JP7090445B2 - Control systems, learning devices, control devices, and control methods - Google Patents
Control systems, learning devices, control devices, and control methods Download PDFInfo
- Publication number
- JP7090445B2 JP7090445B2 JP2018053510A JP2018053510A JP7090445B2 JP 7090445 B2 JP7090445 B2 JP 7090445B2 JP 2018053510 A JP2018053510 A JP 2018053510A JP 2018053510 A JP2018053510 A JP 2018053510A JP 7090445 B2 JP7090445 B2 JP 7090445B2
- Authority
- JP
- Japan
- Prior art keywords
- rotation
- wind
- speed
- information
- reward
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
- Feedback Control In General (AREA)
- Control Of Eletrric Generators (AREA)
Description
本発明は、制御システム、学習装置、制御装置、及び制御方法に関する。 The present invention relates to a control system, a learning device, a control device, and a control method.
従来、風力発電システムにおいて、風車のブレード(翼)の取り付け角(ピッチ角)を変化させることにより、出力を高効率に制御する技術がある。しかし、垂直軸型の風車では翼のピッチ制御を持たないものが多い。ピッチ制御を持たない風力発電システムにおいては、風車が一定以上の風速(強風)を受ける状況では、風車の回転速度を減速させる。これにより、強風下において風車の回転速度が過回転となり強制停止してしまう事態を防ぎ、強風下においても風車の回転動作を継続させる。こうすることで運転可能な条件の拡大を図ってきた(例えば、特許文献1)。 Conventionally, in a wind power generation system, there is a technique for controlling the output with high efficiency by changing the mounting angle (pitch angle) of the blades (blades) of the wind turbine. However, many vertical axis type wind turbines do not have wing pitch control. In a wind power generation system that does not have pitch control, the rotation speed of the wind turbine is reduced when the wind turbine receives a certain wind speed (strong wind). This prevents the situation where the rotation speed of the wind turbine becomes excessively rotated and is forcibly stopped under strong wind, and the rotating operation of the wind turbine is continued even under strong wind. By doing so, the operating conditions have been expanded (for example, Patent Document 1).
しかしながら、風速の時系列変化(以下、風況という)は時々刻々と変化するため、不安定であり、予測することが困難であるという実情がある。このため、強風に備えて風車の回転速度を減速させた状態で、想定していた強風が吹かなかった場合には、風車の回転速度を減速させた量に応じて発電電力が低減してしまうためピッチ制御と比較して制御が困難である。
さらに、風車が設置された場所の地形や、季節等に応じて風況が変化するため、強風時においてどの程度風車の回転を減速させて制御すれば過回転とならずに済むか見極めることが困難である。
このため、強風時において、ある条件では過回転により風車が強制停止となり、また別の条件では過回転を抑制して発電を維持していたにも係らず、運転(発電)を停止させる上限の風速(限界風速)に風速が達したために、風車の回転が強制停止となってしまう場合があった。
However, since the time-series changes in wind speed (hereinafter referred to as wind conditions) change from moment to moment, the reality is that they are unstable and difficult to predict. For this reason, if the expected strong wind does not blow while the rotation speed of the wind turbine is decelerated in preparation for a strong wind, the generated power will be reduced according to the amount of deceleration of the rotation speed of the wind turbine. Therefore, it is more difficult to control than pitch control.
Furthermore, since the wind conditions change depending on the terrain of the place where the wind turbine is installed and the season, it is possible to determine how much the rotation of the wind turbine should be slowed down and controlled to prevent over-rotation during strong winds. Have difficulty.
For this reason, in strong winds, the wind turbine is forcibly stopped due to over-rotation under certain conditions, and under other conditions, the upper limit of stopping operation (power generation) despite suppressing over-rotation and maintaining power generation. Since the wind speed reached the wind speed (limit wind speed), the rotation of the wind turbine was sometimes forcibly stopped.
本発明は、風況に応じて限界風速を変更することが可能となる制御システム、学習装置、制御装置、及び制御方法を提供することである。 The present invention is to provide a control system, a learning device, a control device, and a control method capable of changing the critical wind speed according to the wind condition.
上述した課題を解決するために本発明の一実施形態は、風力発電システムの風車の回転数を制御する制御システムであって、前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報、及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習する学習部と、前記風速と前記回転との対応情報を記憶する記憶部と、前記風車の回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び風速情報を検出する状態検出部と、前記状態検出部により検出された前記回転情報と前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定する決定部と、前記決定部により決定された回転情報に基づいて、前記風車の回転を制御する制御部とを備え、風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる制御システムである。 In order to solve the above-mentioned problems, one embodiment of the present invention is a control system that controls the rotation speed of the wind turbine of the wind power generation system, and wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, said. The wind speed and the rotation are based on the rotation information regarding the rotation of the wind turbine and the relational information indicating the wind speed and the maximum value of the rotation speed at which the wind turbine can rotate, which is the relation information between the wind speed and the rotation. A learning unit for learning the correspondence information of the wind turbine, a storage unit for storing the correspondence information between the wind speed and the rotation, the rotation information when the rotation control parameter for controlling the rotation speed of the wind turbine is set in the wind turbine, and A state detection unit that detects wind speed information, a determination unit that determines the rotation information based on the rotation information and the wind speed information detected by the state detection unit, and the corresponding information, and a determination unit that determines the rotation information. A control unit that controls the rotation of the wind turbine based on the rotation information is provided , and the rotation detected by the state detection unit in a strong wind section where the wind speed is equal to or higher than a predetermined strong wind determination threshold in a time-series change of the wind speed. When the difference between the number and the maximum value of the rotation number is less than the predetermined margin threshold value, and the change rate of the rotation number indicated in the rotation information detected by the state detection unit is a predetermined change. When it is less than the threshold value, it is a control system that increases the wind speed limit, which is the upper limit of the wind speed that can be generated by the wind power generation system .
また、本発明の一実施形態は、上述の制御システムであって、前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部を更に備え、前記関係情報は、前記報酬算出部により算出された報酬を含み、前記学習部は、報酬に基づいて前記対応情報を学習する強化学習モデルである。 Further, one embodiment of the present invention is the above-mentioned control system, and is a reward for calculating a reward according to a predetermined reward condition based on the rotation information detected by the state detection unit and the wind velocity information. Further including a calculation unit, the relational information includes a reward calculated by the reward calculation unit, and the learning unit is an enhanced learning model for learning the corresponding information based on the reward.
また、本発明の一実施形態は、上述の制御システムであって、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出する。 Further, one embodiment of the present invention is the control system described above, and calculates a reward based on the maximum value of the rotation speed, the rotation speed, and the rate of change of the rotation speed.
また、本発明の一実施形態は、風力発電システムの風車の回転数を制御する制御システムであって、前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報、及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習する学習部と、前記風速と前記回転との対応情報を記憶する記憶部と、前記風車の回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び風速情報を検出する状態検出部と、前記状態検出部により検出された前記回転情報と前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定する決定部と、前記決定部により決定された回転情報に基づいて、前記風車の回転を制御する制御部とを備え、前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部を更に備え、前記関係情報は、前記報酬算出部により算出された報酬を含み、前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習し、前記報酬算出部は、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出し、前記報酬算出部は、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、かつ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値以上である場合、第1レベルの報酬を算出し、前記変化率が前記変化閾値未満である場合、前記第1レベルより高い第2レベルの報酬を算出する制御システムである。 Further, one embodiment of the present invention is a control system that controls the rotation speed of the wind turbine of the wind power generation system, and wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine. , And, based on the relational information between the wind speed and the rotation and showing the relational information indicating the wind speed and the maximum value of the rotation speed at which the wind turbine can rotate, the correspondence information between the wind speed and the rotation is learned. A state of detecting the rotation information and the wind speed information when the learning unit, the storage unit for storing the correspondence information between the wind speed and the rotation, and the rotation control parameter for controlling the rotation speed of the wind turbine are set in the wind turbine. Based on the detection unit, the determination unit that determines the rotation information based on the rotation information and the wind speed information detected by the state detection unit, and the corresponding information, and the rotation information determined by the determination unit. Further, a reward calculation unit that includes a control unit that controls the rotation of the wind turbine , and calculates a reward according to a predetermined reward condition based on the rotation information detected by the state detection unit and the wind speed information. The related information includes the reward calculated by the reward calculation unit, the learning unit learns the corresponding information based on the reward by enhanced learning, and the reward calculation unit is the maximum value of the rotation speed. , The reward is calculated based on the rotation speed and the rate of change of the rotation speed, and the reward calculation unit has a predetermined difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed. If it is less than the margin threshold and the rate of change of the number of rotations indicated in the rotation information detected by the state detection unit is equal to or more than the predetermined change threshold, the first level reward is calculated. It is a control system that calculates a second level reward higher than the first level when the rate of change is less than the change threshold .
また、本発明の一実施形態は、上述の制御システムであって、前記報酬算出部は、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値以上である場合、前記第1レベルより高く、尚且つ前記第2レベルより低い第3レベルの報酬を算出する。
また、本発明の一実施形態は、上述の制御システムであって、風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる。
Further, one embodiment of the present invention is the above-mentioned control system, and in the reward calculation unit, the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed is a predetermined margin threshold value. In the above case, the reward of the third level higher than the first level and lower than the second level is calculated.
Further, one embodiment of the present invention is the above-mentioned control system, in which the rotation speed detected by the state detection unit in a strong wind section where the wind speed is equal to or higher than a predetermined strong wind determination threshold value in a time-series change of the wind speed. When the difference from the maximum value of the rotation speed is less than the predetermined margin threshold value, and the change rate of the rotation speed shown in the rotation information detected by the state detection unit is less than the predetermined change threshold value. If this is the case, the wind speed limit, which is the upper limit of the wind speed that can be generated by the wind power generation system, is increased.
また、本発明の一実施形態は、風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報、前記風力発電システムにより発電される回生電力に関する電力情報、及び、前記風速と前記回転との関係情報であって、風力発電システムによる発電が可能な風速の限界である限界風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習する学習部を備え、制御装置において求められる報酬を取得可能な学習装置であり、前記制御装置は、前記風車の回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び風速情報を検出する状態検出部と、前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部とを備え、前記報酬算出部は、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出し、前記報酬算出部は、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、かつ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値以上である場合、第1レベルの報酬を算出し、前記変化率が前記変化閾値未満である場合、前記第1レベルより高い第2レベルの報酬を算出し、前記関係情報は、前記報酬算出部により算出された報酬を含み、前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習する学習装置である。 Further, in one embodiment of the present invention, wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine, power information regarding the regenerative power generated by the wind power generation system, and the above-mentioned The wind speed is based on the relationship information between the wind speed and the rotation, which is the limit of the wind speed that can be generated by the wind power generation system, and the maximum value of the rotation speed at which the wind turbine can rotate. It is a learning device that has a learning unit that learns the correspondence information between the wind turbine and the rotation, and can acquire the reward required by the control device. A reward according to a predetermined reward condition is calculated based on the rotation information and the state detection unit that detects the wind speed information in the case of setting, the rotation information detected by the state detection unit, and the wind speed information. A reward calculation unit is provided, the reward calculation unit calculates a reward based on the maximum value of the rotation speed, the rotation speed, and the rate of change of the rotation speed, and the reward calculation unit is performed by the state detection unit. When the difference between the detected rotation speed and the maximum value of the rotation speed is less than a predetermined margin threshold value, and the rate of change of the rotation speed indicated in the rotation information detected by the state detection unit. Is equal to or greater than a predetermined change threshold, a first-level reward is calculated, and if the change rate is less than the change threshold, a second-level reward higher than the first level is calculated. , The learning unit includes the reward calculated by the reward calculation unit, and the learning unit is a learning device that learns the corresponding information based on the reward by enhanced learning .
