JP7090852B2 - Wet insulation mortar method - Google Patents

Wet insulation mortar method Download PDF

Info

Publication number
JP7090852B2
JP7090852B2 JP2017194371A JP2017194371A JP7090852B2 JP 7090852 B2 JP7090852 B2 JP 7090852B2 JP 2017194371 A JP2017194371 A JP 2017194371A JP 2017194371 A JP2017194371 A JP 2017194371A JP 7090852 B2 JP7090852 B2 JP 7090852B2
Authority
JP
Japan
Prior art keywords
heat insulating
wet
mortar
insulating mortar
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017194371A
Other languages
Japanese (ja)
Other versions
JP2019065649A (en
Inventor
進 原田
昌樹 上村
翔 冨永
洋一 大嶋
寛治 田村
正利 中山
Original Assignee
富士川建材工業株式会社
株式会社藤島建設
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士川建材工業株式会社, 株式会社藤島建設 filed Critical 富士川建材工業株式会社
Priority to JP2017194371A priority Critical patent/JP7090852B2/en
Publication of JP2019065649A publication Critical patent/JP2019065649A/en
Application granted granted Critical
Publication of JP7090852B2 publication Critical patent/JP7090852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Building Environments (AREA)
  • Floor Finish (AREA)

Description

本発明は、熱伝導率が著しく低く極めて軽量なシリカ系エアロジェルを用い、施工時の様々な負荷を軽減でき、各種の住宅等に高い断熱性能や不燃性、腐食対抗性を付与することができる湿式断熱モルタル工法に関する。 The present invention uses a silica-based airgel that has extremely low thermal conductivity and is extremely lightweight, can reduce various loads during construction, and can impart high heat insulation performance, nonflammability, and corrosion resistance to various houses and the like. Regarding the wet insulation mortar construction method that can be done.

住宅建築における2020年度までの省エネルギー基準の全面義務化及び地球温暖化に対する新たな国際公約として、2013年度比で26%の削減が提起され、更なる省エネ対策の向上が求められている。
多くの住宅家屋等を既存建造物として考える時、省エネ対策の重要な施策である既存建造物の省エネ化、即ち断熱改修がなかなか進まない現状がある。この断熱改修が進まない大きな要因として、
・大規模な改修が必要となる。
・施工日数が長い。
・多大な費用がかかる。
などの一般的な理由が挙げられ、施工時に相当な“負荷”が既存家屋自体や既存家屋の居住者等にかかるため、改修を断念せざると得ない状況が作り出されている。
As a new international commitment to full mandatory energy conservation standards by 2020 and global warming in residential construction, a 26% reduction compared to 2013 has been proposed, and further improvement of energy conservation measures is required.
When considering many houses and the like as existing buildings, the current situation is that energy saving of existing buildings, that is, heat insulation repair, which is an important measure for energy saving measures, is not progressing easily. One of the major reasons why this heat insulation repair is not progressing
・ Large-scale renovation is required.
・ The number of construction days is long.
・ It costs a lot of money.
There are general reasons such as, and since a considerable "load" is applied to the existing house itself and the residents of the existing house at the time of construction, a situation has been created in which renovation must be abandoned.

住宅家屋としては、それが立設される環境に応じて種々の耐久性を備えるものが採用されており、鉄筋住宅から木造住宅まで様々なものがあるが、例えば南北に長く延在する日本国内においても、降雪が多い寒冷地における屋根及び外壁が重厚に形成された家屋、台風が多い地域における高強度の骨格構成を備える家屋、それ以外にも、建築工事におけるプレハブ住宅等の簡易住宅、或いは被災地における仮設住宅等、異なる環境条件に応じて各種の住宅構造が採用されている。 As residential houses, those with various durability are adopted depending on the environment in which they are erected, and there are various types from reinforced houses to wooden houses. For example, in Japan, which extends from north to south for a long time. In addition, houses with heavy roofs and outer walls in cold regions with heavy snowfall, houses with a high-strength skeletal structure in areas with many typhoons, and simple houses such as prefabricated houses in construction work, or Various housing structures are adopted according to different environmental conditions such as temporary housing in the disaster area.

前記住宅構造の多くは、欠陥住宅でない限り、少なくとも新築時には、十分な耐久性を備え、快適な居住空間を保持するものであるが、そもそも簡易住宅や仮設住宅として建設された住宅は、基本的に数年程度の短期間の居住を目的とするものであるため、その限りではない。特に地震や津波等の被災地における仮設住宅は、復旧の遅れ等もあって想定された期間を過ぎても、居住を継続する必要があるケースも多く、劣悪な居住空間における生活を継続しなければならない被災者も少なくない。
また、都市部から離れた過疎地等において、転居後の住宅が未居住のまま放置されて老朽化するケースも比較的多く、都市部においても、老朽化した家屋が隣接密集化しているケースも比較的多い。これらの住宅の最も懸念される問題は火災であり、特に後者の場合には、火災が発生した際に消火する活動の場を確保すること自体が困難であるため、その危険性は極めて大きい。
これらの既設家屋を含め、建て直しを行うより簡易に断熱改修が可能であれば、多くの既存住宅が断熱改修の対象となるが、前述の一般的な理由以外にも以下のような問題があった。例えば多くの既設家屋は、十分な外壁強度を備えているが、備えていない欠陥住宅や仮設住宅、簡易住宅等では、
・特に外壁や屋根等に高荷重の断熱被覆層を形成すると、その荷重が既存家屋自体に作用してしまうため、老朽化した既存家屋では倒壊を生ずる恐れがあった。
・既存家屋が密集する地域では、施工する作業場の確保が困難という問題があった。
・工事の施工日数が長い、或いは多大な費用がかかると、既存家屋の居住者の生活に負担を与える。
などの理由が挙げられる。
Most of the above-mentioned housing structures, unless they are defective houses, have sufficient durability and maintain a comfortable living space at least when newly built, but houses constructed as simple houses or temporary houses are basically. This is not the case because the purpose is to live for a short period of several years. In particular, temporary housing in areas affected by earthquakes and tsunamis often need to continue living even after the expected period due to delays in restoration, etc., and it is necessary to continue living in a poor living space. There are many victims who have to do so.
In addition, in depopulated areas away from urban areas, there are relatively many cases where houses after moving are left uninhabited and deteriorate, and even in urban areas, there are cases where old houses are densely adjacent to each other. Relatively many. The biggest concern for these homes is fire, especially in the latter case, where the danger is extremely high as it is difficult to secure a place for fire extinguishing in the event of a fire.
Many existing houses, including these existing houses, will be subject to heat insulation repair if they can be rebuilt more easily than rebuilding, but there are the following problems other than the general reasons mentioned above. rice field. For example, many existing houses have sufficient outer wall strength, but defective houses, temporary houses, simple houses, etc. that do not have sufficient outer wall strength.
-In particular, when a high-load heat insulating coating layer is formed on the outer wall, roof, etc., the load acts on the existing house itself, so that there is a risk that the old existing house will collapse.
・ In areas where existing houses are densely populated, there was a problem that it was difficult to secure a work place for construction.
・ If the construction work takes a long time or costs a lot, it will put a burden on the lives of the residents of the existing house.
There are reasons such as.

