均等化処理などによって第2電池22の蓄電量が低下していることが考えられる。この蓄電量の低下は、第2電池22の実SOCと制御用SOCとの乖離を引き起こす。そこで、本実施形態では、車両がIG-ON状態となった直後に初期SOC飛ばし制御を実施する。図3に示す処理は、車両がIG-ON状態になると開始される。図7、図8、及び図9におけるタイミング(1)である。
ステップS301:判定部55は、第2電池22の実SOCがSOC-OCV特性曲線のフラット領域内にあるか否かを判定する。具体的には、判定部55は、取得部54で取得された第2電池22の開放端電圧(OCV)が、フラット領域の下限電圧以上かつ上限電圧以下の特定範囲内にあるか否かを判定する。第2電池22の開放端電圧が下限電圧以上かつ上限電圧以下の特定範囲内にある場合は(S301、はい)、第2電池22の実SOCがフラット領域内にあり開放端電圧から蓄電量を一意に特定できないため、ステップS302に処理が進む。図7がこの場合に該当する。一方、第2電池22の開放端電圧が下限電圧以上かつ上限電圧以下の特定範囲内にない場合は(S301、いいえ)、第2電池22の実SOCがフラット領域外にあり開放端電圧から蓄電量を一意に特定できるため、ステップS309に処理が進む。図8及び図9がこの場合に該当する。
図7、図8、及び図9の例では、蓄電量が50%~90%の範囲をフラット領域としており、判定部55は、蓄電量50%時の開放端電圧(下限電圧)3.28V以上かつ蓄電量90%時の開放端電圧(上限電圧)3.31V以下の範囲(図2を参照)に第2電池22の開放端電圧があるか否かを判定することで、第2電池22の実SOCがフラット領域内にあるか否かを判定している。図7は、IG-ON時の第2電池22の実SOCがフラット領域内にある場合を示し、図8は、IG-ON時の第2電池22の実SOCがフラット領域よりも上側(高SOC側)にある場合を示し、図9は、IG-ON時の第2電池22の実SOCがフラット領域よりも下側(低SOC側)にある場合を示している。
ステップS302:設定部53は、制御用SOCを、SOC-OCV特性曲線のフラット領域の下限電圧から定まる蓄電量未満の第1の蓄電量(以下「フラット下側SOC」という)に設定する。すなわち、制御用SOCをフラット下側SOCまで一気に下降させる(SOC飛ばし)。図7におけるタイミング(2)である。この設定は、IG-ON状態からREADY-ON状態に遷移するまでの間に実行される所定のシステム(電池監視システムなど)によるチェックが完了した後に行われる。
このフラット下側SOCは、例えば図7、図8、及び図9に示すようにフラット領域の下限電圧から定まる蓄電量を50%としている場合には、50%未満の蓄電量(フラット下側SOC)を制御用SOCとして設定することができる。この設定処理により、第2電池22の実SOCがフラット領域内のどの状態にあっても、制御用SOCを必ず実SOCより低く設定することができる。よって、設定後に制御用SOCに基づいて第2電池22の充電を行えば、第2電池22の実SOCをフラット領域の上側(高SOC側)まで確実に上昇させることができる。設定が終わると、ステップS303に処理が進む。
ステップS303:制御部51は、車両が走行可能なREADY-ON状態になったか否かを判断する。READY-ON状態では第2DDC21が動作するため、第2電池22への充電が可能となる。READY-ON状態になれば(S303、はい)、ステップS304に処理が進む。
ステップS304:制御部51は、第2電池22に対してCCCV充電を実施する。図7における(3)-(7)の期間である。このCCCV充電には周知の手法を用いることができる。ここで、図4をさらに参照して、ステップS304で実施されるCCCV充電を説明する。
ステップS401:制御部51は、所定の電圧(以下「第1の電圧」という)まで予め定めた一定の電流で第2電池22を充電(CC充電)するように、第2DDC21へ電圧指示値を与える。この第1の電圧は、第2電池22の実SOCがフラット領域の上限電圧を超える電圧に設定される。例えば、フラット領域上側の蓄電量を90%としている図7、図8、及び図9では、蓄電量98%であるときの開放端電圧を第1の電圧に設定することができる。これにより、第2電池22がCC充電され、このCC充電に応じて推定部52で推定される第2電池22の蓄電量が上昇する。CC充電が完了するまでは、設定部53によって推定部52で推定される蓄電量が制御用SOCに設定される。
ステップS402:制御部51は、CC充電が完了したか否かを判断する。具体的には、制御部51は、第2電池22の開放端電圧が第1の電圧に達したか否かを判断する。CC充電が完了すれば(S402、はい)、ステップS403に処理が進む。図7におけるタイミング(6)である。