また、本発明の一実施形態は、風力発電システムの風車の回転数を制御する回転制御パラメータを前記風力発電システムに設定した場合における、前記風車の回転に関する回転情報、前記風力発電システムにより発電された回生電力に関する電力情報、及び前記風車における風速に関する風速情報を検出する状態検出部と、前記状態検出部により検出された前記電力情報、前記風速情報、及び前記風速と前記風車の回転との対応情報に基づいて、前記回転情報を決定する決定部と、前記決定部により決定された回転情報に基づいて、前記回転数を制御する制御部とを備え、風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる制御装置である。 Further, in one embodiment of the present invention, when the rotation control parameter for controlling the rotation speed of the wind turbine of the wind power generation system is set in the wind power generation system, the rotation information regarding the rotation of the wind turbine and the power generation by the wind power generation system are generated. A state detection unit that detects power information related to the regenerative power and wind speed information related to the wind speed in the wind turbine, the power information detected by the state detection unit, the wind speed information, and the correspondence between the wind speed and the rotation of the wind turbine. A determination unit that determines the rotation information based on the information and a control unit that controls the rotation speed based on the rotation information determined by the determination unit are provided , and the wind speed is predetermined in a time-series change of the wind speed. The difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed in the strong wind section equal to or higher than the strong wind determination threshold value is less than the predetermined margin threshold value, and the state detection This is a control device that increases the wind speed limit, which is the upper limit of the wind speed that can be generated by the wind power generation system, when the rate of change of the rotation speed indicated in the rotation information detected by the unit is less than a predetermined change threshold .
また、本発明の一実施形態は、風力発電システムの風車の回転数を制御する制御方法であって、学習部が、前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習し、記憶部が、前記風速と前記回転との対応情報を記憶し、状態検出部が、前記回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び前記風速情報を検出し、決定部が、前記状態検出部により検出された前記回転情報、前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定し、制御部が、前記決定部により決定された回転情報に基づいて、前記風車の回転を制御し、風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる制御方法である。
また、本発明の一実施形態は、風力発電システムの風車の回転数を制御する制御方法であって、学習部が、前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習し、記憶部が、前記風速と前記回転との対応情報を記憶し、状態検出部が、前記回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び前記風速情報を検出し、報酬算出部が、前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出し、前記報酬算出部が、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出し、前記報酬算出部が、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、かつ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値以上である場合、第1レベルの報酬を算出し、前記変化率が前記変化閾値未満である場合、前記第1レベルより高い第2レベルの報酬を算出し、前記関係情報は、前記報酬算出部により算出された報酬を含み、前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習し、決定部が、前記状態検出部により検出された前記回転情報、前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定し、制御部が、前記決定部により決定された回転情報に基づいて、前記風車の回転を制御する制御方法である。
Further, one embodiment of the present invention is a control method for controlling the rotation speed of the wind turbine of the wind power generation system, wherein the learning unit provides wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, the wind turbine. Correspondence information between the wind speed and the rotation based on the rotation information regarding the rotation and the relational information indicating the wind speed and the maximum value of the rotation speed at which the wind turbine can rotate, which is the relational information between the wind speed and the rotation. The storage unit stores the correspondence information between the wind speed and the rotation, and the state detection unit sets the rotation control parameter for controlling the rotation speed to the wind turbine, and the rotation information and the wind speed. The information is detected, the determination unit determines the rotation information based on the rotation information, the wind speed information, and the corresponding information detected by the state detection unit, and the control unit is determined by the determination unit. The rotation speed and the rotation speed detected by the state detection unit in a strong wind section where the wind speed is equal to or higher than a predetermined strong wind determination threshold value in a time-series change of the wind speed by controlling the rotation of the wind turbine based on the rotation information. When the difference from the maximum value of is less than the predetermined margin threshold value, and the rate of change of the rotation speed shown in the rotation information detected by the state detection unit is less than the predetermined change threshold value. This is a control method for increasing the wind speed limit, which is the upper limit of the wind speed that can be generated by the wind power generation system .
Further, one embodiment of the present invention is a control method for controlling the rotation speed of the wind turbine of the wind power generation system, wherein the learning unit provides wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, the wind turbine. Correspondence information between the wind speed and the rotation based on the rotation information regarding the rotation and the relational information indicating the wind speed and the maximum value of the rotation speed at which the wind turbine can rotate, which is the relational information between the wind speed and the rotation. The storage unit stores the correspondence information between the wind speed and the rotation, and the state detection unit sets the rotation control parameter for controlling the rotation speed to the wind turbine, and the rotation information and the wind speed. The information is detected, the reward calculation unit calculates the reward according to the predetermined reward condition based on the rotation information detected by the state detection unit and the wind speed information, and the reward calculation unit performs the rotation. The reward is calculated based on the maximum value of the number, the number of rotations, and the rate of change of the number of rotations, and the reward calculation unit determines the number of rotations detected by the state detection unit and the maximum value of the number of rotations. When the difference is less than the predetermined margin threshold and the rate of change of the number of rotations indicated in the rotation information detected by the state detection unit is equal to or more than the predetermined change threshold, the first level reward. When the rate of change is less than the threshold of change, the reward of the second level higher than the first level is calculated, and the related information includes the reward calculated by the reward calculation unit, and the learning. The unit learns the correspondence information by reinforcement learning based on the reward, and the determination unit determines the rotation information based on the rotation information, the wind speed information, and the correspondence information detected by the state detection unit. However, this is a control method in which the control unit controls the rotation of the wind turbine based on the rotation information determined by the determination unit.
以上説明したように、この発明によれば、風況に応じて限界風速を変更することが可能となる。 As described above, according to the present invention, it is possible to change the critical wind speed according to the wind conditions.
以下、実施形態の制御システム、学習装置、制御装置を、図面を参照して説明する。 Hereinafter, the control system, the learning device, and the control device of the embodiment will be described with reference to the drawings.
<第1の実施形態>
図1は、第1の実施形態に係る風力発電システム1の概略構成の一例を示すブロック図である。風力発電システム1は、風力発電機本体10と制御システム50とを備える。風力発電機本体10と制御システム50との間では、種々の情報がやりとりされる。
図1に示すように、例えば、制御システム50から風力発電機本体10に、風力発電機本体10を制御する制御パラメータが出力される。
また、例えば、風力発電機本体10から制御システム50に、風力発電機本体10の状態を示す状態パラメータが出力される。
<First Embodiment>
FIG. 1 is a block diagram showing an example of a schematic configuration of the wind
As shown in FIG. 1, for example, a control parameter for controlling the wind power generator
Further, for example, a state parameter indicating the state of the wind power generator
制御パラメータは、例えば、風車20の回転数を制御する回転数制御パラメータ、及び発電機30により発電される回生電力の電力量を制御する電力制御パラメータである。
また、状態パラメータは、例えば、風車20の風速、風車20の回転速度(以下、単に回転速度ともいう)、及び発電機30により発電された回生電力の電力量を示す情報である。
The control parameters are, for example, a rotation speed control parameter for controlling the rotation speed of the
Further, the state parameters are information indicating, for example, the wind speed of the
風力発電機本体10は、風車20、発電機30、整流・昇圧部31、電圧検出部32、電流検出部33、風速センサ41及び回転速度センサ42を備える。
風車20は、例えば、垂直軸型風車として構成されており、鉛直方向に延びる回転軸の周囲に複数の直線翼が一体として回転可能に連結させた直線翼垂直軸風車などによって構成されている。
風車20は、例えば、後述する発電機30の回転子と回転軸を介して接続され、発電機30の回転子と一体となって回転する。ここで、発電機30の回転子は、発電機30により発電される回生電力の電力量に応じた回転数で回転する。また、回生電力の電力量は、後述する制御システム50によりMPPT(Maximum Power Point Tracking)制御がなされる。このため、風車20の回転数は、制御システム50によるMPPT制御により、間接的に制御される。
The wind power generator
The
For example, the
発電機30は、風車20の回転力を変換して電力を生じさせる装置であり、例えば、三相交流発電機として構成され、風車20の回転と連動して回転する回転子が風車20の回転軸に連結されて回転することにより交流電力を発電する。発電機30は、発電した交流電力を整流・昇圧部31に供給する。なお、発電機30は、発電した電力を整流・昇圧部31側に供給する発電機として動作する他、整流・昇圧部31から交流電力が供給される電動機としても動作する。発電機30は、例えば、風車20の起動時に回転をアシストするアシスト制御を行う場合等に電動機として動作する。
The
整流・昇圧部31は、発電機30により発電された交流電力を直流電力に変換し、変換した直流電力の電圧を変換(昇圧)する。整流・昇圧部31は、例えば、昇圧チョッパ回路である。整流・昇圧部31から出力される直流電力が、発電機30により発電された回生電力に相当する。
The rectifying / boosting
なお、整流・昇圧部31は、発電機30に発電動作を行わせる場合には昇圧チョッパ回路として作動し、アシスト制御時等に発電機30を電動機として動作させる場合にはインバ-タとして作動する回路である。なお、アシスト制御時の供給電力は、風力発電システム1のバッテリ(不図示)からの電力であってもよい。
The rectifying / boosting
電圧検出部32は、公知の電圧計によって構成され、整流・昇圧部31から出力される出力電圧を検出し、検出した出力電圧を制御システム50に出力する。
電流検出部33は、公知の電流計によって構成され、整流・昇圧部31から出力される出力電流を検出し、検出した出力電流を制御システム50に出力する。
The
The
風速センサ41は、公知の風速センサによって構成され、例えば、風車20の近傍の所定位置(例えば、風車20における回転翼以外の部位)に設けられて風車が受ける風の風速を検出する。風速センサ41は、検出した風速を示す情報を、制御システム50に出力する。
The
回転速度センサ42は、風車20の回転速度を検出する。回転速度センサ42は、風車20の回転軸部(不図示)の回転速度を検出し得るセンサであればよく、公知の様々な回転速度センサを用いることができる。回転速度センサ42は、検出した回転速度を示す情報を、制御システム50に出力する。
The
制御システム50は、制御装置60と、学習装置70とを備える。
制御装置60は、風速センサ41により検出された風速、及び回転速度センサ42により検出された回転速度に基づいて、回転数制御パラメータを決定することにより風車の回転数を制御する。制御装置60は、学習装置70を用いて、回転数制御パラメータを決定する。制御装置60が学習装置70を用いて回転数制御パラメータを決定する方法については後で詳しく説明する。
The
The
学習装置70は、例えば、強化学習を行う装置である。この場合、学習装置70は、強化学習における学習する主体となるエージェントに相当し、制御対象(本実施形態では、風力発電機本体10)とのやりとりにより、制御対象をより適切に制御するための学習を進める。
以下では、学習装置70が強化学習を行う場合を例示して説明するが、これに限定されない。学習装置70は、制御対象(風力発電機本体10)に関する状態に基づいて、制御対象を制御するパラメータがより適切となるように学習するものであればよい。学習装置70は、教師あり学習を行ってもよいし、教師なし学習を行ってもよいし、その他の学習を行ってもよい。ここで、制御対象(風力発電機本体10)に関する状態とは、風力発電機本体10及び風力発電機本体10の周囲の状態であり、例えば、状態パラメータで示される風車20における風速、風車20の回転速度、及び発電機30の発電量等の変数である。また、ここでの状態には、上述した風速等のような時々刻々変化する状態の他、予め定められた状態、例えば、風車20の回転速度の限界値、風車20の回転トルクの上下限、及び発電機30が発電可能な最大の電力量等を含む。
The
Hereinafter, the case where the
本実施形態では、学習装置70は、風力発電機本体10を制御する回転数制御パラメータを出力し、出力した回転数制御パラメータに応じて、風力発電機本体10の状態を観察し、状態の変化に応じて、次の回転数制御パラメータを決定する。
また、学習装置70は、風力発電機本体10の状態に応じた報酬を受け取る。これにより、学習装置70は、報酬を手掛かりとして自身が出力した回転数制御パラメータの良し悪しを判断することにより学習を進め、より適した回転数制御パラメータを出力することが可能となる。
In the present embodiment, the
Further, the
図2は、本発明の一実施形態に係る風力発電システム1の制御装置60の構成の一例を示すブロック図である。
図2に示すように、制御装置60は、パラメータ取得部61と、状態検出部62と、報酬算出部63と、報酬出力部64とを備える。また、学習装置70は、強化学習部71を備える。ここで、強化学習部71は、「学習部」の一例である。
FIG. 2 is a block diagram showing an example of the configuration of the
As shown in FIG. 2, the
パラメータ取得部61は、強化学習部71から出力される回転数制御パラメータを取得する。パラメータ取得部61は、取得した回転数制御パラメータを、風力発電機本体10に対して出力する。
The
状態検出部62は、風力発電機本体10の状態を示す状態パラメータを検出する。状態パラメータは、風力発電機本体10に含まれる風車20や発電機30に関する情報であり、例えば、風速センサ41により検出された風速、回転速度センサ42により検出された回転速度、及び発電機30により発電された回生電力を示す情報である。状態検出部62は、検出した状態パラメータを、報酬算出部63に出力する。
The
ここで、風速センサ41により検出された風速は「風速情報」の一例である。回転速度センサ42により検出された回転速度は、「回転情報」の一例である。また、発電機30により発電された回生電力は、「電力情報」の一例である。
Here, the wind speed detected by the
報酬算出部63は、状態検出部62から取得した風速、及び回転速度を示す情報に基づいて、報酬を算出する。報酬算出部63は、予め定めた所定の報酬条件に応じて報酬を算出する。
ここで、報酬条件は、例えば、風速に対して回転速度がより適切に制御されたと判定される場合に、より高い報酬が得られるように設定される。
The
Here, the reward condition is set so that a higher reward can be obtained, for example, when it is determined that the rotation speed is more appropriately controlled with respect to the wind speed.