例えばこれらの断熱改修を行う方法の一例として、樹脂混入断熱モルタル(熱伝導率λ=0.10~0.16程度)が実用化されているが、施工性と防火性の低さ(可燃性)から、主に既存家屋内部の断熱補強などにしか使用されていないのが現状である。
また、湿式の断熱性能があるモルタルも、実用化されているが、その多くは建築で使用されている樹脂系(例えば発泡スチロールλ=0.040)及び繊維系(例えば木材λ=0.14)の断熱材より性能が悪く(高性能でもλ=0.18程度)、シンダーコンクリートやスラブの一部に使用するなど、補助的に使用されることが多い。
For example, as an example of a method for performing these heat insulating repairs, a resin-mixed heat insulating mortar (thermal conductivity λ = 0.10 to 0.16) has been put into practical use, but its workability and fire resistance are low (flammability). ), The current situation is that it is mainly used only for heat insulation reinforcement inside existing houses.
Mortars with wet heat insulating properties have also been put into practical use, but most of them are resin-based (for example, expanded polystyrene λ = 0.040) and fiber-based (for example, wood λ = 0.14) used in construction. It has poorer performance than the heat insulating material of (high performance is about λ = 0.18), and is often used as an auxiliary material such as used for cinder concrete and a part of slab.

一方、シリカ系エアロジェルは、非常に低密度(嵩比重0.065~0.090)の無機固体であって、高い断熱性等の際立った特性を有した新素材である。具体的には、その熱伝導率が0.017W/(m・K)程度と著しく低い超軽量素材であるため、例えば特許文献1,2等において乾式断熱材として利用しようとする試みがなされている。
これらの乾式断熱材は、高い断熱性を有する(熱伝導率λ=0.034程度)ものの、施工性の低さから、揚げ床をつくるために打つシンダーコンクリートやスラブの一部に使用するなど、補助的に使用されることが多い。
On the other hand, silica-based airgel is an inorganic solid having a very low density (bulk specific gravity 0.065 to 0.090), and is a new material having outstanding properties such as high heat insulating properties. Specifically, since it is an ultralight material having an extremely low thermal conductivity of about 0.017 W / (m · K), attempts have been made to use it as a dry heat insulating material in, for example, Patent Documents 1 and 2. There is.
Although these dry-type heat insulating materials have high heat insulating properties (thermal conductivity λ = 0.034), they are used for a part of cinder concrete and slabs to be struck to make fried floors due to their low workability. , Often used as a supplement.

特表2017-502916号公報Special Table 2017-502916 特開2014-139467号公報Japanese Unexamined Patent Publication No. 2014-139467

しかしながら、前述の樹脂混入断熱モルタル(熱伝導率λ=0.10~0.16程度)では、既存建物の省エネ化に貢献するような外壁の断熱改修に利用できるものではなく、前記特許文献1,2の乾式の断熱材(熱伝導率λ=0.034程度)では、床材に補助的に使われるに過ぎなかった。
なお、断熱改修が求められる既存家屋としては、鉄筋住宅から木造住宅まで様々なものがあるが、前述のように被災地にて設置された仮設住宅等やプレハブ住宅等では、本来が数年程度の居住を見込んで建てられたものであるから、例えば防火性や断熱性等を有しないものも多かった。
However, the above-mentioned resin-mixed heat insulating mortar (thermal conductivity λ = 0.10 to 0.16) cannot be used for heat insulating repair of the outer wall that contributes to energy saving of the existing building, and the above-mentioned Patent Document 1 In the dry heat insulating material (thermal conductivity λ = 0.034) of 2 and 2, it was only used as an auxiliary for the floor material.
There are various existing houses that require heat insulation repair, from reinforced houses to wooden houses, but as mentioned above, temporary houses and prefabricated houses installed in the disaster area are originally about several years old. Since it was built in anticipation of the residence of the house, many of them did not have fireproof or heat insulating properties, for example.

そこで、本発明は、熱伝導率が著しく低く極めて軽量なシリカ系エアロジェルを用い、施工時の様々な負荷を軽減でき、各種の住宅等に高い断熱性能や不燃性、腐食対抗性を付与することができる湿式断熱モルタル工法を提案することを目的とする。 Therefore, the present invention uses a silica-based airgel having extremely low thermal conductivity and extremely light weight, can reduce various loads during construction, and imparts high heat insulation performance, nonflammability, and corrosion resistance to various houses and the like. The purpose is to propose a wet adiabatic mortar construction method that can be used.

本発明は、上記課題に鑑みて提案されるもので、容量割合で嵩比重が0.065~0.090であるシリカ系エアロジェルを主とし、セメント、繊維をプレミックスした粉体であり、前記粉体中、重量分率で前記シリカ系エアロジェル50~35Wt%、前記セメント45~60Wt%が含まれ、前記粉体に加水して練り上がり後の密度が0.5~0.3g/cm3となるように湿式材料を調製する第1の工程と、前記湿式材料を、建築物の内外壁又は基礎である塗着対象に対して総厚が25~55mmとなるように塗着する第2の工程と、を含むことを特徴とする湿式断熱モルタル工法に関するものである。 The present invention has been proposed in view of the above problems, and is a powder obtained by premixing cement and fibers mainly with a silica-based aerogel having a bulk specific gravity of 0.065 to 0.090 in terms of volume ratio. The silica-based aerogel 50 to 35 Wt% and the cement 45 to 60 Wt% are contained in the powder by weight, and the density after adding water to the powder and kneading is 0.5 to 0.3 g /. The first step of preparing a wet material so as to be cm3, and the first step of applying the wet material to the inner / outer wall of a building or the object to be coated which is the foundation so that the total thickness is 25 to 55 mm. It relates to a wet adiabatic mortar construction method characterized by comprising two steps.

また、本発明は、前記湿式断熱モルタル工法において、第1の工程で調製される湿式材料は、前記粉体中、重量分率で繊維1~5Wt%を含むことを特徴とする湿式断熱モルタル工法をも提案する。 Further, the present invention is characterized in that, in the wet heat insulating mortar method, the wet material prepared in the first step contains 1 to 5 Wt% of fibers in a weight fraction in the powder. Also propose.

本発明の湿式断熱モルタル工法は、湿式材料の製造(調製)工程である第1の工程では、原材料の搬送や練り混ぜ等の製造(調製)に関わる全て又は多くの操作を極めて容易に行うことができ、湿式材料の施工(塗着)工程である第2の工程でも、湿式材料の搬送や塗布等の施工(塗着)に関わる全て又は多くの操作を極めて容易に行うことができるものであり、しかも建築物の内外壁や基礎である塗着対象に施工することにより、各種の住宅等に対して優れた断熱性能(熱伝導率=0.026~0.046程度)や不燃性、腐食対抗性、透湿性を付与することができ、省エネ対策の向上にも貢献するものである。さらに薄肉の塗着層でよいため、塗着量も少なくてよく、省エネ対策の向上に極めて大きな貢献を果たすものである。
特に本発明に容量割合で主成分として用いるシリカ系エアロジェルは、嵩比重が0.065~0.090であり、極めて軽量であるため、湿式材料の製造工程である第1の工程でも、湿式材料の施工(塗着)工程である第2の工程でも、各種の操作に生ずる負担を軽減できる。例えば調製された湿式材料は、極めて軽量であるため、現場作業者として、比較的腕力が低い高齢者や女性等でも容易に取り扱いや各種の作業を行うことができる。また、塗着を行うために用いる様々な装置等に対する負担も軽減でき、容易に且つ確実に作業を行うことができる。
In the wet heat insulating mortar method of the present invention, in the first step of manufacturing (preparing) a wet material, all or many operations related to manufacturing (preparation) such as transportation and kneading of raw materials are extremely easily performed. In the second step, which is the wet material construction (coating) process, all or many operations related to the construction (coating) such as transportation and coating of the wet material can be performed extremely easily. Moreover, by applying it to the inner and outer walls of the building and the object to be coated , which is the foundation, excellent heat insulation performance (heat conductivity = 0.026 to 0.046) and nonflammability for various houses, etc. It can provide corrosion resistance and moisture permeability, and contributes to the improvement of energy saving measures. Furthermore, since a thin coating layer is sufficient, the amount of coating may be small, which greatly contributes to the improvement of energy saving measures.
In particular, the silica-based airgel used as the main component in the volume ratio in the present invention has a bulk specific gravity of 0.065 to 0.090 and is extremely lightweight, so that even in the first step of manufacturing a wet material, the wet material is wet. Also in the second step, which is the material construction (coating) step, the burden caused by various operations can be reduced. For example, the prepared wet material is extremely lightweight, so that even elderly people and women with relatively low strength can easily handle and perform various tasks as field workers. In addition, the burden on various devices and the like used for coating can be reduced, and the work can be performed easily and reliably.

