JP7089398B2 - Manufacturing method of can body - Google Patents

Manufacturing method of can body Download PDF

Info

Publication number
JP7089398B2
JP7089398B2 JP2018078840A JP2018078840A JP7089398B2 JP 7089398 B2 JP7089398 B2 JP 7089398B2 JP 2018078840 A JP2018078840 A JP 2018078840A JP 2018078840 A JP2018078840 A JP 2018078840A JP 7089398 B2 JP7089398 B2 JP 7089398B2
Authority
JP
Japan
Prior art keywords
remolding
diameter
die
reduced
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078840A
Other languages
Japanese (ja)
Other versions
JP2019181549A (en
Inventor
淳 山下
益広 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Can Corp
Original Assignee
Universal Can Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Can Corp filed Critical Universal Can Corp
Priority to JP2018078840A priority Critical patent/JP7089398B2/en
Publication of JP2019181549A publication Critical patent/JP2019181549A/en
Application granted granted Critical
Publication of JP7089398B2 publication Critical patent/JP7089398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Description

本発明は、飲料等の内容物が充填される金属製の缶体の製造方法に関し、特に開口部側に滑らかに縮径された縮径形状を有する缶体の製造方法に関する。 The present invention relates to a method for manufacturing a metal can body filled with contents such as a beverage, and particularly to a method for manufacturing a can body having a reduced diameter shape that is smoothly reduced in diameter on the opening side.

飲料等の内容物が充填される容器として、有底円筒状の缶体の開口端部に缶蓋が巻き締められてなる2ピース缶や、ボトル形状の缶体(ボトル缶)の開口部に金属製キャップが装着されてなるボトル容器等が知られている。このような容器に用いる缶体は、一般に、開口部側に上方へ向かうに従い漸次縮径する肩部、縮径部(ネック部)が設けられ、底部側よりも開口部側が縮径された形状とされる。 As a container filled with contents such as beverages, it can be used for two-piece cans in which a can lid is wrapped around the opening end of a bottomed cylindrical can body, or for the opening of a bottle-shaped can body (bottle can). Bottle containers and the like equipped with metal caps are known. A can body used for such a container is generally provided with a shoulder portion and a reduced diameter portion (neck portion) whose diameter gradually decreases toward the opening side, and the diameter of the opening side is reduced rather than the bottom side. It is said that.

こうした縮径形状を成形する縮径加工として、例えば特許文献1又は特許文献2に記載されているように、複数の成形金型を使用して缶体の胴部を逐次変形させることにより、縮径部を階段状に形成することなくテーパ面状の滑らか形状(スムースネック)に形成する成形方法が提案されている。これらの縮径加工では、缶体と各成形金型との間に缶軸方向に沿う相対移動を生じさせ、各成形金型の成形面を複数回にわたって缶体の胴部外面に押し当てることにより、胴部の開口部側を段階的に縮径して縮径部を成形する。 As a diameter reduction process for forming such a reduced diameter shape, for example, as described in Patent Document 1 or Patent Document 2, a plurality of molding dies are used to sequentially deform the body of the can body to reduce the diameter. A molding method has been proposed in which a tapered surface-like smooth shape (smooth neck) is formed without forming the diameter portion in a stepped shape. In these diameter reduction processes, relative movement is generated between the can body and each molding die along the can axis direction, and the molding surface of each molding die is pressed against the outer surface of the body of the can body multiple times. The diameter of the opening side of the body portion is gradually reduced to form the reduced diameter portion.

一方、特許文献3には、缶胴の縮径予定部に複数回の縮径加工を施してテーパ部を成形した後、リフォーム金型により缶胴のテーパ部、テーパ部の缶底側に隣接配置される凸曲面部及びテーパ部の缶底とは反対側に隣接配置される凹曲面部、を再成形することが記載されている。この特許文献3では、縮径加工によりテーパ部に圧痕が形成されたり、テーパ部の缶底側に隣接配置される凸曲面部に尖った部分が形成されたりしても、その後に再成形することにより、テーパ部の表面を平らにならして圧痕を消失させること、凸曲面部の尖った部分を丸めて所期する曲率半径となるように形状を整えることができ、缶体に美麗な外観を付与できることが記載されている。 On the other hand, in Patent Document 3, after the diameter-reduced portion of the can body is subjected to diameter reduction processing a plurality of times to form a tapered portion, the tapered portion of the can body and the tapered portion are adjacent to the can bottom side by a reform mold. It is described that the convex curved surface portion to be arranged and the concave curved surface portion arranged adjacent to the can bottom of the tapered portion are remolded. In Patent Document 3, even if an indentation is formed on the tapered portion due to the diameter reduction process or a sharp portion is formed on the convex curved surface portion adjacent to the can bottom side of the tapered portion, the taper portion is subsequently remolded. By doing so, the surface of the tapered part can be flattened to eliminate indentations, and the sharp part of the convex curved surface can be rounded to shape it so that it has the desired radius of curvature, which is beautiful for the can body. It is stated that the appearance can be given.

特開平7‐185707号公報Japanese Unexamined Patent Publication No. 7-185707 特表平3‐502551号公報Special Table No. 3-502551 Gazette 特開2016‐107341号公報Japanese Unexamined Patent Publication No. 2016-107341

特許文献1~3に記載されるように、従来より、胴部の縮径形状を階段状に形成することなくテーパ面状の滑らかな形状とする成形方法が提案されている。しかし、縮径形状を広い領域(缶軸方向に沿う長い領域)で形成しようとすると、増加した領域の分だけ成形回数を増やす必要があり、製造コストが増加する。そこで、一回の加工量を大きくして成形工程の短縮を図ることも考えられるが、一回の成形における胴部と成形金型との摩擦が大きくなることで成形部分に成形痕が生じ、滑らかな加工面を形成することが難しくなる。また、特許文献3に記載されるように、縮径加工後にテーパ部を再成形し、成形痕を消失させることも考えられるが、広い領域を再成形するためには、必要な成形荷重が大きくなり、胴部の座屈を引き起こすおそれがある。このため、従来の製造方法において成形できる縮径形状は非常に制限されており、缶体をデザインする際の制約となっている。 As described in Patent Documents 1 to 3, conventionally, a molding method has been proposed in which a reduced diameter shape of a body portion is formed into a smooth shape having a tapered surface shape without forming a stepped shape. However, if it is attempted to form the reduced diameter shape in a wide region (a long region along the can axis direction), it is necessary to increase the number of moldings by the increased region, and the manufacturing cost increases. Therefore, it is conceivable to increase the amount of processing at one time to shorten the molding process, but the friction between the body and the molding die in one molding increases, so that molding marks are generated on the molded part. It becomes difficult to form a smooth machined surface. Further, as described in Patent Document 3, it is conceivable to remold the tapered portion after the diameter reduction process to eliminate the molding marks, but in order to remold a wide area, the required molding load is large. It may cause buckling of the torso. For this reason, the reduced diameter shape that can be molded by the conventional manufacturing method is very limited, which is a limitation when designing the can body.

本発明は、このような事情に鑑みてなされたもので、缶体の製造工程の短縮を図ることができるとともに、缶軸方向に沿う広い領域に滑らかに接続された縮径形状を安定して形成できる缶体の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to shorten the manufacturing process of the can body and to stably maintain a reduced diameter shape smoothly connected to a wide region along the can axis direction. It is an object of the present invention to provide a method for producing a can body that can be formed.

本発明の缶体の製造方法は、円筒状の胴部を備える筒体の該胴部の縮径予定部に、缶軸方向に沿って前記胴部の下部側から開口端部側に配置される上部側に向かうに従い漸次縮径された縮径部を形成する縮径部成形工程を備え、前記縮径部成形工程は、前記筒体と縮径用金型とを缶軸方向に相対移動させることにより、前記縮径予定部の外面に前記縮径用金型の成形面を押し付けて前記胴部の前記開口端部から前記縮径予定部までの領域全体を縮径する縮径加工を、前記縮径用金型の成形面の加工径を段階的に小さくしながら複数回に分けて行い、前記縮径加工を施す度に、各縮径用金型により成形される局部縮径部を下部側から上部側にかけて位置をずらしながら形成し、各局部縮径部が間隔をおいて形成された予備縮径部を形成する予備形成工程と、前記予備形成工程後に、前記予備縮径部が形成された前記筒体と再成形用金型とを缶軸方向に相対移動させることにより、前記予備縮径部の外面に前記再成形用金型の成形面を押し付けて再成形する再成形加工を、前記再成形用金型の成形面の加工径を段階的に小さくしながら又は段階的に大きくしながら複数回に分けて行い、前記再成形加工を施す度に、各再成形用金型により各局部縮径部の間隔よりも広い領域を缶軸方向下方に向けて押し潰すようにして順次再成形し、滑らかに連続した外面を有する前記縮径部を形成する再成形工程と、を備え、前記再成形工程において複数回行われる前記再成形加工のうち、先行の再成形加工の後に行われる少なくとも1回の後行の再成形加工では、新たに前記予備縮径部の一部を再成形するとともに、前記先行の再成形加工において再成形された先行の再成形部を前記縮径部に沿った前記再成形用金型の成形面で押圧し、前記先行の再成形部から前記後行の再成形加工において再成形される後行の再成形部までを連続して加工する。 In the method for manufacturing a can body of the present invention, the cylinder body having a cylindrical body portion is arranged on the planned diameter reduction portion of the body portion from the lower side of the body portion to the opening end side along the can axis direction. The diameter-reduced portion forming step of forming a reduced-diameter portion gradually reduced toward the upper side is provided, and the reduced-diameter portion molding step moves the cylinder and the diameter-reducing mold relative to each other in the can axis direction. By making the diameter reduction process, the molding surface of the diameter reduction mold is pressed against the outer surface of the diameter reduction mold to reduce the diameter of the entire region from the opening end portion of the body portion to the diameter reduction planned portion. , The processing diameter of the molding surface of the diameter reduction mold is reduced stepwise and divided into a plurality of times, and each time the diameter reduction processing is performed, the locally reduced diameter portion molded by each diameter reduction mold. Is formed while shifting the position from the lower side to the upper side, and the pre-diameter portion is formed by forming the pre-reduced portion in which each local diameter-reduced portion is formed at intervals. Remolding by pressing the molding surface of the remolding mold against the outer surface of the pre-diameter portion by relatively moving the cylinder body and the remolding mold in which the shape is formed in the can axis direction. The processing is performed in a plurality of times while gradually reducing the processing diameter of the molding surface of the remolding mold or gradually increasing the processing diameter, and each time the remolding process is performed, each remolding metal is performed. A remolding step of forming the reduced diameter portion having a smoothly continuous outer surface by sequentially crushing a region wider than the distance between the locally reduced diameter portions by a mold so as to be crushed downward in the can axis direction. Of the remolding processes performed a plurality of times in the remolding step, at least one subsequent remolding process performed after the preceding remodeling process newly includes a part of the pre-reduced diameter portion. Is remolded, and the preceding remolding portion remolded in the preceding remolding process is pressed by the molding surface of the remolding mold along the diameter-reduced portion, and from the preceding remolding portion. In the subsequent remolding process, the remolding portion of the subsequent line to be remolded is continuously processed .

本発明の缶体の製造方法では、縮径部成形工程を予備形成工程と再成形工程とに分けて行う。そして、予備成形工程では、各縮径加工において敢えて間隔をあけて局部縮径部を形成することにより予備縮径部を形成する。このように、予備成形工程では、予備縮径部に成形痕(凹凸面)が形成されることを許容するので、各縮径加工における一回の加工量を大きくでき、缶軸方向に沿う広い領域に縮径形状を形成する際に、缶体の製造工程の短縮を図ることができる。また、再成形工程では、成形痕が残る予備縮径部に複数回に分けて再成形加工を施し、予備縮径部を順に再成形(リフォーム)して、滑らかに連続した外面を有する縮径部を形成する。このように、再成形工程では、再成形加工を複数回に分けて段階的に行うので、一回の再成形加工における再成形範囲を小さくでき、一回の再成形加工に必要な成形荷重を小さく(低く)抑えることができる。
この場合、後行の再成形加工では、新たに予備縮径部の一部を再成形するとともに、その前に先行して再成形された先行の再成形部も併せて再成形用金型の成形面で押圧して整形するので、各再成形部の間を滑らかに接続でき、縮径部に成形痕(圧痕)が残されることを防止できる。なお、先行の再成形部の整形は、後行の再成形加工の最後、すなわち、再成形用金型の下死点で行われるので、一回の再成形加工に必要な成形荷重において、先行の再成形部の整形と後行の再成形部の成形とを円滑に行うことができる。
In the method for manufacturing a can body of the present invention, the reduced diameter portion forming step is divided into a preforming step and a remolding step. Then, in the preforming step, the pre-reduced portion is formed by forming the locally reduced-diameter portion at intervals in each diameter-reducing process. In this way, in the pre-molding process, it is allowed to form molding marks (concave and convex surfaces) in the pre-reduced diameter portion, so that the amount of one processing in each diameter-reduced machining can be increased and the width is wide along the can axis direction. When forming a reduced diameter shape in the region, it is possible to shorten the manufacturing process of the can body. Further, in the remolding step, the pre-reduced portion where the molding mark remains is remolded in a plurality of times, and the pre-reduced portion is remolded (reformed) in order to have a smooth and continuous outer surface. Form a part. In this way, in the remolding process, since the remolding process is performed step by step in a plurality of times, the remolding range in one remolding process can be reduced, and the molding load required for one remolding process can be reduced. It can be kept small (low).
In this case, in the subsequent remolding process, a part of the pre-reduced diameter portion is newly remolded, and the preceding remolding portion previously remolded before that is also included in the remolding mold. Since the molding is performed by pressing on the molding surface, it is possible to smoothly connect between the remolding portions and prevent the molding marks (indentations) from being left on the reduced diameter portions. Since the shaping of the preceding remolding portion is performed at the end of the subsequent remolding process, that is, at the bottom dead center of the remolding die, the preceding molding load is required for one remolding process. It is possible to smoothly perform the shaping of the remolding portion of the above and the molding of the subsequent remolding portion.