例えば、報酬算出部63は、風速、及び回転速度に基づいて、強風時において風車の回転が過回転となることなく制御され、発電電力が低下し過ぎることが抑制されている場合には、より高い報酬を算出する。また、例えば、報酬算出部63は、風速、及び回転速度に基づいて、発電に適した風況にも係らず、風車の回転が不適切に抑制されてしまい、発電電力の低下を引き起こしている場合には、より低い報酬を算出する。報酬算出部63は、算出した報酬を報酬出力部64に出力する。
For example, when the
報酬出力部64は、報酬算出部63から取得した報酬を、強化学習部71に出力する。
The
強化学習部71は、風力発電機本体10の状態を示す風速と回転速度を示す情報を取得する。また、強化学習部71は、報酬出力部64から報酬を取得する。強化学習部71は、取得した風速と回転速度を示す情報、及び風速に対して予め定められた回転数の許容範囲と回転数の目標値を示す情報に基づいて、報酬を手掛かりとしてより高い報酬が得られるように学習を進め、より適切な回転数制御パラメータを出力する。
The
ここで、回転数の許容範囲とは、風車20や発電機30の機械的な耐用限界等に基づいて定められる風車20の回転数として許容される範囲である。また、回転数の目標値とは、風速ごとに定まる回生電力が最大となる風車の回転数である。
Here, the permissible range of the rotation speed is a range permissible as the rotation speed of the
風力発電では、強風時においては、特に風車の回転数を制御することが困難となる場合があり、風車の回転速度が過多になった場合には風車が強制停止されてしまい発電電力の低下を招く。また、強風に備えて風車の回転速度を抑制し過ぎると、発電電力の低下を招く要因となり得る。
そこで、本実施形態では強風時における回転数制御パラメータに対し、風車が適切に制御されたか否かに応じて、報酬に差がつくように報酬条件を設定する。これにより、強化学習部71に、強風時においてもより適切な回転数制御パラメータが出力できるように学習させることが可能となる。
In wind power generation, it may be difficult to control the rotation speed of the wind turbine, especially in strong winds, and if the rotation speed of the wind turbine becomes excessive, the wind turbine will be forcibly stopped and the generated power will decrease. Invite. Further, if the rotation speed of the wind turbine is suppressed too much in preparation for a strong wind, it may cause a decrease in the generated power.
Therefore, in the present embodiment, the reward condition is set so that the reward is different depending on whether or not the wind turbine is appropriately controlled with respect to the rotation speed control parameter in the strong wind. This makes it possible for the
図3は、第1の実施形態に係る強風時における報酬条件の例を示す図である。
図3に示すように、強風時において、回転速度が所定の第1閾値以上である場合、最低レベルである第1レベルの報酬とする。つまり、強風時において回転速度が超過している場合には、最も低い報酬とする。最低レベルである第1レベルの報酬とは、例えば、マイナスの報酬である。
FIG. 3 is a diagram showing an example of a reward condition in a strong wind according to the first embodiment.
As shown in FIG. 3, when the rotation speed is equal to or higher than a predetermined first threshold value in a strong wind, the reward is the first level, which is the lowest level. In other words, if the rotation speed is exceeded in a strong wind, the lowest reward will be given. The lowest level first level reward is, for example, a negative reward.
また、回転速度が所定の第2閾値以上、尚且つ第1閾値未満である場合、最高ランクである第2レベルの報酬とする。つまり、強風時において回転速度が適正範囲に制御されている場合には、最も高い報酬とする。なお、第2閾値は第1閾値よりも低い閾値である。 Further, when the rotation speed is equal to or higher than a predetermined second threshold value and less than the first threshold value, the reward is the second level, which is the highest rank. That is, when the rotation speed is controlled within an appropriate range in a strong wind, the highest reward is given. The second threshold value is lower than the first threshold value.
また、回転速度が所定の第2閾値未満である場合、第2レベルよりも低く、尚且つ第1レベルよりは高い第3レベルの報酬とする。つまり、強風時において回転速度が速度不足である場合には、最も高い報酬よりは低い報酬であるが、回転速度が速度超過である場合よりは高い報酬とする。 Further, when the rotation speed is less than a predetermined second threshold value, the reward is a third level lower than the second level and higher than the first level. That is, when the rotation speed is insufficient in a strong wind, the reward is lower than the highest reward, but the reward is higher than when the rotation speed is excessive.
なお、ここでの強風時とは、所定の強風判定閾値以上の風速が検出された場合であり、この強風判定閾値は、風車の構造や機械的な強度に応じて任意に定められてよい。また、上述した第1閾値、及び第2閾値は、風速に依らず一定の値であってもよいし、風速に応じでそれぞれ異なる値であってもよい。 The strong wind here is a case where a wind speed equal to or higher than a predetermined strong wind determination threshold value is detected, and this strong wind determination threshold value may be arbitrarily determined according to the structure of the wind turbine and the mechanical strength. Further, the above-mentioned first threshold value and the second threshold value may be constant values regardless of the wind speed, or may be different values depending on the wind speed.
図4は、第1の実施形態に係る風力発電システム1における風速と風車の回転速度との関係の一例を示す図である。図4の横軸は風速[m/s]、縦軸は風車20の回転数[r/min]を示す。また、図4においては、風速B[m/s]以上である場合に強風となる。
FIG. 4 is a diagram showing an example of the relationship between the wind speed and the rotation speed of the wind turbine in the wind
図4に示すように、強風ではない風速A[m/s]~風速B[m/s]までの間において、風速と回転数とが正の比例係数で比例する関係となるように制御される。一方、強風である風速B[m/s]以上の風速である場合、風速と回転数とが所定の関係となるように制御されることが望ましい。ここでの所定の関係とは、例えば、風速が増加すると回転数が低下する関係である。風速と回転数との関係が、この例における特性FG上の点となるように制御した場合、発電機30のトルクを最大トルクに維持することができる。この場合、最大の発電電力を得ることが可能となる。この例では特性FGに示す線上に沿って回転数が制御されることが最も望ましい。このため、本実施形態では、強風時において、風車20の回転数が、その風速に応じた適正範囲に制御された場合に、最も高い報酬を設定する。この場合の適正範囲は、例えば、風速に応じた特性FG上の点を含む所定の範囲である。
As shown in FIG. 4, the wind speed and the rotation speed are controlled to be proportional to each other by a positive proportional coefficient between the wind speed A [m / s] and the wind speed B [m / s], which are not strong winds. To. On the other hand, when the wind speed is B [m / s] or higher, which is a strong wind, it is desirable that the wind speed and the rotation speed are controlled so as to have a predetermined relationship. The predetermined relationship here is, for example, a relationship in which the rotation speed decreases as the wind speed increases. When the relationship between the wind speed and the rotation speed is controlled to be a point on the characteristic FG in this example, the torque of the
一方、回転数が特性FG上の点を超過してしまった場合、発電機30の回転子の機械的な耐用限界を超過する可能性があることから、風車が強制停止される。風車が強制停止されてしまうと発電をすることができない。つまり、風速と回転数との関係が領域Dにある場合、風車が強制停止される可能性が高まることから、このような事態は望ましくない。このため、本実施形態では、強風時において、風車20の回転数が、その風速に応じた回転速度における速度超過の範囲に制御された場合に、最も低い報酬を設定する。この場合の速度超過の範囲は、例えば、風速に応じた領域Dに含まれる所定の範囲である。
On the other hand, if the rotation speed exceeds the point on the characteristic FG, the wind turbine is forcibly stopped because the mechanical service limit of the rotor of the
また、回転数が特性FG上の点よりも低下した場合、風車20の回転数を過剰に抑制することになり、発電機30はさらに発電をすることが可能であるにも係らず、発電できていない状態となる。この場合、風車20が強制停止されたり、発電機30の機械的な耐用限界を超えたりする心配はないが、発電電力を最大限に引き出せていない。このため、本実施形態では、強風時において、風車20の回転数が、その風速に応じた速度不足の範囲に制御された場合に、最も高い報酬より低いが、最も低い報酬よりは高い報酬を設定する。この場合の速度不足の範囲は、例えば、領域FBCGで示される範囲である。
Further, when the rotation speed is lower than the point on the characteristic FG, the rotation speed of the
図5は、第1の実施形態に係る風力発電システム1における風速と発電電力の出力との関係の一例を示す図である。図5の横軸は風速[m/s]、縦軸は発電電力[kW]を示す。図5では、図4における制御特性に基づいて風車の回転数が制御された場合における風力と発電電力との関係を示している。また、図5においては、図4同様に、風速B[m/s]以上である場合に強風となる。
図5に示すように、強風ではない風速A[m/s]~風速B[m/s]までの間において、風速に応じて発電電力が三次関数的に増大する。一方、強風である風速B[m/s]以上の風速である場合、図4に示す特性FGに沿って回転数が制御されることで、発電電力が最大出力Maxに維持される。
FIG. 5 is a diagram showing an example of the relationship between the wind speed and the output of the generated power in the wind
As shown in FIG. 5, the generated power increases cubicly according to the wind speed between the wind speed A [m / s] and the wind speed B [m / s], which are not strong winds. On the other hand, when the wind speed is higher than the wind speed B [m / s], which is a strong wind, the generated power is maintained at the maximum output Max by controlling the rotation speed according to the characteristic FG shown in FIG.
図6は、第1の実施形態に係る制御装置60の動作例を示すフローチャートである。
まず、制御装置60のパラメータ取得部61は、強化学習部71から回転数制御パラメータを取得する(ステップS10)。
次に、状態検出部62は、風速、及び回転速度を検出する(ステップS11)。状態検出部62は、風速センサ41により検出された風速、及び回転速度センサ42により検出された回転速度を取得することにより、風速、及び回転速度を検出する。状態検出部62は、検出した風速、及び回転速度を、報酬算出部63に出力する。
FIG. 6 is a flowchart showing an operation example of the
First, the
Next, the
次に、報酬算出部63は、報酬を算出する。
まず、報酬算出部63は、風速が強風であるか否かを判定する(ステップS12)。報酬算出部63は、風速が強風である場合、回転速度が第1閾値以上であるか否かを判定する(ステップS13)。報酬算出部63は、回転速度が第1閾値以上である場合、第1レベルの報酬とする(ステップS14)。一方、報酬算出部63は、回転速度が第1閾値未満である場合、回転速度が第2閾値以上であるか否かを判定する(ステップS16)。
Next, the
First, the
報酬算出部63は、回転速度が第2閾値以上である場合、第2レベルの報酬とする(ステップS17)。一方、報酬算出部63は、回転速度が第2閾値未満である場合、第3レベルの報酬とする(ステップS18)。
When the rotation speed is equal to or higher than the second threshold value, the
なお、ステップS12において、風速が強風でない場合、報酬算出部63は、通常レベルの報酬とする(ステップS19)。通常レベルの報酬とは、例えば、回転速度が適正範囲に含まれるように制御されている場合には最も高い報酬とし、適正範囲から外れた場合には外れた方向(速度超過、又は速度不足)に関わらず、適正範囲から乖離した度合に応じて、報酬を低減させる。
In step S12, if the wind speed is not a strong wind, the
報酬算出部63は、算出した報酬を、報酬出力部64に出力する。報酬出力部64は、報酬を、強化学習部71に出力する(ステップS15)。
The
<第2の実施形態>
次に第2の実施形態について説明する。
本実施形態では、制御装置60の制御対象が回生電力である点において、他の実施形態と相違する。以下では、上述した実施形態と異なる点を説明し、上述した実施形態と同一または類似の機能を有する構成に同一の符号を付し、その説明を省略する。
<Second embodiment>
Next, the second embodiment will be described.