また、本発明の湿式断熱モルタル工法にて施工された断熱モルタル構造は、断熱モルタル層が極めて軽量であるから、例えば塗着対象面を備える住宅等に対して負担させる荷重も軽くてよく、優れた断熱性能や不燃性、腐食対抗性を付加させるものであり、省エネ対策の向上にも貢献する。 Further, in the heat insulating mortar structure constructed by the wet heat insulating mortar method of the present invention, since the heat insulating mortar layer is extremely lightweight, for example, the load applied to a house having a surface to be coated may be light, which is excellent. It also adds heat insulation performance, nonflammability, and corrosion resistance, and contributes to the improvement of energy saving measures.

(a)木造住宅の基礎立上り内面(のみ)に断熱モルタルを施工した状態を示す断面図、(b)基礎立上り外面(のみ)に断熱モルタルを施工した状態を示す断面図、(c)基礎立上り内面及び外面に断熱モルタルを施工した状態を示す断面図である。(A) Cross-sectional view showing the state where the heat insulating mortar is installed on the inner surface (only) of the foundation rise of the wooden house, (b) the cross-sectional view showing the state where the heat insulating mortar is installed on the outer surface (only) of the foundation rise, (c) the foundation rise. It is sectional drawing which shows the state which the insulation mortar was constructed on the inner surface and the outer surface. (a)鉄筋コンクリートの基礎立上り内面(のみ)に断熱モルタルを施工した状態を示す断面図、(b)基礎立上り外面(のみ)に断熱モルタルを施工した状態を示す断面図、(c)基礎立上り内面及び外面に断熱モルタルを施工した状態を示す断面図である。(A) Cross-sectional view showing the state where the heat insulating mortar is applied to the inner surface (only) of the foundation rising of reinforced concrete, (b) the cross-sectional view showing the state where the heat insulating mortar is applied to the outer surface (only) of the foundation rising, (c) the inner surface of the foundation rising. It is a cross-sectional view which shows the state which the insulation mortar was constructed on the outer surface. (a)鉄筋コンクリート壁の室内側の内壁面及び床スラブに断熱モルタルを施工した状態を示す断面図、(b)屋外側の外壁面のみに断熱モルタルを施工した状態を示す断面図、(c)その両方に断熱モルタルを施工した状態を示す断面図である。(A) Cross-sectional view showing the state where the heat insulating mortar is applied to the inner wall surface and the floor slab on the indoor side of the reinforced concrete wall, (b) the cross-sectional view showing the state where the heat insulating mortar is applied only to the outer wall surface on the outdoor side, (c). It is sectional drawing which shows the state which the insulation mortar was constructed on both of them.

本発明の湿式断熱モルタル工法は、容量割合で嵩比重が0.065~0.090であるシリカ系エアロジェルを主とし、セメント、繊維をプレミックスした粉体であり、前記粉体中、重量分率で前記シリカ系エアロジェル50~35Wt%、前記セメント45~60Wt%が含まれ、前記粉体に加水して練り上がり後の密度が0.5~0.3g/cm3となるよう湿式材料を調製する第1の工程と、前記湿式材料を、建築物の内外壁又は基礎である塗着対象に対して総厚が25~55mmとなるように塗着する第2の工程と、を含むことを特徴とするものであり、以下にその第1の工程、第2の工程について説明する。 The wet heat insulating mortar method of the present invention is a powder mainly composed of silica-based aerogel having a bulk specific gravity of 0.065 to 0.090 in terms of volume ratio, and is a premixed powder of cement and fibers. A wet material containing 50 to 35 Wt% of the silica-based aerogel and 45 to 60 Wt% of the cement in a fraction, so that the density after kneading is 0.5 to 0.3 g / cm3 after adding water to the powder. Includes a first step of preparing the wet material and a second step of applying the wet material to the inner / outer wall of the building or the object to be coated which is the foundation so that the total thickness is 25 to 55 mm. The first step and the second step will be described below.

本発明における第1の工程は、湿式材料の調製(製造)工程であり、容量割合で嵩比重が0.065~0.090であるシリカ系エアロジェルを主とし、セメント、繊維、無機系発泡骨材をプレミックスした粉体であり、前記粉体中、重量分率で前記シリカ系エアロジェル50~35Wt%、前記セメント45~60Wt%が含まれ、前記粉体に加水して練り上がり後の密度が0.5~0.3g/cm3となるように湿式材料を調製する。 The first step in the present invention is a step of preparing (manufacturing) a wet material, mainly composed of silica-based aerogel having a bulk specific gravity of 0.065 to 0.090 in terms of volume ratio, and cement, fiber, and inorganic foaming. It is a powder premixed with aggregate, and the silica-based aerogel 50 to 35 Wt% and the cement 45 to 60 Wt% are contained in the powder by weight, and the powder is hydrated and kneaded. The wet material is prepared so that the density of the material is 0.5 to 0.3 g / cm3 .

前記湿式材料の容量割合における主成分であるシリカ系エアロジェルは、前述のように非常に低密度(嵩比重0.065~0.090)の無機固体であって、高い断熱性等の際立った特性を有した超軽量素材であり、具体的には、その熱伝導率が0.017W/(m・K)程度と著しく低い素材である。このシリカ系エアロジェルの湿式断熱モルタル製造時の配合比率は、35~50Wt%が好ましい。35Wt%未満であると断熱性能の低下や密度を低くすることができず、50Wt%を超えると圧縮強度が低下する場合がある。 The silica-based airgel, which is the main component in the volume ratio of the wet material, is an inorganic solid having a very low density (bulk specific gravity 0.065 to 0.090) as described above, and has outstanding high heat insulating properties and the like. It is an ultralight material with characteristics, and specifically, its thermal conductivity is about 0.017 W / (m · K), which is extremely low. The blending ratio of this silica-based airgel at the time of producing a wet heat insulating mortar is preferably 35 to 50 Wt%. If it is less than 35 Wt%, the heat insulating performance cannot be lowered or the density cannot be lowered, and if it exceeds 50 Wt%, the compressive strength may be lowered.

