JP7088479B1 - Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device - Google Patents

Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device Download PDF

Info

Publication number
JP7088479B1
JP7088479B1 JP2022037569A JP2022037569A JP7088479B1 JP 7088479 B1 JP7088479 B1 JP 7088479B1 JP 2022037569 A JP2022037569 A JP 2022037569A JP 2022037569 A JP2022037569 A JP 2022037569A JP 7088479 B1 JP7088479 B1 JP 7088479B1
Authority
JP
Japan
Prior art keywords
measured value
evaluation
flavor
buckwheat flour
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022037569A
Other languages
Japanese (ja)
Other versions
JP2023132323A (en
Inventor
直人 井上
尚哉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2022037569A priority Critical patent/JP7088479B1/en
Application granted granted Critical
Publication of JP7088479B1 publication Critical patent/JP7088479B1/en
Publication of JP2023132323A publication Critical patent/JP2023132323A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ガスクロマトグラフィー等の大がかりな設備を用いることなく、励起蛍光分析により、ソバ粉の風味評価、特に、香りの良さを簡便に評価できるソバ粉の風味評価方法、風味評価用プログラムおよび風味評価装置を提供すること。【解決手段】ソバ粉の風味評価においては、ソバ粉の励起蛍光分析から得られる所定波長のタンパク質由来の蛍光量である第1測定値A、第2測定値B、PSII由来の蛍光量である第3測定値C、PSI由来の蛍光量である第4測定値Dを用いて、分光指数法により、目的変量であるソバ粉の脂質含有量(リン脂質含有量+糖脂質含有量)を推定している。推定した脂質含有量に基づき、ソバ粉の香りの良さを評価している。【選択図】図3PROBLEM TO BE SOLVED: To evaluate the flavor of buckwheat flour by excitation fluorescence analysis without using a large-scale facility such as gas chromatography, in particular, a method for evaluating the flavor of buckwheat flour, a program for evaluating the flavor, and a flavor, which can easily evaluate the goodness of aroma. To provide an evaluation device. In the flavor evaluation of buckwheat flour, the first measured value A, the second measured value B, and the fluorescence amount derived from PSII, which are the fluorescence amounts derived from a protein having a predetermined wavelength obtained from the excitation fluorescence analysis of the buckwheat flour. Using the third measured value C and the fourth measured value D, which is the amount of fluorescence derived from PSI, the lipid content (phospholipid content + glycolipid content) of buckwheat flour, which is the target variable, is estimated by the spectroscopic index method. is doing. Based on the estimated lipid content, the aroma of buckwheat flour is evaluated. [Selection diagram] Fig. 3

Description

本発明は、励起蛍光分光分析によりソバ粉の風味の良否の指標となる香り、味、鮮度、緑度を評価する風味評価方法、風味評価用プログラム、および、風味評価装置に関する。 The present invention relates to a flavor evaluation method for evaluating the aroma, taste, freshness, and greenness, which are indicators of the quality of the flavor of buckwheat flour by excitation fluorescence spectroscopic analysis, a flavor evaluation program, and a flavor evaluation device.

本発明の発明者等は、特許文献1において、励起蛍光分析によりソバの種子の品質評価を適切に行うことのできる方法を提案している。当該方法では、玄ソバ、丸抜きソバの品質の良否を判断するために、タンパク質含有量に応じて増減するタンパク質由来蛍光量に基づき味の良さを評価し、クロロフィル含有量に応じて増減するクロロフィル由来蛍光量に基づき鮮度の良さを評価している。 The inventors of the present invention have proposed in Patent Document 1 a method capable of appropriately evaluating the quality of buckwheat seeds by excitation fluorescence analysis. In this method, in order to judge the quality of brown buckwheat and round buckwheat, the goodness of taste is evaluated based on the amount of fluorescence derived from the protein that increases or decreases according to the protein content, and the chlorophyll increases or decreases according to the chlorophyll content. The goodness of freshness is evaluated based on the amount of fluorescence derived.