ステップS403:制御部51は、予め定めた一定の電圧、ここでは第1の電圧を維持したまま電流を供給することによって第2電池22を充電(CV充電)するように、第2DDC21へ電圧指示値を与える。これにより、第2電池22がCV充電され、このCV充電に応じて制御用SOCも変化する。
ステップS404:制御部51は、CV充電が完了したか否かを判断する。具体的には、制御部51は、第2電池22の開放端電圧を第1の電圧に維持した状態で、第2電池22に流れ込む電流が所定値以下に減少したか否か、又はCV充電を所定時間以上行ったか否かを判断する。CV充電が完了すれば(S404、はい)、ステップS304のCCCV充電が終了する。図7におけるタイミング(7)である。再び図3を参照して、初期SOC飛ばし制御を説明する。
ステップS305:制御部51は、CCCV充電が終了した後、第2電池22の充放電量を所定値以下にする制御を実施する。図7における(7)-(8)の期間である。この制御は、適切な開放端電圧が測定できるように第2電池22の状態を安定化させるために実施される。具体的には、第2電池22の充放電量が所定値を超えて大きく変化しないように、第2DDC21へ電圧指示値が与えられる。制御が開始されると、ステップS306に処理が進む。
ステップS306:制御部51は、第2電池22の充放電量が所定値以下である状態が第1の時間継続したか否かを判断する。第1の時間は、第2電池22が安定した状態になったと判断するための時間であり、第2電池22の特性や使用環境温度などに基づいて設定することができる。第1の時間は、カウンタなどを用いて計測することが可能である。第2電池22の充放電量が所定値以下である状態が第1の時間継続した場合は(S306、はい)、第2電池22が安定した状態になったと判断してステップS309に処理が進む。第2電池22の充放電量が所定値以下である状態が第1の時間継続していない場合は(S306、いいえ)、第2電池22が安定した状態になっていないと判断してステップS307に処理が進む。
ステップS307:判定部55は、制御部51が第2電池22の充放電量を所定値以下にする制御を開始してから第2の時間が経過したか否かを判断する。第2の時間は、なかなか安定した状態にならない第2電池22について、このまま充放電量を所定値以下にする制御を続けるべきか否かを判断するための時間であり、第2電池22に求められる推定精度やシステム負荷などに基づいて設定することができる。第2の時間は、カウンタなどを用いて計測することが可能である。第2電池22の充放電量を所定値以下にする制御を開始してから第2の時間が経過した場合は(S307、はい)、制御の継続を断念してステップS308に処理が進む。第2電池22の充放電量を所定値以下にする制御を開始してから第2の時間が経過していない場合は(S307、いいえ)、制御を継続すべくステップS305に処理が進む。
ステップS308:制御部51は、第2電池22が安定した状態にないため、第2電池22の開放端電圧から蓄電量を特定するのではなく、周知の電流電圧プロット手法により第2電池22の開放端電圧を演算する。具体的には、第2DDC21によって第2電池22に所定の充放電パルスを印加して電圧と電流と組にして複数測定し、その測定した複数の電圧と電流との組をプロットして求められる近似直線の切片を、開放端電圧として取得する。開放端電圧が演算されると、ステップS309に処理が進む。
ステップS309:設定部53は、ステップS302~S308の処理を行って得た第2電池22の開放端電圧から特定される第2の蓄電量(S301:はいの場合)、又はステップS302~S308の処理を行わずに得た第2電池22の開放端電圧から特定される第3の蓄電量(S301:いいえの場合)を、制御用SOCに設定する。すなわち、制御用SOCを開放端電圧から特定される第2又は第3の蓄電量まで一気に上昇させる(SOC飛ばし)。図7におけるタイミング(8)である。この設定処理により、第2電池22の実SOCと制御用SOCとの乖離が修正され、初期SOC飛ばし制御が終了する。
2.通常SOC飛ばし制御
図5、図8、及び図9を参照して、通常SOC飛ばし制御を説明する。この通常SOC飛ばし制御は、上述した初期SOC飛ばし制御の終了後、車両が走行可能なREADY-ON状態である期間中に実施される第2電池22の実SOCと制御用SOCとの乖離を修正する制御である。