前記湿式材料の重量割合における主成分であるセメントは、特に限定されるもではないが、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメントB種、フライアッシュセメントB種、エコセメント、超速硬セメント、白色セメント等が挙げられるが、汎用性を考慮すると普通ポルトランドセメントを好適に用いることができる。このセメントの湿式断熱モルタル製造時の配合比率は、45~60Wt%が好ましい。45Wt%未満であると硬化物の強度低下の場合があり、60Wt%を超えると乾燥収縮ひび割れが発生する場合がある。 The cement that is the main component in the weight ratio of the wet material is not particularly limited, but is usually Portland cement, early-strength Portland cement, moderate heat Portland cement, low heat Portland cement, blast furnace cement type B, and fly ash cement B. Seeds, eco-cement, ultrafast-hardening cement, white cement and the like can be mentioned, but ordinary Portland cement can be preferably used in consideration of versatility. The blending ratio of this cement at the time of producing a wet heat insulating mortar is preferably 45 to 60 Wt%. If it is less than 45 Wt%, the strength of the cured product may decrease, and if it exceeds 60 Wt%, drying shrinkage cracks may occur.

なお、前記シリカ系エアロジェルと前記セメントとは、前記湿式材料に不可欠の材料であるが、前述のようにシリカ系エアロジェルは嵩比重が0.065~0.090であるため、、その重量割合が35~50Wt%であっても容量割合は極めて高く、容量割合における主成分と言える。一方、セメントは嵩比重1.5(真比重3.15)、であるため、その重量割合が45~60Wt%であっても容量割合は極めて低いものである。 The silica-based airgel and the cement are indispensable materials for the wet material, but as described above, the silica-based airgel has a bulk specific gravity of 0.065 to 0.090, and therefore its weight. Even if the ratio is 35 to 50 Wt%, the capacity ratio is extremely high, and it can be said that it is the main component in the capacity ratio. On the other hand, since cement has a bulk specific density of 1.5 (true specific gravity of 3.15), the volume ratio is extremely low even if the weight ratio is 45 to 60 Wt%.

繊維は、ビニロン、アクリル、ポリプロピレン、ポリエステル、ポリエチレン、ナイロン、カーボン、アラミド、ガラス、セルロース、パルプ、麻、羊毛等が挙げられるが、汎用性を考慮するとビニロンを好適に用いることができる。この繊維の湿式断熱モルタル製造時の配合比率は1~5Wt%が好ましい。1Wt%未満であると硬化物の曲げ強度低下や乾燥収縮ひび割れが発生する場合があり、5Wt%を超えると施工性が低下する場合がある。 Examples of the fiber include vinylon, acrylic, polypropylene, polyester, polyethylene, nylon, carbon, aramid, glass, cellulose, pulp, hemp, wool and the like, but vinylon can be preferably used in consideration of versatility. The blending ratio of this fiber at the time of producing a wet heat insulating mortar is preferably 1 to 5 Wt%. If it is less than 1 Wt%, the bending strength of the cured product may decrease and cracks may occur due to drying shrinkage, and if it exceeds 5 Wt%, the workability may decrease.

それ以外の成分として、無機系発泡骨材を配合しても良い。この無機系発泡骨材は、パーライト(真珠岩、黒曜石)凝灰岩系松油岩、シラス発泡粒、ガラス発泡粒等の無機質軽量骨材を使用することができる。この無機系発泡骨材の湿式断熱モルタル製造時の配合比率は特に限定するものではないが、密度の軽量化や強度調整を目的としてこの無機質軽量骨材を利用してもよい。 Inorganic foamed aggregate may be blended as other components. As this inorganic foamed aggregate, an inorganic lightweight aggregate such as pearlite (pearlite, obsidian) tuff-based pine oil rock, silas foamed granules, and glass foamed granules can be used. The blending ratio of the inorganic foamed aggregate at the time of producing the wet heat insulating mortar is not particularly limited, but the inorganic lightweight aggregate may be used for the purpose of reducing the density and adjusting the strength.

更にそれ以外の成分として、セルロース系増粘剤、エチレン酢酸ビニル粉末樹脂およびアクリル系粉末樹脂等の保水剤を配合しても良い。これらの増粘剤や保水剤の湿式断熱モルタル製造時の配合比率は特に限定するものではないが、保水性や乾燥収縮の調整を目的としてこれらの増粘剤や保水剤を利用しても良い。
或いはけい砂、石灰砂、炭酸カルシウム、消石灰、高炉スラグ、フライアッシュ、粘土鉱物、ドロマイトプラスター等の無機質混和材を使用することもできる。湿式断熱モルタルの強度や施工性の調整はこれらの無機質混和材によっても調整ができる。
Further, as other components, a water retention agent such as a cellulosic thickener, an ethylene vinyl acetate powder resin and an acrylic powder resin may be blended. The blending ratio of these thickeners and water retention agents during the production of wet heat insulating mortar is not particularly limited, but these thickeners and water retention agents may be used for the purpose of adjusting water retention and drying shrinkage. ..
Alternatively, an inorganic admixture such as silica sand, lime sand, calcium carbonate, slaked lime, blast furnace slag, fly ash, clay minerals, and dolomite plaster can be used. The strength and workability of the wet heat insulating mortar can also be adjusted by using these inorganic admixtures.

これらの材料は、ドライによるプレミックスとすることができる。これらの材料を工場にてプレミックスすることにより、粉塵の飛散を防止でき、品質安定化が図れる。 These materials can be dry premixed. By premixing these materials at the factory, it is possible to prevent the scattering of dust and stabilize the quality.

前記湿式材料には、プレミックスした粉体に水を加えて混練物の密度が0.5~0.3g/cmとなるように調整する。水の添加は、工場にて行っても施工現場で行ってもよいが、施工現場で行う方が搬送重量が軽くて良いし、水は施工現場でも容易に入手可能であるため、好ましい。水が多過ぎて密度が0.5g/cmを超えると壁面に塗布した際に流れ落ちる場合があり、水が少な過ぎて0.3g/cm未満であると流動性が不足してコテ塗りが難しかったりホース内を搬送できない場合が生ずる。
混練物である湿式材料の密度は、前述のように0.5~0.3g/cmであるため、一般的な軽量セメントモルタルに比べて半分(1/2)以下であり、仮に工場で水を加えた場合の現場への搬送も容易である。
For the wet material, water is added to the premixed powder to adjust the density of the kneaded product to 0.5 to 0.3 g / cm 3 . Water may be added at the factory or at the construction site, but it is preferable to add water at the construction site because the transport weight may be lighter and water can be easily obtained at the construction site. If there is too much water and the density exceeds 0.5 g / cm 3 , it may run off when applied to the wall surface, and if there is too little water and it is less than 0.3 g / cm 3 , the fluidity will be insufficient and the iron will be applied. May be difficult or may not be able to be transported in the hose.
Since the density of the wet material, which is a kneaded product, is 0.5 to 0.3 g / cm 3 as described above, it is less than half (1/2) that of a general lightweight cement mortar, and it is assumed that the density is at the factory. It is easy to transport to the site when water is added.

このような第1の工程における前記湿式材料の調製は、ドライによるプレミックス後の水添加であるから、操作的に極めて簡易であることは説明するまでもないが、練り上がり後の密度が0.5~0.3g/cmと超軽量であるため、少なくとも従来の超軽量無機質成型板を形成するための調製作業と比べ、作業者の労力も用いる各種治具や装置類への負担も著しく軽減される。 It is needless to say that the preparation of the wet material in the first step is extremely simple in terms of operation because water is added after premixing by drying, but the density after kneading is 0. Since it is ultra-lightweight at .5 to 0.3 g / cm 3 , it also puts a burden on various jigs and devices that require the labor of the operator, at least compared to the preparation work for forming the conventional ultra-lightweight inorganic molded plate. It is significantly reduced.