具体的には、紫レーザー励起蛍光を用いた場合に玄ソバから得られる500~640nmの波長帯の蛍光量(強度)を測定して果皮の充実度に対応する評価基準値を予め設定しておき、評価対象の玄ソバから得られる同波長帯の蛍光量を評価基準値と比較して品質評価を行うようにしている。また、丸抜きソバを評価する場合には、評価基準値として、ソバの粘りに応じて変化する種皮の粗タンパク質含有量に対応する500nmを含む波長帯域の蛍光量と、鮮度に応じて変化する種皮のクロロフィル含有量に対応する680nmを含む波長帯域の蛍光量とを用いて、粘りと鮮度を評価するようにしている。 Specifically, the amount of fluorescence (intensity) in the wavelength band of 500 to 640 nm obtained from the buckwheat when purple laser-excited fluorescence is used is measured, and an evaluation reference value corresponding to the degree of skin solidity is set in advance. In addition, the amount of fluorescence in the same wavelength band obtained from the source buckwheat to be evaluated is compared with the evaluation reference value to perform quality evaluation. When evaluating round buckwheat, the evaluation reference value is the fluorescence amount in the wavelength band including 500 nm corresponding to the crude protein content of the seed coat, which changes according to the stickiness of the buckwheat, and changes according to the freshness. The stickiness and freshness are evaluated by using the fluorescence amount in the wavelength band including 680 nm corresponding to the chlorophyll content of the seed coat.

ここで、ソバの種子だけでなく、ソバ粉(一番粉、二番粉、三番粉、挽きぐるみ等)についても、同様に励起蛍光分析により風味を評価できると便利である。ソバ粉の風味評価においては、味の良さ、鮮度だけでなく、香りの良さも重要な評価要素である。香りの評価には、ソバ粉の香り成分の含有量を測定する必要があるが、香り成分の含有量は微量であり、測定あるいは検出が容易ではない。例えば、特許文献2において提案されているように、ガスクロマトグラフィーにより、香り成分の分析結果に基づきソバ粉の品質評価を行う必要がある。 Here, it is convenient to be able to evaluate the flavor of buckwheat flour (first flour, second flour, third flour, ground flour, etc.) as well as buckwheat seeds by excitation fluorescence analysis. In the evaluation of the flavor of buckwheat flour, not only the good taste and freshness but also the good aroma are important evaluation factors. In order to evaluate the scent, it is necessary to measure the content of the scent component of buckwheat flour, but the content of the scent component is very small and it is not easy to measure or detect. For example, as proposed in Patent Document 2, it is necessary to evaluate the quality of buckwheat flour based on the analysis result of the fragrance component by gas chromatography.

特開2018-36150号公報Japanese Unexamined Patent Publication No. 2018-36150 特開2021-173672号公報Japanese Patent Application Laid-Open No. 2021-173672

本発明の目的は、このような点に鑑みて、ガスクロマトグラフィー等の大がかりな設備を用いることなく、励起蛍光分析により、ソバ粉の風味評価を簡便に行えるソバ粉の風味評価方法、風味評価用プログラムおよび風味評価装置を提供することにある。 In view of these points, an object of the present invention is a method for evaluating the flavor of buckwheat flour, which enables easy evaluation of the flavor of buckwheat flour by excitation fluorescence analysis, without using large-scale equipment such as gas chromatography. To provide a program and flavor evaluation device.