This embodiment differs from other embodiments in that the controlled object of the
まず前提として、風力発電においては、風車20が受ける風速に対する回生電力の最大値は風車ごとに固有の特性値として一義的に定められている。そして、この回生電力の最大値が、風速に応じた回生電力の目標値として設定され、回生電力の目標値に近づくように回生電力が制御される。
First, as a premise, in wind power generation, the maximum value of regenerative power with respect to the wind speed received by the
制御装置60は、学習装置70を用いて、電力制御パラメータを決定する。制御装置60は、電力制御パラメータに基づいて、整流・昇圧部31から出力される直流電力が、電力制御パラメータにより指示された電力値に近づくようにMPPT(Maximum Power Point Tracking)制御を行う。具体的には、制御装置60は、電圧検出部32で検出される出力電圧、および電流検出部で検出される出力電流によって決定される出力電力が、電力制御パラメータにより指示された回生電力の目標値となるように整流・昇圧部31に与えるPWM信号のデューティ比を変化させる。
The
学習装置70は、状態検出部62により検知される状態パラメータ、及び報酬出力部64により出力される報酬に基づいて、電力制御パラメータを出力する。また、学習装置70は、出力した電力制御パラメータが風力発電機本体10の整流・昇圧部31に設定されたことによる、風力発電機本体10の状態の変化を観察し、状態の変化や報酬に応じて、次の電力制御パラメータを決定する。
The
強化学習部71は、風力発電機本体10の状態を示す風速と回転速度と回生電力を示す情報を取得する。強化学習部71は、取得した風速と回転速度と回生電力を示す情報、及び回生電力の目標値を示す情報に基づいて、報酬を手掛かりとしてより高い報酬が得られるように学習を進め、より適切な電力制御パラメータを出力する。ここで、回生電力の目標値とは、風速ごとに定まる発電可能な回生電力の最大値である。
The
報酬算出部63は、報酬を算出する場合、報酬を算出する対象とする所定の対象区間を抽出する。ここで、対象区間とは、風況に応じて定まる所定の区間であり、例えば、風速が減速する減速区間と風速が加速する加速区間とを合わせた区間である。
When calculating the reward, the
風力発電においては、風速が減速しているにも係らず、風速に応じた最大の回生電力が得られる回転数で風車を回転させ続けると、発電負荷により風車の回転が失速してしまう場合があった。このための対策として、例えば、減速区間では回生電力を最大にする制御を行わず、回転が失速しないように回転速度を維持する制御を行い、加速時に回転数を増加させることでより高い回生電力が得られるように制御することが考えられる。このように制御すれば、トータルの発電量を増やすことが可能である。 In wind power generation, even though the wind speed is decelerating, if the wind turbine is continuously rotated at a rotation speed at which the maximum regenerative power corresponding to the wind speed can be obtained, the rotation of the wind turbine may stall due to the power generation load. there were. As a countermeasure for this, for example, in the deceleration section, the control to maximize the regenerative power is not performed, the control to maintain the rotation speed is performed so that the rotation does not stall, and the rotation speed is increased during acceleration to increase the regenerative power. It is conceivable to control so that By controlling in this way, it is possible to increase the total amount of power generation.
そこで、本実施形態では、報酬算出部63は、所定の対象区間における回生電力の加算値が所定の電力閾値以上である場合には、より高い報酬を算出する。また、報酬算出部63は、対象区間における回生電力の加算値が所定の電力閾値未満である場合には、より低い報酬を算出する。これにより、学習装置70に、所定の対象区間における回生電力の加算値が高くなるような電力制御パラメータを出力するように学習させることができる。例えば、学習装置70に、減速区間のどのタイミングで回生電力を最大にする制御から回転速度を維持する制御に切替え、加速区間のどのタイミングで回転速度を維持する制御から回生電力を最大にする制御に切替えれば、トータルの発電量が増えるかを学習させることができる。
Therefore, in the present embodiment, the
図7は、第2の実施形態に係る風力発電システム1における対象区間を示す図である。図7(a)は風速の時間変化を模式的に示す図である。図7(b)は風速の時間変化の一例である。図7(a)、及び(b)の横軸は時間[min]、縦軸は風車20の風速[m/s]を示す。
FIG. 7 is a diagram showing a target section in the wind
図7(a)に示すように、風速の時間変化においては、加速のピークP1を示した後、減速に転じて減速のピークP2を示し、その後加速に転じて加速のピークP3を示す。風速はこのように減速と加速とを交互に繰り返しながら変化する。報酬算出部63は、加速のピークP1から減速のピークP2までを減速区間、減速のピークP2から加速のピークP3までを加速区間とし、減速区間とその後の加速区間とを合わせた対象区間を抽出する。
As shown in FIG. 7A, in the time change of the wind speed, the peak P1 of acceleration is shown, then the peak P2 of deceleration is shown after turning to deceleration, and then the peak P3 of acceleration is shown after turning to acceleration. In this way, the wind speed changes while alternately repeating deceleration and acceleration. The
図7(b)に示すように、時間T1において風速が加速のピークとなり、その後減速した風速が時間T2において再び加速のピークとなる場合、対象区間は時間T1からT2までの間(以下、単に「時間T1~T2」と記す)である。同様に、時間T2~T3、時間T3~T4、…がそれぞれ対象区間である。対象区間の時間は、風況に応じて定まる任意の時間であってよく、ある対象区間と他の対象区間との時間が異なっていてよい。また、時間T4~T5のように、一旦減速した風速がしばらく維持され、再度減速したような場合も減速区間としてよく、その後の加速区間と合わせて対象区間としてよい。また、時間T5~T6のように対象区間に対して減速区間の割合が極端に少ない場合や、時間T6~T7のように対象区間に対して増加区間の割合が極端に少ない場合も、対象区間としてよい。 As shown in FIG. 7B, when the wind speed reaches the peak of acceleration at time T1 and then the decelerated wind speed reaches the peak of acceleration again at time T2, the target section is between time T1 and T2 (hereinafter, simply). It is described as "time T1 to T2"). Similarly, the times T2 to T3, the times T3 to T4, ... Are the target sections, respectively. The time of the target section may be any time determined according to the wind conditions, and the time of one target section and another target section may be different. Further, when the wind speed once decelerated is maintained for a while and then decelerated again, as in the time T4 to T5, the deceleration section may be set, and the target section may be combined with the subsequent acceleration section. Further, when the ratio of the deceleration section to the target section is extremely small such as time T5 to T6, or when the ratio of the increase section to the target section is extremely small such as time T6 to T7, the target section is also used. May be.
報酬算出部63は、対象区間を抽出する場合、例えば、状態検出部62により検出された風速V(n)と、その前に状態検出部62により検出された風速V(n-1)との風速差分(V(n)-V(n-1))を算出することで、風速が減速しているか、減速のピークであるか、加速しているか、又は加速のピークであるかを判定する。報酬算出部63は、風速差分がマイナスの値である場合、風速が減速であると判定する。報酬算出部63は、風速差分がマイナスの値から0(ゼロ)、又は0(ゼロ)に近い所定の範囲内に変化した場合、風速が減速のピークであると判定する。報酬算出部63は、風速差分がプラスの値である場合、風速が加速であると判定する。報酬算出部63は、風速差分がプラスの値から0(ゼロ)、又は0(ゼロ)に近い所定の範囲内に変化した場合、風速が加速のピークであると判定する。
When the
なお、風速を検出する周期は、風力発電機本体10に対して制御を行う制御周期(例えば、10[ms])や風況等に応じて任意に定められてよい。また、風況に応じた回生電力が出力されるまでに所定の遅延があることが考えられることから、報酬算出部63は、対象区間に応じた時間に所定の遅延時間を考慮した時間における回生電力に基づいて、報酬を算出するようにしてよい。この場合の遅延時間は、風速に依らず一定の値であってもよいし、風速に応じて変動する値であってもよい。
The cycle for detecting the wind speed may be arbitrarily determined according to the control cycle (for example, 10 [ms]) for controlling the wind power generator
また、上記では、報酬算出部63は、対象区間における回生電力の加算値の大きさに基づいて、報酬を算出したが、これに限定されることはない。報酬算出部63は、減速区間において回転速度が失速することなく維持された場合により高い報酬を算出し、減速区間において回転速度が失速した場合にはより低い報酬を算出するようにしてもよい。
Further, in the above, the
また、上記では、報酬算出部63は、風速に基づいて対象区間を抽出したが、これに限定されない。報酬算出部63は、風速に代えて回転数を用いて、対象区間を抽出してもよいし、風速と回転数を用いて対象区間を抽出してもよい。
Further, in the above, the
また、報酬算出部63は、風速に基づいて、対象区間におけるトータル発電量に基づいて報酬を算出するか否かを判定してもよい。報酬算出部63は、例えば、風速が所定の強風閾値未満である場合、つまり強風でない場合、対象区間におけるトータル発電量に基づいて報酬を算出すると判定する。一方、報酬算出部63は、風速が所定の強風閾値以上である場合、つまり強風である場合、対象区間におけるトータル発電量に基づいて報酬を算出しないと判定する。強風時に発電量を高めようとすれば、風車20が過回転となる可能性があるためである。
Further, the
図8は、第2の実施形態に係る制御装置60の動作例を示すフローチャートである。
まず、制御装置60のパラメータ取得部61は、強化学習部71から電力制御パラメータを取得する(ステップS20)。
次に、状態検出部62は、風速、回転速度、及び回生電力を検出する(ステップS21)。状態検出部62は、風速センサ41により検出された風速、及び回転速度センサ42により検出された回転速度、を取得することにより、風速、及び回転速度を検出する。また、状態検出部62は、電圧検出部32より検出された回生電力の電圧、及び電流検出部33により検出された回生電力の電流を取得することにより、回生電力を検出する。状態検出部62は、検出した風速、回転速度、及び回生電力を、報酬算出部63に出力する。
FIG. 8 is a flowchart showing an operation example of the
First, the
Next, the
次に、報酬算出部63は、報酬を算出する。
まず、報酬算出部63は、風速が加速のピークであるか否かを判定する(ステップS22)。報酬算出部63は、風速が加速のピークである場合、対象区間における回生電力の加算値(トータル発電量)が所定の電力閾値以上であるか否かを判定する(ステップS23)。報酬算出部63は、トータル発電量が電力閾値以上である場合、第2レベルの報酬とする(ステップS24)。一方、報酬算出部63は、トータル発電量が電力閾値未満である場合、第2レベルより低い第1レベルの報酬とする(ステップS25)。
報酬算出部63は、トータル電力量をクリアし、ステップS20に示す処理に戻る(ステップS26)。
Next, the
First, the
The
一方、ステップS22において、風速が加速のピークでない場合、報酬算出部63は、トータル発電量に、検出した回生電力を加算し、ステップS20に示す処理に戻る(ステップS27)。
On the other hand, if the wind speed is not the peak of acceleration in step S22, the
<第3の実施形態>
次に第3の実施形態について説明する。
本実施形態では、風車20の回転数を制御する場合に、風況に応じて、それぞれ異なる制御を行う点において、他の実施形態と相違する。以下では、上述した実施形態と異なる点を説明し、上述した実施形態と同一または類似の機能を有する構成に同一の符号を付し、その説明を省略する。
<Third embodiment>
Next, a third embodiment will be described.