本発明における第2の工程では、前記湿式材料の施工(塗着)工程であり、前記湿式材料を、塗着対象に対して総厚が25~55mmとなるように塗着する。 The second step in the present invention is a step of constructing (coating) the wet material, and the wet material is coated on the object to be coated so that the total thickness is 25 to 55 mm.

前記湿式材料を施工する塗着対象とは、各種住宅や建築物の内外壁、基礎(基礎立上り、床スラブ)である。
また、塗着方法について、公知のどのような手法や装置を用いてもよく、特に限定するものではない。
例えば左官的手法にて前述のように調製した湿式材料を家屋等に塗着する場合には、それ自体の方法としては、例えば一般的な軽量セメントモルタルと同様に行うことができるが、塗着する湿式材料自体がより軽量であるため、作業者の労力も著しく軽減されるものとなる。
また、搬送ホース等を圧送させて吹付けガン等で湿式材料を塗着対象に塗布する場合にも、混練物の密度が0.5~0.3g/cm3であるため、出力の低いコンプレッサーでも使用でき、或いは高所の塗着も容易に行うことができる。
The objects to be coated on which the wet material is applied are the inner and outer walls of various houses and buildings, and the foundation (foundation rising, floor slab).
Further, the coating method may be any known method or device, and is not particularly limited.
For example, when the wet material prepared as described above by the plastering method is applied to a house or the like, the method itself can be the same as that of a general lightweight cement mortar, but the application can be applied. Since the wet material itself is lighter, the labor of the operator is significantly reduced.
In addition, even when a wet material is applied to the object to be coated by pumping a transport hose or the like with a spray gun or the like, the density of the kneaded product is 0.5 to 0.3 g / cm3, so even a compressor with a low output can be used. It can be used, or it can be easily applied to high places.

前記第2の工程にて、塗着対象に対して総厚が25~55mmとなるように前記湿式材料を塗着した状態では、塗着層中に相当量の水分が残留しているので最も重いが、前述のようにこの湿式材料の密度は0.5~0.3g/cmであり、塗負厚は25~55mmであるため、塗着対象の広い範囲に塗布しても塗着層の荷重が建物の負担となるものではないことは明らかである。 In the state where the wet material is coated so that the total thickness is 25 to 55 mm with respect to the object to be coated in the second step, a considerable amount of water remains in the coated layer, which is the most. Although it is heavy, as described above, the density of this wet material is 0.5 to 0.3 g / cm 3 , and the coating thickness is 25 to 55 mm, so that it can be applied even if it is applied to a wide range of objects to be applied. It is clear that the load of the layers does not burden the building.

前記湿式材料により施工される断熱モルタル構造は、その一部を予め工場などで型枠成型することにより、板状やブロック状など型枠に合わせた形状で製造することもでき、現場でのプレキャスト化や工期短縮を図ることもできる。 The heat insulating mortar structure constructed by the wet material can be manufactured in a shape suitable for the formwork such as a plate shape or a block shape by molding a part of the heat insulating mortar structure in advance at a factory or the like, and precast on site. It is also possible to reduce the construction period and shorten the construction period.

本願以前の超軽量無機質成型板としては、軽量セメントモルタル板やALC板、ケイ酸カルシウム板などが代表的であり、建築物の外壁・床・天井、鉄筋コンクリートや鉄骨造の耐火被覆などに用いられている。これらの超軽量無機質成型板のうち、軽量セメントモルタル板の密度は600~900kg/m程度、ALC板の密度は500~800kg/m程度、ケイ酸カルシウム板の密度は800~1000kg/m程度である。それに対し、本発明の断熱モルタル構造(板)の密度は200~400kg/m程度であるから、これまでの超軽量無機質成型板に比べ、密度を最大1/5とすることができるので、建築物の外壁・床・天井、鉄筋コンクリートや鉄骨造の耐火被覆などにより好適に用いられることは説明するまでもなく、しかも作業者の労力も著しく軽減されることや建物の荷重負荷も著しく軽減される。 Typical ultra-lightweight inorganic molded plates prior to the present application include lightweight cement mortar plates, ALC plates, calcium silicate plates, etc., which are used for exterior walls, floors, ceilings of buildings, reinforced concrete, and fireproof coatings of steel structures. ing. Among these ultra-lightweight inorganic molded plates, the density of the lightweight cement mortar plate is about 600 to 900 kg / m 3 , the density of the ALC plate is about 500 to 800 kg / m 3 , and the density of the calcium silicate plate is about 800 to 1000 kg / m. It is about 3 . On the other hand, since the density of the heat insulating mortar structure (plate) of the present invention is about 200 to 400 kg / m 3 , the density can be reduced to a maximum of 1/5 as compared with the conventional ultra-lightweight inorganic molded plate. It is not necessary to explain that it is preferably used for the outer walls / floors / ceilings of buildings, reinforced concrete and fireproof coatings of steel structures, and the labor of workers is significantly reduced and the load of the building is also significantly reduced. Ru.

本願以前の超軽量無機質成型板としては、軽量セメントモルタル板やALC板、ケイ酸カルシウム板などが代表的であることは既に説明したが、これらの超軽量無機質成形板のうち、軽量セメントモルタル板の熱伝導率は0.10~0.20程度、ALC板の熱伝導率は0.17程度、ケイ酸カルシウム板の熱伝導率は0.10~0.14程度である。それに対し、本発明の断熱モルタル構造(板)の熱伝導率は、0.04~0.02程度であるから、これまでの超軽量無機質成型板に比べ、熱伝導率を最大1/10とすることができるため、同断熱性能を確保するにおいては、厚さを最大1/10とすることが出来る。 It has already been explained that lightweight cement mortar plates, ALC plates, calcium silicate plates, etc. are typical ultra-lightweight inorganic molded plates prior to the present application, but among these ultra-lightweight inorganic molded plates, lightweight cement mortar plates have already been explained. The thermal conductivity of the ALC plate is about 0.17 to 0.20, the thermal conductivity of the calcium silicate plate is about 0.10 to 0.14. On the other hand, since the thermal conductivity of the heat insulating mortar structure (plate) of the present invention is about 0.04 to 0.02, the thermal conductivity is up to 1/10 of the conventional ultra-lightweight inorganic molded plate. Therefore, in order to secure the same heat insulating performance, the thickness can be made up to 1/10.

このように本発明の湿式断熱モルタル工法は、湿式材料の製造(調製)工程である第1の工程では、原材料の搬送や練り混ぜ等の製造(調製)に関わる全て又は多くの操作を極めて容易に行うことができ、湿式材料の施工(塗着)工程である第2の工程でも、湿式材料の搬送や塗布等の施工(塗着)に関わる全て又は多くの操作を極めて容易に行うことができる。なお、これらの効果を数値的に表現することは難しいが、用いる湿式材料の練り上がり後の密度が0.5~0.3g/cm3であるところから、少なくとも本願以前の超軽量無機質成型板用の材料よりも数分の1程度の軽量であることは確かであるので、前記第1の工程及び前記第2の工程に関わる全ての操作を従来の数分の1程度の負担とできることが見込まれる。
また、外壁や基礎である塗着対象に施工することにより、各種の住宅等に対して極めて優れた断熱性能や不燃性、腐食対抗性、透湿性を付与することができ、しかも薄肉の塗着層でよいため、塗着量も少なくてよく、省エネ対策の向上に極めて大きな貢献を果たすものである。
As described above, in the wet heat insulating mortar method of the present invention, in the first step, which is the manufacturing (preparation) step of the wet material, all or many operations related to the manufacturing (preparation) such as transportation of raw materials and kneading are extremely easy. In the second step, which is the process of applying (coating) the wet material, all or many operations related to the operation (coating) such as transporting and applying the wet material can be performed extremely easily. can. Although it is difficult to express these effects numerically, since the density of the wet material used after kneading is 0.5 to 0.3 g / cm3, it is at least for ultra-lightweight inorganic molded plates prior to the present application. Since it is certain that the weight is about a fraction of that of the material of the above, it is expected that all the operations related to the first step and the second step can be burdened by a fraction of the conventional one. Is done.
In addition, by applying it to the outer wall or the object to be coated , which is the foundation, it is possible to impart extremely excellent heat insulation performance, nonflammability, corrosion resistance , and moisture permeability to various houses, and it is possible to apply a thin wall. Since the layer is sufficient, the amount of coating may be small, which makes an extremely large contribution to the improvement of energy saving measures.