車両がREADY-ON状態である期間中では、原則第2電池22の状態に応じた通常の充電制御が実行されており、制御用SOCは第2電池22の実SOCに追従して変化しているはずである。しかしながら、電流センサで生じる測定誤差により、READY-ON中でも、推定部52で推定される第2電池22の蓄電量の誤差が累積されて第2電池22の実SOCと制御用SOCとの乖離が増大すると考えられる。そこで、本実施形態では、車両がREADY-ON中にも、後述する所定の条件を満足した場合に通常SOC飛ばし制御が実行される。
ステップS501:判定部55は、推定部52で推定された第2電池22の蓄電量のSOC_MAX及びSOC_MINを監視する。SOC_MAX及びSOC_MINの監視が開始されると、ステップS502に処理が進む。
ステップS502:制御部51は、通常充電による第2電池22の充放電制御を開始する。この通常充電は、第2電池22の蓄電量が所定の目標値(例えば蓄電量90%)となるように、第2電池22に指示する電圧値をフィードバック制御することで行われる。この第2電池22の充放電制御に応じて、設定部53が設定する制御用SOC、及び推定部52が推定するSOC_MAX及びSOC_MINも変化する。図8及び図9における(3)-(5)の期間である。充放電制御が開始されると、ステップS503に処理が進む。
ステップS503:判定部55は、SOC_MINとSOC_MAXとの差が所定の閾値を越える(第1の条件)か否かを判定する。この閾値は、第2電池22の実SOCとSOC_MIN及びSOC_MAXとの乖離を許容する限界となる値に基づいて設定することができる。また、判定部55は、設定部53がSOC飛ばし制御を行って制御用SOCを新たな蓄電量に設定してから第3の時間が経過した(第2の条件)か否かを判定する。この新たな蓄電量は、上述した第2又の蓄電量は第3の蓄電量である。なお、本通常SOC飛ばし制御を繰り返して実施する場合には、前回の本制御によって制御用SOCを後述する第4の蓄電量に設定してから第3の時間が経過したことを判定してもよい。第3の時間は、第2電池22の実SOCと制御用SOCとの乖離が修正されていない期間を判断するための時間であり、第2電池22に求められる推定精度などに基づいて設定することができる。SOC_MINとSOC_MAXとの差が所定の閾値を越える(第1の条件を満足する)又は制御用SOCを新たな蓄電量に設定してから第3の時間が経過した(第2の条件を満足する)場合は(S503、はい)、ステップS504に処理が進む。図8及び図9におけるタイミング(5)である。一方、それ以外の(第1の条件も第2の条件も満足していない)場合は、ステップS503の判定処理が継続して行われる。
ステップS504:制御部51は、第2電池22に対してCCCV充電を実施する。図8及び図9における(5)-(7)の期間である。このステップS504の処理は、上述した図3のステップS304(図4のステップS401~S404)で説明した処理と同様である。具体的には、第2電池22の実SOCがフラット領域の上限電圧を超える第2の電圧まで第2電池22がCC充電され、第2電池22の開放端電圧を第2の電圧に維持した状態で第2電池22がCV充電される。なお、本通常SOC飛ばし制御における第2の電圧は、初期SOC飛ばし制御における第1の電圧と同じであってもよいし、異なっていてもよい。CCCV充電が完了すると、ステップS505に処理が進む。
ステップS505:制御部51は、CCCV充電が終了した後、第2電池22の充放電量を所定値以下にする制御を実施する。図8及び図9における(7)-(8)の期間である。このステップS505の処理は、上述した図3のステップS305で説明した処理と同様である。制御が開始されると、ステップS506に処理が進む。
ステップS506:制御部51は、第2電池22の充放電量が所定値以下である状態が第1の時間継続したか否かを判断する。このステップS506の処理は、上述した図3のステップS306で説明した処理と同様である。第2電池22の充放電量が所定値以下である状態が第1の時間継続した場合は(S506、はい)、ステップS509に処理が進む。第2電池22の充放電量が所定値以下である状態が第1の時間継続していない場合は(S506、いいえ)、ステップS507に処理が進む。
ステップS507:判定部55は、制御部51が第2電池22の充放電量を所定値以下にする制御を開始してから第2の時間が経過したか否かを判断する。このステップS507の処理は、上述した図3のステップS307で説明した処理と同様である。第2電池22の充放電量を所定値以下にする制御を開始してから第2の時間が経過した場合は(S507、はい)、ステップS508に処理が進む。第2電池22の充放電量を所定値以下にする制御を開始してから第2の時間が経過していない場合は(S507、いいえ)、ステップS505に処理が進む。