本発明の缶体の製造方法の好ましい実施態様として、前記再成形工程における各再成形加工は、各再成形用金型の成形面の加工径を段階的に小さくしながら行い、前記再成形加工を施す度に、前記予備縮径部を下部側から上部側にかけて順次再成形するとよい。 As a preferred embodiment of the method for manufacturing a can body of the present invention, each remolding process in the remolding step is performed while the processing diameter of the molding surface of each remolding die is gradually reduced, and the remolding process is performed. It is advisable to sequentially remold the pre-reduced portion from the lower side to the upper side each time.

各再成形加工は、予備縮径部の下部側から上部側にかけて順に行うので、上部側を再成形する時点では既に再成形された下部側部分について真円度が高められている。したがって、各再成形加工時において胴部に生じる座屈を防止でき、缶軸方向に沿う広い領域に滑らかに接続された縮径部(縮径形状)を安定して形成できる。 Since each remolding process is performed in order from the lower side to the upper side of the preliminary reduced diameter portion, the roundness of the already reshaped lower side portion is increased at the time of remolding the upper side. Therefore, it is possible to prevent buckling that occurs in the body portion during each remolding process, and it is possible to stably form a reduced diameter portion (reduced diameter shape) that is smoothly connected to a wide region along the can axis direction.

本発明の缶体の製造方法の好ましい実施態様として、前記再成形用金型の先端部に、前記胴部の円筒状の外面と係合するガイド面を設けておき、前記再成形工程において複数回行われる前記再成形加工時に、前記ガイド面により前記胴部の外面を拘束するとよい。 As a preferred embodiment of the method for manufacturing a can body of the present invention, a guide surface that engages with the cylindrical outer surface of the body portion is provided at the tip end portion of the remolding mold, and a plurality of guide surfaces are provided in the remolding step. It is preferable that the outer surface of the body portion is restrained by the guide surface during the remolding process that is performed repeatedly.

各再成形用金型のそれぞれについてガイド面を設けておくことで、これらのガイド面と再成形加工が施されない胴部の下部側とにおいて位置合わせを行うことができ、繰り返し行われる複数回の再成形加工において、高精度な加工を施すことができる。また、各再成形加工時に、ガイド面により胴部の外面を拘束した状態が維持されることで、缶軸方向に成形荷重が作用した際に、胴部の径方向外方への変形を抑制できる。なお、胴部の全周を拘束することが最も望ましいが、部分的に拘束する場合であっても、変形を十分に抑制できる。 By providing guide surfaces for each of the remolding dies, it is possible to align these guide surfaces with the lower side of the body that is not remolded, and it is repeated multiple times. In the remolding process, high-precision processing can be performed. In addition, by maintaining the state in which the outer surface of the body is restrained by the guide surface during each remolding process, deformation of the body in the radial direction is suppressed when a molding load is applied in the can axis direction. can. It is most desirable to restrain the entire circumference of the body, but even if it is partially restrained, deformation can be sufficiently suppressed.

本発明によれば、缶体の製造工程の短縮を図ることができ、缶軸方向に沿う広い領域に滑らかに接続された縮径形状を安定して形成できる。 According to the present invention, the manufacturing process of the can body can be shortened, and a reduced diameter shape smoothly connected to a wide region along the can axis direction can be stably formed.

本発明の実施形態に係るボトル缶の製造方法により製造されるボトル缶を用いた容器の右半分を缶軸を通る断面にした正面図である。It is a front view which made the right half of the container which used the bottle can manufactured by the manufacturing method of a bottle can which concerns on embodiment of this invention a cross section through a can shaft. 本実施形態のボトル缶の製造方法のうち、カップを形成して筒体を形成するまでの工程を順に表す模式図であり、右半分については缶軸を通る断面にした正面図である。Among the methods for manufacturing a bottle can of the present embodiment, it is a schematic view showing the steps from forming a cup to forming a cylinder in order, and the right half is a front view having a cross section passing through a can shaft. 図2以降の工程のうち、肩部、変曲部、縮径部からなる縮径形状を形成する工程を説明する模式図であり、右半分については缶軸を通る断面にした正面図である。Of the steps after FIG. 2, it is a schematic view explaining the step of forming a reduced diameter shape including a shoulder portion, an inflection portion, and a reduced diameter portion, and the right half is a front view having a cross section passing through a can shaft. .. 図3以降の工程のうち、小径筒部を形成してカール部を形成するまでの工程を順に表す模式図であり、右半分については缶軸を通る断面にした正面図である。Of the steps after FIG. 3, it is a schematic view showing the steps from forming the small diameter cylinder portion to forming the curl portion in order, and the right half is a front view having a cross section passing through the can shaft. 予備形成工程における1回目の縮径加工の縮径用金型と筒体及び中間成形体との関係を説明する缶軸を通る断面図である。It is sectional drawing through the can shaft explaining the relationship between the diameter reduction die of the 1st diameter reduction processing in a preforming step, a cylinder body and an intermediate molded body. 予備形成工程における中間成形体の要部を拡大した缶軸を通る断面図であり、(a)~(c)はそれぞれ段階的に縮径工程を施した中間成形体を示した図である。It is sectional drawing which passes through the can shaft which expanded the main part of the intermediate molded body in the preforming step, and (a) to (c) are the figure which showed the intermediate molded body which performed the diameter reduction step stepwise, respectively. 予備形成工程後の中間成形体の要部を拡大した缶軸を通る断面図であり、予備形成工程における1回目~4回目の縮径加工の縮径用金型と中間成形体との関係を説明する図である。It is sectional drawing which passes through the can shaft which expanded the main part of the intermediate molded body after a preforming process, and shows the relationship between the diameter reduction die of the 1st to 4th diameter reduction processing in a preforming process, and an intermediate molded body. It is a figure explaining. 再成形工程における中間成形体の要部を拡大した缶軸を通る断面図であり、再成形工程における1回目の再成形加工の再成形用金型と中間成形体との関係を説明する図である。It is sectional drawing which passes through the can shaft which expanded the main part of the intermediate molded body in a remolding process, and is the figure explaining the relationship between the remolding die of the 1st remolding process in a remolding process, and an intermediate molded body. be. 1回目の再成形加工において図8に示す状態から再成形用金型を中間成形体に押し当てた状態を示す図である。It is a figure which shows the state which pressed the remolding die against the intermediate molded body from the state shown in FIG. 8 in the 1st remolding process. 再成形工程における中間成形体の要部を拡大した缶軸を通る断面図であり、2回目の再成形加工において再成形用金型を中間成形体に押し当てた状態を示す図である。It is sectional drawing which passes through the can shaft which expanded the main part of the intermediate molded body in a remolding process, and is the figure which shows the state which pressed the remolding die against the intermediate molded body in the second remolding process. 再成形工程における中間成形体の要部を拡大した缶軸を通る断面図であり、3回目の再成形加工において再成形用金型を中間成形体に押し当てた状態を示す図である。It is sectional drawing which passes through the can shaft which expanded the main part of the intermediate molded body in a remolding process, and is the figure which shows the state which pressed the remolding die against the intermediate molded body in the 3rd remolding process. ボトル缶製造装置の正面図である。It is a front view of the bottle can manufacturing apparatus. 図12のA‐A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG.

以下、本発明の実施形態について、図面を参照しながら説明する。
本発明の実施形態に係る缶体の製造方法において製造される缶体は、飲料等の内容物が充填、密封される2ピース缶やボトル容器等の缶体に用いられるものである。本実施形態では、図1に示すように、ボトル容器301に用いられるボトル缶(缶体)101を例にして説明を行う。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The can body produced in the method for producing a can body according to the embodiment of the present invention is used for a can body such as a two-piece can or a bottle container in which the contents of a beverage or the like are filled and sealed. In the present embodiment, as shown in FIG. 1, a bottle can (can body) 101 used for the bottle container 301 will be described as an example.

図1は、本発明の実施形態に係る缶体の製造方法により製造されるボトル缶101と、ボトル缶101の開口端部10aに装着されるキャップ201と、を備えるボトル容器301の正面図であり、右半分を缶軸Cを通る断面にして示した正面図である。図2~図4は、実施形態のボトル缶101の製造方法の各工程を示す説明図であり、各工程で成形されるカップ40、筒体41、中間成形体42の要部の断面を示している。このうち、図2は、カップ40を成形して筒体41を形成するまでの工程を表す。また、図3は、肩部12、変曲部14、縮径部13を成形する工程を表す。図4は、縮径部13の上方に口部15を形成してボトル缶101を製造するまでの工程を順に示している。 FIG. 1 is a front view of a bottle container 301 including a bottle can 101 manufactured by the method for manufacturing a can body according to an embodiment of the present invention and a cap 201 attached to an open end portion 10a of the bottle can 101. It is a front view showing the right half as a cross section passing through the can shaft C. 2 to 4 are explanatory views showing each step of the manufacturing method of the bottle can 101 of the embodiment, and show the cross section of the main part of the cup 40, the cylinder 41, and the intermediate molded body 42 molded in each step. ing. Of these, FIG. 2 shows the process of forming the cup 40 to form the tubular body 41. Further, FIG. 3 shows a step of forming the shoulder portion 12, the inflection portion 14, and the diameter-reduced portion 13. FIG. 4 shows in order the steps from forming the mouth portion 15 above the diameter reduction portion 13 to manufacturing the bottle can 101.

ボトル缶101は、アルミニウム又はアルミニウム合金等の薄板金属からなり、図1に示すように、円筒状をなす胴部(ウォール)10と、円板状をなす底部(ボトム)20と、を備える有底円筒状に形成されている。
図1に示すように、胴部10及び底部20は互いに同軸に配置されており、本実施形態において、これらの共通軸を缶軸Cと称して説明を行う。また、缶軸Cに沿う方向(缶軸C方向)のうち、胴部10の開口端部10aから底部20側へ向かう方向を下方、底部20から開口端部10a側へ向かう方向を上方とし、以下の説明においては、図1に示す向きと同様に上下方向を定めるものとする。また、缶軸Cに直交する方向を径方向といい、径方向のうち、缶軸Cに接近する向きを径方向の内側(内方)、缶軸Cから離間する向きを径方向の外側(外方)とする。また、缶軸C回りに周回する方向を周方向とする。
The bottle can 101 is made of a thin plate metal such as aluminum or an aluminum alloy, and has a cylindrical body portion (wall) 10 and a disk-shaped bottom portion (bottom) 20 as shown in FIG. It is formed in the shape of a bottom cylinder.
As shown in FIG. 1, the body portion 10 and the bottom portion 20 are arranged coaxially with each other, and in the present embodiment, these common axes will be referred to as a can axis C for description. Further, among the directions along the can axis C (direction of the can axis C), the direction from the opening end 10a of the body portion 10 toward the bottom 20 side is downward, and the direction from the bottom 20 toward the opening end 10a is upward. In the following description, the vertical direction shall be determined in the same manner as the direction shown in FIG. Further, the direction orthogonal to the can axis C is referred to as a radial direction, and among the radial directions, the direction approaching the can axis C is the inner side (inner side) in the radial direction, and the direction away from the can axis C is the outer side in the radial direction (the direction away from the can axis C). Outside). Further, the direction of orbiting around the can axis C is defined as the circumferential direction.

胴部10は、図1に示されるように、底部20側において円筒状に形成された円筒部11と、円筒部11の上端で径方向内方に屈曲するように縮径された肩部12と、缶軸C方向の上方(開口端部10a側)に向けて漸次縮径する縮径部13と、これらの肩部12と縮径部13との間を接続する変曲部14と、縮径部13の上端に接続された口部15と、を備える。図1に示すように、縮径部13と缶軸Cとがなす角度(傾斜角度)をαとすると、傾斜角度αは例えば6°以上24°以下に設けられており、縮径部13が缶軸C方向に立った形状に形成されている。なお、円筒部11、肩部12、変曲部14、縮径部13は、それぞれ胴部10の周方向全周にわたって延びる環状をなしている。 As shown in FIG. 1, the body portion 10 has a cylindrical portion 11 formed in a cylindrical shape on the bottom portion 20 side and a shoulder portion 12 whose diameter is reduced so as to bend inward in the radial direction at the upper end of the cylindrical portion 11. And the diameter-reduced portion 13 that gradually reduces the diameter toward the upper side (opening end portion 10a side) in the can axis C direction, and the curved portion 14 that connects between the shoulder portion 12 and the diameter-reduced portion 13. A mouth portion 15 connected to the upper end of the reduced diameter portion 13 is provided. As shown in FIG. 1, assuming that the angle (inclination angle) formed by the reduced diameter portion 13 and the can shaft C is α, the inclined angle α is provided to be, for example, 6 ° or more and 24 ° or less, and the reduced diameter portion 13 is provided. It is formed in a shape standing in the can axis C direction. The cylindrical portion 11, the shoulder portion 12, the inflection portion 14, and the diameter-reduced portion 13 each form an annular shape extending over the entire circumference of the body portion 10 in the circumferential direction.

また、これら円筒部11と、肩部12と、変曲部14と、縮径部13とは、互いに滑らかに連なって形成されており、互いの間に段差を形成することなく滑らかに接続されている。具体的には、図1に示される縦断面視において、肩部12が胴部10の外側(径方向の外側)かつ上側へ向けて凸となる凸曲面状に形成されており、この肩部12の下端と円筒部11の上端とが接して設けられ、円筒部11が肩部12の接線とされ、下方に向かって直線状に設けられている。変曲部14は、胴部10の内側(径方向の内側)かつ下側へ向けて凹となる凹曲面状に形成されており、変曲部14の下端と肩部12の上端とが接して設けられ、これら肩部12の上端と変曲部14の下端とが共通の接線を有するように形成されている。また、変曲部14の上端と縮径部13の下端とは接して設けられ、縮径部13が変曲部14の接線となっている。 Further, the cylindrical portion 11, the shoulder portion 12, the inflection portion 14, and the reduced diameter portion 13 are smoothly connected to each other, and are smoothly connected to each other without forming a step. ing. Specifically, in the vertical cross-sectional view shown in FIG. 1, the shoulder portion 12 is formed in a convex curved surface shape that is convex toward the outside (outside in the radial direction) and the upper side of the body portion 10. The lower end of the 12 is provided in contact with the upper end of the cylindrical portion 11, and the cylindrical portion 11 is provided as a tangent to the shoulder portion 12 and is provided in a straight line downward. The inflection portion 14 is formed in a concave curved surface shape that is concave toward the inside (inside in the radial direction) and downward of the body portion 10, and the lower end of the inflection portion 14 and the upper end of the shoulder portion 12 are in contact with each other. The upper end of the shoulder portion 12 and the lower end of the inflection portion 14 are formed so as to have a common tangent line. Further, the upper end of the inflection portion 14 and the lower end of the reduced diameter portion 13 are provided in contact with each other, and the reduced diameter portion 13 is a tangent line of the inflection portion 14.