前述のように湿式材料自体の超軽量の効果(=優れた取扱性等)と、断熱性能等の高い機能性の効果(塗着する住宅等への効果の付与)との相乗効果で、搬送性に大きな作用が期待できる。
材料搬送さえも困難な地域への材料搬送、例えば降雪が多い寒冷地等へ材料搬送も、例えば遠隔操縦又は自律式のマルチコプター又は無人航空機等を用いて容易に搬送できることが見込まれる。そのため、山岳地帯(山頂付近)や寒冷地における離島等における各種施設や建物に優れた断熱性能や不燃性、腐食対抗性を付与することができる。
As mentioned above, it is transported by the synergistic effect of the ultra-lightweight effect of the wet material itself (= excellent handleability, etc.) and the effect of high functionality such as heat insulation performance (giving the effect to the house to be coated). A great effect on sex can be expected.
It is expected that material transportation to areas where even material transportation is difficult, for example, material transportation to cold regions with heavy snowfall, can be easily performed using, for example, remote control or autonomous multicopters or unmanned aerial vehicles. Therefore, it is possible to impart excellent heat insulating performance, nonflammability, and corrosion resistance to various facilities and buildings in mountainous areas (near the mountaintop) and remote islands in cold regions.

〔調製実験例1〕
表1に示した湿式断熱モルタル材料A,Bは、シリカ系エアロジェル(2種)を40.2Wt%、普通ポルトランドセメントを56.5Wt%、ビニロン繊維を1.7Wt%、セルロース系増粘剤を0.6Wt%、粘土鉱物を1Wt%を工場内でリボン式ミキサーによりプレミックスし、温度20℃、相対湿度65%の試験室内で前記粉体混合物に対して、125Wt%加水し、練混ぜ機(JIS R 5201)にて混練りした。この湿式断熱モルタル材料A,Bの練り上がり密度、圧縮強度、熱伝導率を測定した。
[Preparation Experiment Example 1]
The wet heat insulating mortar materials A and B shown in Table 1 include silica-based airgel (2 types) at 40.2 Wt%, ordinary Portland cement at 56.5 Wt%, vinylon fiber at 1.7 Wt%, and a cellulosic thickener. 0.6 Wt% and clay mineral 1 Wt% were premixed in the factory with a ribbon mixer, and 125 Wt% was added to the powder mixture in a test room at a temperature of 20 ° C. and a relative humidity of 65% and kneaded. It was kneaded with a machine (JIS R 5201). The kneading density, compressive strength, and thermal conductivity of the wet heat insulating mortar materials A and B were measured.

〈使用材料〉
シリカ系エアロジェル(A):嵩比重0.065~0.075 粒径1.2~4.0mm (CABOT社製 商品名:Lumira Aerogel LA1000)
シリカ系エアロジェル(B):嵩比重0.080~0.090 粒径0.1~1.2mm (CABOT社製 商品名:Cabot Aerogel Particles P200)
セメント:普通ポルトランドセメント (住友大阪セメント社製)
繊維:ビニロン繊維 (クラレ社製 商品名:RMS702-6)
増粘剤:セルロース系増粘剤 (信越化学社製 商品名:FK-59)
無機質混和材:粘土鉱物(昭和鉱業社製 商品名:コレマサイド)
<Material used>
Silica-based airgel (A): Bulk specific density 0.065 to 0.075 Particle size 1.2 to 4.0 mm (Product name: Lumira Airgel LA1000 manufactured by CABOT)
Silica-based airgel (B): Bulk specific density 0.080 to 0.090 Particle size 0.1 to 1.2 mm (Product name manufactured by CABOT: Cabot Aerogel Parts P200)
Cement: Ordinary Portland cement (manufactured by Sumitomo Osaka Cement)
Fiber: Vinylon fiber (Kuraray product name: RMS702-6)
Thickener: Cellulose-based thickener (Product name: FK-59 manufactured by Shin-Etsu Chemical Co., Ltd.)
Inorganic admixture: Clay mineral (manufactured by Showa Mining Co., Ltd. Product name: Collemaside)

Figure 0007090852000001
Figure 0007090852000001

図1は、木造住宅の基礎立上り部分や基礎スラブ部分に湿式材料を塗着した例を示すものであって、同図(a)は基礎立上り2内面のみに断熱モルタル1を施工し、同図(b)は基礎立上り2外面のみに断熱モルタル1を施工し、同図(c)は基礎立上り2内面及び外面に断熱モルタル1を施工した状態を示している。なお、図中の3は土台、4は柱を示している。
これらのように施工された断熱モルタル1の性状については、以降の施工実験例1~3に示した。
FIG. 1 shows an example in which a wet material is applied to a foundation rising portion and a foundation slab portion of a wooden house, and FIG. 1A shows an example in which a heat insulating mortar 1 is installed only on the inner surface of the foundation rising portion 2. (B) shows a state in which the heat insulating mortar 1 is installed only on the outer surface of the foundation rising 2, and FIG. 3C shows a state in which the heat insulating mortar 1 is installed on the inner surface and the outer surface of the foundation rising 2. In the figure, 3 indicates a base and 4 indicates a pillar.
The properties of the heat insulating mortar 1 constructed as described above are shown in the following construction experiment examples 1 to 3.

図2は、鉄筋住宅の基礎立上り部分や基礎スラブ部分に湿式材料を塗着した例を示すものであって、同図(a)は基礎立上り2内面のみに断熱モルタル1を施工し、同図(b)は基礎立上り2外面のみに断熱モルタル1を施工し、同図(c)は基礎立上り2内面及び外面に断熱モルタル1を施工した状態を示している。
図3は、鉄筋コンクリート壁の室内側、室外(バルコニー)側に湿式材料を塗着した例を示すものであって、同図(a)は室内側の内壁面(RC壁5の内面)や床スラブ6に断熱モルタル1を施工し、同図(b)は室外(バルコニー)側の外壁面のみに断熱モルタル1を施工し、同図(c)は室内側の内壁面(RC壁5の内面)や床スラブ6及び室外(バルコニー)側の外壁面(RC壁5の外面)に断熱モルタル1を施工した状態を示している。
これらのように施工された断熱モルタル1の性状については、現在も経過観察中(約半年経過で全く問題なし)ではあるが、腐食対抗性を付与できるものと期待している。
FIG. 2 shows an example in which a wet material is applied to a foundation rising portion and a foundation slab portion of a reinforced housing, and FIG. 2A shows a heat insulating mortar 1 installed only on the inner surface of the foundation rising portion 2. (B) shows a state in which the heat insulating mortar 1 is installed only on the outer surface of the foundation rising 2, and FIG. 3C shows a state in which the heat insulating mortar 1 is installed on the inner surface and the outer surface of the foundation rising 2.
FIG. 3 shows an example in which a wet material is applied to the indoor side and the outdoor (balcony) side of the reinforced concrete wall, and FIG. 3A shows the inner wall surface (inner surface of the RC wall 5) and the floor on the indoor side. The heat insulating mortar 1 is installed on the slab 6, the figure (b) shows the heat insulating mortar 1 installed only on the outer wall surface on the outdoor (balcony) side, and the figure (c) shows the inner wall surface on the indoor side (inner surface of the RC wall 5). ), The floor slab 6, and the outer wall surface (outer surface of the RC wall 5) on the outdoor (balcony) side are shown in a state where the heat insulating mortar 1 is installed.
The properties of the adiabatic mortar 1 constructed as described above are still under observation (no problem at all after about half a year), but it is expected that corrosion resistance can be imparted.