ステップS508:制御部51は、周知の電流電圧プロット手法により第2電池22の開放端電圧を演算する。このステップS508の処理は、上述した図3のステップS308で説明した処理と同様である。開放端電圧が演算されると、ステップS509に処理が進む。
ステップS509:設定部53は、ステップS501~S508の処理を行って得た第2電池22の開放端電圧から特定される第4の蓄電量を制御用SOCに設定する。すなわち、制御用SOCを開放端電圧から特定される第4の蓄電量まで一気に上昇させる(SOC飛ばし)。推定部52は、設定部53の制御用SOCと同時に、推定しているSOC_MIN及びSOC_MAXを第4の蓄電量に一致させる(すなわち、推定誤差の積値算をリセットする)。図8及び図9におけるタイミング(8)である。この設定処理により、第2電池22の実SOCと制御用SOCとの乖離が修正され、通常SOC飛ばし制御が終了する。
なお、ここでは図8及び図9を用いて通常SOC飛ばし制御を説明したが、図7においても初期SOC飛ばし制御が終了したタイミング(7)以降は、上述した通常SOC飛ばし制御が同様に実施される。
なお、上述したIG-ON後にREADY-ON状態となったときに最初にCCCV充電制御及び通常充電制御のいずれを実施するかの指示や、通常充電制御からCCCV充電制御へ切り替えるタイミングを与える指示や、CCCV充電が終了して開放端電圧を取得するタイミングを与える指示などは、所定のフラグを用いて行うことができる。
3.自動運転許可制御
図6、図7、図8、及び図9を参照して、自動運転許可制御を説明する。この自動運転許可制御は、車両が走行可能なREADY-ON状態である期間中に、第1自動運転システム13及び第2自動運転システム23に車両の自動運転を許可するか否かを判断するための制御である。図6の示す処理は、READY-ON状態である期間において繰り返し実行される。
ステップS601:判定部55は、推定部52で推定された第2電池22の蓄電量のSOC_MINを少なくとも監視する。SOC_MINの監視が開始されると、ステップS602に処理が進む。
ステップS602:判定部55は、SOC_MINが、SOC-OCV特性曲線のフラット領域の下限電圧から定まる蓄電量以上の第5の蓄電量を超えたか否かを判定する。第5の蓄電量は、車両の自動運転中に第1電池12の失陥が生じた場合に、車両の自動運転に関わる機能をバックアップするために第2電池22に必要な最低蓄電量(バックアップ可能SOC)に設定される。図7、図8、及び図9の例では、バックアップ可能SOCを蓄電量60%としている。SOC_MINが第5の蓄電量を超えた場合は(S602、はい)、ステップS603に処理が進み、SOC_MINが第5の蓄電量を超えない場合は(S602、いいえ)、ステップS604に処理が進む。
ステップS603:判定部55は、第2電池22がバックアップが可能な蓄電量を持っていると判断して、車両の自動運転を許可する。図7、図8、及び図9におけるタイミング(4)以降である。なお、図8の場合は、IG-ON時点で第2電池22の蓄電量がバックアップ可能SOCを超えているため、最初から車両の自動運転を許可できる状態に制御される。
ステップS604:判定部55は、第2電池22がバックアップが可能な蓄電量を持っていないと判断して、車両の自動運転を不許可にする。図7、及び図9における(3)-(4)の期間である。
<作用・効果>
以上のように、本発明の一実施形態に係る電池制御装置50によれば、車両のIG-ON時、第2電池22の開放端電圧を取得して、その開放端電圧からSOC-OCV特性曲線に基づいて一意に特定できる蓄電量(第3の蓄電量)に制御用SOCを設定する。第2電池22の開放端電圧が蓄電量を一意に特定できないフラット領域の下限電圧以上かつ上限電圧以下の特定範囲内にある場合には、フラット領域の下限電圧から定まるフラット下側SOC(第1の蓄電量)に制御用SOCを設定し、この制御用SOCをREADY-ON期間中に上昇させるように直ちにCCCV充電を実施する。そして、CCCV充電によって第2電池22の開放端電圧がフラット領域の上限電圧を超えて(フラット領域外)、開放端電圧から蓄電量を一意に特定できる状態になってから、その開放端電圧から特定した蓄電量(第2の蓄電量)に制御用SOCを設定する。
この制御によって、電池の蓄電量を表す値として参照される制御用SOCが、開放端電圧から一意に特定できる蓄電量に可及的速やかに設定し直されるので、制御用SOCと第2電池22の実SOCとの乖離を抑制することができ、第2電池22の蓄電状態を高精度に管理することができる。また、この制御では、第2電池22の実SOCよりも低く設定した制御用SOCに基づいてCCCV充電を実施するため、制御用SOCが上昇し過ぎて第2電池22の開放端電圧(実SOC)がフラット領域を脱出する前に充電が終了してしまうことを回避でき、第2電池22の開放端電圧(実SOC)を確実にフラット領域より上側まで上昇させることができる。