This embodiment is different from other embodiments in that when the rotation speed of the
本実施形態では、風況を減速区間、加速区間、及び強風区間に分類し、分類した区間の各々に基づいて、風車20の回転数を制御するように、学習装置70に学習させる。ここで、減速区間、及び加速区間は、第2の実施形態における減速区間、及び加速区間と同等である。強風区間は、風速が所定の強風判定閾値以上となる区間である。
In the present embodiment, the wind conditions are classified into a deceleration section, an acceleration section, and a strong wind section, and the
風力発電においては、加速区間では、風速に応じた最大の回生電力が得られる回転数で風車を回転させることが望ましい。風速と回転数との関係は、風速が加速すれば、風車20の回転数が増加する傾向にあるが、風車の慣性(イナーシャ)により、風速に対して一定ではない遅延が発生する。このため、風速に対応する回転数で風車を回転させた場合であっても、想定される最大の回生電力が得られない場合があった。このため、加速区間では、風車のイナーシャを考慮して制御されることが望ましい。
In wind power generation, it is desirable to rotate the wind turbine at a rotation speed at which the maximum regenerative power corresponding to the wind speed can be obtained in the acceleration section. Regarding the relationship between the wind speed and the rotation speed, the rotation speed of the
また、減速区間では、風速に応じた最大の回生電力が得られる回転数で風車を回転させ続けると、発電負荷により風車の回転が失速してしまう場合があった。このため、減速区間では、風速の変化(減速)の度合い(単位時間あたりの風速の変化量)を考慮して制御されることが望ましい。 Further, in the deceleration section, if the wind turbine is continuously rotated at a rotation speed at which the maximum regenerative power corresponding to the wind speed can be obtained, the rotation of the wind turbine may stall due to the power generation load. Therefore, it is desirable that the deceleration section is controlled in consideration of the degree of change (deceleration) of the wind speed (the amount of change in the wind speed per unit time).
また、強風区間では、回転数を減速させることで風車20の回転速度が速度超過に陥らないように制御するが、減速し過ぎると回生電力が低下してしまう場合があった。このため、強風区間では、風速の変化(加速)の度合い(単位時間あたりの風速の変化量)と回生電力とを考慮して制御されることが望ましい。
Further, in the strong wind section, the rotation speed of the
そこで、本実施形態では、加速区間では、風速に応じて定まる風車20の回転数の目標値を基準とし、基準である目標値を含む所定の範囲の回転数を目標の範囲として、目標の範囲内で風車20の回転数を制御し、より大きな回生電力が得られる場合により高い報酬を与えることで、風況に応じてより適した目標値を探すように学習させる。
Therefore, in the present embodiment, in the acceleration section, the target range of the target range is based on the target value of the rotation speed of the
具体的には、強化学習部71は、風力発電機本体10の状態を示す風速と回転速度を示す情報を取得する。強化学習部71は、取得した風速と回転速度を示す情報、及び回生電力の目標値を含む風車20に設定可能な所定の範囲の回転数を示す情報に基づいて、報酬を手掛かりとしてより高い報酬が得られるように学習を進め、より適切な電力制御パラメータを出力する。ここで、風車20に設定可能な所定の範囲の回転数とは、風速ごとに定まる回生電力が最大となる風車の回転数を含む所定の範囲の回転数である。この範囲には、風車20や発電機30の機械的な耐用限界等に基づいて定められる風車20の回転数として許容される範囲内であることが望ましい。
Specifically, the
また、報酬算出部63は、加速区間では、より大きな回生電力が得られる場合により高い報酬を算出する。これにより、強化学習部71は、加速区間では、目標の範囲内で回転数制御パラメータを出力し、出力した回転数制御パラメータが、風車20に設定された場合の風車20の回転の状態に応じて、より大きな回生電力が得られる制御を学習する。
Further, the
また、本実施形態においては、減速区間では、報酬算出部63は、風速の減速の度合いに応じて報酬を算出する。具体的には、報酬算出部63は、風速の減速の度合いに対する、風車20の回転速度の変化量がより小さい場合に、より高い報酬を算出する。これにより、強化学習部71は、減速区間では、風速が減速する場合であっても、風車20の回転速度が失速しないように維持するような制御を学習する。
Further, in the present embodiment, in the deceleration section, the
また、報酬算出部63は、減速区間とその後の加速区間とを合わせた区間(減速対象区間)における回生電力の加算値がより大きい場合に、より高い報酬を算出する。これにより、強化学習部71は、減速区間で回生電力が小さくなった場合であっても、その後の加速区間でより大きな回生電力が出力されるような制御を学習する。
Further, the
また、本実施形態においては、強風区間では、強風時において風速が加速する強風加速区間とその後の減速区間とを合わせた区間(強風対象区間)における回生電力の加算値がより大きい場合に、より高い報酬を算出する。これにより、強化学習部71は、強風区間で減速させ過ぎてその後の減速区間で回生電力が小さくならないような制御を学習する。
Further, in the present embodiment, in the strong wind section, when the added value of the regenerative power in the section including the strong wind acceleration section in which the wind speed accelerates in the strong wind and the subsequent deceleration section (strong wind target section) is larger, the additional value is higher. Calculate high rewards. As a result, the
なお、報酬算出部63は、強風区間では、風車20の回転速度が速度超過となった場合には、最も低い報酬を算出する。
これにより、報酬算出部63は、強風区間で速度超過とならないような制御を学習する。
In the strong wind section, the
As a result, the
図9は、第3の実施形態に係る制御装置60の動作例を示すフローチャートである。
まず、制御装置60のパラメータ取得部61は、強化学習部71から、目標の範囲内の回転数制御パラメータを取得する(ステップS30)。
次に、状態検出部62は、風速、回転速度、及び回生電力を検出する(ステップS31)。
次に、報酬算出部63は、取得した風速に基づいて、区間を抽出するか否か判定する(ステップS32)。報酬算出部63は、取得した風速が強風から強風ではない通常の風速に変化した場合、加速のピークとなった場合、又は減速のピークとなった場合、区間を抽出すると判定する。報酬算出部63は、区間を抽出しない場合、ステップS30に戻る。
FIG. 9 is a flowchart showing an operation example of the
First, the
Next, the
Next, the
報酬算出部63は、区間を抽出する場合、風速が所定の強風判定閾値以上となった場合、風速が所定の強風判定閾値未満となるまでを強風区間として抽出する。また、報酬算出部63は、風速が加速のピークとなった場合、その後に風速が減速のピークとなるまでを減速区間として抽出する。報酬算出部63は、風速が所定の減速のピークとなった場合、その後に風速が加速のピークとなるまでを加速区間として抽出する。
When extracting a section, the
報酬算出部63は、抽出した区間が強風区間であるか否かを判定する(ステップS33)。報酬算出部63は、抽出した区間が強風区間である場合、強風加速区間とその後の減速区間における回生電力の加算値に応じた報酬を算出する(ステップS34)一方、報酬算出部63は、区間が強風区間でない場合、抽出した区間が減速区間であるか否かを判定する(ステップS35)。
報酬算出部63は、抽出した区間が減速区間である場合、減速区間とその後の加速区間における回生電力の加算値に応じた報酬を算出する(ステップS36)。
一方、報酬算出部63は、抽出した区間が減速区間でない場合、つまり加速区間である場合、回生電力に応じた報酬を算出する(ステップS37)。
The
When the extracted section is a deceleration section, the
On the other hand, when the extracted section is not a deceleration section, that is, an acceleration section, the
<第4の実施形態>
次に第4の実施形態について説明する。
本実施形態では、風車20の回転数を制御する場合に、風況に応じて限界風速を変化させる点において、他の実施形態と相違する。以下では、上述した実施形態と異なる点を説明し、上述した実施形態と同一または類似の機能を有する構成に同一の符号を付し、その説明を省略する。
<Fourth Embodiment>
Next, a fourth embodiment will be described.
This embodiment is different from other embodiments in that the limit wind speed is changed according to the wind condition when the rotation speed of the
限界風速とは、風力発電システム1による発電が可能な風速の上限である。限界風速は、例えば、風車20や発電機30の機械的な耐用限界等に基づいて決定される破壊風速に所定の余裕(マージン)を考慮して決定される。ここで、破壊風速とは、風車20や発電機30が損傷したり破壊されたりする程度の風速である。
The critical wind speed is the upper limit of the wind speed that can be generated by the wind
風力発電システム1においては、風車20が受ける風速が限界風速に達すると、運転を停止する。この場合、風力発電システム1は、発電が制御されているか否かに関わらず、強制的に運転を停止する。このため、強風時に発電が制御されている場合であっても、風速が限界風速に達すれば運転を停止せざるを得ず、回生電力の低減の要因となる場合があった。このため、強風時であっても発電が適切に制御されている場合には、限界風速をより破壊風速に近付ける方向に変化させ、発電を維持できるように制御されることが望ましい。
In the wind
そこで、本実施形態では、強風区間における制御の安定度合に基づいて、限界風速に近づいている場合でも、安定した制御が行われている場合には破壊風速に近付ける方向に変化させ、より安定した制御が行われている場合により高い報酬を与えることで、強風時においても風況に応じてより安定した制御が行われるように学習させる。 Therefore, in the present embodiment, based on the stability of the control in the strong wind section, even if the wind speed is approaching the limit wind speed, if the stable control is performed, the wind speed is changed to approach the breaking wind speed to make it more stable. By giving a higher reward when control is performed, learning is performed so that more stable control is performed according to the wind conditions even in strong winds.
具体的には、報酬算出部63は、強風区間において、風車20の回転速度と最大回転速度との差分、及び風車20の回転速度の変化率を算出し、算出した差分と変化率とに基づいて、報酬を算出する。
Specifically, the
また、報酬算出部63は、風車20の回転速度と最大回転速度との差分が所定の余裕閾値未満である場合、風車20の回転速度の変化率が所定の変化閾値未満である場合より高い報酬(第2レベル)を算出し、当該回転速度の変化率が所定の変化閾値以上である場合より低い報酬(第1レベル)を算出する。風車20の回転速度の変化率が低い場合、風車20の回転速度の変化率が高い場合と比較して、風車20の回転がより安定して制御されていると判断できるためである。
Further, the
報酬算出部63は、風車20の回転速度と最大回転速度との差分が所定の余裕閾値以上である場合には、上述した当該回転速度の変化率が所定の変化閾値以上である場合の報酬(第1レベル)よりも高く、当該回転速度の変化率が所定の変化閾値未満である場合の報酬(第2レベル)よりも低い報酬(第3レベル)を算出する。風車20の回転速度と最大回転速度との差分が余裕閾値以上である場合、強風時の制御として、過度に安全な方向により過ぎていると判断できるためである。
The
ここで、風車20の最大回転速度とは、風車20に回転させることが可能な回転速度の最大値である。最大回転速度は、例えば、強度設計上の上限とする。
Here, the maximum rotation speed of the
また、本実施形態の制御装置60では、強風区間において、風車20の回転速度と最大回転速度との差分が所定の余裕閾値未満である場合であって、尚且つ、風車20の回転速度の変化率が所定の変化閾値未満である場合、限界風速を破壊風速に近づく方向に変化させる。具体的には、限界風速を記憶する風速情報記憶部(不図示)に記憶させている限界風速を書き換える。これにより、変更後の限界風速に応じた制御が行われる。つまり、制御装置60は、状態検出部62により検出された風速に基づいて、風速情報記憶部に記憶された限界風速を参照し、風速が限界風速以上である場合には、風力発電機本体10の動作を停止させる。
Further, in the
なお、限界風速の変更は、所定の限界風速変更値に基づいて、段階的に変更することが望ましい。限界風速変更値は、風車20の構造や、立地条件、季節等に基づいて任意に設定されてよい。
It is desirable to change the limit wind speed step by step based on a predetermined limit wind speed change value. The limit wind speed change value may be arbitrarily set based on the structure of the
図10は、第4の実施形態に係る制御装置60の動作例を示すフローチャートである。
まず、制御装置60のパラメータ取得部61は、強化学習部71から、回転数制御パラメータを取得する(ステップS40)。
次に、状態検出部62は、風速、回転速度、及び回生電力を検出する(ステップS41)。
次に、報酬算出部63は、取得した風速が強風であるか否か判定する(ステップS42)。
FIG. 10 is a flowchart showing an operation example of the
First, the
Next, the
Next, the
報酬算出部63は、取得した風速が強風である場合、状態検出部62から取得した回転速度と最大回転速度との差分を算出し、算出した差分が余裕閾値以上か否かを判定する(ステップS43)。報酬算出部63は、算出した差分が余裕閾値以上である場合、第3レベルの報酬を算出する(ステップS44)。
When the acquired wind speed is a strong wind, the
報酬算出部63は、算出した差分が余裕閾値未満である場合、状態検出部62から取得した回転速度の変化率を算出し、算出した変化率が所定の変化閾値未満か否かを判定する(ステップS45)。報酬算出部63は、算出した変化率が変化閾値未満である場合、第2レベルの報酬(最高レベル)を算出する(ステップS46)。この場合、制御装置60は、限界風速を破壊風速に近付ける方向に変更する(ステップS48)。
報酬算出部63は、算出した変化率が変化閾値以上である場合、第1レベルの報酬(最低レベル)を算出する(ステップS47)。
When the calculated difference is less than the margin threshold value, the
When the calculated change rate is equal to or higher than the change threshold value, the
(第5の実施形態)
次に、第5の実施形態について説明する。
本実施形態では、制御装置60が、学習済みモデルを用いて風車20の回転数を制御する点において、上述した実施形態と相違する。
図11は、第5の実施形態の変形例に係る風力発電システム1Aの概略構成の一例を示すブロック図である。図11に示すように、制御装置60Aは、学習済みモデル記憶部65と、決定部66と、制御部67とを備える。
(Fifth Embodiment)
Next, a fifth embodiment will be described.