また、胴部10の上部に配置された口部15は、縮径部13の上端で一旦拡径された大径部31と、大径部31の上端で再度縮径された小径部32と、小径部32の上端の開口端部10aに形成されたカール部33とを有している。このように、口部15は開口端部10aにより外部に開口しており、飲料等の内容物は口部15を通じてボトル缶101の内部に充填される。また、図1に示すように、口部15にキャップ201を装着することにより、ボトル缶101の内部に充填された内容物が密封されるようになっている。 Further, the mouth portion 15 arranged at the upper portion of the body portion 10 includes a large diameter portion 31 whose diameter is once expanded at the upper end of the reduced diameter portion 13 and a small diameter portion 32 whose diameter is reduced again at the upper end of the large diameter portion 31. It has a curl portion 33 formed at the open end portion 10a at the upper end of the small diameter portion 32. As described above, the mouth portion 15 is opened to the outside by the opening end portion 10a, and the contents such as beverages are filled inside the bottle can 101 through the mouth portion 15. Further, as shown in FIG. 1, by attaching the cap 201 to the mouth portion 15, the contents filled in the inside of the bottle can 101 are sealed.

なお、ボトル缶101の底部20は、缶軸C上に位置するとともに、上方(胴部10の内部)に向けて膨出するように形成されたドーム部21と、該ドーム部21の外周縁部と胴部10の下端部とを接続するヒール部22とを備えている。また、ドーム部21とヒール部22との接続部分は、ボトル缶101が正立姿勢(図1に示される、胴部10の開口端部10aが上方を向く姿勢)となるように接地面(載置面)上に載置されたときに、接地面に接する接地部23となっている。接地部23は、底部20において最も下方に向けて突出しているとともに、周方向に沿って延びる環状をなしている。 The bottom portion 20 of the bottle can 101 is located on the can shaft C, and has a dome portion 21 formed so as to bulge upward (inside the body portion 10) and an outer peripheral edge of the dome portion 21. A heel portion 22 for connecting the portion and the lower end portion of the body portion 10 is provided. Further, the connecting portion between the dome portion 21 and the heel portion 22 has a ground contact surface (a posture in which the open end portion 10a of the body portion 10 faces upward as shown in FIG. 1) so that the bottle can 101 is in an upright posture. The ground contact portion 23 is in contact with the ground contact surface when mounted on the mounting surface). The ground contact portion 23 projects downward at the bottom portion 20 and forms an annular shape extending along the circumferential direction.

このように構成されるボトル缶101のその他の諸寸法について一例を挙げると、ボトル缶101の板厚は、成形前の元板厚が0.250mm~0.500mmである。また、図1に示されるボトル缶101の缶軸Cを通る縦断面視において、製品となる円筒部11の外径Dbが52mm~68mm、肩部12の曲率半径R11(肩部12の外面における曲率半径)が12mm~30mm、変曲部14の曲率半径R12(変曲部14の外面における曲率半径)が10mm~24mmとされる。なお、縮径部13の下端の外径Ds1(縮径部13と変曲部14との接点)は例えば30mm~45mmの範囲内とされ、縮径部13の上端の外径Ds2(縮径部13と口部15との接点)は例えば22mm~30mmの範囲内とされる。ただし、上記寸法は、上記数値範囲に限られるものではない。 To give an example of other dimensions of the bottle can 101 configured as described above, the original plate thickness of the bottle can 101 before molding is 0.250 mm to 0.500 mm. Further, in a vertical cross-sectional view of the bottle can 101 shown in FIG. 1 through the can shaft C, the outer diameter Db of the cylindrical portion 11 to be a product is 52 mm to 68 mm, and the radius of curvature R11 of the shoulder portion 12 (on the outer surface of the shoulder portion 12). The radius of curvature) is 12 mm to 30 mm, and the radius of curvature R12 of the curved portion 14 (radius of curvature on the outer surface of the curved portion 14) is 10 mm to 24 mm. The outer diameter Ds1 (contact point between the reduced diameter portion 13 and the inflection portion 14) at the lower end of the reduced diameter portion 13 is set to be within the range of, for example, 30 mm to 45 mm, and the outer diameter Ds2 (reduced diameter) at the upper end of the reduced diameter portion 13 is set. The contact point between the portion 13 and the mouth portion 15) is, for example, within the range of 22 mm to 30 mm. However, the above dimensions are not limited to the above numerical range.

図1に示される第1実施形態のボトル缶101の場合、円筒部11の外径Dbが66mm、肩部12の曲率半径R11が24mm、変曲部14の曲率半径R12が18mm、縮径部13の傾斜角度αが10°とされる。 In the case of the bottle can 101 of the first embodiment shown in FIG. 1, the outer diameter Db of the cylindrical portion 11 is 66 mm, the radius of curvature R11 of the shoulder portion 12 is 24 mm, the radius of curvature R12 of the curved portion 14 is 18 mm, and the reduced diameter portion. The inclination angle α of 13 is 10 °.

このように、縮径部13を有するボトル缶101を製造するには、まず、アルミニウム合金等のアルミニウム板材を打ち抜いて絞り加工することにより、図2(a)に示すように比較的大径で浅いカップ40を成形する。そして、このカップ40に再度の絞り加工及びしごき加工(DI加工)を加えて、図2(b)に示すように所定高さの有底円筒状の筒体41を成形し、その上端をトリミングにより切り揃える。このDI加工により、筒体41の底部は最終のボトル缶101としての底部20の形状に成形される。 As described above, in order to manufacture the bottle can 101 having the reduced diameter portion 13, first, an aluminum plate material such as an aluminum alloy is punched out and drawn to have a relatively large diameter as shown in FIG. 2A. Mold the shallow cup 40. Then, drawing and ironing (DI processing) are performed again on the cup 40 to form a bottomed cylindrical cylinder 41 having a predetermined height as shown in FIG. 2 (b), and the upper end thereof is trimmed. Cut by. By this DI processing, the bottom portion of the tubular body 41 is formed into the shape of the bottom portion 20 as the final bottle can 101.

次いで、例えば図12及び図13に示すボトル缶製造装置501により、ボトル缶101を製造する。このボトル缶製造装置501について次に説明する。なお、このボトル缶製造装置501は、前述のようにして形成した筒体41を最終形状のボトル缶101に加工するためのものであり、加工の進捗に応じて缶の形状が変化していくが、以下では、この筒体41からボトル缶101に至るまでの間で有底円筒状の缶(本発明における胴部を備える筒体)の形状を特に限定しない場合は、中間成形体42として説明する。また、以下では、中間成形体42の胴部と底部とに、ボトル缶101の胴部10及び底部20と共通の符号を用いて説明する。 Then, for example, the bottle can 101 is manufactured by the bottle can manufacturing apparatus 501 shown in FIGS. 12 and 13. The bottle can manufacturing apparatus 501 will be described below. The bottle can manufacturing apparatus 501 is for processing the cylindrical body 41 formed as described above into a bottle can 101 having a final shape, and the shape of the can changes according to the progress of processing. However, in the following, when the shape of the bottomed cylindrical can (the cylinder having the body portion in the present invention) between the cylinder 41 and the bottle can 101 is not particularly limited, the intermediate molded body 42 is used. explain. Further, in the following, the body portion and the bottom portion of the intermediate molded body 42 will be described using the same reference numerals as the body portion 10 and the bottom portion 20 of the bottle can 101.

このボトル缶製造装置501は、複数の中間成形体42を、その缶軸C方向を水平に配置して保持するワーク保持部511と、これら中間成形体42に各種成形加工を施す複数の成形ツール512を保持するツール保持部513と、両保持部511,513を駆動する駆動部514とを備えている。中間成形体42を保持するワーク保持部511のワーク保持側と、成形ツール512を保持するツール保持部513のツール保持側とが対向して配置されている。 The bottle can manufacturing apparatus 501 includes a work holding portion 511 that holds a plurality of intermediate molded bodies 42 in a horizontal arrangement in the can axis C direction, and a plurality of molding tools that perform various molding processes on the intermediate molded bodies 42. It includes a tool holding unit 513 that holds 512, and a driving unit 514 that drives both holding units 511 and 513. The work holding side of the work holding portion 511 that holds the intermediate molded body 42 and the tool holding side of the tool holding portion 513 that holds the molding tool 512 are arranged so as to face each other.

図13に示すように、ワーク保持部511は、支持軸515に支持された円盤516におけるツール保持部513と対向する表面に、中間成形体42を保持する複数の保持装置517が周方向に沿う環状に配列された構成とされている。この円盤516が駆動部514によって支持軸515を中心として間欠的に回転されることにより、供給部518から供給側スターホイール519を介して供給された中間成形体42の底部が保持装置517に1個ずつ保持されて円盤516の周方向に搬送される。中間成形体42は、円盤516による搬送中にツール保持部513の各成形ツール512によって成形された後、成形後のボトル缶101として排出側スターホイール601を介して排出部611に順次排出される。 As shown in FIG. 13, the work holding portion 511 has a plurality of holding devices 517 for holding the intermediate molded body 42 along the circumferential direction on the surface of the disk 516 supported by the support shaft 515 facing the tool holding portion 513. It is configured to be arranged in a ring. The disk 516 is intermittently rotated around the support shaft 515 by the drive unit 514, so that the bottom portion of the intermediate molded body 42 supplied from the supply unit 518 via the supply side star wheel 519 is set to the holding device 517 by 1. Each piece is held and conveyed in the circumferential direction of the disk 516. The intermediate molded body 42 is molded by each molding tool 512 of the tool holding portion 513 during transportation by the disk 516, and then sequentially discharged to the discharge unit 611 as a molded bottle can 101 via the discharge side star wheel 601. ..

ツール保持部513は、支持軸612に支持された円盤613におけるワーク保持部511と対向する表面に、複数の各種成形ツール512が周方向に沿う環状に配列され、駆動部514によって円盤613が支持軸612の軸方向に進退する構成とされている。支持軸612は支持軸515の内部において支持軸515と同軸上に設けられる。 In the tool holding portion 513, a plurality of various molding tools 512 are arranged in an annular shape along the circumferential direction on the surface of the disk 613 supported by the support shaft 612 facing the work holding portion 511, and the disk 613 is supported by the drive unit 514. It is configured to move forward and backward in the axial direction of the shaft 612. The support shaft 612 is provided coaxially with the support shaft 515 inside the support shaft 515.

このツール保持部513には、中間成形体42の開口部を縮径加工(ネックイン加工)するための複数の縮径用金型、及びカール部33を形成するためのカール部成形ツール等の、各加工段階に応じた加工を行うための成形ツール512が複数備えられている。これらの成形ツール512は、工程順に円盤613上に周方向に並んで環状に配置されている。 The tool holding portion 513 includes a plurality of diameter reduction dies for reducing the diameter (neck-in processing) of the opening of the intermediate molded body 42, a curl portion forming tool for forming the curl portion 33, and the like. , A plurality of molding tools 512 for performing machining according to each machining step are provided. These molding tools 512 are arranged in an annular shape on the disk 613 in the order of processes so as to be arranged in the circumferential direction.

支持軸515の軸線を回転中心とするワーク保持部511(円盤516)の間欠的な回転停止位置は、開口部をツール保持部513側に向けた各中間成形体42の缶軸Cが各成形ツール512の中心軸にそれぞれ一致するように設定される。そして、駆動部514による円盤516の間欠的回転によって、各中間成形体42は次工程用の各成形ツール512に対向する位置に回転移動されて、次の段階の加工が施される。 The intermittent rotation stop position of the work holding portion 511 (disk 516) centered on the axis of the support shaft 515 is such that the can shaft C of each intermediate molded body 42 with the opening facing the tool holding portion 513 is molded. It is set to match the central axis of the tool 512. Then, by the intermittent rotation of the disk 516 by the drive unit 514, each intermediate molded body 42 is rotationally moved to a position facing each molding tool 512 for the next process, and the next step of processing is performed.

すなわち、ツール保持部513が前進してワーク保持部511とツール保持部513とが互いに接近したときに、各成形ツール512が各工程に応じた加工を中間成形体42に施し、両保持部511,513が互いに離間した状態のときに各中間成形体42に次工程の成形ツール512が対向するようにワーク保持部511が回転移動される。このように、両保持部511,513が接近して加工を行い、離間及び回転するという動作が繰り返されることにより、中間成形体42に肩部12、変曲部14、縮径部13、口部15が順次形成されてボトル缶101が形成される。 That is, when the tool holding portion 513 advances and the work holding portion 511 and the tool holding portion 513 approach each other, each molding tool 512 performs processing according to each process on the intermediate molded body 42, and both holding portions 511. , 513 are separated from each other, and the work holding portion 511 is rotationally moved so that the molding tool 512 of the next step faces each intermediate molded body 42. In this way, the two holding portions 511, 513 are processed in close proximity to each other, and the operations of separating and rotating are repeated, so that the intermediate molded body 42 has a shoulder portion 12, a curved portion 14, a reduced diameter portion 13, and a mouth. The portions 15 are sequentially formed to form the bottle can 101.