また、本実施形態に係る電池制御装置50によれば、READY-ON期間中に、第2電池22の蓄電量を積算誤差を含んで推定した最小値(SOC_MIN)と最大値(SOC_MAX)との差が所定の閾値を越えた場合にも、制御用SOCをREADY-ON期間中に上昇させるようにCCCV充電を実施する。あるいは、READY-ON期間中に、設定部53がSOC飛ばし制御を行って制御用SOCを新たな蓄電量に設定してから所定の時間が経過した場合にも、制御用SOCを上昇させるようにCCCV充電を実施する。そして、CCCV充電によって第2電池22の開放端電圧がフラット領域の上限電圧を超えて開放端電圧から蓄電量を一意に特定できる状態になってから、その開放端電圧から特定した蓄電量(第4の蓄電量)に制御用SOCを設定する。
この制御によって、READY-ON期間、制御用SOCと第2電池22の実SOCとの乖離を定期的に抑制することができるので、第2電池22の蓄電状態を高精度に安定して管理することができる。
さらに、本実施形態に係る電池制御装置50によれば、第2電池22の蓄電量を積算誤差を含んで推定した最小値(SOC_MIN)を監視して、SOC_MINが車両の自動運転中に第1電池12の失陥が生じた場合に、車両の自動運転に関わる機能をバックアップするために第2電池22に必要なバックアップ可能SOCを超えていれば、車両の自動運転を許可する。
この制御によって、第2電池22がフラット領域にあって実SOCが特定できず、制御用SOCと第2電池22の実SOCとの乖離が生じているおそれがある場合であっても、SOC_MINから第2電池22の実SOCがバックアップ可能SOC以上となる状態を確実に判断することができる。よって、制御用SOCと第2電池22の実SOCとの乖離が解消されていなくても、車両の自動運転を許可することができる。よって、IG-ON後に出来るだけ早くドライバーに自動運転を提供することができる。
以上、本発明の一実施形態を説明したが、本発明は、電池制御装置、電池制御装置を含んだ車両用電源システム、電池制御装置が実行するSOC飛ばし制御方法、SOC飛ばし制御プログラム及び当該プログラムを記憶したコンピューター読み取り可能な非一時的な記録媒体、あるいは電池制御装置を搭載した車両として捉えることができる。
本発明の電池制御装置は、2つの電源系統を有する冗長電源システムを搭載した車両などに利用可能である。
1 冗長電源システム
11、21 DCDCコンバーター(DDC)
12、22 電池
13、23 自動運転システム
14 車載機器
15、25 電源ライン
30 電力供給部
41、42 リレー装置
50 電池制御装置
51 制御部
52 推定部
53 設定部
54 取得部
55 判定部

Claims (5)

  1. 蓄電量に対する開放端電圧の変化率が所定値以下であるフラット領域を有するSOC-OCV特性曲線を持つ電池の蓄電状態を管理する車両用電池制御装置であって、
    前記電池の開放端電圧を取得する取得部と、
    前記取得部が取得した前記電池の開放端電圧が、前記フラット領域の下限電圧以上かつ上限電圧以下の特定範囲内にあるか否かを判定する第1の判定部と、
    積算電流量に基づいて前記電池の蓄電量を推定する第1の推定部と、
    前記電池の蓄電量を表す値として参照される制御用蓄電量を設定する設定部と、
    前記電池の蓄電量が所定の目標値となるように、前記電池の開放端電圧又は前記制御用蓄電量に基づいて前記電池の充放電を制御する制御部と、を備え、
    車両のイグニッションオン時、前記第1の判定部が前記電池の開放端電圧が前記特定範囲内にあると判定した場合、
    前記設定部は、前記特性曲線に基づいて前記フラット領域の下限電圧から定まる蓄電量未満の第1の蓄電量に前記制御用蓄電量を設定し、
    前記制御部は、前記制御用蓄電量が前記第1の蓄電量に設定され、かつ、車両が走行可能な状態になった後、前記電池の開放端電圧が前記フラット領域の上限電圧を超える第1の電圧となるまで開放端電圧に基づいて前記電池を充電し、
    前記設定部は、前記電池の開放端電圧が前記第1の電圧に達するまでは前記第1の推定部が推定した蓄電量を前記制御用蓄電量に設定し、前記電池の開放端電圧が前記第1の電圧に達した後に、前記特性曲線に基づいて前記電池の開放端電圧から定まる第2の蓄電量を前記制御用蓄電量に設定する、