The present embodiment differs from the above-described embodiment in that the
FIG. 11 is a block diagram showing an example of a schematic configuration of the wind power generation system 1A according to the modified example of the fifth embodiment. As shown in FIG. 11, the
学習済みモデル記憶部65は、学習済みモデルを記憶する。学習済みモデルは、制御対象である風力発電機本体10の状態と、風力発電機本体10に対する制御との関係を示す情報(関係情報)が格納されたデータベース(学習済みモデル)である。学習済みモデルは、風力発電機本体10の状態に応じて、その状態に対応する風力発電機本体10を制御する指標を示すパラメータ(以下、制御指標パラメータという)を推定するモデルである。
The trained
ここで、制御指標パラメータは、風力発電機本体10を制御する指標となる情報であって、制御パラメータそのものであってもよいし、制御パラメータを導出するために用いられる情報であってもよい。
Here, the control index parameter is information that is an index for controlling the wind power generator
例えば、制御指標パラメータが風車20の回転を制御する指標となる情報である場合、制御指標パラメータは、回転数制御パラメータそのものであってもよいし、風車20の回転数や回転速度を数値で示すものであってもよいし、回転数や回転速度を増加させる、又は減少させるというような風車20の回転数の制御を相対的に示すものであってもよい。
For example, when the control index parameter is information that is an index for controlling the rotation of the
例えば、制御指標パラメータが回生電力を制御する指標となる情報である場合、制御指標パラメータは、電力制御パラメータそのものであってもよいし、回生電力の目標値を示すものであってもよいし、回生電力を増加させる、又は減少させるというような風回生電力の制御を相対的に示すものであってもよい。 For example, when the control index parameter is information that is an index for controlling the regenerative power, the control index parameter may be the power control parameter itself, or may indicate a target value of the regenerative power. It may relatively indicate the control of the wind regenerative power such as increasing or decreasing the regenerative power.
学習済みモデルは、例えば、上述した実施形態において強化学習部71により学習が実施されることにより作成された学習済みモデルであってもよいし、他の風車であって、風車20と似た構造を有し、風車20が設置された地域と似たような地域に設けられた風車における風力発電システムの状態と制御との関係を学習した学習済みモデルであってもよい。
The trained model may be, for example, a trained model created by learning by the
決定部66は、取得した制御指標パラメータに基づいて、風力発電機本体10に対する制御に関する制御情報を決定する。ここでの制御情報は、制御指標パラメータに応じて決定される制御を示す情報であり、例えば風車の回転に関する回転情報であり、又、例えば回生電力に関する電力情報である。つまり、決定部66は、回転指標パラメータに基づいて回転情報を決定する。また、決定部66は、電力指標パラメータに基づいて電力情報を決定する。決定部66は、決定した回転情報を、制御部67に出力する。
The
ここでの回転情報には、例えば、風車の回転数を増加させるか、或いは減少させるかといった回転数の変化を示す情報の他、段階的に変化させるか、一気に変化させるかといった回転数を変化させる方法を示す情報も含まれる。 The rotation information here includes, for example, information indicating a change in the rotation speed such as whether to increase or decrease the rotation speed of the wind turbine, as well as a change in the rotation speed such as whether to change the wind turbine stepwise or at once. It also contains information that shows how to make it.
また、電力情報には、例えば、回生電力を増加させるか、或いは減少させるかといった回生電力の変化を示す情報の他、段階的に変化させるか、一気に変化させるかといった回生電力を変化させる度合を示す情報も含まれる。 Further, in the electric power information, for example, in addition to information indicating a change in the regenerative power such as whether to increase or decrease the regenerative power, the degree to which the regenerative power is changed such as whether to change it stepwise or at once is included. Information to indicate is also included.
制御部67は、決定部66により決定された制御情報に基づいて、風力発電機本体10を制御する制御パラメータを決定する。制御部67は、例えば、決定部66により決定された回転情報に基づいて、風車20の回転が許容範囲に収まり、尚且つ目標に近づくよう、風車20の回転を制御する回転数制御パラメータを決定する。また、制御部67は、例えば、決定部66により決定された電力情報に基づいて、回生電力が目標に近づくよう、回生電力を制御する電力制御パラメータを決定する。制御部67は、決定した制御パラメータを、パラメータ取得部61を介して風力発電機本体10に出力する。
The
ここで、風車20の回転における許容範囲は、風車20の回転数として許容される範囲のことであり、例えば、図4における特性EF、及び特性FGよりも回転数が低い領域、つまり、図4のAEFGCで囲まれた領域である。また、目標は、風車20の回転数の目標となる値であり、例えば図4における特性EF、及び特性FGに沿った値である。
Here, the permissible range in the rotation of the
(第6の実施形態)
次に、第6の実施形態について説明する。
本実施形態では、制御装置60が学習済みモデルを用いて出力した制御指標パラメータ(以下、単にパラメータという)と、学習装置70が出力したパラメータとのいずれかを用いて、風車20の回転数を制御する点において、上述した実施形態と相違する。
図12は、第6の実施形態の変形例に係る風力発電システム1Bの概略構成の一例を示すブロック図である。図12に示すように、制御装置60Bは、選択部68を備える。
(Sixth Embodiment)
Next, the sixth embodiment will be described.
In the present embodiment, the rotation speed of the
FIG. 12 is a block diagram showing an example of a schematic configuration of the wind power generation system 1B according to the modified example of the sixth embodiment. As shown in FIG. 12, the
選択部68は、学習済みモデル記憶部65に記憶される学習済みモデルから出力されるパラメータと、学習装置70により出力されるパラメータとの何れか一方を決定部66に出力する。選択部68は、何れの一方を選択するかを、予め定められたフェーズに従って決定するようにしてよい。選択部68は、例えば、風車20の回転数の制御を学習装置70に学習させる学習フェーズにおいては、学習装置70により出力されるパラメータを選択する。一方、選択部68は、風車20の回転数の制御を学習済みの学習モデルが学習済みモデル記憶部65に記憶され、学習済みモデルを用いて風車20の回転数の制御する制御フェーズにおいては、学習済みモデル記憶部65に記憶される学習済みモデルから出力されるパラメータを選択する。
The
また、上述した少なくとも一つの実施形態では、強化学習部71が学習した内容を、学習済みモデル記憶部65やその他の図示しない記憶部に記憶させておき、記憶させた内容に基づいて、更に学習を進めるようにしてよい。これにより、風車20に共通するある程度の基本的な制御について学習したモデルを、風車20が設けられた地域の風況や、季節の風況、昼夜の時間帯による風況の相違や、天候等の状態に応じた制御を行うことが可能となる。
なお、上述した少なくとも一つの実施形態では、風車20の回転数を制御するパラメータとして回転数制御パラメータが用いられる場合を例示して説明したが、これに限定されることはない。制御システム50は、風車20の回転数を制御するパラメータとして、回転速度や回転時間等を制御するようにしてもよい。この場合、風車20の回転数を制御するパラメータは、例えば回転速度パラメータ、回転時間パラメータ等であってよい。このような、風車20の回転数を制御するパラメータの総称として、回転制御パラメータが用いられてよい。つまり、回転数制御パラメータは、「回転数制御パラメータ」の一例である。
Further, in at least one embodiment described above, the content learned by the
In the above-mentioned at least one embodiment, the case where the rotation speed control parameter is used as the parameter for controlling the rotation speed of the
以上説明したように、第1の実施形態の制御システム50は、風車20の設置場所における風速を示す風速情報(例えば、風速センサ41により検出された風速)、風車20の回転に関する回転情報(例えば、回転速度センサ42により検出された回転速度)、及び、風速と回転の関係情報であって許容範囲と目標とを示す関係情報(例えば、図4に示す、風速と回転数との関係)に基づいて、風速と回転との対応情報を学習する強化学習部71と、風速と回転の対応情報を記憶する学習済みモデル記憶部65と、風車の回転数を制御する回転制御パラメータを風車20に設定した場合における風速を検出する状態検出部62と、状態検出部62により検出された風速、及び対応情報に基づいて、回転情報を決定する決定部66と、決定部66により決定された回転情報に基づいて、回転情報が許容範囲に収まり、尚且つ目標に近づくように、風車20の回転を制御する制御部67とを備える。これにより、実施形態の制御システム50は、不安定な風況であっても風車20の回転速度を最適化させるように制御を行うことが可能となる。
As described above, the
また、第1の実施形態の制御システム50は、状態検出部62により検出された風速、及び風車20の回転速度に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部63を更に備え、強化学習部71は、報酬に基づいて風速と回転との対応情報(例えば、回転数制御パラメータ)を学習する強化学習モデルである。これにより、実施形態の制御システム50は、報酬手掛かりとしてより適切な制御を学習することができる。
Further, the
また、第1の実施形態の制御システム50では、報酬算出部63は、状態検出部62により検出された風速が強風であり、尚且つ、風車20の回転速度が第1閾値以上である場合、第1レベルの報酬を算出する。また、報酬算出部63は、状態検出部62により検出された風速が強風であり、尚且つ、風車20の回転速度が前記第1閾値より小さい第2閾値以上である場合、第1レベルより高い第2レベルの報酬を算出する。また、報酬算出部63は、状態検出部62により検出された風速が強風であり、尚且つ、風車20の回転速度が第2閾値未満である場合、第1レベルより高く、尚且つ第2レベルより低い第3レベルの報酬を算出する。これにより、実施形態の制御システム50は、風速が強風である場合に、回転速度が超過しないように制御することが可能である。また、回転速度が超過しない場合には、回転速度が速度不足となるよりも適正範囲となるように、学習させることが可能となるため、回転速度が超過し易い強風時にも、強制停止してしまうことを抑制し、また、発電電力が最大を維持するように学習させることができる。
Further, in the
また、第1の実施形態の学習装置70は、風力発電システム1の風車20の設置場所における風速を示す風速情報、及び風車20の回転に関する回転情報に基づいて、風速と回転の対応情報を学習する強化学習部71を備えるため、風速と風車の回転との状態に応じて、どのように風車の回転を制御すべきかを学習することができるため、風況が不安定であっても風車の回転をより適切に制御することが可能となる。
Further, the
また、第1の実施形態の制御装置60は、風力発電システム1の風車20の回転数を制御する回転制御パラメータを風車20に設定した場合における風速を検出する状態検出部62と、状態検出部62により検出された風速、及び、風速と風車の回転との対応情報(例えば、学習済みモデル記憶部65に記憶された学習済みモデル)に基づいて、風車の回転に関する回転情報を決定する決定部66と、決定部66により決定された回転情報に基づいて、風車20の回転を制御する制御部67とを備える。これにより、実施形態の制御装置60は、風速等の状態が学習済みモデルで学習済みの状態と似たような状態である場合に、学習済みモデルから出力された制御パラメータに応じた制御を行うことができ、より適切に制御することが可能となる。
Further, the
以上説明したように、第2の実施形態の制御システム50は、風車20の設置場所における風速を示す風速情報(例えば、風速センサ41により検出された風速)、風車20の回転に関する回転情報(例えば、回転速度センサ42により検出された回転速度)、発電システムにより発電される回生電力に関する電力情報(例えば、電圧検出部32により検出された回生電力の電圧、および電流検出部33により検出された回生電力の電流)及び、風速と回転と回生電力との関係情報であって回生電力の目標を示す関係情報に基づいて、風速と回転と回生電力との対応情報を学習する強化学習部71と、風速と回転と回生電力の対応情報を記憶する学習済みモデル記憶部65と、回生電力を制御する電力制御パラメータに基づいて整流・昇圧部31を制御した場合における回生電力の変化、および風速を検出する状態検出部62と、状態検出部62により検出された回生電力と風速、及び対応情報に基づいて、電力情報を決定する決定部66と、決定部66により決定された電力情報に基づいて、電力情報の目標に近づくように、回生電力を制御する制御部67とを備える。これにより、実施形態の制御システム50は、風況が変化した場合であってもトータルの発電電力が最大となるように制御を行うことが可能となる。
As described above, the
また、第2の実施形態の制御システム50は、状態検出部62により検出された風速、及び回生電力に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部63を更に備え、強化学習部71は、報酬に基づいて風速と回生電力との対応情報(例えば、電力制御パラメータ)を学習する強化学習モデルである。これにより、実施形態の制御システム50は、報酬を手掛かりとしてより適切な制御を学習することができる。
Further, the
また、第2の実施形態の制御システム50では、報酬算出部63は、状態検出部62により検出された回生電力が所定の電力閾値未満である場合、第1レベルの報酬を算出する。また、報酬算出部63は、状態検出部62により検出された回生電力が所定の電力閾値以上である場合、第1レベルより高い第2レベルの報酬を算出する。これにより、実施形態の制御システム50は、回生電力が大きくなるように制御することが可能である。
また、第2の実施形態の制御システム50では、報酬算出部63は、状態検出部62により検出された風速に基づいて、減速区間とその後の加速区間とを含む対象区間を抽出し、対象区間における、状態検出部62により検出された回生電力の加算値が所定の電力閾値以上である場合、第2レベルの報酬を算出する。これにより、第2の実施形態の制御システム50では、減速区間において回生電力を出力させ続けると風車の回転が失速する場合があっても、減速区間においては回生電力の出力を抑制して、加速区間で回生電力をより高く出力させるなどの制御を学習させ、対象区間におけるトータルの回生電力が大きくなるように制御することが可能である。
また、第2の実施形態の制御システム50では、報酬算出部63は、状態検出部62により検出された風速が所定の強風判定閾値未満である場合に報酬を算出する。これにより、第2の実施形態の制御システム50では、強風時にも回生電力を大きくしようとして過回転に陥ってしまうような間違った制御を抑制することが可能である。
Further, in the
Further, in the
Further, in the
また、第2の実施形態の学習装置70は、風力発電システム1の風車20の設置場所における風速を示す風速情報、風車20の回転に関する回転情報、及び風力発電システム1により発電される回生電力に関する電力情報に基づいて、風速と回転と回生電力の対応情報を学習する強化学習部71を備えるため、風速と風車の回転と回生電力の状態に応じて、どのように回生電力を制御すべきかを学習することができるため、風況が変化する場合であっても回生電力をより適切に制御することが可能となる。
Further, the
また、第2の実施形態の制御装置60は、風力発電システム1により発電された回生電力を制御する電力制御パラメータを整流・昇圧部31に設定した場合における回生電力と風速とを検出する状態検出部62と、状態検出部62により検出された回生電力、風速、及び、風速と風車の回転と回生電力との対応情報(例えば、学習済みモデル記憶部65に記憶された学習済みモデル)に基づいて、回生電力に関する電力情報を決定する決定部66と、決定部66により決定された電力情報に基づいて、回生電力を制御する制御部67とを備える。これにより、実施形態の制御装置60は、風速等の状態が学習済みモデルで学習済みの状態と似たような状態である場合に、学習済みモデルから出力された制御パラメータに応じた制御を行うことができ、より適切に制御することが可能となる。