〔施工実験例1〕
前記表1に示した湿式断熱モルタル材料Bの施工を、図1(a)に示すように行った。
木造住宅の基礎立上り部分(6m)に吸水調整材を塗布し、乾燥後、湿式断熱モルタル材料を一度目に15mm程度塗付け、塗着表面の水分が引いた後、二度目に15mm程度塗付け、総塗り厚さが30mm程度になるよう施工した。
断熱モルタルの施工後は、特に異常は見られず、7ヶ月経過後もひび割れ等の事実は全く認められなかった。
[Construction experiment example 1]
The wet heat insulating mortar material B shown in Table 1 was constructed as shown in FIG. 1 (a).
Apply the water absorption adjusting material to the rising part (6m 2 ) of the foundation of the wooden house, and after drying, apply the wet heat insulating mortar material about 15mm at the first time, and after the moisture on the coated surface is removed, apply about 15mm the second time. It was attached so that the total coating thickness was about 30 mm.
No particular abnormality was observed after the construction of the heat insulating mortar, and no facts such as cracks were observed even after 7 months had passed.

〔施工実験例2〕
前記表1に示した湿式断熱モルタル材料Bの施工を、図1(a)に示すように行った。
木造住宅の基礎立上り部分(6m)に吸水調整材を塗布し、乾燥後、湿式断熱モルタル材料を一度目に15mm程度塗付け、塗着表面の水分が引いた後、同じ湿式断熱モルタル材料を二度目に15mm程度塗付け、総塗り厚さが30mm程度になるよう施工した。
断熱モルタルの施工後は、特に異常は見られず、7ヶ月経過後もひび割れ等の事実は全く認められなかった。
[Construction experiment example 2]
The wet heat insulating mortar material B shown in Table 1 was constructed as shown in FIG. 1 (a).
Apply the water absorption adjusting material to the rising part (6m 2 ) of the foundation of the wooden house, and after drying, apply the wet heat insulating mortar material about 15mm at the first time, and after the moisture on the coated surface is removed, apply the same wet heat insulating mortar material. The second coat was applied to about 15 mm, and the total coating thickness was about 30 mm.
No particular abnormality was observed after the construction of the heat insulating mortar, and no facts such as cracks were observed even after 7 months had passed.

〔施工実験例3〕
前記表1に示した湿式断熱モルタル材料Bの施工を、図1(c)に示すように行った。
木造住宅の基礎立上り部分(12m)及び基礎スラブ部分(18m)に吸水調整材を塗布し、乾燥後、湿式断熱モルタル材料を施工したが、基礎立上り部分には一度目に25mm程度塗付け、塗着表面の水分が引いた後、二度目に25mm程度塗付け、総塗り厚さが50mm程度になるよう施工した。一方、基礎スラブ部分には一度で18mm程度塗付けた。
断熱モルタルの施工後は、基礎立上り部分にも基礎スラブ部分にも特に異常は見られず、7ヶ月経過後もひび割れ等の事実は全く認められなかった。
[Construction experiment example 3]
The wet heat insulating mortar material B shown in Table 1 was constructed as shown in FIG. 1 (c).
A water absorption adjusting material was applied to the rising part of the foundation (12m 2 ) and the rising part of the foundation (18m 2 ) of the wooden house, and after drying, a wet heat insulating mortar material was applied. After the moisture on the coated surface was removed, the coating was applied a second time by about 25 mm so that the total coating thickness was about 50 mm. On the other hand, the foundation slab portion was coated with about 18 mm at a time.
After the construction of the heat insulating mortar, no particular abnormality was observed in the rising part of the foundation or the slab part of the foundation, and no cracks or the like were found even after 7 months had passed.

更に、湿式断熱モルタル材料Bを用いて成型板(試験体)を作成し、該試験体の絶乾燥密度、断熱性、不燃性、透湿性について以下のように測定し、表2にその結果を示した。 Further, a molded plate (test piece) was prepared using the wet heat insulating mortar material B, and the absolute dry density, heat insulating property, nonflammability, and moisture permeability of the test piece were measured as follows, and the results are shown in Table 2. Indicated.

〔絶乾燥密度〕
絶乾燥密度は105℃の乾燥機で恒量になるまで試験体を乾燥し、これを絶乾状態とした。絶乾燥密度の求め方は、試験体の寸法(縦横・厚み)をノギスで測定し体積を求め、絶乾状態の試験体質量を試験体の体積で除して求めた。
[Absolute dry density]
The test piece was dried in a dryer at 105 ° C. until the absolute dryness became constant, and the test piece was brought into an absolute dry state. The absolute dry density was determined by measuring the dimensions (length, width, thickness) of the test piece with a caliper to determine the volume, and dividing the mass of the test piece in the absolutely dry state by the volume of the test piece.

〔断熱性(熱伝導率)〕
試験はJIS A 1412-2「熱絶縁材の熱抵抗及び熱伝導率の測定方法-第2部:熱流計法(HFM法)」に従って行った。
[Insulation (thermal conductivity)]
The test was carried out in accordance with JIS A 1412-2 "Measurement method of thermal resistance and thermal conductivity of heat insulating material-Part 2: Heat flow meter method (HFM method)".

〔不燃性(発熱量)〕
試験は一般財団法人建材試験センターが定めた「防耐火性能試験・評価業務方法書」の不燃性試験・評価方法に基づく発熱性試験に従って行った。
[Nonflammable (calorific value)]
The test was conducted according to the heat generation test based on the nonflammability test / evaluation method of the "Fireproof Performance Test / Evaluation Business Method Manual" established by the Building Materials Testing Center.

〔透湿性(透湿量・透湿抵抗・透湿係数・透湿率)〕
試験はJIS A 1324(建築材料の透湿性測定方法)の5.2カップ法に従って行った。
[Moisture permeability (moisture permeability, moisture permeability resistance, moisture permeability coefficient, moisture permeability rate)]
The test was carried out according to the 5.2 cup method of JIS A 1324 (method for measuring moisture permeability of building materials).