上記の課題を解決するために、本発明は、評価対象のソバ粉から得られる励起蛍光の分光分析に基づき前記ソバ粉の風味を評価するソバ粉の風味評価方法であって、
前記風味の評価指標の一つである香りの良さの評価を、分光指数法により算出した前記ソバ粉の脂質含有量の推定値に基づき行い、
前記分光指数法においては、
500nmから550nmの波長帯域に含まれる第1波長の蛍光量を第1測定値、
640nm~650nmの波長帯域に含まれる第2波長の蛍光量を第2測定値、
PSII由来の第3波長(685nm)の蛍光量を第3測定値、および、
PSI由来の第4波長(740nm)の蛍光量を第4測定値
として算出し、
前記第2測定値を正規化のための基準値として用いて、前記第1測定値と前記第2測定値との差を正規化した第1分光指数Y、および、前記第3測定値あるいは前記第4測定値と前記第2測定値との差を正規化した第2分光指数Xを算出し、
前記第1分光指数と前記第2分光指数との相乗平均を算出し、
前記相乗平均を、前記脂質含有量の推定値として用いることを特徴としている。
In order to solve the above problems, the present invention is a method for evaluating the flavor of buckwheat flour, which evaluates the flavor of the buckwheat flour based on the spectral analysis of the excitation fluorescence obtained from the buckwheat flour to be evaluated.
The evaluation of the goodness of aroma, which is one of the evaluation indexes of the flavor, was performed based on the estimated value of the lipid content of the buckwheat flour calculated by the spectroscopic index method.
In the spectroscopic index method,
The amount of fluorescence of the first wavelength included in the wavelength band of 500 nm to 550 nm is the first measured value.
The second measured value is the amount of fluorescence of the second wavelength included in the wavelength band of 640 nm to 650 nm.
The fluorescence amount of the third wavelength (685 nm) derived from PSII is the third measured value, and
The fluorescence amount of the 4th wavelength (740 nm) derived from PSI was calculated as the 4th measured value.
Using the second measured value as a reference value for normalization, the first spectral index Y in which the difference between the first measured value and the second measured value is normalized, and the third measured value or the above. The second spectral index X obtained by normalizing the difference between the fourth measured value and the second measured value was calculated.
The geometric mean of the first spectral index and the second spectral index is calculated, and the geometric mean is calculated.
It is characterized in that the geometric mean is used as an estimated value of the lipid content.

本発明者は、ソバ粉には香り成分の元である脂質として、リン脂質と糖脂質が含まれており、リン脂質の殆どが細胞膜、核、小器官の内部に存在し、糖脂質の殆どが葉緑体の内部に存在していることに着目した。これに基づき、リン脂質の含有量(mg)と細胞膜等におけるタンパク質の含有量(g)との間には有意の相関があり、リン脂質の含有量を、タンパク質由来蛍光量(波長帯域500nm~550nm)を指標として用いて推定できるとの知見を得た。また、糖脂質成分の含有量(mg)と、葉緑体における光合成の活性の程度を反映しているPSII由来蛍光成分強度(685nm)あるいはPSI由来蛍光成分強度(740nm)との間にも有意な相関があり、糖脂質含有量を、PSII由来蛍光成分強度(685nm)あるいはPSI由来蛍光成分強度(740nm)を用いて推定できるとの知見を得た。 According to the present inventor, buckwheat flour contains phospholipids and glycolipids as lipids that are the source of fragrance components, and most of the phospholipids are present inside cell membranes, nuclei, and small organs, and most of the glycolipids. Noticed that is present inside the chlorophyll. Based on this, there is a significant correlation between the content of phospholipids (mg) and the content of proteins in cell membranes (g), and the content of phospholipids can be determined by the amount of protein-derived fluorescence (wavelength band 500 nm or more). It was found that it can be estimated using 550 nm) as an index. It is also significant between the content of the glycolipid component (mg) and the intensity of the PSI-derived fluorescent component (685 nm) or the PSI-derived fluorescent component intensity (740 nm), which reflects the degree of photosynthetic activity in the chloroplast. It was found that the glycoliplast content can be estimated using the PSI-derived fluorescent component intensity (685 nm) or the PSI-derived fluorescent component intensity (740 nm).

これらの知見に基づき、本発明では、ソバ粉の励起蛍光分析から得られる所定波長のタンパク質由来の蛍光量と、PSII由来の蛍光量あるいはPSI由来の蛍光量とから、目的変量であるソバ粉の脂質含有量(リン脂質含有量+糖脂質含有量)を推定している。推定した脂質含有量に基づき、ソバ粉の香りの良さの評価値を算出している。算出した評価値は、ソバ粉の香りの良さの程度を反映するものであることが確認された。 Based on these findings, in the present invention, the amount of fluorescence derived from a protein having a predetermined wavelength obtained from the excitation fluorescence analysis of buckwheat flour and the amount of fluorescence derived from PSII or PSI are used to determine the desired variable of buckwheat flour. The lipid content (phospholipid content + glycolipid content) is estimated. Based on the estimated lipid content, the evaluation value of the aroma of buckwheat flour is calculated. It was confirmed that the calculated evaluation value reflects the degree of aroma of buckwheat flour.