次に、このボトル缶製造装置501を用いてボトル缶101を製造する方法について工程順に詳細を説明する。
アルミニウム合金等の薄板の絞り加工及びしごき加工(DI成形)により図2(b)に示す状態まで形成した筒体41の上端部に対して、ツール保持部513の周方向に並ぶ複数の成形ツール512を順次使用しながら、この成形ツール512を缶軸C方向に沿って移動してダイネッキング加工を施す。これにより、図3(a)に示すように、筒体41の高さ方向の途中位置から上部を縮径して肩部12及び変曲部14を順に形成した後、図3(c)に示すように、変曲部14の上方部分を上部側に向かうに従い漸次縮径されたテーパ状の縮径部13を形成する。
Next, the method of manufacturing the bottle can 101 using the bottle can manufacturing apparatus 501 will be described in detail in the order of processes.
A plurality of forming tools arranged in the circumferential direction of the tool holding portion 513 with respect to the upper end portion of the tubular body 41 formed to the state shown in FIG. 2 (b) by drawing and ironing (DI forming) a thin plate such as an aluminum alloy. While sequentially using the 512, the molding tool 512 is moved along the can axis C direction to perform a die-necking process. As a result, as shown in FIG. 3 (a), the shoulder portion 12 and the inflection portion 14 are formed in order by reducing the diameter of the upper portion from the middle position in the height direction of the tubular body 41, and then in FIG. 3 (c). As shown, a tapered diameter-reduced portion 13 is formed in which the upper portion of the inflection portion 14 is gradually reduced in diameter toward the upper side.

このうち、縮径部13を成形する縮径部成形工程では、図5に示すように、肩部12と変曲部14とが成形された中間成形体42の胴部10のうち、底部20側に配置された下部43(円筒部11、肩部12、変曲部13)よりも上側の部分44,45に加工を施す。そして、下部43と開口端部42a側に配置された上部45との間に位置する縮径予定部44に、缶軸C方向に沿って下部側から上部側に向かうに従い漸次縮径された、すなわち漸次小径となる縮径部13を成形するとともに、縮径部13に隣接配置される上部45に、その上部45よりも小径の円筒状の円筒上部17を成形する。なお、図5に二点鎖線で示した形状が、縮径部13と円筒上部17とを形成した中間成形体42である。 Of these, in the reduced diameter portion forming step of forming the reduced diameter portion 13, as shown in FIG. 5, the bottom portion 20 of the body portion 10 of the intermediate molded body 42 in which the shoulder portion 12 and the curved portion 14 are formed is formed. The portions 44 and 45 above the lower portion 43 (cylindrical portion 11, shoulder portion 12, curved portion 13) arranged on the side are processed. Then, the diameter of the planned diameter reduction portion 44 located between the lower portion 43 and the upper portion 45 arranged on the opening end portion 42a side was gradually reduced from the lower side to the upper side along the can axis C direction. That is, a reduced diameter portion 13 having a gradually smaller diameter is formed, and a cylindrical upper portion 17 having a smaller diameter than the upper portion 45 is formed on the upper portion 45 arranged adjacent to the reduced diameter portion 13. The shape shown by the alternate long and short dash line in FIG. 5 is the intermediate molded body 42 in which the reduced diameter portion 13 and the upper portion 17 of the cylinder are formed.

このような縮径部13を形成する縮径部成形工程は、予備形成工程と再成形工程とを備え、予備形成工程後に再成形工程を実施する構成とされる。予備形成工程では、図3(b)に示すように、下部側から上部側にかけて段階的に縮径された凹凸面を有する予備縮径部16を形成する。そして、再成形工程では、予備形成工程において形成した予備縮径部16を再成形し、図3(c)に示すように、下部側から上部側にかけてテーパ状の滑らかに連続した外面を有する縮径部13を形成する。 The reduced diameter portion forming step for forming such a reduced diameter portion 13 includes a preforming step and a remolding step, and the remolding step is carried out after the preforming step. In the pre-formation step, as shown in FIG. 3 (b), a pre-diameter portion 16 having an uneven surface whose diameter is gradually reduced from the lower side to the upper side is formed. Then, in the remolding step, the pre-diameter portion 16 formed in the pre-forming step is remolded, and as shown in FIG. 3 (c), shrinkage having a tapered smooth continuous outer surface from the lower side to the upper side. The diameter portion 13 is formed.

[予備形成工程]
予備形成工程では、胴部10の下部43と上部45との間を接続する広い領域の縮径予定部44(缶軸C方向に沿う長い領域)を加工するため、中間成形体42の上部45及び縮径予定部44の外面に加工径の異なる複数個の縮径用金型(ダイネッキング金型)を、加工径の大きい側から順に嵌合させて複数回の縮径加工を施す。本実施形態の予備形成工程では、図7等に示すように、各縮径加工における1回の加工量(図7では、符号g11~g14で表す。)を大きくし、敢えて間隔をあけて加工する。これにより、図7及び図8等に示すように、各縮径加工において下部側から上部側にかけて段階的に縮径された局部縮径部46a~46iが形成され、凹凸面を有する予備縮径部16が形成される。このように、予備成形工程では、予備縮径部16に縮径加工に伴う成形痕(凹凸面)が形成されることを許容する。
[Preliminary formation process]
In the preforming step, the upper portion 45 of the intermediate molded body 42 is processed in order to process the planned diameter reduction portion 44 (long region along the can axis C direction) in a wide region connecting between the lower portion 43 and the upper portion 45 of the body portion 10. And, a plurality of diameter reduction dies (dinecking dies) having different processing diameters are fitted to the outer surface of the planned diameter reduction portion 44 in order from the side having the largest processing diameter, and the diameter reduction processing is performed a plurality of times. In the preformation step of the present embodiment, as shown in FIG. 7 and the like, the amount of one processing in each diameter reduction processing (indicated by the reference numerals g11 to g14 in FIG. 7) is increased, and the processing is intentionally made at intervals. do. As a result, as shown in FIGS. 7 and 8, local diameter reduction portions 46a to 46i are formed in which the diameter is gradually reduced from the lower side to the upper side in each diameter reduction processing, and the preliminary diameter reduction having an uneven surface is formed. The portion 16 is formed. As described above, in the pre-molding step, it is allowed that molding marks (concave-convex surface) due to the diameter-reducing process are formed on the pre-diameter-reduced portion 16.

なお、複数回行われる各縮径加工において、それぞれの縮径量(加工量)は次のように算出される。図7に予備縮径部16の要部拡大図を示したように、1回目の縮径加工の縮径量g11は、1回目の縮径加工前の中間成形体42の縮径予定部44(及び上部45)の外面の最小径と、1回目に用いる縮径用金型701Aの成形面720aの最小径と、の差分となる。また、2回目の縮径加工の縮径量g12は、1回目で用いた縮径用金型701Aの成形面720aの最小径と、2回目に用いる縮径用金型701Bの成形面720bの最小径と、の差分となる。3回目以降の各縮径加工の縮径量g13,g14等は、2回目の縮径量g12と同様に算出され、それぞれ直前の縮径用金型の成形面の最小径と、それぞれの縮径加工で用いる縮径用金型の成形面の最小径と、の差分となる。なお、これらの縮径量g11~g14等(図7では、1回目~4回目までの縮径量g11~g14のみ図示)と、成形予定の縮径部13の角度αとから、各縮径用金型の缶軸C方向へのずらし量s11~s14等を算出することができる。 In each diameter reduction process performed a plurality of times, the diameter reduction amount (machining amount) is calculated as follows. As shown in FIG. 7 with an enlarged view of a main part of the preliminary diameter reduction portion 16, the diameter reduction amount g11 of the first diameter reduction processing is the diameter reduction planned portion 44 of the intermediate molded body 42 before the first diameter reduction processing. It is the difference between the minimum diameter of the outer surface of (and the upper portion 45) and the minimum diameter of the molding surface 720a of the diameter reduction die 701A used for the first time. Further, the diameter reduction amount g12 of the second diameter reduction process is the minimum diameter of the molding surface 720a of the diameter reduction die 701A used in the first time and the molding surface 720b of the diameter reduction die 701B used in the second time. It is the difference between the minimum diameter and. The diameter reduction amounts g13, g14, etc. of each diameter reduction process after the third time are calculated in the same manner as the second diameter reduction amount g12, and the minimum diameter of the molding surface of the immediately preceding diameter reduction die and the respective reductions. This is the difference from the minimum diameter of the molding surface of the diameter reduction die used in diameter processing. It should be noted that each diameter reduction is based on the diameter reduction amounts g11 to g14 and the like (in FIG. 7, only the diameter reduction amounts g11 to g14 from the first to the fourth times are shown) and the angle α of the diameter reduction portion 13 to be molded. The amount of shift of the mold in the can axis C direction, such as s11 to s14, can be calculated.

本実施形態の予備形成工程では、合計9回の縮径加工を経て、図8に示されるように、局部縮径部46a~46iを有する予備縮径部16を形成する。なお、縮径加工の回数は9回に限定されず、加工領域(縮径予定部44)の大きさ等に応じて適宜調整される。以下、本実施形態の説明においては、予備形成工程で実施される9回の縮径加工のうち、4回目~9回目の縮径加工の説明を省略し、1回目~3回目の縮径加工を例にして説明を行う。 In the pre-formation step of the present embodiment, the pre-diameter portion 16 having the local diameter-reduced portions 46a to 46i is formed as shown in FIG. 8 through a total of nine diameter-reducing processes. The number of times of diameter reduction processing is not limited to 9, and is appropriately adjusted according to the size of the processing region (planned diameter reduction portion 44) and the like. Hereinafter, in the description of the present embodiment, the description of the 4th to 9th diameter reduction processing is omitted from the 9 times diameter reduction processing performed in the preforming step, and the 1st to 3rd diameter reduction processing is omitted. Will be explained as an example.

1回目~3回目の縮径加工に用いる各縮径用金型701A~701Cは、具体的には、図5及び図6(a)~(c)に示すように、それぞれ中間成形体42の内側に配置される内側ダイ71A~71Cと、中間成形体42の外側に配置され、環状の成形面720a~720cを有する外側ダイ72A~72Cと、を備える構成とされる。各縮径用金型701A~701Cの各内側ダイ71A~71Cの中心軸と各外側ダイ72A~72Cの中心軸とは缶軸Cと同軸に配置されており、各内側ダイ71A~71Cと各外側ダイ72A~72Cとの間には、中間成形体42の開口端部42aが押し込まれる円筒状の間隙73a~73cが形成されている。 Specifically, as shown in FIGS. 5 and 6 (a) to 6 (c), the respective diameter reduction dies 701A to 701C used for the first to third diameter reduction processing are each of the intermediate molded bodies 42. It is configured to include inner dies 71A to 71C arranged inside and outer dies 72A to 72C arranged outside the intermediate molded body 42 and having annular forming surfaces 720a to 720c. The central axis of each inner die 71A to 71C of each diameter reduction mold 701A to 701C and the central axis of each outer die 72A to 72C are arranged coaxially with the can shaft C, and each of the inner dies 71A to 71C. Cylindrical gaps 73a to 73c into which the open end portion 42a of the intermediate molded body 42 is pushed are formed between the outer dies 72A to 72C.

各縮径加工では、図6(a)~(c)に示すように、中間成形体42と各縮径用金型701A~701Cとを缶軸C方向に相対的に接近移動(相対移動)させ、第1内側ダイ71Aと第1外側ダイ72Aとの間(図6(a))、第2内側ダイ71Bと第2外側ダイ72Bとの間(図6(b))、第3内側ダイ71Cと第3外側ダイ72Cとの間(図6(c))に、順に中間成形体42の上部45及び縮径予定部44を進入させることにより、中間成形体42の開口端部42aから縮径予定部44までの領域全体(上部45及び縮径予定部44)を縮径加工する。また、前述したように、各縮径加工は、縮径用金型701A~701Cの加工径、具体的には、各外側ダイ72A~72Cの成形面720a~720cの加工径を段階的に小さくしながら複数回(この場合は3回、全体で9回)に分けて行い、1回の縮径加工を施す度に、予備縮径部16の一部となる局部縮径部46a~46cを縮径予定部44の下部側から上部側にかけて位置をずらしながら成形する。 In each diameter reduction processing, as shown in FIGS. 6A to 6C, the intermediate molded body 42 and the diameter reduction dies 701A to 701C are relatively close to each other in the can axis C direction (relative movement). Between the first inner die 71A and the first outer die 72A (FIG. 6 (a)), between the second inner die 71B and the second outer die 72B (FIG. 6 (b)), the third inner die. The upper portion 45 of the intermediate molded body 42 and the planned diameter reduction portion 44 are sequentially inserted between the 71C and the third outer die 72C (FIG. 6 (c)) to shrink from the open end portion 42a of the intermediate molded body 42. The entire area up to the planned diameter portion 44 (the upper portion 45 and the planned diameter reduction portion 44) is reduced in diameter. Further, as described above, in each diameter reduction processing, the processing diameters of the diameter reduction dies 701A to 701C, specifically, the processing diameters of the molding surfaces 720a to 720c of the outer dies 72A to 72C are gradually reduced. While doing so, it is divided into a plurality of times (in this case, 3 times, 9 times in total), and each time the diameter reduction processing is performed, the local diameter reduction portions 46a to 46c which become a part of the preliminary diameter reduction portion 16 are formed. Molding is performed while shifting the position from the lower side to the upper side of the planned diameter reduction portion 44.

なお、各外側ダイ72A~72Cのそれぞれの先端部740a~740cには、中間成形体42の下部43に形成された円筒部11の外面と係合する円環状のガイド面741a~741cが形成されており、ガイド面741a~741cと円筒部11の外面とを係合させることにより、各縮径用金型701A~701Cと中間成形体42との位置合わせがなされるようになっている。 The tip portions 740a to 740c of the outer dies 72A to 72C are formed with annular guide surfaces 741a to 741c that engage with the outer surface of the cylindrical portion 11 formed in the lower portion 43 of the intermediate molded body 42. By engaging the guide surfaces 741a to 741c with the outer surface of the cylindrical portion 11, the respective diameter reduction dies 701A to 701C and the intermediate molded body 42 are aligned with each other.