Further, the
以上説明したように、第3の実施形態の制御システム50は、風車20の設置場所における風速を示す風速情報(例えば、風速センサ41により検出された風速)、風車20の回転に関する回転情報(例えば、回転速度センサ42により検出された回転速度)、発電システムにより発電される回生電力に関する電力情報(例えば、電圧検出部32により検出された回生電力の電圧、および電流検出部33により検出された回生電力の電流)及び、風速と回転と回生電力との関係情報であって回転数の目標を含む前記風車に設定可能な前記回転数の範囲を示す関係情報に基づいて、風速と回転と回生電力との対応情報を学習する強化学習部71と、風速と回転と回生電力の対応情報を記憶する学習済みモデル記憶部65と、回転制御パラメータに基づいて制御した場合における回転速度、及び風速を検出する状態検出部62と、状態検出部62により検出された回転速度と風速、及び対応情報に基づいて、回転情報を決定する決定部66と、決定部66により決定された回転情報に基づいて、風車20の回転を制御する制御部67とを備える。これにより、実施形態の制御システム50は、風況が変化した場合であっても発電電力量が最大となるように制御を行うことが可能となる。
As described above, the
以上説明したように、第4の実施形態の制御システム50は、風車20の設置場所における風速を示す風速情報(例えば、風速センサ41により検出された風速)、風車20の回転に関する回転情報(例えば、回転速度センサ42により検出された回転速度)、発電システムにより発電される回生電力に関する電力情報(例えば、電圧検出部32により検出された回生電力の電圧、および電流検出部33により検出された回生電力の電流)及び、風速と回転と回生電力との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、風速と回転と回生電力との対応情報を学習する強化学習部71と、風速と回転と回生電力の対応情報を記憶する学習済みモデル記憶部65と、回転制御パラメータに基づいて制御した場合における回転速度、および風速を検出する状態検出部62と、状態検出部62により検出された回転速度と風速、及び対応情報に基づいて、回転情報を決定する決定部66と、決定部66により決定された回転情報に基づいて、風車20の回転を制御する制御部67とを備える。これにより、実施形態の制御システム50は、風況が変化した場合であってもトータルの発電電力が最大となるように制御を行うことが可能となる。
As described above, the
上述した実施形態における制御システム50、制御装置60、及び学習装置70の各々が行う処理の全部または一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
All or part of the processing performed by each of the
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs and the like within a range that does not deviate from the gist of the present invention.
1 風力発電システム
10 風力発電機本体
20 風車
30 発電機
31 整流・昇圧部
32 電圧検出部
33 電流検出部
41 風速センサ
42 回転速度センサ
50 制御システム
60 制御装置
61 パラメータ取得部
62 状態検出部
63 報酬算出部
64 報酬出力部
65 学習済みモデル記憶部
66 決定部
67 制御部
70 学習装置
71 強化学習部
1 Wind
Claims (10)
前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報、及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習する学習部と、
前記風速と前記回転との対応情報を記憶する記憶部と、
前記風車の回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び風速情報を検出する状態検出部と、
前記状態検出部により検出された前記回転情報と前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定する決定部と、
前記決定部により決定された回転情報に基づいて、前記風車の回転を制御する制御部と
を備え、
風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる
制御システム。 A control system that controls the number of revolutions of a wind turbine in a wind power generation system.
Wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine, and information on the relationship between the wind speed and the rotation of the wind speed and the rotation speed at which the wind turbine can rotate. A learning unit that learns the correspondence information between the wind speed and the rotation based on the relational information indicating the maximum value.
A storage unit that stores information on the correspondence between the wind speed and the rotation,
A state detection unit that detects the rotation information and the wind speed information when the rotation control parameter for controlling the rotation speed of the wind turbine is set for the wind turbine.
A determination unit that determines the rotation information based on the rotation information, the wind speed information, and the corresponding information detected by the state detection unit.
A control unit that controls the rotation of the wind turbine based on the rotation information determined by the determination unit is provided .
When the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed in the strong wind section where the wind speed is equal to or higher than the predetermined strong wind determination threshold value in the time-series change of the wind speed is less than the predetermined margin threshold value. Moreover, when the rate of change of the rotation speed indicated in the rotation information detected by the state detection unit is less than a predetermined change threshold value, it is the upper limit of the wind speed at which the wind power generation system can generate power. Increase wind speed limit
Control system.
前記関係情報は、前記報酬算出部により算出された報酬を含み、前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習する
請求項1に記載の制御システム。 Further, a reward calculation unit for calculating a reward according to a predetermined reward condition based on the rotation information detected by the state detection unit and the wind speed information is provided.
The control system according to claim 1, wherein the related information includes a reward calculated by the reward calculation unit, and the learning unit learns the corresponding information based on the reward by reinforcement learning .
請求項2に記載の制御システム。 The control system according to claim 2, wherein the reward calculation unit calculates a reward based on the maximum value of the rotation speed, the rotation speed, and the rate of change of the rotation speed.
前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報、及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習する学習部と、
前記風速と前記回転との対応情報を記憶する記憶部と、
前記風車の回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び風速情報を検出する状態検出部と、
前記状態検出部により検出された前記回転情報と前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定する決定部と、
前記決定部により決定された回転情報に基づいて、前記風車の回転を制御する制御部と
を備え、
前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部を更に備え、
前記関係情報は、前記報酬算出部により算出された報酬を含み、
前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習し、
前記報酬算出部は、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出し、
前記報酬算出部は、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、かつ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値以上である場合、第1レベルの報酬を算出し、前記変化率が前記変化閾値未満である場合、前記第1レベルより高い第2レベルの報酬を算出する
制御システム。 A control system that controls the number of revolutions of a wind turbine in a wind power generation system.
Wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine, and information on the relationship between the wind speed and the rotation of the wind speed and the rotation speed at which the wind turbine can rotate. A learning unit that learns the correspondence information between the wind speed and the rotation based on the relational information indicating the maximum value.
A storage unit that stores information on the correspondence between the wind speed and the rotation,
A state detection unit that detects the rotation information and the wind speed information when the rotation control parameter for controlling the rotation speed of the wind turbine is set for the wind turbine.
A determination unit that determines the rotation information based on the rotation information, the wind speed information, and the corresponding information detected by the state detection unit.
A control unit that controls the rotation of the wind turbine based on the rotation information determined by the determination unit is provided .
Further, a reward calculation unit for calculating a reward according to a predetermined reward condition based on the rotation information detected by the state detection unit and the wind speed information is provided.
The relational information includes the reward calculated by the reward calculation unit.
The learning unit learns the corresponding information by reinforcement learning based on the reward, and
The reward calculation unit calculates a reward based on the maximum value of the rotation speed, the rotation speed, and the rate of change of the rotation speed.
The reward calculation unit is a case where the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed is less than a predetermined margin threshold value, and is detected by the state detection unit. When the change rate of the rotation speed shown in the rotation information is equal to or more than a predetermined change threshold value, the reward of the first level is calculated, and when the change rate is less than the change threshold value, the second level is higher than the first level. Calculate level rewards
Control system.
請求項4に記載の制御システム。 When the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed is equal to or greater than the margin threshold value, the reward calculation unit is higher than the first level and higher than the second level. The control system of claim 4, which calculates a lower third level reward.
請求項4または請求項5に記載の制御システム。 When the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed in the strong wind section where the wind speed is equal to or higher than the predetermined strong wind determination threshold value in the time-series change of the wind speed is less than the predetermined margin threshold value. Moreover, when the rate of change of the rotation speed indicated in the rotation information detected by the state detection unit is less than a predetermined change threshold value, it is the upper limit of the wind speed at which the wind power generation system can generate power. The control system according to claim 4 or 5 , which increases the wind speed limit.