本発明によれば、励起蛍光分析から直接に得ることが困難な香りの元となるソバ粉に微量に含まれている脂質の含有量を、励起蛍光分析結果から得られる所定波長の蛍光量を用いて推定することができる。大掛かりな分析用の設備を用いることなく、分光器を用いた簡便な装置を用いてソバ粉の香りを評価することが可能になる。 According to the present invention, the content of lipid contained in a trace amount in buckwheat flour, which is a source of fragrance that is difficult to obtain directly from excitation fluorescence analysis, and the amount of fluorescence having a predetermined wavelength obtained from the result of excitation fluorescence analysis. Can be estimated using. It is possible to evaluate the scent of buckwheat flour using a simple device using a spectroscope without using large-scale analytical equipment.

本発明においては、ソバ粉の風味の評価指標として、香りの他に、味の良さ、鮮度、緑度を採用している。 In the present invention, good taste, freshness, and greenness are adopted as evaluation indexes for the flavor of buckwheat flour in addition to the aroma.

本発明では、味の良さの評価を、ソバ粉の励起蛍光分析から得られるタンパク質由来の蛍光量に基づき行っている。 In the present invention, the goodness of taste is evaluated based on the amount of fluorescence derived from the protein obtained from the excitation fluorescence analysis of buckwheat flour.

また、ソバ粉の鮮度の評価を、ソバ粉の励起蛍光分析によって得られる光合成の活性の程度を反映しているPSII由来の蛍光量(685nm)あるいはPSI由来の蛍光量(740nm)を用いて行っている。特に、ソバ粉の励起蛍光から得られる蛍光スペクトルにおいて、光酸素化酸化障害が生じている場合には、そうでない場合に比べて、PSI由来の蛍光量が大幅に低下する。よって、PSI由来の蛍光量の低下の程度を、ソバ粉の緑度の評価に用いることができる。 Further, the freshness of the buckwheat flour is evaluated using the fluorescence amount derived from PSII (685 nm) or the fluorescence amount derived from PSI (740 nm), which reflects the degree of photosynthetic activity obtained by the excitation fluorescence analysis of the buckwheat flour. ing. In particular, in the fluorescence spectrum obtained from the excitation fluorescence of buckwheat flour, when the photooxygenation oxidation disorder occurs, the amount of fluorescence derived from PSI is significantly reduced as compared with the case where it does not. Therefore, the degree of decrease in the amount of fluorescence derived from PSI can be used for evaluating the greenness of buckwheat flour.

さらに、ソバ粉の緑度の評価を、ソバ粉の励起蛍光分析によって得られるソバ粉のPSII由来の蛍光量とPSI由来の蛍光量との差から推定したクロロフィル含有量に基づき行っている。クロロフィル含有量と、ソバ粉の励起蛍光分析から得られるPSII由来の蛍光量とPSI由来の蛍光量との差との間には、有意な相関がある。この差から推定したクロロフィル含有量に基づき、ソバ粉の緑度を評価することが可能である。 Further, the greenness of the buckwheat flour is evaluated based on the chlorophyll content estimated from the difference between the fluorescence amount derived from PSII and the fluorescence amount derived from PSI of the buckwheat flour obtained by the excitation fluorescence analysis of the buckwheat flour. There is a significant correlation between the chlorophyll content and the difference between the PSII-derived fluorescence amount and the PSI-derived fluorescence amount obtained from the excitation fluorescence analysis of buckwheat flour. It is possible to evaluate the greenness of buckwheat flour based on the chlorophyll content estimated from this difference.