Figure 0007090852000002
Figure 0007090852000002

1 断熱モルタル
2 基礎
3 土台
4 柱
5 RC壁
6 床スラブ
1 Insulated mortar 2 Foundation 3 Foundation 4 Pillar 5 RC wall 6 Floor slab

Claims (2)

容量割合で嵩比重が0.065~0.090であるシリカ系エアロジェルを主とし、セメント、繊維をプレミックスした粉体であり、前記粉体中、重量分率で前記シリカ系エアロジェル50~35Wt%、前記セメント45~60Wt%が含まれ、前記粉体に加水して練り上がり後の密度が0.5~0.3g/cm3となるように湿式材料を調整する第1の工程と、前記湿式材料を、建築物の内外壁又は基礎である塗着対象に対して総厚が25~55mmとなるように塗着する第2の工程と、を含むことを特徴とする湿式断熱モルタル工法。 This powder is mainly composed of silica-based aerogel having a bulk specific gravity of 0.065 to 0.090 in terms of volume ratio, and is a premixed powder of cement and fibers. The first step of adjusting the wet material so that the wet material contains ~ 35 Wt% and the cement 45-60 Wt% and the density after kneading is 0.5 to 0.3 g / cm3 after adding water to the powder. A wet heat insulating mortar comprising the second step of applying the wet material to the inner / outer wall of the building or the object to be coated which is the foundation so that the total thickness is 25 to 55 mm. Construction method. 前記第1の工程で調製される前記湿式材料は、前記粉体中、重量分率で繊維1~5Wt%を含むことを特徴とする請求項1に記載の湿式断熱モルタル工法。 The wet heat insulating mortar method according to claim 1, wherein the wet material prepared in the first step contains 1 to 5 Wt% of fibers in a weight fraction in the powder .
JP2017194371A 2017-10-04 2017-10-04 Wet insulation mortar method Active JP7090852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194371A JP7090852B2 (en) 2017-10-04 2017-10-04 Wet insulation mortar method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194371A JP7090852B2 (en) 2017-10-04 2017-10-04 Wet insulation mortar method

Publications (2)

Publication Number Publication Date
JP2019065649A JP2019065649A (en) 2019-04-25
JP7090852B2 true JP7090852B2 (en) 2022-06-27

Family

ID=66337567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194371A Active JP7090852B2 (en) 2017-10-04 2017-10-04 Wet insulation mortar method

Country Status (1)

Country Link
JP (1) JP7090852B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656811B (en) * 2022-04-12 2023-03-14 武汉理工大学 Fireproof heat-preservation heat-insulation inorganic coating material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021094A (en) 1999-07-06 2001-01-26 Dainippon Printing Co Ltd Heat-insulating composite sheet and heat-insulating member
JP2002161623A (en) 2000-11-27 2002-06-04 Mitsui Home Co Ltd External-facing backing structure and external-facing backing construction method
JP2002235386A (en) 2001-02-09 2002-08-23 Fujikawa Kenzai Kogyo Kk Externally insulating wall wet construction method for building
JP2012525290A (en) 2009-04-27 2012-10-22 キャボット コーポレイション Airgel composition and methods for making and using the same
JP2013512175A (en) 2009-11-25 2013-04-11 キャボット コーポレイション Airgel composite and its production and use
CN105000834A (en) 2015-07-01 2015-10-28 卓达新材料科技集团有限公司 Hydrophobic silicon oxide aerogel insulation material and preparation method thereof
JP2017502916A (en) 2013-12-20 2017-01-26 インターブラン システムズ アーゲー Dry building material mixture and thermal insulation gypsum formed therefrom
KR101712378B1 (en) 2016-09-07 2017-03-06 비제이엠텍(주) Repairing or reinforcing method of concrete structure using alkali recovering rust prevention and inorganic polymer mortar composition
CN106699052A (en) 2016-12-08 2017-05-24 山东三木建材科技有限公司 Thick-type steel structure fireproof coating and preparation method thereof
CN107032679A (en) 2017-05-19 2017-08-11 上海市建筑科学研究院(集团)有限公司 A kind of inorganic heat insulation mortar based on hydrophobicity aeroge and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321599A (en) * 1993-05-10 1994-11-22 Sansou:Kk Refractory coating material
JPH11117432A (en) * 1997-10-15 1999-04-27 Daicel Chem Ind Ltd External wall heat insulating panel structure and panel material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021094A (en) 1999-07-06 2001-01-26 Dainippon Printing Co Ltd Heat-insulating composite sheet and heat-insulating member
JP2002161623A (en) 2000-11-27 2002-06-04 Mitsui Home Co Ltd External-facing backing structure and external-facing backing construction method
JP2002235386A (en) 2001-02-09 2002-08-23 Fujikawa Kenzai Kogyo Kk Externally insulating wall wet construction method for building
JP2012525290A (en) 2009-04-27 2012-10-22 キャボット コーポレイション Airgel composition and methods for making and using the same
JP2013512175A (en) 2009-11-25 2013-04-11 キャボット コーポレイション Airgel composite and its production and use
JP2017502916A (en) 2013-12-20 2017-01-26 インターブラン システムズ アーゲー Dry building material mixture and thermal insulation gypsum formed therefrom
CN105000834A (en) 2015-07-01 2015-10-28 卓达新材料科技集团有限公司 Hydrophobic silicon oxide aerogel insulation material and preparation method thereof
KR101712378B1 (en) 2016-09-07 2017-03-06 비제이엠텍(주) Repairing or reinforcing method of concrete structure using alkali recovering rust prevention and inorganic polymer mortar composition
CN106699052A (en) 2016-12-08 2017-05-24 山东三木建材科技有限公司 Thick-type steel structure fireproof coating and preparation method thereof
CN107032679A (en) 2017-05-19 2017-08-11 上海市建筑科学研究院(集团)有限公司 A kind of inorganic heat insulation mortar based on hydrophobicity aeroge and preparation method thereof

Also Published As

Publication number Publication date
JP2019065649A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US10364185B2 (en) Light-weight, fire-resistant composition and assembly
CN206769115U (en) A kind of lightgage steel joist steel mesh self-heat conserving composite partition
US10029950B2 (en) Mortar mixture for thermal insulation and/or as fire protection and for universal applications, and methods for the production and use thereof
CN204551880U (en) A kind of steam-pressing aero-concrete combined wall board
Kamal Analysis of autoclaved aerated concrete (AAC) blocks with reference to its potential and sustainability
Otakulov et al. IMPROVING THE EARTHQUAKE RESISTANCE AND HEAT RESISTANCE OF BUILDINGS BUILT OF MODERN ENERGY-SAVING MATERIALS
CN108252473A (en) A kind of architectural concrete, assembled combined wall board and preparation method thereof
CN205012555U (en) Aerated concrete composite wall panel is pressed to multi -functional evaporating
CN103803909B (en) A kind of foam glass particle concrete
CN205116541U (en) Foaming light aggregate concrete partition plate
JP7090852B2 (en) Wet insulation mortar method
CN204112508U (en) A kind of in-situ concrete wall fire-retardant heat insulation structure
CN105735546A (en) Construction method for constructing light-steel house roof with industrial by-product gypsum as binding material
JP7107517B2 (en) Wet insulation mortar material and insulation mortar structure
JP2016113830A (en) Exterior insulation fireproof wall structure for wood building
CN102051946B (en) Sandwiched mortar heat-insulating/warm-keeping block, preparation and application thereof
CN105908877A (en) Self-insulation composite fireproof curtain wall board and preparation method thereof
CN101993228A (en) Glazed hollow bead thermal insulation mortar and preparation process thereof
WO2013076503A1 (en) Building material
CN204152074U (en) Combined wall board
Girya et al. Comparative analysis of environmentally friendly materials
CN107761967B (en) Heat insulation treatment method for heat bridge part of external wall self-heat insulation system
CN104963440A (en) Self-supporting-type self-insulation composite curtain wall plate
CN205046709U (en) Prefabricated partition wall component of light gauge steel sand air entrainment board
CN204059652U (en) A kind of energy-saving heat-insulating wall

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7090852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150