    電池制御装置。
  2. 車両のイグニッションオン時、前記第1の判定部が前記電池の開放端電圧が前記特定範囲内にないと判定した場合、
    前記設定部は、前記特性曲線に基づいて前記電池の開放端電圧から定まる第3の蓄電量を前記制御用蓄電量に設定する、
    請求項1に記載の電池制御装置。
  3. 前記電池の充電量の推定誤差の積算値及び放電量の推定誤差の積算値を含む、前記電池の蓄電量の最大値及び最小値を推定する第2の推定部と、
    前記第2の推定部で推定された前記電池の蓄電量の最小値と最大値との差が所定の閾値を越えるか否かを判定する第2の判定部と、をさらに備え、
    前記第2の判定部が前記差が所定の閾値を越えると判定した場合、
    前記制御部は、前記電池の開放端電圧が前記フラット領域の上限電圧を超える第2の電圧となるまで開放端電圧に基づいて前記電池を充電し、
    前記設定部は、前記電池の開放端電圧が前記第2の電圧に達するまでは前記第1の推定部が推定した蓄電量を前記制御用蓄電量に設定し、前記電池の開放端電圧が前記第2の電圧に達した後に、前記特性曲線に基づいて前記電池の開放端電圧から定まる第4の蓄電量を前記制御用蓄電量に設定し、
    前記第2の推定部は、前記電池の蓄電量の最小値及び最大値を前記第4の蓄電量に一致させる、
    請求項1又は2に記載の電池制御装置。
  4. 前記設定部が前記制御用蓄電量を前記第2の蓄電量又は前記第3の蓄電量に設定してから所定の時間が経過したか否かを判定する第3の判定部をさらに備え、
    前記第3の判定部が前記所定の時間が経過したと判定した場合、
    前記制御部は、前記電池の開放端電圧が前記フラット領域の上限電圧を超える第2の電圧となるまで開放端電圧に基づいて前記電池を充電し、
    前記設定部は、前記電池の開放端電圧が前記第2の電圧に達するまでは前記第1の推定部が推定した蓄電量を前記制御用蓄電量に設定し、前記電池の開放端電圧が前記第2の電圧に達した後に、前記特性曲線に基づいて前記電池の開放端電圧から定まる第4の蓄電量を前記制御用蓄電量に設定する、
    請求項2に記載の電池制御装置。
  5. 車両が走行可能な状態であるとき、前記第2の推定部で推定された前記電池の蓄電量の最小値が前記フラット領域の下限電圧から定まる蓄電量以上の第5の蓄電量を越えたと判定した場合、車両の自動運転を許可する第4の判定部をさらに備える、
    請求項3に記載の電池制御装置。
JP2018211499A 2018-11-09 2018-11-09 電池制御装置 Active JP7091999B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018211499A JP7091999B2 (ja) 2018-11-09 2018-11-09 電池制御装置
US16/658,304 US11095143B2 (en) 2018-11-09 2019-10-21 Battery control unit
KR1020190130526A KR102271631B1 (ko) 2018-11-09 2019-10-21 전지 제어 장치
EP19204673.8A EP3650265B1 (en) 2018-11-09 2019-10-22 Battery control unit
CN201911083397.4A CN111169323B (zh) 2018-11-09 2019-11-07 电池控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211499A JP7091999B2 (ja) 2018-11-09 2018-11-09 電池制御装置

Publications (2)

Publication Number Publication Date
JP2020077578A JP2020077578A (ja) 2020-05-21
JP7091999B2 true JP7091999B2 (ja) 2022-06-28

Family

ID=68342544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211499A Active JP7091999B2 (ja) 2018-11-09 2018-11-09 電池制御装置

Country Status (5)

Country Link
US (1) US11095143B2 (ja)
EP (1) EP3650265B1 (ja)
JP (1) JP7091999B2 (ja)
KR (1) KR102271631B1 (ja)