を備え、制御装置において求められる報酬を取得可能な学習装置であり、
前記制御装置は、
前記風車の回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び風速情報を検出する状態検出部と、
前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出する報酬算出部と
を備え、
前記報酬算出部は、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出し、
前記報酬算出部は、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、かつ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値以上である場合、第1レベルの報酬を算出し、前記変化率が前記変化閾値未満である場合、前記第1レベルより高い第2レベルの報酬を算出し、
前記関係情報は、前記報酬算出部により算出された報酬を含み、
前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習する
学習装置。 Wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine, power information regarding the regenerative power generated by the wind power generation system, and information on the relationship between the wind speed and the rotation. The correspondence information between the wind speed and the rotation is learned based on the relational information indicating the limit wind speed which is the limit of the wind speed that can be generated by the wind power generation system and the maximum value of the rotation speed at which the wind turbine can rotate. It is a learning device equipped with a learning unit and capable of obtaining the reward required by the control device .
The control device is
A state detection unit that detects the rotation information and the wind speed information when the rotation control parameter for controlling the rotation speed of the wind turbine is set for the wind turbine.
With the reward calculation unit that calculates the reward according to the predetermined reward condition based on the rotation information detected by the state detection unit and the wind speed information.
Equipped with
The reward calculation unit calculates a reward based on the maximum value of the rotation speed, the rotation speed, and the rate of change of the rotation speed.
The reward calculation unit is a case where the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed is less than a predetermined margin threshold value, and is detected by the state detection unit. When the change rate of the rotation speed shown in the rotation information is equal to or more than a predetermined change threshold value, the reward of the first level is calculated, and when the change rate is less than the change threshold value, the second level is higher than the first level. Calculate the level reward,
The relational information includes the reward calculated by the reward calculation unit.
The learning unit learns the corresponding information by reinforcement learning based on the reward.
Learning device.
前記状態検出部により検出された前記電力情報、前記風速情報、及び前記風速と前記風車の回転との対応情報に基づいて、前記回転情報を決定する決定部と、
前記決定部により決定された回転情報に基づいて、前記回転数を制御する制御部と
を備え、
風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる
制御装置。 When the rotation control parameter for controlling the rotation speed of the wind turbine of the wind power generation system is set in the wind power generation system, the rotation information regarding the rotation of the wind turbine, the power information regarding the regenerative power generated by the wind power generation system, and the wind turbine. A state detector that detects wind speed information related to the wind speed in
A determination unit that determines the rotation information based on the power information, the wind speed information, and the correspondence information between the wind speed and the rotation of the wind turbine detected by the state detection unit.
A control unit that controls the rotation speed based on the rotation information determined by the determination unit is provided .
When the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed in the strong wind section where the wind speed is equal to or higher than the predetermined strong wind determination threshold value in the time-series change of the wind speed is less than the predetermined margin threshold value. Moreover, when the rate of change of the rotation speed indicated in the rotation information detected by the state detection unit is less than a predetermined change threshold value, it is the upper limit of the wind speed at which the wind power generation system can generate power. Increase wind speed limit
Control device.
学習部が、前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習し、
記憶部が、前記風速と前記回転との対応情報を記憶し、
状態検出部が、前記回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び前記風速情報を検出し、
決定部が、前記状態検出部により検出された前記回転情報、前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定し、
制御部が、前記決定部により決定された回転情報に基づいて、前記風車の回転を制御し、
風速の時系列変化において、風速が所定の強風判定閾値以上となる強風区間における前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、尚且つ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値未満である場合、前記風力発電システムによる発電が可能な風速の上限である風速限界を増加させる
制御方法。 It is a control method that controls the rotation speed of the wind turbine of the wind power generation system.
The learning unit has wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine, and information on the relationship between the wind speed and the rotation, and the wind speed and the wind turbine can rotate. Based on the relational information indicating the maximum value of the rotation speed, the correspondence information between the wind speed and the rotation is learned, and the correspondence information is learned.
The storage unit stores the correspondence information between the wind speed and the rotation, and stores the correspondence information.
The state detection unit detects the rotation information and the wind speed information when the rotation control parameter for controlling the rotation speed is set in the wind turbine.
The determination unit determines the rotation information based on the rotation information, the wind speed information, and the corresponding information detected by the state detection unit.
The control unit controls the rotation of the wind turbine based on the rotation information determined by the determination unit .
When the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed in the strong wind section where the wind speed is equal to or higher than the predetermined strong wind determination threshold value in the time-series change of the wind speed is less than the predetermined margin threshold value. Moreover, when the rate of change of the rotation speed indicated in the rotation information detected by the state detection unit is less than a predetermined change threshold value, it is the upper limit of the wind speed at which the wind power generation system can generate power. Increase wind speed limit
Control method.
学習部が、前記風力発電システムの風車の設置場所における風速を示す風速情報、前記風車の回転に関する回転情報及び、前記風速と前記回転との関係情報であって前記風速と前記風車が回転可能な回転数の最大値とを示す関係情報に基づいて、前記風速と前記回転との対応情報を学習し、
記憶部が、前記風速と前記回転との対応情報を記憶し、
状態検出部が、前記回転数を制御する回転制御パラメータを前記風車に設定した場合における前記回転情報、及び前記風速情報を検出し、
報酬算出部が、前記状態検出部により検出された前記回転情報、及び前記風速情報に基づいて、所定の報酬条件に応じた報酬を算出し、
前記報酬算出部が、前記回転数の最大値、前記回転数、及び前記回転数の変化率に基づいて報酬を算出し、
前記報酬算出部が、前記状態検出部により検出された前記回転数と前記回転数の最大値との差分が所定の余裕閾値未満である場合であって、かつ、前記状態検出部により検出された前記回転情報に示される回転数の変化率が所定の変化閾値以上である場合、第1レベルの報酬を算出し、前記変化率が前記変化閾値未満である場合、前記第1レベルより高い第2レベルの報酬を算出し、
前記関係情報は、前記報酬算出部により算出された報酬を含み、
前記学習部は、報酬に基づいて前記対応情報を強化学習によって学習し、
決定部が、前記状態検出部により検出された前記回転情報、前記風速情報、及び前記対応情報に基づいて、前記回転情報を決定し、
制御部が、前記決定部により決定された回転情報に基づいて、前記風車の回転を制御する
制御方法。 It is a control method that controls the rotation speed of the wind turbine of the wind power generation system.
The learning unit has wind speed information indicating the wind speed at the installation location of the wind turbine of the wind power generation system, rotation information regarding the rotation of the wind turbine, and information on the relationship between the wind speed and the rotation, and the wind speed and the wind turbine can rotate. Based on the relational information indicating the maximum value of the rotation speed, the correspondence information between the wind speed and the rotation is learned, and the correspondence information is learned.
The storage unit stores the correspondence information between the wind speed and the rotation, and stores the correspondence information.
The state detection unit detects the rotation information and the wind speed information when the rotation control parameter for controlling the rotation speed is set in the wind turbine.
The reward calculation unit calculates a reward according to a predetermined reward condition based on the rotation information and the wind speed information detected by the state detection unit.
The reward calculation unit calculates a reward based on the maximum value of the rotation speed, the rotation speed, and the rate of change of the rotation speed.
The reward calculation unit is a case where the difference between the rotation speed detected by the state detection unit and the maximum value of the rotation speed is less than a predetermined margin threshold value, and is detected by the state detection unit. When the change rate of the rotation speed shown in the rotation information is equal to or more than a predetermined change threshold value, the reward of the first level is calculated, and when the change rate is less than the change threshold value, the second level is higher than the first level. Calculate the level reward,
The relational information includes the reward calculated by the reward calculation unit.
The learning unit learns the corresponding information by reinforcement learning based on the reward, and
The determination unit determines the rotation information based on the rotation information, the wind speed information, and the corresponding information detected by the state detection unit.
A control method in which the control unit controls the rotation of the wind turbine based on the rotation information determined by the determination unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053510A JP7090445B2 (en) | 2018-03-20 | 2018-03-20 | Control systems, learning devices, control devices, and control methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018053510A JP7090445B2 (en) | 2018-03-20 | 2018-03-20 | Control systems, learning devices, control devices, and control methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019165602A JP2019165602A (en) | 2019-09-26 |
JP7090445B2 true JP7090445B2 (en) | 2022-06-24 |
Family
ID=68066287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018053510A Active JP7090445B2 (en) | 2018-03-20 | 2018-03-20 | Control systems, learning devices, control devices, and control methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7090445B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021147228A (en) * | 2020-03-23 | 2021-09-27 | 株式会社Screenホールディングス | Conveying device and conveying method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008017683A (en) | 2006-06-05 | 2008-01-24 | Yaskawa Electric Corp | Method and device for controlling generator of wind power generating device |
JP2010134863A (en) | 2008-12-08 | 2010-06-17 | Hitachi Ltd | Control input determination means of control object |
JP2014525063A (en) | 2011-06-03 | 2014-09-25 | シーメンス アクチエンゲゼルシヤフト | A computer-aided method for forming data-driven models of technical systems, in particular gas turbines or wind turbines |
JP2017046487A (en) | 2015-08-27 | 2017-03-02 | ファナック株式会社 | Motor controller with flux control unit, and machine learning apparatus and method thereof |
JP2017204934A (en) | 2016-05-11 | 2017-11-16 | 豊田通商株式会社 | Power generator |
JP2019070346A (en) | 2017-10-06 | 2019-05-09 | 富士通株式会社 | Windmill control program, windmill control method, and windmill control device |
-
2018
- 2018-03-20 JP JP2018053510A patent/JP7090445B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008017683A (en) | 2006-06-05 | 2008-01-24 | Yaskawa Electric Corp | Method and device for controlling generator of wind power generating device |
JP2010134863A (en) | 2008-12-08 | 2010-06-17 | Hitachi Ltd | Control input determination means of control object |
JP2014525063A (en) | 2011-06-03 | 2014-09-25 | シーメンス アクチエンゲゼルシヤフト | A computer-aided method for forming data-driven models of technical systems, in particular gas turbines or wind turbines |
JP2017046487A (en) | 2015-08-27 | 2017-03-02 | ファナック株式会社 | Motor controller with flux control unit, and machine learning apparatus and method thereof |
JP2017204934A (en) | 2016-05-11 | 2017-11-16 | 豊田通商株式会社 | Power generator |
JP2019070346A (en) | 2017-10-06 | 2019-05-09 | 富士通株式会社 | Windmill control program, windmill control method, and windmill control device |
Also Published As
Publication number | Publication date |
---|---|
JP2019165602A (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2644888A2 (en) | Control system and method for avoiding overspeed of a wind turbine | |
Tan et al. | Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors | |
EP2798200B1 (en) | Wind turbine generator with adaptive locked speed operation | |
CN102472249A (en) | Wind turbine generator, control method for wind turbine generator, wind turbine generator system, and control method for wind turbine generator system | |
US9194372B2 (en) | Device, system and method to lower starting torque for electrical system | |
JPWO2004047284A1 (en) | Wind power generator | |
JP7090442B2 (en) | Control systems, learning devices, and control methods | |
EP3263890A1 (en) | Methods and systems for feedforward control of wind turbines | |
US20210033062A1 (en) | Turbine control | |
JP5483901B2 (en) | Wind power generation system and stall control method for wind power generation system | |
CN103047078A (en) | Methods for using site specific wind conditions to determine when to install a tip feature on a wind turbine rotor blade | |
JP2017204934A (en) | Power generator | |
JP7090445B2 (en) | Control systems, learning devices, control devices, and control methods | |
Arifujjaman et al. | Modeling and control of a small wind turbine | |
JP7090444B2 (en) | Control systems, learning devices, and control methods | |
JP7090443B2 (en) | Control systems, learning devices, and control methods | |
JP2019157841A (en) | Control device and control method | |
JP7090439B2 (en) | Control systems, learning devices, control devices, and control methods | |
EP3760858A1 (en) | Wind microturbine with axial development | |
JP7090440B2 (en) | Control systems, learning devices, control devices, and control methods | |
CN116181585A (en) | System and method for responding to a coefficient of friction signal of a wind turbine | |
Wang et al. | ANN based pitch angle controller for variable speed variable pitch wind turbine generation system | |
Senanayaka et al. | A novel soft-stall power control for a small wind turbine | |
CN114172188A (en) | System and method for controlling driveline damping during multiple low voltage ride through events | |
CN104763584B (en) | Generator speed control method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20210120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7090445 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |