JP7089809B2 - Multi-stage hydrogen generation method - Google Patents

Multi-stage hydrogen generation method Download PDF

Info

Publication number
JP7089809B2
JP7089809B2 JP2021090961A JP2021090961A JP7089809B2 JP 7089809 B2 JP7089809 B2 JP 7089809B2 JP 2021090961 A JP2021090961 A JP 2021090961A JP 2021090961 A JP2021090961 A JP 2021090961A JP 7089809 B2 JP7089809 B2 JP 7089809B2
Authority
JP
Japan
Prior art keywords
gas
furnace
water
carbonization
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021090961A
Other languages
Japanese (ja)
Other versions
JP2022020046A (en
Inventor
廣存 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021090961A priority Critical patent/JP7089809B2/en
Publication of JP2022020046A publication Critical patent/JP2022020046A/en
Application granted granted Critical
Publication of JP7089809B2 publication Critical patent/JP7089809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多段式水素発生装置に関するものである。 The present invention relates to a multi-stage hydrogen generator.

石炭を効率良くガス化して効率の高い発電方法として石炭ガス化複合化火力発電がある([非特許文献1]参照)。 There is integrated coal gasification combined cycle thermal power generation as a highly efficient power generation method for efficiently gasifying coal (see [Non-Patent Document 1]).

水素の需要は高まっている。内燃機関の燃料・化学品の原料・発電・製鉄など。しかし、製造方式は主にメタンガスの高温分解と水の電気分解であり、コストが高い。メタンガスは化石燃料のため、二酸化炭素の発生源になってしまうし、地球温暖化効果は二酸化炭素の25倍もある化合物([非特許文献4]参照)である。すなわち、メタンとは 温室効果ガスである。そこで、石炭やバイオマスの高温スチーム分解も研究されている。しかし、発生するガスは多種類で、そのため、追加の二酸化炭素化工程も必要になっている。また、少量でも石炭やバイオマスに含まれている硫黄化合物や窒素化合物がガス化によって硫黄酸化物や窒素酸化物になるため、その除去装置が必要になっている。その分離工程は複雑となり、コストが高くなってしまう。本発明では処理量が大幅に減る。 The demand for hydrogen is increasing. Fuel for internal combustion engines, raw materials for chemicals, power generation, iron making, etc. However, the manufacturing method is mainly high temperature decomposition of methane gas and electrolysis of water, and the cost is high. Since methane gas is a fossil fuel, it becomes a source of carbon dioxide, and its global warming effect is 25 times that of carbon dioxide (see [Non-Patent Document 4]). That is, methane is a greenhouse gas. Therefore, high-temperature steam decomposition of coal and biomass is also being studied. However, there are many types of gas generated, which requires an additional carbon dioxide conversion process. In addition, even a small amount of sulfur compounds and nitrogen compounds contained in coal and biomass becomes sulfur oxides and nitrogen oxides by gasification, so a device for removing them is required. The separation process is complicated and costly. In the present invention, the amount of processing is significantly reduced.

[特許文献1]には水素製造方法及びシステムが記載されている。
しかし、[特許文献1]の方法では低品位石炭やバイオマスの水蒸気ガス化の後、ガスを冷却してから触媒を使用して一酸化炭素のスチームによる二酸化炭素化を行っている。水素を製造するためには何段階もの工程を必要とする。また、ガス化の温度を1000°C以上にするために空気を深冷分離した酸素を使用しているので、コストアップになる。また、石炭やバイオマス中に含まれている硫黄や窒素の酸化物の除去装置が述べられていない。低品位炭を使用しても水素単価は下がらないと予想される。ただ、水素製造や二酸化炭素の処理について近年の技術状況については良く調べてある。二酸化炭素と水素の分離方法についても詳しく述べている。本発明でも得られた水性ガスの用途によっては、二酸化炭素と水素の分離を必要とする時は、装置に組み込むこともあり得る。
[Patent Document 1] describes a hydrogen production method and a system.
However, in the method of [Patent Document 1], after steam gasification of low-grade coal or biomass, the gas is cooled and then carbon monoxide is converted into carbon dioxide by steam using a catalyst. Many steps are required to produce hydrogen. In addition, since oxygen obtained by deeply cooling and separating air is used in order to raise the gasification temperature to 1000 ° C. or higher, the cost increases. In addition, a device for removing sulfur and nitrogen oxides contained in coal and biomass is not described. It is expected that the unit price of hydrogen will not decrease even if low-grade coal is used. However, the recent technological status of hydrogen production and carbon dioxide treatment has been thoroughly investigated. It also details how to separate carbon dioxide and hydrogen. Depending on the use of the water gas obtained in the present invention, it may be incorporated into an apparatus when carbon dioxide and hydrogen need to be separated.

[非特許文献1]には石炭ガス化複合発電プラント(IGCC)が記載されている。
しかし、[非特許文献1]の方法では性能の良い噴流式ガス化炉を使用していても一段でのガス化のため複雑な後処理が必要になっている。ただ、ガス化炉を出たガスは脱硫装置を通してガスタービン発電機に供給しているのに、石炭中に含まれているはずの窒素の酸化物除去装置が書かれていない。その上、ガスタービン発電機では1000°C以上で空気と燃焼させているので、窒素酸化物は発生しているはずなのにその除去装置が書かれていない。省略しているのか気になるところだ。
[Non-Patent Document 1] describes an integrated coal gasification combined cycle (IGCC).
However, in the method of [Non-Patent Document 1], even if a jet gasification furnace having good performance is used, complicated post-treatment is required for gasification in one stage. However, although the gas leaving the gasifier is supplied to the gas turbine generator through the desulfurization device, the nitrogen oxide removal device that should be contained in the coal is not written. Moreover, since the gas turbine generator burns with air at 1000 ° C or higher, nitrogen oxides should have been generated, but the removal device is not written. I'm wondering if it's omitted.

[非特許文献2]には間伐材を原料とした木炭から水性ガスを発生させて、非エンジン式発電及び地域内利活用システムを構築する事について記載されている。
しかし、[非特許文献2]の方法では間伐材を木炭化した後、別の装置に移して一段で加熱と水性ガスの発生を行うため、COの発生は避けられない。よって、CO2化への反応装置も必要になっている。また、木炭にする時、通常は加熱した時の熱と可燃性ガスを大気中に方出しているので、間伐材の持っているエネルギーの何10パーセントもロスしてしまう。本発明ならロスがわずかでほとんど利用できる。
[Non-Patent Document 2] describes the construction of a non-engine power generation and regional utilization system by generating water gas from charcoal made from thinned wood.
However, in the method of [Non-Patent Document 2], after the thinned wood is charcoalized, it is transferred to another device for heating and water gas generation in one stage, so that CO generation is unavoidable. Therefore, a reaction device for CO2 conversion is also required. Also, when making charcoal, the heat and flammable gas that is normally heated are released into the atmosphere, so tens of percent of the energy possessed by the thinned wood is lost. With the present invention, there is little loss and most of it can be used.

電源事業本部のレポート「非特許文献3」高温水蒸気を用いた未利用資源からの水素製造技術の研究でも、バイオマスなどを一段でガス化しているため、追加でCOからCO2にする装置が必要になっている。1000°C以上の高温スチーム発生にLPGなどの燃料を利用しており、木屑や廃プラスチックから水素製造するなら、スタートアップのみの利用にとどめて、分解ガスの一部を利用すれば、二酸化炭素の発生を抑える事になる。 Report of the Power Supply Business Headquarters "Non-Patent Document 3" In the research of hydrogen production technology from unused resources using high temperature steam, biomass etc. are gasified in one stage, so an additional device to convert CO to CO2 is required. It has become. Fuels such as LPG are used to generate high-temperature steam of 1000 ° C or higher, and if hydrogen is produced from wood chips and waste plastic, only startups can be used, and if part of the decomposition gas is used, carbon dioxide can be used. It will suppress the occurrence.

上記のいずれの場合も原料を一段でガス化する装置のため、ガスを利用する前にCOをCO2化し、脱硫・脱硝などいくつかの装置も必要になっている。 In any of the above cases, since the raw material is gasified in one stage, some devices such as desulfurization and denitration are required by converting CO into CO2 before using the gas.

水素の利用はいくらでもある。内燃機関の燃料・化学品の原料・発電・製鉄など。水の電気分解やメタンガスの分解ではコストが高いので、社会的にも困っている。石炭や石油を使えば二酸化炭素の排出になり、世界的に困っている。バイオマス(主に樹木)を利用し植林すれば、二酸化炭素の排出にならない。 There is no limit to the use of hydrogen. Fuel for internal combustion engines, raw materials for chemicals, power generation, iron making, etc. The cost of electrolyzing water and decomposing methane gas is high, which is a social problem. If coal or oil is used, carbon dioxide will be emitted, which is a global problem. If you plant trees using biomass (mainly trees), you will not emit carbon dioxide.

には石炭の熱分解やスチームとの反応(すなわち水性ガス化反応)さらに、噴流式ガス化法や炉内脱硫ガス化法の化学反応までが記載されている。Further describes the thermal decomposition of coal, the reaction with steam (that is, the water gasification reaction), and the chemical reaction of the jet gasification method and the in-furnace gasification gasification method.

(1994年)には二酸化炭素と水素を反応させる触媒などの研究が報告されている。In (1994), research on catalysts that react carbon dioxide and hydrogen has been reported. でベンチプラントでの工業化の可能性確認が1998年になされている。そして、2008年には別の会社でも確認されている。 しかし、工業化したという報告は2021年現在まで、見当たらない。The possibility of industrialization in the bench plant was confirmed in 1998. And in 2008, it was confirmed by another company. However, there are no reports of industrialization until 2021.

2017年の天然ガス化学、石油化学、石炭化学 日本の石油化学と、それを取り巻く米国や中東の 天然ガス化学、中国の現代的石炭化学について最近のトピックスをまとめた報告
でも2018年のCO2を原料とした化学品製造に関する調査 でも水素のコストが高くてメタノール合成価格が下げられないとのことである。
2017 Natural Gas Chemistry, Petrochemicals, Coal Chemistry A report summarizing recent topics on Japanese petrochemicals, their surrounding natural gas chemistry in the United States and the Middle East, and modern coal chemistry in China.
But in 2018, a survey on chemical manufacturing using CO2 as a raw material However, the cost of hydrogen is high and the price of methanol synthesis cannot be reduced.

そこで、二酸化炭素からのメタノール合成が工業化されにくい可能性が高い。
また、価格の安い石炭を使用しても
に述べられているように、石炭には窒素化合物が含まれるため窒素酸化物の除去装置が必須となる。
Therefore, it is highly possible that methanol synthesis from carbon dioxide is difficult to industrialize.
Also, even if you use cheap coal
As stated in the above, since coal contains nitrogen compounds, a nitrogen oxide removing device is indispensable.

特許公開第1011007493号Patent Publication No. 1011007493

https://www.mhi.com/jp/products/energy/integrated_coal_gasfication_combined_cycle.html 石炭ガス化複合発電プラント(IGCC)三菱重工グループhttps://www.mhi.com/jp/products/energy/integrated_coal_gasfication_combined_cycle.html Integrated Gasification Combined Cycle (IGCC) Mitsubishi Heavy Industries Group oene.co.jp/wpcontent/themes/standard_black_cmspro/img/woodbiomass_reportwww.emssy_03_1.pdf 間伐材を原料とした木炭水性ガスによる非エンジン式発電及び地域内利活用システムの構築 富士古河E&C株式会社oene.co.jp/wpcontent/themes/standard_black_cmspro/img/woodbiomass_reportwww.emssy_03_1.pdf Construction of non-engine power generation and regional utilization system using charcoal water gas made from thinned wood Fuji Electric Engineering & Construction Co., Ltd. https://www.energia.co.jp/eneso/tech/review/no14/pdf/14-p16-19.pdf 高温水蒸気を用いた未利用資源からの原料ガスによる 水素製造技術の研究https://www.energia.co.jp/eneso/tech/review/no14/pdf/14-p16-19.pdf Research on hydrogen production technology using raw material gas from unused resources using high temperature steam https://denki.k-server.info/methane/電力と環境の情報メタンとは 温室効果ガスであり、天然ガス資源でもある化合物についてhttps://denki.k-server.info/methane/ Electricity and environmental information Methane is a greenhouse gas and a compound that is also a natural gas resource. https://www.jstage.jst.go.jp/article/jie1922/58/2/58_2_141/_pdf 石炭化学特集石炭 ガス化 反応 の基礎 ―1978.11.29受 理 ―早 稲 田 大 学森 田 義 郎https://www.jstage.jst.go.jp/article/jie1922/58/2/58_2_141/_pdf Coal Chemistry Special Feature Basics of Coal Gasification Reaction ―1978.11.29 Acceptance ― Waseda Daigaku Morita Yoshiro https://www.jstage.jst.go.jp/article/jie1992/74/3/74_3_137/_pdf/-char/ja 接触水素化反応による二酸化炭素のメタノール変換技術の評価 (キーワード 二酸化炭素,接触水素化反応,メ タノール合成,銅一亜鉛酸化物系触媒,錯体触媒) 財団法人 電力中央研究所 大 山 聖 一https://www.jstage.jst.go.jp/article/jie1992/74/3/74_3_137/_pdf/-char/en Evaluation of carbon dioxide methanol conversion technology by catalytic hydrogenation reaction (keyword carbon dioxide, catalytic hydrogen) Chemical reaction, methanol synthesis, copper monozinc oxide catalyst, complex catalyst) Seiichi Oyama, Central Research Institute of Electric Power Industry http://www.mhi.co.jp/technology/review/pdf/356/356384.pdf炭酸ガスと水素からのメタノール合成プロセスの開発 三菱重工技報1998年http://www.mhi.co.jp/technology/review/pdf/356/356384.pdf Development of methanol synthesis process from carbon dioxide and hydrogen Mitsubishi Heavy Industries Technical Report 1998 https://www.toray-research.co.jp/technical-info/trcnews/pdf/201806-04.pdf CO2を原料とした化学品製造に関する調査https://www.toray-research.co.jp/technical-info/trcnews/pdf/201806-04.pdf Survey on chemical manufacturing using CO2 as a raw material https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1011.pdf天然ガス化学、石油化学、石炭化学 日本の石油化学と、それを取り巻く米国や中東の 天然ガス化学、中国の現代的石炭化学について最近のトピックスのまとめ。また、重要性が高まっている天然ガスおよび天然ガス化学の魅力と課題についての紹介。 2017 年 3 月 シニアリサーチャー 府川 伊三郎https://arc.asahi-kasei.co.jp/report/arc_report/pdf/rs-1011.pdf Natural gas chemistry, petrochemicals, coal chemistry Japan's petrochemicals and the surrounding US and Middle East natural gas chemistry , A summary of recent topics on modern coal chemistry in China. It also introduces the attractiveness and challenges of natural gas and natural gas chemistry, which are becoming increasingly important. March 2017 Senior Researcher Isaburo Fukawa https://www.jstage.jst.go.jp/article/jie1992/71/8/71_8_766/_pd石炭窒素分の放出挙動に及ぼす燃料比の影響―1992 .2.18受 理 ― 名古 屋 大 学 陳 勇,松 田 仁 樹,架 谷 昌 信https://www.jstage.jst.go.jp/article/jie1992/71/8/71_8_766/_pd Effect of fuel ratio on the release behavior of coal nitrogen content-1992.2.18 Acceptance-Nakoya University Chen Isamu, Hitoshi Matsuda, Masanobu Kamiya

バイオマスや石炭のスチームによるガス化が検討され、一部実用化されているが、純度の高い水素を製造するためにはいくつもの装置を使う必要性がある。連続操業にこだわり、一段でガス化し、多種類の化合物を発生させているため、ガス精製や水素の高純度化にいくつもの装置を必要としている。さらに従来の連続的ガス化方法では装置の一部に『異常反応・配管詰まり・異常加熱等々』の異常を生じた時、安定操業へのコントロールが困難になり易い。最悪、操業停止に追い込まれる。 Gasification by steam of biomass and coal has been studied and partly put into practical use, but it is necessary to use a number of devices to produce high-purity hydrogen. Since we are particular about continuous operation and gasify in one stage to generate various kinds of compounds, we need a number of devices for gas purification and high purification of hydrogen. Furthermore, in the conventional continuous gasification method, when an abnormality such as "abnormal reaction, pipe clogging, abnormal heating, etc." occurs in a part of the device, it tends to be difficult to control stable operation. In the worst case, it is forced to stop operations.