CN (1) CN111169323B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056513B2 (ja) 2018-10-26 2022-04-19 トヨタ自動車株式会社 電池制御装置
JP6916233B2 (ja) * 2019-03-18 2021-08-11 本田技研工業株式会社 車両制御装置
JP7191873B2 (ja) * 2020-01-17 2022-12-19 株式会社東芝 充放電制御装置、充放電システム、充放電制御方法及び充放電制御プログラム
JP7565803B2 (ja) 2021-01-13 2024-10-11 株式会社デンソーテン 車載電源装置および車載電源制御方法
CN116250110A (zh) * 2021-02-09 2023-06-09 宁德时代新能源科技股份有限公司 电池充电方法、控制器、电池管理系统、电池和用电装置
DE102021209542A1 (de) * 2021-08-31 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Bestimmung eines Ladezustands eines elektrischen Energiespeichers, elektrischer Energiespeicher und Vorrichtung
KR102549374B1 (ko) * 2022-11-21 2023-06-29 주식회사 피엠그로우 SOC(State Of Charge)의 정확도를 보완하기 위한 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283922A (ja) 2009-06-02 2010-12-16 Toyota Motor Corp 車両の制御装置
JP2016166864A (ja) 2015-03-05 2016-09-15 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子管理方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体
WO2018181489A1 (ja) 2017-03-28 2018-10-04 株式会社Gsユアサ 推定装置、蓄電装置、推定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060098146A (ko) * 2005-03-09 2006-09-18 주식회사 엘지화학 온도에 따른 오픈 회로 전압 히스테레시스를 이용한 배터리의 잔존 용량 초기값 설정 방법
KR101014981B1 (ko) * 2005-07-07 2011-02-16 가부시끼가이샤 도시바 전지 모듈
US20080085430A1 (en) * 2006-10-10 2008-04-10 Macbain John A Battery integration and control in an auxiliary power unit powered by a solid oxide fuel cell system
JP5261828B2 (ja) 2009-05-12 2013-08-14 本田技研工業株式会社 電池状態推定装置
CN102472799B (zh) * 2009-07-31 2015-04-08 本田技研工业株式会社 蓄电容量管理装置
JPWO2012131864A1 (ja) * 2011-03-28 2014-07-24 トヨタ自動車株式会社 電動車両およびその制御方法
KR101486470B1 (ko) * 2012-03-16 2015-01-26 주식회사 엘지화학 배터리 상태 추정 장치 및 방법
JP2013213684A (ja) * 2012-03-30 2013-10-17 Toyota Motor Corp 蓄電システム及び充電状態推定方法
JP6075242B2 (ja) * 2013-08-19 2017-02-08 株式会社Gsユアサ 充電状態信頼性判定装置、充電状態信頼性判定方法
KR102085737B1 (ko) * 2014-10-27 2020-03-09 현대자동차주식회사 배터리의 충전 상태 예측 시스템 및 이를 이용한 충전 상태 예측 방법
US10101401B2 (en) * 2015-03-05 2018-10-16 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP6383704B2 (ja) * 2015-07-02 2018-08-29 日立オートモティブシステムズ株式会社 電池制御装置
CN207265713U (zh) * 2017-07-28 2018-04-20 特斯拉公司 具有热保护的充电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283922A (ja) 2009-06-02 2010-12-16 Toyota Motor Corp 車両の制御装置
JP2016166864A (ja) 2015-03-05 2016-09-15 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子管理方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体
WO2018181489A1 (ja) 2017-03-28 2018-10-04 株式会社Gsユアサ 推定装置、蓄電装置、推定方法

Also Published As

Publication number Publication date
EP3650265A1 (en) 2020-05-13
CN111169323A (zh) 2020-05-19
US11095143B2 (en) 2021-08-17
JP2020077578A (ja) 2020-05-21
US20200153263A1 (en) 2020-05-14
CN111169323B (zh) 2023-04-07
KR102271631B1 (ko) 2021-07-02
KR20200054070A (ko) 2020-05-19
EP3650265B1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP7091999B2 (ja) 電池制御装置
US11148546B2 (en) Power supply control device
JP4946749B2 (ja) 車両のバッテリ制御装置
US8159186B2 (en) Power source system, power supply control method for the power source system, power supply control program for the power source system, and computer-readable recording medium with the power supply control program recorded thereon
JP2021125928A (ja) 車両用制御装置、方法、プログラム、及び車両
JP4670831B2 (ja) 電気自動車用バッテリ容量検知方法及び装置並びに電気自動車のメンテナンス方法
US11223212B2 (en) Battery control device for homogenizing battery cells
CN109311396B (zh) 用于控制车辆中的能量存储系统的操作的方法和设备
WO2012132160A1 (ja) 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
US11682798B2 (en) Vehicular battery control device
JP7092013B2 (ja) 電源制御装置
CN108333516B (zh) 电池状态测试方法及其系统
US20240353496A1 (en) Full charge capacity estimation device and method
US20240175931A1 (en) Full charge capacity measuring device
US20230234471A1 (en) In-vehicle system, battery diagnostic method, and vehicle
JP7047717B2 (ja) 電池制御装置
US20220348240A1 (en) Railway carriage with vehicle monitoring system and associated monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R151 Written notification of patent or utility model registration

Ref document number: 7091999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151