成形面720a~720cは各外側ダイ72A~72Cの内周面に形成されており、図6(a)~(c)の縦断面視に示すように、径方向内側かつ下方に向けて突出する凸曲面状の成形凸曲面721a~721cと、この成形凸曲面721a~721cの上端に連続した円柱状の直線成形面722a~722cと、が周方向全周にわたり形成されている。また、直線成形面722a~722cは、各成形凸曲面721a~721cの上端に滑らかに接続され、各成形面720a~720cの最も内側(径方向の内側)において缶軸C方向と平行な直線状に形成されている。 The molded surfaces 720a to 720c are formed on the inner peripheral surfaces of the outer dies 72A to 72C, and project radially inward and downward as shown in the vertical cross-sectional views of FIGS. 6A to 6C. Convex curved surface-shaped molded convex curved surfaces 721a to 721c and cylindrical linear molded surfaces 722a to 722c continuous at the upper ends of the molded convex curved surfaces 721a to 721c are formed over the entire circumference in the circumferential direction. Further, the linear forming surfaces 722a to 722c are smoothly connected to the upper ends of the respective forming convex curved surfaces 721a to 721c, and are linear on the innermost side (inside in the radial direction) of the respective forming surfaces 720a to 720c and parallel to the can axis C direction. Is formed in.

本実施形態における縮径用金型701A~701Cの成形面720a~720cの諸寸法について一例を挙げると、成形凸曲面721a~721cの曲率半径R21は2.0mm~10.0mmとされる。また、各直線成形面722a~722cの間隔(片側幅)g11~g13は0.25mm以上1.0mm以下(直径差で0.5mm以上2.0mm以下)に設けられる。 To give an example of various dimensions of the molded surfaces 720a to 720c of the diameter reduction dies 701A to 701C in the present embodiment, the radius of curvature R21 of the molded convex curved surfaces 721a to 721c is 2.0 mm to 10.0 mm. Further, the intervals (one-sided width) g11 to g13 of the linearly formed surfaces 722a to 722c are provided at 0.25 mm or more and 1.0 mm or less (diameter difference of 0.5 mm or more and 2.0 mm or less).

なお、成形面720a~720cの下端に隣接配置される各外側ダイ72A~72Cの先端側には、成形凸曲面721a~721cの下端に連続したテーパ状の先端逃げ面723a~723cが形成されている。先端逃げ面723a~723cは、成形凸曲面721a~721cの下端に滑らかに接続されており、下側に向かうにつれて変曲部14及び肩部12から離間するように形成されている。なお、前述したように、各外側ダイ72A~72Cの先端部740a~740cには、円筒部11と係合するガイド面741a~741cが設けられている。
一方、成形面720a~720cの上端に隣接配置される各外側ダイ72A~72Cの基端側は、直線成形面722a~722cよりも径方向の内側に縮径して設けられた基端逃げ面724a~724cが形成されている。
In addition, on the tip end side of each outer die 72A to 72C arranged adjacent to the lower end of the molding surface 720a to 720c, a tapered tip flank surface 723a to 723c continuous with the lower end of the molding convex curved surface 721a to 721c is formed. There is. The tip flanks 723a to 723c are smoothly connected to the lower ends of the molded convex curved surfaces 721a to 721c, and are formed so as to be separated from the inflection portion 14 and the shoulder portion 12 toward the lower side. As described above, the tip portions 740a to 740c of the outer dies 72A to 72C are provided with guide surfaces 741a to 741c that engage with the cylindrical portion 11.
On the other hand, the proximal end side of the outer dies 72A to 72C arranged adjacent to the upper ends of the forming surfaces 720a to 720c is provided with a diameter reduced inward in the radial direction from the linear forming surfaces 722a to 722c. 724a to 724c are formed.

予備形成工程は、まず、図5に示すように、加工径の最も大きい縮径用金型701Aを中間成形体42の上方に離間させて配置した状態から、中間成形体42と縮径用金型701Aとを缶軸C方向に相対的に接近移動(相対移動)させつつ、図6(a)に示すように、中間成形体42の上部45及び縮径予定部44を第1内側ダイ71Aと第1外側ダイ72Aとの間の間隙73aに進入させて行う。なお、本実施形態では、縮径用金型701Aを中間成形体42に対して缶軸C方向に接近(前進)移動させ、縮径加工する。この縮径用金型701Aによる1回目の縮径加工では、中間成形体42の開口端部42aから縮径予定部44の下端までの領域全体(上部45及び縮径予定部44の全体)を加工する。 In the preforming step, first, as shown in FIG. 5, the intermediate molded body 42 and the diameter-reducing die are placed in a state where the diameter-reducing die 701A having the largest processing diameter is arranged above the intermediate molded body 42. As shown in FIG. 6A, the upper portion 45 of the intermediate molded body 42 and the planned diameter reduction portion 44 are moved toward the first inner die 71A while the mold 701A and the mold 701A are relatively close to each other (relatively moved) in the can axis C direction. It is performed by entering the gap 73a between the first outer die 72A and the first outer die 72A. In the present embodiment, the diameter reduction die 701A is moved closer (advanced) to the intermediate molded body 42 in the can axis C direction to reduce the diameter. In the first diameter reduction processing by the diameter reduction die 701A, the entire region from the opening end portion 42a of the intermediate molded body 42 to the lower end of the diameter reduction planned portion 44 (the entire upper portion 45 and the diameter reduction planned portion 44) is covered. Process.

縮径用金型701Aを中間成形体42に接近させると、成形面720aの成形凸曲面721aの途中位置に中間成形体42の開口端部42aが接触し、成形凸曲面721aから直線成形面722aの順に押し付けられ、成形面720aに沿って成形される。これにより、開口端部42aから縮径予定部44の下端までの領域が径方向内方に順に縮径されていく。そして、図6(a)に示されるように、縮径予定部44の下部側に、中間成形体42の局部縮径部46aが成形される。 When the diameter reduction die 701A is brought close to the intermediate molded body 42, the open end portion 42a of the intermediate molded body 42 comes into contact with the intermediate position of the molded convex curved surface 721a of the molded surface 720a, and the linear molded surface 722a is contacted from the molded convex curved surface 721a. Are pressed in this order and molded along the molding surface 720a. As a result, the region from the opening end portion 42a to the lower end of the diameter reduction planned portion 44 is sequentially reduced in diameter in the radial direction. Then, as shown in FIG. 6A, a locally reduced diameter portion 46a of the intermediate molded body 42 is formed on the lower side of the planned diameter reduction portion 44.

なお、縮径用金型701Aによる1回目の縮径加工後は、縮径用金型701Aを中間成形体42に対して缶軸C方向に離間(後退)させる。これにより、中間成形体42は第1内側ダイ71Aと第1外側ダイ72Aとの間から離脱させられ、元の位置(下降準備位置、待機位置)に戻される。 After the first diameter reduction processing by the diameter reduction die 701A, the diameter reduction die 701A is separated (retracted) from the intermediate molded body 42 in the can axis C direction. As a result, the intermediate molded body 42 is separated from the first inner die 71A and the first outer die 72A, and is returned to the original position (lowering preparation position, standby position).

縮径用金型701Aによる1回目の縮径加工により局部縮径部46aを成形した後、縮径用金型701Aよりも片側幅g12だけ加工径が小さい縮径用金型701Bにより2回目の縮径加工を行う。図6(b)に示すように、縮径用金型701Bの第2内側ダイ71Bと第2外側ダイ72Bとの間の間隙73bに中間成形体42の開口端部42aを進入させ、成形凸曲面721bと直線成形面722bとにより、先行して成形された1回目(直前)の局部縮径部46aの上部側に、新たな局部縮径部46bを成形する。 After forming the local diameter reduction portion 46a by the first diameter reduction processing with the diameter reduction mold 701A, the second diameter reduction mold 701B has a smaller processing diameter by one side width g12 than the diameter reduction mold 701A. Perform diameter reduction processing. As shown in FIG. 6B, the opening end portion 42a of the intermediate molded body 42 is made to enter the gap 73b between the second inner die 71B and the second outer die 72B of the diameter reduction die 701B, and the forming convex surface is formed. A new locally reduced diameter portion 46b is formed on the upper side of the first (immediately preceding) locally reduced diameter portion 46a formed in advance by the curved surface 721b and the linear forming surface 722b.

続けて、縮径用金型701Bよりも片側幅g13だけ加工径が小さい縮径用金型701Cにより、3回目の縮径加工を行う。図6(c)に示すように、成形凸曲面721cと直線成形面722cとにより、先行して成形された2回目(直前)の局部縮径部46bの上部側に、新たな局部縮径部46cを成形する。以降、図示は省略するが、縮径用金型701A~701Cと同様の構成の縮径用金型を用いて4回目~9回目の縮径加工を行うことにより、順次、各縮径用金型の成形凸曲面と直線成形面とによって直前に成形された局部縮径部よりも上側に新たな局部縮径部46d~46iを成形する。このように、各縮径用金型により成形される局部縮径部を下部側から上部側にかけて位置をずらしながら形成することにより、図7及び図8に示すように、それぞれの局部縮径部46a~46iが下部側から上部側にかけて間隔をおいて形成された予備縮径部16が形成される。また、このようにして成形された予備縮径部16よりも上側には、円筒状で小径の円筒上部17が成形される。 Subsequently, the third diameter reduction is performed by the diameter reduction die 701C whose processing diameter is smaller by the width g13 on one side than the diameter reduction die 701B. As shown in FIG. 6 (c), a new locally reduced diameter portion is formed on the upper side of the second (immediately preceding) locally reduced diameter portion 46b previously molded by the molded convex curved surface 721c and the linear molding surface 722c. Mold 46c. Hereinafter, although not shown, the diameter-reducing dies are sequentially subjected to the fourth to ninth diameter-reducing processes using the diameter-reducing dies having the same configuration as the diameter-reducing dies 701A to 701C. Molding of the mold New locally reduced diameter portions 46d to 46i are formed above the locally reduced diameter portion formed immediately before by the convex curved surface and the linear forming surface. In this way, by forming the locally reduced diameter portion formed by each diameter reducing die while shifting the position from the lower side to the upper side, as shown in FIGS. 7 and 8, each locally reduced diameter portion is formed. Preliminary diameter-reduced portions 16 are formed in which 46a to 46i are formed at intervals from the lower side to the upper side. Further, a cylindrical upper portion 17 having a small diameter is formed above the preliminary reduced diameter portion 16 formed in this way.

[再成形工程]
次に、再成形工程では、予備成形工程で形成した成形痕が残る予備縮径部16に、複数回に分けて再成形加工を施し、予備縮径部16の下部側から上部側にかけて順に再成形(リフォーム)し、滑らかに連続した外面を有する縮径部13を形成する。これらの再成形加工も、図5等に示す縮径用金型701A~701C等と同様に、内側ダイと外側ダイとを有する複数個の再成形用金型(ダイネッキング金型)801A~801Cを用い、加工径の大きい側から順に嵌合させて複数回の再成形加工を施す。なお、再成形工程において内側ダイは必須ではなく、内側ダイを用いずに再成形加工を施してもよい。本実施形態の再成形工程では、合計3回の再成形加工を経て、図3(c)及び図11に示されるように、下部側から上部側に向かうに従い漸次縮径されたテーパ状の縮径部13を形成する。なお、再成形加工の回数は3回に限定されず、加工領域(縮径予定部44、予備縮径部16)の大きさ等に応じて適宜調整される。
[Remolding process]
Next, in the remolding step, the pre-reduced portion 16 in which the molding marks formed in the pre-molding step remain is subjected to the remolding process in a plurality of times, and the pre-reduced portion 16 is remolded in order from the lower side to the upper side. It is molded (reformed) to form a reduced diameter portion 13 having a smoothly continuous outer surface. Similar to the diameter reduction dies 701A to 701C shown in FIG. Is used to fit in order from the side with the largest processing diameter, and remolding is performed multiple times. The inner die is not essential in the remolding step, and the remolding process may be performed without using the inner die. In the remolding step of the present embodiment, after a total of three remolding processes, as shown in FIGS. 3C and 11, the diameter of the taper is gradually reduced from the lower side to the upper side. The diameter portion 13 is formed. The number of remolding processes is not limited to three, and is appropriately adjusted according to the size of the processing area (planned diameter reduction portion 44, preliminary diameter reduction portion 16) and the like.

3回の再成形加工に用いる各再成形用金型801A~801Cは、具体的には、それぞれ中間成形体42の内側に配置される内側ダイ81A~81Cと、中間成形体42の外側に配置され、環状の成形面820a~820cを有する外側ダイ82A~82Cと、を備える構成とされる。各再成形用金型801A~801Cの各内側ダイ81A~81Cの中心軸と各外側ダイ82A~82Cの中心軸とは缶軸Cと同軸に配置されており、各内側ダイ81A~81Cと各外側ダイ82A~82Cとの間には、円筒状の間隙83a~83cが形成されている。そして、各再成形加工は、図8~図11に示すように、中間成形体42と各再成形用金型801A~801Cとを缶軸C方向に相対的に接近移動(相対移動)させ、予備縮径部16の外面に各再成形用金型801A~801Cの外側ダイ82A~82Cの成形面820a~820cを順に押し付けることにより行う。また、前述したように、各再成形加工は、再成形用金型801A~801Cの加工径、具体的には、各外側ダイ82A~82Cの成形面820a~820cの加工径を段階的に小さくしながら複数回(この場合は3回)に分けて行う。このように、1回の再成形加工を施す度に、各再成形用金型801A~801Cにより、予備縮径部16の下部側から上部側にかけて位置をずらしながら、各局部縮径部46a~46iの間隔よりも広い領域を缶軸C方向下方に向けて押し潰すようにして順次再成形する。 Specifically, the remolding dies 801A to 801C used for the three remolding processes are arranged on the inner dies 81A to 81C arranged inside the intermediate molded body 42 and on the outside of the intermediate molded body 42, respectively. The outer dies 82A to 82C having annular molding surfaces 820a to 820c are provided. The central axis of each inner die 81A to 81C of each remolding die 801A to 801C and the central axis of each outer die 82A to 82C are arranged coaxially with the can shaft C, and each of the inner dies 81A to 81C. Cylindrical gaps 83a to 83c are formed between the outer dies 82A to 82C. Then, in each remolding process, as shown in FIGS. 8 to 11, the intermediate molded body 42 and the remolding dies 801A to 801C are relatively close to each other (relatively moved) in the can axis C direction. This is performed by sequentially pressing the molding surfaces 820a to 820c of the outer dies 82A to 82C of the remolding dies 801A to 801C against the outer surface of the preliminary diameter reduction portion 16. Further, as described above, in each remolding process, the processing diameters of the remolding dies 801A to 801C, specifically, the processing diameters of the forming surfaces 820a to 820c of the outer dies 82A to 82C are gradually reduced. While doing this, divide it into multiple times (in this case, 3 times). In this way, each time the remolding process is performed, the remolding dies 801A to 801C shift the positions of the preliminary reduced diameter portions 16 from the lower side to the upper side, and each local reduced diameter portion 46a to A region wider than the interval of 46i is sequentially remolded by crushing it downward in the can axis C direction.

また、各外側ダイ82A~82Cのそれぞれの先端部840a~840cには、中間成形体42の下部43に形成された円筒部11の外面と係合する円環状のガイド面841a~841cが形成されている。各再成形加工では、このガイド面841a~841cと円筒部11の外面とを係合させることにより、各再成形用金型801A~801Cと中間成形体42との位置合わせがなされるとともに、各再成形加工時にガイド面841a~841cにより円筒部11の外面が拘束されるようになっている。 Further, on the respective tip portions 840a to 840c of the outer dies 82A to 82C, annular guide surfaces 841a to 841c that engage with the outer surface of the cylindrical portion 11 formed in the lower portion 43 of the intermediate molded body 42 are formed. ing. In each remolding process, by engaging the guide surfaces 841a to 841c with the outer surface of the cylindrical portion 11, the remolding dies 801A to 801C are aligned with the intermediate molded body 42, and each of them is aligned. The outer surface of the cylindrical portion 11 is constrained by the guide surfaces 841a to 841c during the remolding process.

成形面820a~820cは、各外側ダイ82A~82Cの内周面に形成されており、図8~図11の縦断面視に示すように、下部側から上部側にかけて漸次縮径されたテーパ状のテーパ面821a~821cと、各テーパ面821a~821cの下端に連続した凸曲面状の下部凸曲面822a~822cと、各テーパ面821a~821cの上端に連続した凸曲面状の上部凸曲面823a~823cと、が周方向全周にわたり形成されている。テーパ面821a~821cは、縮径部13に沿ったテーパ状に形成されている。また、下部凸曲面822a~822cは、テーパ面821a~821cの下端に滑らかに接続されており、曲率半径R22が変曲部14の曲率半径R12と同じか、それよりも小さく形成されている。 The molded surfaces 820a to 820c are formed on the inner peripheral surfaces of the outer dies 82A to 82C, and as shown in the vertical cross-sectional view of FIGS. 8 to 11, the tapered shape is gradually reduced in diameter from the lower side to the upper side. The tapered surfaces 821a to 821c, the convex curved lower convex curved surfaces 822a to 822c continuous at the lower ends of the tapered surfaces 821a to 821c, and the convex curved upper convex curved surface 823a continuous at the upper ends of the tapered surfaces 821a to 821c. ~ 823c is formed over the entire circumference in the circumferential direction. The tapered surfaces 821a to 821c are formed in a tapered shape along the reduced diameter portion 13. Further, the lower convex curved surfaces 822a to 822c are smoothly connected to the lower ends of the tapered surfaces 821a to 821c, and the radius of curvature R22 is formed to be the same as or smaller than the radius of curvature R12 of the inflection portion 14.

なお、成形面820a~820cの下端に隣接配置される各外側ダイ82A~82Cの先端側には、下部凸曲面822a~822cの下端に連続したテーパ状の先端逃げ面824a~824cが形成されている。先端逃げ面824a~824cは、下部凸曲面822a~822cの下端に滑らかに接続されており、下側に向かうにつれて変曲部14及び肩部12から離間するように形成されている。なお、前述したように、各外側ダイ82A~82Cの先端部840a~840cには、円筒部11と係合するガイド面841a~841cが設けられている。
一方、成形面820a~820cの上端に隣接配置される各外側ダイ82A~82Cの基端側は、上部凸曲面823a~823cの上端に連続した円筒状の直線円筒面825a~825cが形成されている。直線円筒面825a~825cは、各上部凸曲面823a~823cの上端に滑らかに接続され、缶軸C方向と平行な直線状に形成されている。
On the tip end side of each outer die 82A to 82C arranged adjacent to the lower end of the molded surface 820a to 820c, a tapered tip flank surface 824a to 824c continuous with the lower end of the lower convex curved surface 822a to 822c is formed. There is. The tip flanks 824a to 824c are smoothly connected to the lower ends of the lower convex curved surfaces 822a to 822c, and are formed so as to be separated from the inflection portion 14 and the shoulder portion 12 toward the lower side. As described above, the tip portions 840a to 840c of the outer dies 82A to 82C are provided with guide surfaces 841a to 841c that engage with the cylindrical portion 11.
On the other hand, on the base end side of the outer dies 82A to 82C arranged adjacent to the upper ends of the molded surfaces 820a to 820c, continuous cylindrical straight cylindrical surfaces 825a to 825c are formed on the upper ends of the upper convex curved surfaces 823a to 823c. There is. The straight cylindrical surfaces 825a to 825c are smoothly connected to the upper ends of the upper convex curved surfaces 823a to 823c, and are formed in a straight line parallel to the can axis C direction.

本実施形態における再成形用金型801A~801Cの成形面820a~820cの諸寸法について一例を挙げると、テーパ面821a~821cの傾斜角度β(テーパ面821a~821cと缶軸Cとがなす角度、図8参照)は、縮径部13の傾斜角度αに対し、-2°以上0°以下の大きさに設定される。すなわち、テーパ面821a~821cの傾斜角度βは、成形される縮径部13の傾斜角度αと同じ角度(β=α)か、それよりも僅かに小さい角度(α-2°<β<α)に形成される。また、下部凸曲面822a~822cの曲率半径R22は2.0mm~20.0mmとされ、上部凸曲面823a~823cの曲率半径R23は2.0mm~40.0mmとされる。また、各直線円筒面825a~825cの間隔(片側幅)g21~g22は1.0mm以上10.0mm以下(直径差で2.0mm以上20.0mm以下)に設けられる。 To give an example of various dimensions of the molding surfaces 820a to 820c of the remolding dies 801A to 801C in the present embodiment, the inclination angle β of the tapered surfaces 821a to 821c (the angle formed by the tapered surfaces 821a to 821c and the can shaft C). , FIG. 8) is set to a size of −2 ° or more and 0 ° or less with respect to the inclination angle α of the reduced diameter portion 13. That is, the inclination angle β of the tapered surfaces 821a to 821c is the same angle (β = α) as the inclination angle α of the reduced diameter portion 13 to be molded, or a slightly smaller angle (α-2 ° <β <α). ) Is formed. The radius of curvature R22 of the lower convex curved surfaces 822a to 822c is 2.0 mm to 20.0 mm, and the radius of curvature R23 of the upper convex curved surfaces 823a to 823c is 2.0 mm to 40.0 mm. Further, the intervals (one-sided width) g21 to g22 of the linear cylindrical surfaces 825a to 825c are provided at 1.0 mm or more and 10.0 mm or less (diameter difference of 2.0 mm or more and 20.0 mm or less).

再成形工程は、まず、加工径の最も大きい再成形用金型801Aを中間成形体42の上方に離間させて配置した状態から、図8に示すように、中間成形体42と再成形用金型801Aとを缶軸C方向に相対的に接近移動(相対移動)させ、図9に示すように、第1外側ダイ82Aの成形面820aで予備縮径部16の下部側の外面を押圧することにより行う。なお、本実施形態では、再成形用金型801Aを中間成形体42に対して缶軸C方向に接近(前進)移動させ、再成形加工する。 In the remolding step, first, the remolding die 801A having the largest processing diameter is arranged at a distance above the intermediate molded body 42, and then, as shown in FIG. 8, the intermediate molded body 42 and the remolding die 42 are arranged. The mold 801A is relatively close to (relatively moved) in the can axis C direction, and as shown in FIG. 9, the outer surface on the lower side of the preliminary diameter reduction portion 16 is pressed by the molding surface 820a of the first outer die 82A. Do it by. In this embodiment, the remolding die 801A is moved closer to (advanced) in the can axis C direction with respect to the intermediate molded body 42, and is remolded.

再成形用金型801Aを中間成形体42に接近させると、先端部840aに設けられたガイド面841aが先行して円筒部11の外面に係合し、再成形用金型801Aと中間成形体42とが位置合わせされる。続いて、第1外側ダイ82Aの成形面820aに予備縮径部16の下部側の局部縮径部46a~46cの外面が接触し、押し付けられる。個々の局部縮径部46a~46cの間隔よりも広い領域が成形面820aにより缶軸C方向下方に向けて押し付けられることで、各局部縮径部46a~46cの間に形成された凸面が押し潰されて消失し、成形面820aに沿った形状に再成形される。これにより、予備縮径部16の下部側には、変曲部14の上端に滑らかに接続されたテーパ状の再成形部47aが形成される。また、再成形用金型801Aによる再成形加工時には、ガイド面841aが円筒部11の外面に係合し、円筒部11の外面を拘束した状態が維持される。これにより、再成形加工時に缶軸C方向に成形荷重が作用した際、円筒部11の径方向外方への変形を抑制できる。 When the remolding die 801A is brought close to the intermediate molded body 42, the guide surface 841a provided at the tip portion 840a first engages with the outer surface of the cylindrical portion 11, and the remolding die 801A and the intermediate molded body are engaged with each other. 42 is aligned with. Subsequently, the outer surface of the locally reduced diameter portions 46a to 46c on the lower side of the preliminary reduced diameter portion 16 comes into contact with and pressed against the molding surface 820a of the first outer die 82A. A region wider than the distance between the individual locally reduced diameter portions 46a to 46c is pressed downward in the can axis C direction by the molding surface 820a, so that the convex surface formed between the locally reduced diameter portions 46a to 46c is pushed. It is crushed and disappears, and is remolded into a shape along the molding surface 820a. As a result, a tapered remolding portion 47a smoothly connected to the upper end of the inflection portion 14 is formed on the lower side of the preliminary diameter reduction portion 16. Further, during the remolding process by the remolding die 801A, the guide surface 841a engages with the outer surface of the cylindrical portion 11 and the state of restraining the outer surface of the cylindrical portion 11 is maintained. As a result, when a molding load is applied in the can axis C direction during the remolding process, the deformation of the cylindrical portion 11 in the radial direction can be suppressed.

なお、再成形用金型801Aによる1回目の再成形加工後は、再成形用金型801Aを中間成形体42に対して缶軸C方向に離間(後退)させる。これにより、中間成形体42は第1内側ダイ81Aと第1外側ダイ82Aとの間から離脱させられ、元の位置(下降準備位置、待機位置)に戻される。 After the first remolding process by the remolding die 801A, the remolding die 801A is separated (retracted) from the intermediate molded body 42 in the can axis C direction. As a result, the intermediate molded body 42 is separated from the first inner die 81A and the first outer die 82A, and is returned to the original position (lowering preparation position, standby position).

再成形用金型801Aによる1回目の再成形加工後、再成形用金型801Aよりも片側幅g21だけ加工径が小さい再成形用金型801Bにより、2回目の再成形加工を行う。2回目の再成形加工は、図10に示すように、再成形用金型801Bを中間成形体42に接近させ、予備縮径部16の中間部分の局部縮径部46c~46fの外面に、第2外側ダイ82Bの成形面820bを押し付けて再成形する。これにより、先行して成形された1回目(直前)の再成形部47aの上部側に、新たな再成形部47bを成形する。 After the first remolding process by the remolding die 801A, the second remolding process is performed by the remolding die 801B whose processing diameter is smaller by one side width g21 than the remolding die 801A. In the second remolding process, as shown in FIG. 10, the remolding die 801B is brought close to the intermediate molded body 42, and the outer surface of the locally reduced diameter portions 46c to 46f of the intermediate portion of the preliminary reduced diameter portion 16 is formed. The molding surface 820b of the second outer die 82B is pressed against the molding surface 820b to remold. As a result, a new remolding portion 47b is molded on the upper side of the first (immediately preceding) remolding portion 47a that was previously molded.

再成形用金型801Bにおいても、先端部840bに設けられたガイド面841bが先行して円筒部11の外面に係合し、再成形用金型801Bと中間成形体42とが位置合わせされた後、第2外側ダイ82Bの成形面820bに予備縮径部16の中間部分の局部縮径部46c~46fの外面が接触し、押し付けられる。2回目の再成形工程においても、再成形用金型801Bのガイド面841bが円筒部11の外面に係合し、円筒部11の外面を拘束した状態が維持される。これにより、再成形加工時に缶軸C方向に成形荷重が作用した際、円筒部11の径方向外方への変形を抑制できる。 Also in the remolding die 801B, the guide surface 841b provided at the tip portion 840b was engaged with the outer surface of the cylindrical portion 11 in advance, and the remolding die 801B and the intermediate molded body 42 were aligned. After that, the outer surface of the locally reduced diameter portion 46c to 46f of the intermediate portion of the preliminary reduced diameter portion 16 comes into contact with the molding surface 820b of the second outer die 82B and is pressed against the molded surface 820b. Also in the second remolding step, the guide surface 841b of the remolding die 801B engages with the outer surface of the cylindrical portion 11, and the state in which the outer surface of the cylindrical portion 11 is restrained is maintained. As a result, when a molding load is applied in the can axis C direction during the remolding process, the deformation of the cylindrical portion 11 in the radial direction can be suppressed.

また、2回目の再成形加工(後行の再成形加工)では、新たに予備縮径部16の一部を再成形して再成形部47aを形成するとともに、その前に先行して再成形された先行の再成形部47aも併せて第2外側ダイ82Bの成形面820bで押圧することにより整形する。新たな再成形部47bを成形する第2外側ダイ82Bは、図10に示すように、成形面820bを構成するテーパ面821bの下部側が、先行の再成形部47aに重なる位置まで延在して設けられている。これにより、2回目の再成形加工では、テーパ面821bの上部側において新たに各局部縮径部46c~46fの間に形成された凸面を押し潰して再成形部47aが形成されるとともに、テーパ面821bの下部側において先行の再成形部47aが整形される。このように、2回目の再成形加工では、先行の再成形部47aに重なる位置まで延在して設けられたテーパ面821bにより、先行の再成形部47aから新たに再成形される後行の再成形部47bまでを連続して加工することで、先行の再成形部47aに連続して新たな再成形部47bを成形する。これにより、先行の再成形部47aと後行の再成形部47bとの間に未再生加工領域を生じさせることなく、後行の再成形部47bが先行の再成形部47aに滑らかに接続される。 Further, in the second remolding process (following remolding process), a part of the preliminary diameter reduction portion 16 is newly remolded to form the remolding portion 47a, and the remolding portion is preceded before that. The preceding remolding portion 47a is also shaped by pressing with the molding surface 820b of the second outer die 82B. As shown in FIG. 10, the second outer die 82B for forming the new remolding portion 47b extends to a position where the lower side of the tapered surface 821b constituting the molding surface 820b overlaps with the preceding remolding portion 47a. It is provided. As a result, in the second remolding process, the convex surface newly formed between the locally reduced diameter portions 46c to 46f is crushed on the upper side of the tapered surface 821b to form the remolding portion 47a, and the taper is formed. The preceding remolding portion 47a is shaped on the lower side of the surface 821b. As described above, in the second remolding process, the tapered surface 821b extending to the position overlapping with the preceding remolding portion 47a is used to newly remold from the preceding remolding portion 47a. By continuously processing up to the remolding portion 47b, a new remolding portion 47b is continuously formed on the preceding remolding portion 47a. As a result, the succeeding remolding portion 47b is smoothly connected to the preceding remolding portion 47a without creating an unregenerated processed region between the preceding remolding portion 47a and the succeeding remolding portion 47b. To.

続けて、2回目の再成形加工後、再成形用金型801Bよりも片側幅g22だけ加工径が小さい再成形用金型801Cにより、3回目の再成形加工を行う。
3回目の再成形加工は、図11に示すように、再成形用金型801Cを中間成形体42に接近させ、予備縮径部16の上部側の局部縮径部46f~46iの外面に、第3外側ダイ82Cの成形面820cを押し付けて再成形する。これにより、先行して成形された2回目(直前)の再成形部47bの上部側に新たな再成形部47cを成形する。
Subsequently, after the second remolding process, the third remolding process is performed by the remolding die 801C having a processing diameter smaller than that of the remolding die 801B by one side width g22.
In the third remolding process, as shown in FIG. 11, the remolding die 801C is brought close to the intermediate molded body 42, and the outer surface of the locally reduced diameter portions 46f to 46i on the upper side of the preliminary reduced diameter portion 16 is formed. The molding surface 820c of the third outer die 82C is pressed and remolded. As a result, a new remolding portion 47c is molded on the upper side of the second (immediately preceding) remolding portion 47b that was previously molded.

再成形用金型801Cにおいても、先端部840cに設けられたガイド面841cが先行して円筒部11の外面に係合し、再成形用金型801Cと中間成形体42とが位置合わせされた後、第3外側ダイ82Cの成形面820cに予備縮径部16の上部側の局部縮径部46f~46iの外面が接触し、押し付けられる。3回目の再成形工程においても、再成形用金型801Cのガイド面841cが円筒部11の外面に係合し、円筒部11の外面を拘束した状態が維持される。これにより、再成形加工時に缶軸C方向に成形荷重が作用した際、円筒部11の径方向外方への変形を抑制できる。 Also in the remolding die 801C, the guide surface 841c provided at the tip portion 840c was engaged with the outer surface of the cylindrical portion 11 in advance, and the remolding die 801C and the intermediate molded body 42 were aligned. After that, the outer surface of the locally reduced diameter portions 46f to 46i on the upper side of the preliminary reduced diameter portion 16 comes into contact with the molding surface 820c of the third outer die 82C and is pressed against the molded surface 820c. Even in the third remolding step, the guide surface 841c of the remolding die 801C is engaged with the outer surface of the cylindrical portion 11, and the state in which the outer surface of the cylindrical portion 11 is restrained is maintained. As a result, when a molding load is applied in the can axis C direction during the remolding process, the deformation of the cylindrical portion 11 in the radial direction can be suppressed.

また、3回目の再成形加工(後行の再成形加工)においても、2回目の再成形加工と同様に、新たに予備縮径部16の一部を再成形して再成形部47cを形成するとともに、その前に先行して再成形された先行の再成形部47bも併せて第3外側ダイ82Cの成形面820cで押圧することにより整形する。3回目の再成形加工に用いる第3外側ダイ82Cは、図11に示すように、成形面820cを構成するテーパ面821cの下部側が、先行の再成形部47bに重なる位置まで延在して設けられている。これにより、3回目の再成形加工では、テーパ面821cの上部側において新たに各局部縮径部46f~46iの間に形成された凸面を押し潰して再成形部47cが形成されるとともに、テーパ面821cの下部側において先行の再成形部47bが整形される。このように、3回目の再成形加工では、先行の再成形部47bに重なる位置まで延在して設けられたテーパ面821cにより、先行の再成形部47bから新たに再成形される後行の再成形部47cまでを連続して加工することで、先行の再成形部47bに連続して新たな再成形部47cを成形する。これにより、先行の再成形部47bと後行の再成形部47cとの間に未再生加工領域を生じさせることなく、後行の再成形部47cが先行の再成形部47bに滑らかに接続される。 Further, in the third remolding process (following remolding process), a part of the preliminary diameter reduction portion 16 is newly remolded to form the remolded portion 47c as in the second remolding process. At the same time, the preceding remolding portion 47b, which was previously remolded before that, is also shaped by pressing with the molding surface 820c of the third outer die 82C. As shown in FIG. 11, the third outer die 82C used for the third remolding process is provided so as to extend to a position where the lower side of the tapered surface 821c constituting the molding surface 820c overlaps with the preceding remolding portion 47b. Has been done. As a result, in the third remolding process, the convex surface newly formed between the locally reduced diameter portions 46f to 46i is crushed on the upper side of the tapered surface 821c to form the remolding portion 47c, and the taper is formed. The preceding remolding portion 47b is shaped on the lower side of the surface 821c. As described above, in the third remolding process, the tapered surface 821c extending to the position overlapping with the preceding remolding portion 47b is used to newly remold from the preceding remolding portion 47b. By continuously processing up to the remolding portion 47c, a new remolding portion 47c is continuously formed on the preceding remolding portion 47b. As a result, the succeeding remolding portion 47c is smoothly connected to the preceding remolding portion 47b without creating an unregenerated processed region between the preceding remolding portion 47b and the succeeding remolding portion 47c. To.

このように、再成形工程では、複数回(本実施形態では3回)の再成形加工を行うことにより、順次、各再成形用金型801A~801Cにより予備縮径部16の下部側から上部側にかけて位置をずらしながら各局部縮径部46a~46iの個々の間隔よりも広い領域を再成形する。これにより、図11に示すように、予備縮径部16の凹凸面が消失し、下部側から上部側にかけて滑らかに連続した外面を有する縮径部13が形成される。 As described above, in the remolding step, by performing the remolding process a plurality of times (three times in this embodiment), the pre-diameter portions 16 are sequentially subjected to the remolding dies 801A to 801C from the lower side to the upper part. A region wider than the individual spacing of the locally reduced diameter portions 46a to 46i is remolded while shifting the position toward the side. As a result, as shown in FIG. 11, the uneven surface of the preliminary reduced diameter portion 16 disappears, and the reduced diameter portion 13 having a smoothly continuous outer surface is formed from the lower side to the upper side.

また、このようにして成形された中間成形体42の円筒上部17には、図4(a)に示すように、円筒上部17を拡径して縮径部13の上端よりも大径の大径部31を形成し、この大径部31を形成した後に再度縮径することにより、上方に向かうにしたがって徐々に縮径する小径部32を形成するとともに、この小径部32の上方に延びる円筒状の小径筒部34を形成する。そして、最後に、小径筒部34に対してカーリング加工を施してカール部33を形成し、図4(b)に示すように、口部15を有するボトル缶101を製造する。 Further, as shown in FIG. 4A, the cylinder upper portion 17 of the intermediate molded body 42 formed in this way has a larger diameter than the upper end of the reduced diameter portion 13 by expanding the diameter of the cylindrical upper portion 17. By forming the diameter portion 31 and reducing the diameter again after forming the large diameter portion 31, a small diameter portion 32 that gradually shrinks in the upward direction is formed, and a cylinder extending above the small diameter portion 32 is formed. A small diameter cylinder portion 34 having a shape is formed. Finally, the small-diameter cylinder portion 34 is curled to form the curl portion 33, and as shown in FIG. 4 (b), the bottle can 101 having the mouth portion 15 is manufactured.

なお、このようにして製造されたボトル缶101の内部には、飲料等の内容物が充填され、口部15にキャップ201が巻き締められ、内部が密封された容器301が製造される。 The inside of the bottle can 101 manufactured in this manner is filled with contents such as beverages, the cap 201 is wrapped around the mouth portion 15, and the inside of the bottle can 301 is sealed.

以上説明した本実施形態に係る缶体の製造方法によれば、縮径部成形工程を予備形成工程と再成形工程とに分けて行うことで、缶軸C方向に沿う広い領域に滑らかに接続された縮径部13を安定して形成できる。また、予備成形工程では、予備縮径部16に成形痕(凹凸面)が形成されることを許容するので、各縮径加工における一回の加工量を大きくでき、缶軸C方向に沿う広い領域に縮径形状を形成する際に、缶体の製造工程の短縮を図ることができる。また、再成形工程では、成形痕が残る予備縮径部16に複数回に分けて再成形加工を施すので、一回の再成形加工における再成形範囲を小さくでき、一回の再成形加工に必要な成形荷重を小さく(低く)抑えることができる。 According to the method for manufacturing a can body according to the present embodiment described above, by performing the reduced diameter portion forming step separately for the preforming step and the remolding step, it is smoothly connected to a wide area along the can axis C direction. The reduced diameter portion 13 can be stably formed. Further, in the pre-molding step, since it is allowed to form molding marks (concave and convex surfaces) on the pre-diameter reduced portion 16, the amount of one machining in each diameter-reduced machining can be increased, and it is wide along the can axis C direction. When forming a reduced diameter shape in the region, it is possible to shorten the manufacturing process of the can body. Further, in the remolding step, since the pre-reduced portion 16 in which the molding marks remain is subjected to the remolding process in a plurality of times, the remolding range in one remolding process can be reduced, and the remolding process can be performed once. The required molding load can be kept small (low).

また、各再成形加工は、予備縮径部16の下部側から上部側にかけて順に行うので、上部側を再成形する時点では既に再成形された下部側部分について真円度が高められている。したがって、各再成形加工時において胴部10に生じる座屈を防止でき、缶軸C方向に沿う広い領域に滑らかに接続された縮径部(縮径形状)13を安定して形成できる。
なお、再成形工程における各再成形工程は、予備縮径部16の上部側から下部側にかけて順に行ってもよい。この場合、複数回行われる各再成形工程は、各再成形用金型の成形面の加工径を段階的に大きくしながら行う。
Further, since each remolding process is performed in order from the lower side to the upper side of the preliminary diameter reduction portion 16, the roundness of the already reshaped lower side portion is increased at the time of remolding the upper side. Therefore, it is possible to prevent buckling that occurs in the body portion 10 during each remolding process, and it is possible to stably form a reduced diameter portion (reduced diameter shape) 13 that is smoothly connected to a wide region along the can axis C direction.
In addition, each remolding step in the remolding step may be performed in order from the upper side to the lower side of the preliminary diameter reduction portion 16. In this case, each remolding step performed a plurality of times is performed while gradually increasing the processing diameter of the molding surface of each remolding die.

また、本実施形態では、2回目、3回目に行われる後行の再成形加工において、新たに予備縮径部16の一部を再成形するとともに、その前に先行して再成形された1回目、2回目の先行の再成形部47a,47bも併せて整形するようにしたので、各再成形部47a~47cの間を滑らかに接続でき、縮径部13に成形痕(圧痕)が残されることを防止できる。なお、先行の再成形部47a,47bの整形は、後行の再成形加工の最後、すなわち、再成形用金型801B,801Cの下死点で行われるので、一回の再成形加工に必要な成形荷重において、先行の再成形部47a,47bの整形と後行の再成形部47b,47cの成形とを円滑に行うことができる。 Further, in the present embodiment, in the subsequent remolding process performed in the second and third times, a part of the preliminary diameter reduction portion 16 is newly remolded, and the preformed portion is remolded prior to that. Since the preceding remolding portions 47a and 47b of the first and second remolding portions are also shaped, the remolding portions 47a to 47c can be smoothly connected, and molding marks (indentations) are left on the reduced diameter portion 13. Can be prevented. Since the preceding remolding portions 47a and 47b are shaped at the end of the subsequent remolding process, that is, at the bottom dead center of the remolding dies 801B and 801C, they are necessary for one remolding process. It is possible to smoothly perform the shaping of the preceding remolding portions 47a and 47b and the molding of the succeeding remolding portions 47b and 47c under a moderate molding load.

また、各再成形用金型801A~801Cのそれぞれについてガイド面841a~841cを設けたので、これらのガイド面841a~841cと再成形加工が施されない胴部10の下部43側とにおいて位置合わせを行うことができ、繰り返し行われる複数回の再成形加工において、高精度な加工を施すことができる。また、各再成形加工時に、ガイド面841a~841cにより円筒部11(胴部10)の外面を拘束した状態が維持されることで、缶軸C方向に成形荷重が作用した際に、円筒部11の径方向外方への変形を抑制できる。なお、円筒部11の全周を拘束することが最も望ましいが、部分的に拘束する場合であっても、変形を十分に抑制できる。 Further, since the guide surfaces 841a to 841c are provided for each of the remolding dies 801A to 801C, the guide surfaces 841a to 841c are aligned with the lower 43 side of the body portion 10 which is not subjected to the remolding process. It can be performed, and high-precision processing can be performed in a plurality of remolding processes that are repeatedly performed. Further, during each remolding process, the outer surface of the cylindrical portion 11 (body portion 10) is maintained in a state of being restrained by the guide surfaces 841a to 841c, so that the cylindrical portion is formed when a molding load is applied in the can axis C direction. It is possible to suppress the deformation of 11 in the radial direction. It is most desirable to constrain the entire circumference of the cylindrical portion 11, but even if it is partially constrained, deformation can be sufficiently suppressed.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、本実施形態では、ボトル缶として予め有底円筒状の筒体41を形成して、その開口端部を成形したが、筒体は底部を有していないものも含むものとし、縮径部を成形した後に、筒体(中間成形体)の胴部に、別に形成した底部を巻き締めるようにしてもよい。
The present invention is not limited to the configuration of the above embodiment, and various changes can be made to the detailed configuration without departing from the spirit of the present invention.
For example, in the present embodiment, a bottomed cylindrical cylinder 41 is formed in advance as a bottle can and an open end thereof is formed, but the cylinder includes a cylinder having no bottom and has a reduced diameter portion. After molding, the bottom portion separately formed may be wound around the body portion of the tubular body (intermediate molded body).

10 胴部
10a,42a 開口端部
11 円筒部
12 肩部
13 縮径部
14 変曲部
15 口部
16 予備縮径部
17 円筒上部
20 底部
21 ドーム部
22 ヒール部
23 接地部
31 大径部
32 小径部
33 カール部
34 小径筒部
40 カップ
41 筒体
42 中間成形体
43 下部
44 縮径予定部
45 上部
46a,46b,46c,46d,46e,46f,46g,46h,46i 局部縮径部
47a,47b,47c 再成形部
71A 第1内側ダイ(内側ダイ)
71B 第2内側ダイ(内側ダイ)
71C 第3内側ダイ(内側ダイ)
72A 第1外側ダイ(外側ダイ)
72B 第2外側ダイ(外側ダイ)
72C 第3外側ダイ(外側ダイ)
73a,73b,73c 間隙
81A 第1内側ダイ(内側ダイ)
81B 第2内側ダイ(内側ダイ)
81C 第3内側ダイ(内側ダイ)
82A 第1外側ダイ(外側ダイ)
82B 第2外側ダイ(外側ダイ)
82C 第3外側ダイ(外側ダイ)
83a,83b,83c 間隙
101 ボトル缶
201 キャップ
301 ボトル容器
501 ボトル缶製造装置
511 ワーク保持部(保持部)
512 成形ツール
513 ツール保持部(保持部)
514 駆動部
515,612 支持軸
516,613 円盤
517 保持装置
518 供給部
519 供給側スターホイール
601 排出側スターホイール
611 排出部
701A,701B,701C 縮径用金型
720a,720b,720c 成形面
721a,721b,721c 成形凸曲面
722a,722b,722c 直線成形面
723a,723b,723c 先端逃げ面
724a,724b,724c 基端逃げ面
740a,740b,740c 先端部
741a,741b,741c ガイド面
801A,801B,801C 再成形用金型
820a,820b,820c 成形面
821a,821b,821c テーパ面
822a,822b,822c 下部凸曲面
823a,823b,823c 上部凸曲面
824a,824b,824c 先端逃げ面
825a,825b,825c 直線円筒面
840a,840b,840c 先端部
841a,841b,841c ガイド面
10 Body 10a, 42a Open end 11 Cylindrical part 12 Shoulder part 13 Reduced diameter part 14 Curved part 15 Mouth part 16 Preliminary reduced diameter part 17 Cylindrical upper part 20 Bottom part 21 Dome part 22 Heel part 23 Grounding part 31 Large diameter part 32 Small diameter part 33 Curl part 34 Small diameter cylinder part 40 Cup 41 Cylinder body 42 Intermediate molded body 43 Lower part 44 Scheduled diameter reduction part 45 Upper part 46a, 46b, 46c, 46d, 46e, 46f, 46g, 46h, 46i Local diameter reduction part 47a, 47b, 47c Remolding part 71A 1st inner die (inner die)
71B 2nd inner die (inner die)
71C 3rd inner die (inner die)
72A 1st outer die (outer die)
72B 2nd outer die (outer die)
72C 3rd outer die (outer die)
73a, 73b, 73c Gap 81A 1st inner die (inner die)
81B 2nd inner die (inner die)
81C 3rd inner die (inner die)
82A 1st outer die (outer die)
82B 2nd outer die (outer die)
82C 3rd outer die (outer die)
83a, 83b, 83c Gap 101 Bottle can 201 Cap 301 Bottle container 501 Bottle can manufacturing equipment 511 Work holding part (holding part)
512 Molding tool 513 Tool holding part (holding part)
514 Drive unit 515,612 Support shaft 516,613 Disk 517 Retaining device 518 Supply unit 519 Supply side star wheel 601 Discharge side star wheel 611 Discharge part 701A, 701B, 701C Diameter reduction mold 720a, 720b, 720c Molding surface 721a, 721b, 721c Convex curved surface 722a, 722b, 722c Straight forming surface 723a, 723b, 723c Tip flank surface 724a, 724b, 724c Base end flank surface 740a, 740b, 740c Tip portion 741a, 741b, 741c Guide surface 801A, 801C Molds for remolding 820a, 820b, 820c Molding surface 821a, 821b, 821c Tapered surface 822a, 822b, 822c Lower convex curved surface 823a, 823b, 823c Upper convex curved surface 824a, 824b, 824c Tip flank surface 825a, 825b, 825c Surfaces 840a, 840b, 840c Tip 841a, 841b, 841c Guide surface

Claims (3)

円筒状の胴部を備える筒体の該胴部の縮径予定部に、缶軸方向に沿って前記胴部の下部側から開口端部側に配置される上部側に向かうに従い漸次縮径された縮径部を形成する縮径部成形工程を備え、
前記縮径部成形工程は、
前記筒体と縮径用金型とを缶軸方向に相対移動させることにより、前記縮径予定部の外面に前記縮径用金型の成形面を押し付けて前記胴部の前記開口端部から前記縮径予定部までの領域全体を縮径する縮径加工を、前記縮径用金型の成形面の加工径を段階的に小さくしながら複数回に分けて行い、前記縮径加工を施す度に、各縮径用金型により成形される局部縮径部を下部側から上部側にかけて位置をずらしながら形成し、各局部縮径部が間隔をおいて形成された予備縮径部を形成する予備形成工程と、
前記予備形成工程後に、前記予備縮径部が形成された前記筒体と再成形用金型とを缶軸方向に相対移動させることにより、前記予備縮径部の外面に前記再成形用金型の成形面を押し付けて再成形する再成形加工を、前記再成形用金型の成形面の加工径を段階的に小さくしながら又は段階的に大きくしながら複数回に分けて行い、前記再成形加工を施す度に、各再成形用金型により各局部縮径部の間隔よりも広い領域を缶軸方向下方に向けて押し潰すようにして順次再成形し、滑らかに連続した外面を有する前記縮径部を形成する再成形工程と、を備え
前記再成形工程において複数回行われる前記再成形加工のうち、先行の再成形加工の後に行われる少なくとも1回の後行の再成形加工では、新たに前記予備縮径部の一部を再成形するとともに、前記先行の再成形加工において再成形された先行の再成形部を前記縮径部に沿った前記再成形用金型の成形面で押圧し、前記先行の再成形部から前記後行の再成形加工において再成形される後行の再成形部までを連続して加工することを特徴とする缶体の製造方法。
The diameter of the cylinder having a cylindrical body is gradually reduced from the lower side of the body toward the upper side arranged on the opening end side along the can axis direction. It is equipped with a reduced diameter part forming process to form a reduced diameter part.
The reduced diameter portion molding step is
By relatively moving the cylinder and the diameter reduction mold in the can axis direction, the molding surface of the diameter reduction mold is pressed against the outer surface of the planned diameter reduction portion from the open end portion of the body portion. The diameter reduction processing for reducing the entire region up to the planned diameter reduction portion is performed in a plurality of times while gradually reducing the processing diameter of the molding surface of the diameter reduction mold, and the diameter reduction processing is performed. Each time, the locally reduced diameter portion formed by each diameter reduction mold is formed while shifting the position from the lower side to the upper side, and each local diameter reduced portion forms a preliminary reduced diameter portion formed at intervals. Pre-formation process and
After the preforming step, the cylinder for forming the pre-reduced portion and the remolding die are relatively moved in the can axis direction, so that the remolding die is placed on the outer surface of the pre-reduced portion. The remolding process of pressing the molding surface of the above to remold is performed in a plurality of times while gradually reducing the processing diameter of the molding surface of the remolding die or gradually increasing the processing diameter. Each time processing is performed, each remolding die sequentially crushes a region wider than the space between the locally reduced diameter portions in the downward direction in the can axis direction, and the remolding is performed in sequence to have a smoothly continuous outer surface. With a remolding process to form a reduced diameter portion ,
Of the remolding processes performed a plurality of times in the remolding step, at least one subsequent remolding process performed after the preceding remolding process newly remolds a part of the pre-reduced diameter portion. At the same time, the preceding remolding portion remolded in the preceding remolding process is pressed by the molding surface of the remolding die along the reduced diameter portion, and the following from the preceding remolding portion. A method for manufacturing a can body, which comprises continuously processing up to a subsequent remolding portion to be remolded in the remolding process.
前記再成形工程における各再成形加工は、各再成形用金型の成形面の加工径を段階的に小さくしながら行い、前記再成形加工を施す度に、前記予備縮径部を下部側から上部側にかけて順次再成形することを特徴とする請求項1に記載の缶体の製造方法。 Each remolding process in the remolding step is performed while gradually reducing the processing diameter of the molding surface of each remolding die, and each time the remolding process is performed, the pre-reduced diameter portion is moved from the lower side. The method for manufacturing a can body according to claim 1, wherein the can body is sequentially remolded toward the upper side. 前記再成形用金型の先端部に、前記胴部の円筒状の外面と係合するガイド面を設けておき、
前記再成形工程において複数回行われる前記再成形加工時に、前記ガイド面により前記胴部の外面を拘束することを特徴とする請求項1又は2に記載の缶体の製造方法。
A guide surface that engages with the cylindrical outer surface of the body portion is provided at the tip end portion of the remolding die.
The method for manufacturing a can body according to claim 1 or 2, wherein the outer surface of the body is restrained by the guide surface during the remolding process performed a plurality of times in the remolding step.
JP2018078840A 2018-04-17 2018-04-17 Manufacturing method of can body Active JP7089398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018078840A JP7089398B2 (en) 2018-04-17 2018-04-17 Manufacturing method of can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078840A JP7089398B2 (en) 2018-04-17 2018-04-17 Manufacturing method of can body

Publications (2)

Publication Number Publication Date
JP2019181549A JP2019181549A (en) 2019-10-24
JP7089398B2 true JP7089398B2 (en) 2022-06-22

Family

ID=68338841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078840A Active JP7089398B2 (en) 2018-04-17 2018-04-17 Manufacturing method of can body

Country Status (1)

Country Link
JP (1) JP7089398B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024006435A (en) * 2022-07-01 2024-01-17 東洋製罐株式会社 can container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160107219A1 (en) 2014-10-15 2016-04-21 Ball Corporation Apparatus and Method for Simultaneously Forming a Contoured Shoulder and Neck Portion in a Closed End of a Metallic Container
JP2016107341A (en) 2014-12-09 2016-06-20 ユニバーサル製缶株式会社 Method for manufacturing can
JP2016147310A (en) 2015-02-09 2016-08-18 ユニバーサル製缶株式会社 Manufacturing method of can, and can

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778723A (en) * 1992-07-31 1998-07-14 Aluminum Company Of America Method and apparatus for necking a metal container and resultant container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160107219A1 (en) 2014-10-15 2016-04-21 Ball Corporation Apparatus and Method for Simultaneously Forming a Contoured Shoulder and Neck Portion in a Closed End of a Metallic Container
JP2016107341A (en) 2014-12-09 2016-06-20 ユニバーサル製缶株式会社 Method for manufacturing can
JP2016147310A (en) 2015-02-09 2016-08-18 ユニバーサル製缶株式会社 Manufacturing method of can, and can

Also Published As

Publication number Publication date
JP2019181549A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
EP2035166B1 (en) Method of manufacturing containers
US5355710A (en) Method and apparatus for necking a metal container and resultant container
EP3851223B1 (en) Shaped metal container
US9358604B2 (en) System for compression relief shaping
IE52072B1 (en) Containers
US6442988B1 (en) Methods of spin forming initially cylindrical containers and the like
US3572271A (en) Fabrication of can bodies with integral bottom walls
JP7089398B2 (en) Manufacturing method of can body
WO2023183924A9 (en) Tapered cup and method of forming the same
CN107671132A (en) A kind of forming technology of speed torque-converters hub
JP7060349B2 (en) How to make a bottle can
CN102814440B (en) Forging method of cylindrical slide sleeve and reverse extrusion mould
JP2022120828A (en) Manufacturing method of metallic cup
JP6807702B2 (en) How to make bottle cans
JP7069275B2 (en) How to make a bottle can
JP2019058924A (en) Manufacturing method of bottle can and mold for reducing diameter
JP2017217700A (en) Can manufacturing method
JP2021035696A (en) Method for production of bottle can
US11732622B2 (en) Method for producing a hollow valve with an optimised interior stem geometry for internal combustion engines
JP2020147346A (en) Bottle can and its manufacturing method
EP2342030B1 (en) Improvements in or relating to a method of forming metal articles
JP2020001704A (en) Bottle can and method for manufacturing the same
JP2020040712A (en) Bottle can and method for manufacturing same
JP2019058945A (en) Molding die, molding tool and can manufacturing apparatus
JP2023069570A (en) Metallic cup manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220610

R150 Certificate of patent or registration of utility model

Ref document number: 7089398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350