本発明では、水素の高純度化を容易にするために、敢えて石炭やバイオマスを乾留してから水性ガス化反応を行っている。その上、回文式反応装置を複数利用する事により、一定量の水素が連続的に発生させられる。よって、水素を集めるまでは、複数の同じ装置で操業するため、『異常反応・配管詰まり・異常加熱等々』の異常を生じた時でも異常を起こした装置を切り離し、修理すれば良い。そのため、安定的な操業が行い易い装置であり、システムである。さらに、水素を高純度に精製する前のガス成分は二酸化炭素と過剰なスチームと水素だけなので、精製が容易である。よって、本発明では、従来のガス化からの水素システムの精製工程の一部がすでに組み込まれているようなシステムである。 In the present invention, in order to facilitate the purification of hydrogen, the water gasification reaction is carried out after carbonization of coal or biomass. Moreover, by using a plurality of palindromic reactors, a certain amount of hydrogen is continuously generated. Therefore, until hydrogen is collected, multiple devices are operated in the same device, so even if an abnormality such as "abnormal reaction, pipe clogging, abnormal heating, etc." occurs, the device that caused the abnormality should be disconnected and repaired. Therefore, it is a device and a system that facilitates stable operation. Furthermore, since the only gas components before hydrogen is purified to high purity are carbon dioxide, excess steam, and hydrogen, purification is easy. Therefore, in the present invention, it is a system in which a part of the purification process of the hydrogen system from the conventional gasification is already incorporated.

すなわち、加熱炉と炭化・水性ガス化炉が隣り合わせに組み合わせた装置が複数ある水素発生装置を提供する。両側の加熱炉から1000°C以上の熱で数時間以上かけて炭化・水性ガス化炉内のバイオマスや石炭を加熱して、揮発分をほぼ100パーセント分離する。すると炭素成分がほぼ100パーセントの炭化物が残るので、二段階目の反応として、高温スチームを圧入し、水性ガス化反応を行わせる。スチームを過剰に入れると、COが発生してもCO2になり、H2を発生する。結果的にC+2H2O=CO2+2H2 という反応式のように二酸化炭素と水素の発生になり、過剰なスチームがH2Oのガスとして残るだけである。あとバイオマスや石炭の灰分が少量残る。 That is, the present invention provides a hydrogen generator having a plurality of devices in which a heating furnace and a carbonization / water gas furnace are combined side by side. The biomass and coal in the carbonization / water gasification furnace are heated from the heating furnaces on both sides with heat of 1000 ° C or higher for several hours or longer to separate almost 100% of the volatile matter. Then, since carbide having almost 100% of carbon component remains, high temperature steam is injected as a second step reaction to carry out an aqueous gasification reaction. If excessive steam is added, even if CO is generated, it becomes CO2 and H2 is generated. As a result, carbon dioxide and hydrogen are generated as in the reaction formula of C + 2H2O = CO2 + 2H2, and excess steam remains as H2O gas. Also, a small amount of biomass and coal ash remains.

本発明は、さらに、炭化・水性ガス化炉に上下二段以上スチーム吹込みパイプなどを有し、固形可燃物(石炭やバイオマス)を乾留してもタールなどが装置内に残らなくした上記装置を提供する。一般的に可燃性固形物を加熱して揮発分を蒸発させる時は高沸点のタールなどが排出部や配管に付着する例が多い。そこで、高温スチームを圧入して、低沸点物に分解し、ガス化する。そして、バイオマスや石炭からの揮発分はすべて炭化・水性ガス化炉外に取り出す。 The present invention further has the above-mentioned apparatus in which the carbonization / water gasification furnace is provided with steam blowing pipes in two or more stages above and below, and tar or the like does not remain in the apparatus even if solid combustibles (coal or biomass) are carbonized. I will provide a. Generally, when combustible solids are heated to evaporate volatile components, tar having a high boiling point often adheres to discharge parts and pipes. Therefore, high-temperature steam is press-fitted to decompose it into a low boiling point substance and gasify it. Then, all the volatile matter from biomass and coal is taken out of the carbonization / water gasification furnace.

本発明は、さらに、スチーム吹込みパイプなどに空気を送り込めるようにパイプをつないである。すなわち、水性化ガス発生時の吸熱反応により、炉の温度が下がり過ぎた時、空気を吹き込み、炭化物を燃焼させ、炉内温度の温度を上昇させる。そして、水性ガス反応が進み易いようにした上記装置を提供する。 The present invention further connects pipes so that air can be sent to a steam blowing pipe or the like. That is, when the temperature of the furnace drops too much due to the endothermic reaction when the aqueous gas is generated, air is blown to burn the charcoal and the temperature inside the furnace is raised. Then, the above-mentioned apparatus which facilitates the progress of the water gas reaction is provided.

すなわち、本発明では、バイオマスや石炭を乾留し、ほぼ炭素だけにしてから、同じ炉に過剰なスチームを供給し、水性ガス化反応を行わせる。すると、CO2とH2と余剰のスチームだけになり、水素の分離が容易となる。熱効率を格段に良くするために加熱炉と炭化・水性ガス化炉をサンドイッチ型に組み合わせる。排ガス処理は乾留ガスを燃焼させたガスだけで済む。バイオマスや石炭は少量でもタンパク質やアミノ酸を含むため、化学構造的に窒素や硫黄が含まれる
。よって、燃焼させると、必ず窒素酸化物と硫黄酸化物が発生してしまう。そのため、大気汚染防止のため、排出ガスは除去装置を通してから大気中に出さなければならない。
That is, in the present invention, biomass and coal are carbonized to be substantially carbonized, and then excess steam is supplied to the same furnace to carry out an aqueous gasification reaction. Then, only CO2, H2, and surplus steam are left, and hydrogen can be easily separated. In order to significantly improve the thermal efficiency, a heating furnace and a carbonization / water gas furnace are combined in a sandwich type. Exhaust gas treatment requires only the gas obtained by burning the carbonization gas. Biomass and coal contain proteins and amino acids even in small amounts, so they contain nitrogen and sulfur chemically structurally.
.. Therefore, when burned, nitrogen oxides and sulfur oxides are always generated. Therefore, in order to prevent air pollution, the exhaust gas must be released into the atmosphere through the removal device.

操業中は、バイオマスを1000°C近くまで加熱し、可燃性ガスを分離し、そのガスを燃焼させ、加熱炉の熱源にする。十分に炭化した石炭やバイオマスに高温スチームを過剰に圧入すると、水性ガスが発生することは既知のことである
。スチームを過剰に存在させれば、一酸化炭素も二酸化炭素になり、その分水素が多く得られる。従来は反応性の高い一酸化炭素を多く発生させ、メタノールを合成していた。それよりも、水素を多く必要とする時代になったので、一酸化炭素を発生させる必要が少なくなり、水性ガス化反応温度も低くて済むようになった。すなわち、二酸化炭素を発生させるだけの方が低い温度条件で水素を多く含む水性ガスを発生させられる 。その上、水素と二酸化炭素と余分なスチームだけなら、水素の分離が容易になる、コストダウンにつながる。そして、炭化・水添ガス化炉と加熱炉をサンドイッチ型にすれば、熱効率が飛躍的に向上し、一段でガス化するより多量生産できる。発電や製鉄に使える程の大量製造が可能である。
During operation, the biomass is heated to near 1000 ° C, the flammable gas is separated, and the gas is burned to be the heat source of the heating furnace. It is known that water gas is generated when high temperature steam is excessively injected into fully carbonized coal or biomass.
.. If there is an excess of steam, carbon monoxide will also become carbon dioxide, and a large amount of hydrogen will be obtained. In the past, methanol was synthesized by generating a large amount of highly reactive carbon monoxide. In an era that requires more hydrogen than that, it is less necessary to generate carbon monoxide, and the water gasification reaction temperature can be lowered. That is, it is possible to generate a water gas containing a large amount of hydrogen under lower temperature conditions by only generating carbon dioxide. .. Moreover, if only hydrogen, carbon dioxide and extra steam are used, hydrogen can be easily separated, leading to cost reduction. If the carbonization / hydrogenation gasification furnace and the heating furnace are made into a sandwich type, the thermal efficiency is dramatically improved and mass production can be performed more than gasification in one stage. It can be mass-produced to the extent that it can be used for power generation and steelmaking.

よって、トースターの加熱部分が何段もつながった装置になる。バイオマスを使用すれば、二酸化炭素発生とは換算されない。日本には森林に切り倒されたままの樹木が大量に放置されている。
よって、本発明では二酸化炭素発生対策にもなる。
以下、添付の図面を用いて本発明の装置のヒトツの実施例を説明する。
Therefore, it becomes a device in which the heating parts of the toaster are connected in multiple stages. If biomass is used, it is not converted to carbon dioxide generation. A large number of trees that have been cut down in the forest are left in Japan.
Therefore, in the present invention, it is also a measure against carbon dioxide generation.
Hereinafter, examples of the apparatus of the present invention, Hitotsu, will be described with reference to the accompanying drawings.

本発明を実施するための装置の概念的な説明図。The conceptual explanatory view of the apparatus for carrying out this invention. 加熱炉101~150~のサイズを示すための概念的な説明図。The conceptual explanatory drawing for showing the size of a heating furnace 101-150. 灰を押し出す機構を示す概念図。A conceptual diagram showing a mechanism for pushing out ash. 主に丸太を利用する時の炭化・水性ガス化炉の概念図。Conceptual diagram of carbonization / water gas furnace when mainly using logs.

炭化・水性ガス化炉201~250~に石炭やバイオマスチップなどは炉の上部から充填する。丸太のように大きい樹木などは横から挿入しても良い。加熱炉からの熱で乾留ガスが発生しなくなったら、スチームを過剰に圧入する。乾留ガスは加熱炉の燃料として使用。排ガスは高温なので、高温スチーム発生に利用して発電すれば良い。 Coal, biomass chips, etc. are filled from the upper part of the carbonization / water gasification furnace 201 to 250. Large trees such as logs may be inserted from the side. When the heat from the heating furnace does not generate carbonization gas, excessively press in steam. Carbonization gas is used as fuel for the heating furnace. Since the exhaust gas is hot, it can be used to generate high-temperature steam to generate electricity.

図1を参照して本発明方法の原理を説明する。
加熱炉101~150~と炭化・水性ガス化炉201~250~が交互にサンドイッチ型に並んでいる。それぞれの炭化・水性ガス化炉から集めた乾留ガスは乾留ガスタンクに集めた後、それぞれの加熱炉に供給し、燃焼ガスとして利用する。加熱炉はスタートアップの時のみ外部から可燃性ガスを供給するが、通常は乾留ガスのみで操業でき、供給するバイオマスや石炭と操業条件によっては乾留ガスが余る。
The principle of the method of the present invention will be described with reference to FIG.
Heating furnaces 101 to 150 and carbonization / water gas furnaces 201 to 250 are alternately arranged in a sandwich type. The carbonization gas collected from each carbonization / water gasification furnace is collected in a carbonization gas tank and then supplied to each heating furnace for use as combustion gas. The heating furnace supplies flammable gas from the outside only at the time of start-up, but normally it can be operated only with carbonization gas, and depending on the biomass and coal to be supplied and the operating conditions, the carbonization gas is surplus.

101~151~ 加熱炉
201~250~ 炭化・水性ガス化炉
1 各加熱炉で乾留ガスを燃焼させた後の排ガスを集めるパイプ
2出 各炭化・水性ガス化炉の乾留ガスを集めるパイプ
2入 2出で集めた乾留ガスを貯めておいたタンクから、ガスを加熱炉に送るパイプ
3 各炭化・水性ガス化炉で発生させた水性ガスを集めるパイプ
4 水性ガス化反応のために炭化・水性ガス化炉に圧入する高温スチームを送るパイプ
5 各炭化・水性ガス化炉に空気を吹き込むためのパイプ
○ 開閉バルブ
11 各加熱炉で乾留ガスを燃焼させた後の排ガス流量を調節する。操業中はほぼ開放
12 各炭化・水性ガス化炉から乾留ガスが出なくなったら閉める。
13 スチームを供給する時開ける。
14 乾留ガスを加熱炉に供給する時の流量を調節する
15 炭化・水性ガス化炉の乾留中は閉め、乾留ガスの流出を防ぎ、乾留終了後に水性ガスを取り出す時開ける。
16 乾留中で炭化・水性ガス化炉上部にスチームを供給する時、開ける。すると、高温加圧スチームがパイプの穴から吹き出る。
17 水性ガス化反応のため、炭化・水性ガス化炉下部にスチームを供給する時開ける。すると、高温加圧スチームがパイプの穴から吹き出る。
18 炭化・水性ガス化炉の温度が下がり過ぎた時、炭化物を燃焼させて加熱するために、炉内に空気を吹き込む時に開ける。
101-151 ~ Heating furnace 201-250 ~ Carbonized / water-based gasifier 1 Pipe for collecting exhaust gas after burning dry-retained gas in each heating furnace 2 Out Pipe for collecting dry-retained gas in each carbonized / water-based gasifier 2 Enter 2 Pipe that sends gas to the heating furnace from the tank that stores the dry distillate gas collected in the output 3 Pipe that collects the water-based gas generated in each carbonization / water-based gasification furnace 4 Combustion / water-based for the water-based gasification reaction Pipe for sending high-temperature steam to be press-fitted into the gasifier 5 Pipe for blowing air into each carbonized / aqueous gasifier ○ Open / close valve 11 Adjust the flow rate of exhaust gas after burning dry gas in each heating furnace. Almost open during operation 12 Close when carbonization gas is no longer emitted from each carbonization / water gas furnace.
13 Open when supplying steam.
14 Adjust the flow rate when supplying dry distillation gas to the heating furnace. 15 Close the carbonization / water gas furnace during dry distillation to prevent the outflow of dry distillation gas, and open it when taking out the aqueous gas after carbonization is completed.
16 Open when steam is supplied to the upper part of the carbonization / water gas furnace during carbonization. Then, high-temperature pressurized steam blows out from the hole in the pipe.
17 Open when steam is supplied to the lower part of the carbonization / water gasification furnace for the water gasification reaction. Then, high-temperature pressurized steam blows out from the hole in the pipe.
18 When the temperature of the carbonization / water gas furnace drops too low, it is opened when air is blown into the furnace to burn and heat the carbonized material.

加熱炉101~105~は耐火レンガが一般的であるが1000°C以下で操業できるなら耐熱鋼でも良い。炭化・水性ガス化炉201~205~は1000°C以下での操業になるので、耐熱鋼で十分である。 Refractory bricks are generally used for the heating furnaces 101 to 105, but refractory steel may be used as long as it can be operated at 1000 ° C or lower. Since the carbonization / water gas furnaces 201 to 205 to operate at 1000 ° C or lower, heat-resistant steel is sufficient.

加熱炉101~150~のサイズ。厚さは0,20m~0,80m厚過ぎると加熱効率が悪くなる。幅は3m~20mサイズが大きい方が生産量を増やせるが、炉の温度を均一にするのが難しくなる。そして、保守点検が大変になる。高さは3m~10m。幅と同じ理由で大き過ぎない方が良い。 Heating furnaces 101-150-size. If the thickness is too thick from 0.20 m to 0.80 m, the heating efficiency will deteriorate. Larger widths of 3m to 20m can increase production, but it is difficult to make the temperature of the furnace uniform. And maintenance and inspection become difficult. The height is 3m to 10m. It should not be too large for the same reason as the width.

炭化・水性ガス化炉201~250~の厚さは0,20m~1,0m、もっと厚みがあっても良いが乾留時の熱伝導のためには薄いほうが良い。 The thickness of the carbonization / water gas furnace 201-250-is 0,20 m-1.0 m, and it may be thicker, but it is better to be thinner for heat conduction during carbonization.

石炭化・水性ガス化炉201~250~に石炭やバイオマス(主に樹木)を充填し、水性ガス化を何回か繰り返すと灰が溜まるので、押し出す。 Coalization / water gasification furnaces 201-250-are filled with coal and biomass (mainly trees), and when water gasification is repeated several times, ash accumulates and is extruded.

炭化・水性ガス化炉201~250~に丸太を利用する時は、炉の底を格子状にして下に落とすようにする。 When using logs for carbonization / water gas furnaces 201 to 250, the bottom of the furnace should be arranged in a grid pattern and dropped down.

前記のうちどちらの炭化・水性ガス化炉にするかは設置場所の状況による。 Which of the above carbonization / water gas furnaces to use depends on the situation of the installation location.

本発明では石炭以外にバイオマス(主に樹木)が効率的に利用出来る。本発明では炭素分の大部分を水素にするため、コークスなどの炭素分のみの燃焼よりも熱量が増える。
によると 炭素の燃焼熱はC+O2=CO2―94,0Kcal炭素による水の分解による水素の発生はC+2H2O=CO2+2H2+21,6Kcal二つの式から水素の燃焼熱を求めると 式の左辺と右辺は等しいので、左辺と次の式の右辺を加えて右辺と次の式の左辺と加えることができる。よって、C+O2+CO2+2H2+21,6Kcal=CO2―94,0Kcal+C+2H2O 左辺と右辺の同じものは消去 O2+2H2+21,6Kcal=2H2O―94,0Kcalよって、2H2+O2=2H2O―105,6 Kcal炭素1分子で水素2分子生成するので、炭素の燃焼熱よりも発生させた水素は20%以上の燃焼熱を持っていることになる。
In the present invention, biomass (mainly trees) can be efficiently used in addition to coal. In the present invention, since most of the carbon content is hydrogen, the amount of heat increases as compared with the combustion of only carbon content such as coke.
According to C + O2 = CO2-94,0Kcal, the heat of combustion of carbon is C + 2H2O = CO2 + 2H2 + 21,6Kcal. The heat of combustion of hydrogen is calculated from the two equations. And the right-hand side of the following equation can be added to add the right-hand side and the left-hand side of the following equation. Therefore, C + O2 + CO2 + 2H2 + 21,6Kcal = CO2-94,0Kcal + C + 2H2O The same thing on the left side and the right side is erased. The hydrogen generated is more than 20% of the heat of combustion.

本発明では、価格の安い石炭を使用しても
に述べられているように、石炭には窒素化合物が含まれるため窒素分の除去装置が必須となる。本発明では、石炭を全量ガス化したり、燃焼させたりするよりその負担を軽減するので産業上の利用価値は高い。本発明では、バイオマスなども利用できるので、二酸化炭素ゼロの切り札と成り得る。 その上、炭化・水性ガス化炉からの水性ガスは900°C以上あり、メタノール合成の反応温度は300°C以下で良いため([非特許文献7]参照)、炉から出てきたガスを熱交換器などでスチームの加熱をして発電に利用しても、十分な反応温度を維持できる。よって、熱の有効利用も可能となり、製造コストをより下げられる可能性が高い。
In the present invention, even if cheap coal is used.
As stated in the above, since coal contains nitrogen compounds, a nitrogen removing device is indispensable. In the present invention, the burden is reduced as compared with the case where the entire amount of coal is gasified or burned, so that the industrial utility value is high. In the present invention, biomass and the like can also be used, so that it can be a trump card for zero carbon dioxide. In addition, the water gas from the carbonization / water gasification furnace is 900 ° C or higher, and the reaction temperature for methanol synthesis may be 300 ° C or lower (see [Non-Patent Document 7]). Even if steam is heated with a heat exchanger and used for power generation, a sufficient reaction temperature can be maintained. Therefore, effective use of heat is possible, and there is a high possibility that the manufacturing cost can be further reduced.

メタノール合成
従来は CO+2H2=CH3OH
二酸化炭素利用 CO2+3H2=CH3OH+H2O
水素をより多く必要とするので、水素価格がメタノール価格に大きく影響する。
Methanol synthesis Conventionally CO + 2H2 = CH3OH
Use of carbon dioxide CO2 + 3H2 = CH3OH + H2O
Hydrogen prices have a significant impact on methanol prices as they require more hydrogen.

本発明では炭素でH2Oを分解するので、COが含まれる条件にするか、すべてCO2まで反応させるかの違いだけである。不純物の分離が不要のため、メタノール合成条件によっては水性ガス化反応の途中でメタノール合成工程に送っても良い。本発明では必要とした熱をスチーム発生に利用して発電できるので、メタノール合成はコストダウンの可能性が高い。 In the present invention, H2O is decomposed by carbon, so the only difference is whether the conditions include CO or all reactions to CO2. Since it is not necessary to separate impurities, it may be sent to the methanol synthesis step during the water gasification reaction depending on the methanol synthesis conditions. In the present invention, the required heat can be used for steam generation to generate electricity, so that methanol synthesis has a high possibility of cost reduction.

メタノールはF1レースの燃料として利用されたこともあり、価格さえ下がれば、ガソリンの代替燃料として利用可能である。 Methanol has also been used as a fuel for F1 racing and can be used as an alternative fuel to gasoline if the price goes down.

Claims (2)

炭化・水性ガス化炉に固形可燃物を充填する工程、隣接の加熱炉からの高温加熱で乾留する工程、得られた炭化物に加熱炉上部を通した高温スチームを炭化物に対して大過剰に吹き込んで水性ガス化反応を行わせ炭化物をすべて二酸化炭素化する工程、 固形可燃物の乾留で発生した可燃性ガスをタンクに集めた後そのガスを供給して燃焼させて加熱炉を高温に維持する工程を含み、前記工程に炭化・水性ガス化炉と加熱炉が交互にサンドイッチ型に組み合った熱効率の良い多段式水素発生装置を利用する水素発生方法 The process of filling a carbonized / water gas furnace with solid combustibles, the process of drying by high-temperature heating from an adjacent heating furnace, and the large excess of high-temperature steam that has passed through the upper part of the heating furnace is blown into the obtained carbonized material. In the process of performing an water gasification reaction to convert all carbon dioxide into carbon dioxide, the combustible gas generated by dry distillation of solid combustibles is collected in a tank, and then the gas is supplied and burned to maintain the heating furnace at a high temperature. A hydrogen generation method that includes a step and uses a multi-stage hydrogen generator with high thermal efficiency in which a carbonization / water gasification furnace and a heating furnace are alternately combined in a sandwich type in the step. 加熱炉からの高温排ガスの熱を利用して高温スチームを発生させて発電に利用し、発生させた高温の水性ガスの熱も発電に利用する請求項1の多段式水素発生方法 The multi-stage hydrogen generation method according to claim 1, wherein high-temperature steam is generated by using the heat of high-temperature exhaust gas from a heating furnace and used for power generation, and the heat of the generated high-temperature water gas is also used for power generation.
JP2021090961A 2021-05-31 2021-05-31 Multi-stage hydrogen generation method Active JP7089809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021090961A JP7089809B2 (en) 2021-05-31 2021-05-31 Multi-stage hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021090961A JP7089809B2 (en) 2021-05-31 2021-05-31 Multi-stage hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2022020046A JP2022020046A (en) 2022-01-31
JP7089809B2 true JP7089809B2 (en) 2022-06-23

Family

ID=80215911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021090961A Active JP7089809B2 (en) 2021-05-31 2021-05-31 Multi-stage hydrogen generation method

Country Status (1)

Country Link
JP (1) JP7089809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022179626A (en) * 2022-10-07 2022-12-02 廣存 高橋 Bio-multistage hydrogen generation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3032212C2 (en) * 1980-08-27 1986-09-18 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Process for the production of H 2 and CO-containing gases by gasification of coke
JPS60123592A (en) * 1983-12-07 1985-07-02 Nippon Kokan Kk <Nkk> Gasification of coal and coke in coke manufacturing plant
JPH01129094A (en) * 1987-11-13 1989-05-22 Kawasaki Steel Corp Method and apparatus for gasification of red-hot coke wherein cdq is utilized
JPH03208809A (en) * 1990-01-09 1991-09-12 Nkk Corp Production of activated carbon in coke oven
JPH10287879A (en) * 1997-04-10 1998-10-27 Nippon Steel Corp Retardation of carbon attachment to brick in oven top space of coke oven, and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022179626A (en) * 2022-10-07 2022-12-02 廣存 高橋 Bio-multistage hydrogen generation system
JP7251858B2 (en) 2022-10-07 2023-04-04 廣存 高橋 Bio-multistage hydrogen generation system
WO2024075831A1 (en) * 2022-10-07 2024-04-11 廣存 高橋 Bio-multi-stage-type hydrogen generation method and bio-multi-stage-type hydrogen generation system

Also Published As

Publication number Publication date
JP2022020046A (en) 2022-01-31

Similar Documents

Publication Publication Date Title
Pallozzi et al. Performance evaluation at different process parameters of an innovative prototype of biomass gasification system aimed to hydrogen production
KR20160030559A (en) Methanation method and power plant comprising co_2 methanation of power plant flue gas
Niu et al. Simulation of a new biomass integrated gasification combined cycle (BIGCC) power generation system using Aspen Plus: performance analysis and energetic assessment
US7749291B2 (en) Three-stage gasification—biomass-to-electricity process with an acetylene process
CN112811983B (en) System and method for preparing methanol by using boiler sulfur-containing flue gas
Moneti et al. Simulations of a plant with a fluidized bed gasifier WGS and PSA
JP7089809B2 (en) Multi-stage hydrogen generation method
KR101402221B1 (en) Lng combined cycle power plant and power generating method utilizing a small-medium scale gasification system for improving generating efficiency
Sun et al. Techno-environmental-economic assessment on municipal solid waste to methanol coupling with/without solid oxygen electrolysis cell unit
US20240117258A1 (en) Bio-multi-reactor hydrogen generation method and system
CN113372957B (en) Device and method for producing hydrogen energy by biomass gasification and heat supply
Biagini et al. Comparative study of thermochemical processes for hydrogen production from biomass fuels
JP6642924B2 (en) Hydrogen station system
JP2005098198A (en) High efficient power generation system of waste treatment furnace
KR20060104718A (en) High temperature air gasification process for hydrogen production and apparatus thereof
US20120216501A1 (en) Chemical reactor featuring heat extraction
US20100212226A1 (en) Self-generated power integration for gasification
Erping et al. Modeling and process design of municipal solid waste pyrolysis and gasification with a fixed-bed chamber
JP6229115B2 (en) Power generation apparatus and power generation method
RU2540647C1 (en) Cogeneration power plant with fuel cell based on intracyclic conversion of organic raw material
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system
CN219752237U (en) Coal classification divides hierarchical utilization system based on buggy preforming pyrolysis
CN220684688U (en) Coupling system for garbage incineration and methane hydrogen production
Zampilli et al. Externally Fired Gas Turbine: Layout optimization for micro CHP generation with residual biomass firing
CN215327830U (en) System for utilize boiler to contain sulfur flue gas system methyl alcohol

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7089809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250