本発明を適用したソバ粉の風味評価装置の概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of the flavor evaluation apparatus of buckwheat flour to which this invention was applied. (A)は図1の装置の制御部の主要機能を示す機能ブロック図、(B)は図1の装置の表示画面の一例を示す説明図である。(A) is a functional block diagram showing a main function of a control unit of the apparatus of FIG. 1, and (B) is an explanatory diagram showing an example of a display screen of the apparatus of FIG. (A)はソバ粉の蛍光スペクトルの一例を示すグラフ、(B)は風味の4指標の算出式を示す一覧表である。(A) is a graph showing an example of the fluorescence spectrum of buckwheat flour, and (B) is a list showing calculation formulas of four indexes of flavor. ソバ粉のタンパク質含有量とリン脂質含有量との関係を示すグラフである。It is a graph which shows the relationship between the protein content and the phospholipid content of buckwheat flour. ソバ粉の鮮度低下を示す蛍光スペクトルを示すグラフである。It is a graph which shows the fluorescence spectrum which shows the decrease in freshness of buckwheat flour. ソバ粉の蛍光スペクトルにおける正規化された分光指数(NDSI)の算出に用いる2波長の組み合わせと、クロロフィル含有量との間の相関係数とを列記した一覧表である。It is a list which lists the combination of two wavelengths used for the calculation of the normalized spectroscopic index (NDSI) in the fluorescence spectrum of buckwheat flour, and the correlation coefficient with the chlorophyll content.

以下に、図面を参照して本発明の実施の形態に係るソバ粉の風味評価装置の一例を説明する。図1に示すように、ソバ粉の風味評価装置1(以下、単に「風味評価装置1」と呼ぶ。)は、分析ユニット2と、タブレット端末、パーソナルコンピュータ等の情報処理ユニット3と、これらのユニットを接続するUSB等の電源ラインおよび信号ラインを含む配線ケーブル4とから構成される。 Hereinafter, an example of the flavor evaluation device for buckwheat flour according to the embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the buckwheat flour flavor evaluation device 1 (hereinafter, simply referred to as “flavor evaluation device 1”) includes an analysis unit 2, an information processing unit 3 such as a tablet terminal and a personal computer, and these. It is composed of a power supply line such as a USB for connecting the unit and a wiring cable 4 including a signal line.

分析ユニット2は、ユニットケースとしての暗箱21を備えており、暗箱21の上面には、評価対象のソバ粉を載せるためのソバ粉サンプルカップ22が取り付けられている。暗箱21の内部には垂線を中心として左右対称な状態で、励起光源である一対のLED23が配置されている。各LED23から射出される励起光はショートパスフィルタ24を介して透光性のソバ粉サンプルカップ22に載せたソバ粉を底面側から照射する。励起光を照射することによりソバ粉から発生する励起蛍光は、ロングパスフィルタ25を介して、CMOSイメージセンサを備えた分光器26によって受光され、蛍光スペクトルが測定される。分光器26の演算処理部27を介して、得られた分光情報(蛍光スペクトル)が、入出力端子部28に接続された配線ケーブル4を介して、情報処理ユニット3に送られる。 The analysis unit 2 includes a dark box 21 as a unit case, and a buckwheat flour sample cup 22 for mounting buckwheat flour to be evaluated is attached to the upper surface of the dark box 21. Inside the dark box 21, a pair of LEDs 23, which are excitation light sources, are arranged symmetrically with respect to the perpendicular line. The excitation light emitted from each LED 23 irradiates the buckwheat flour placed on the translucent buckwheat flour sample cup 22 from the bottom surface side via the short pass filter 24. The excitation fluorescence generated from the buckwheat flour by irradiating the excitation light is received by a spectroscope 26 equipped with a CMOS image sensor via a long-pass filter 25, and the fluorescence spectrum is measured. The obtained spectral information (fluorescence spectrum) is sent to the information processing unit 3 via the wiring cable 4 connected to the input / output terminal unit 28 via the arithmetic processing unit 27 of the spectroscope 26.

本例のLED23は355nm~405nmの波長帯域の紫外線LEDである。ショートパスフィルタ24によって400nm以上の波長成分がカットされた励起光がソバ粉を照射する。ソバ粉から得られる励起蛍光は、ロングパスフィルタ25を介して、450nm以下の波長成分がカットされて、分光器26の受光面に到達する。 The LED 23 of this example is an ultraviolet LED having a wavelength band of 355 nm to 405 nm. The excitation light from which the wavelength component of 400 nm or more is cut by the short pass filter 24 irradiates the buckwheat flour. The excitation fluorescence obtained from the buckwheat flour reaches the light receiving surface of the spectroscope 26 after the wavelength component of 450 nm or less is cut through the long pass filter 25.

情報処理ユニット3は、コンピュータを中心に構成される制御部31、記憶部32、操作入力部33、表示出力部34等を備えている。制御部31には、入出力端子部35に接続された配線ケーブル4を介して、分析ユニット2の側からソバ粉の分光情報が取り込まれる。制御部31において、ソバ粉の励起蛍光分析結果に基づき、ソバ粉の風味が評価される。本例では、風味を評価するために、香りの良さ、味の良さ、鮮度および緑度の4つの指標が採用され、各指標の評価値を算出して表示するようになっている。 The information processing unit 3 includes a control unit 31, a storage unit 32, an operation input unit 33, a display output unit 34, and the like, which are mainly composed of a computer. The control unit 31 takes in the spectral information of buckwheat flour from the analysis unit 2 side via the wiring cable 4 connected to the input / output terminal unit 35. The control unit 31 evaluates the flavor of the buckwheat flour based on the results of the excitation fluorescence analysis of the buckwheat flour. In this example, in order to evaluate the flavor, four indexes of good aroma, good taste, freshness and greenness are adopted, and the evaluation value of each index is calculated and displayed.

図2(A)は制御部31の主要機能を示す機能ブロック図であり、この図に示すように、制御部31は、予めインストールされているソバ粉の風味評価用プログラムを実行することにより、抽出部36、算出部37、推定・評価部38、表示制御部39等として機能する。抽出部36は、ソバ粉から得られる蛍光の分光分析結果に基づき、予め設定されている複数の波長帯の蛍光量測定値を抽出する。算出部37は、抽出した測定値からソバ粉の脂質含有量の推定等に用いる複数の分光指数を算出する。推定・評価部38は、算出した分光指数を用いてソバ粉の風味評価の4指標(香りの良さ、味の良さ、鮮度および緑度)の推定・評価を行う。表示制御部39によって、算出された評価値等が、表示出力部34の表示画面40に表示される。 FIG. 2A is a functional block diagram showing the main functions of the control unit 31, and as shown in this figure, the control unit 31 executes a pre-installed program for evaluating the flavor of buckwheat flour. It functions as an extraction unit 36, a calculation unit 37, an estimation / evaluation unit 38, a display control unit 39, and the like. The extraction unit 36 extracts the fluorescence amount measurement values of a plurality of preset wavelength bands based on the spectroscopic analysis result of the fluorescence obtained from the buckwheat flour. The calculation unit 37 calculates a plurality of spectral indexes used for estimating the lipid content of buckwheat flour from the extracted measured values. The estimation / evaluation unit 38 estimates / evaluates four indexes (good aroma, good taste, freshness and greenness) of flavor evaluation of buckwheat flour using the calculated spectral index. The evaluation value and the like calculated by the display control unit 39 are displayed on the display screen 40 of the display output unit 34.

図2(B)は、表示出力部34の表示画面40の表示画像の一例を示す説明図である。表示画面40には、測定ボタン41が表示され、その近傍位置の表示欄42には「試料をセットし「測定」を押してください」などの操作案内用のメッセージが表示される。試料であるソバ粉を分析ユニット2のソバ粉サンプルカップ22に載せ、測定ボタン41をクリックすると、分析ユニット2での測定動作が開始される。測定結果は、表示画面40の風味指数表示領域44における香り表示欄、味表示欄、鮮度表示欄および緑度表示欄に、それぞれ0~100までの評価値で表示される。また、風味指数表示領域44の隣には蛍光スペクトル表示領域50が配置されている。この蛍光スペクトル表示領域50には、測定結果であるソバ粉の蛍光スペクトルが表示される。また、風味評価に用いるために設定した4種類の第1~第4波長の表示欄、測定された各波長の蛍光量の表示欄も配置されている。図においては、第1~第4波長の表示欄に、それぞれ、500nm(第1波長)、640nm(第2波長)、685nm(第3波長)および740nm(第4波長)が表示されており、各波長の蛍光量の表示欄にも測定値が表示されている。 FIG. 2B is an explanatory diagram showing an example of a display image of the display screen 40 of the display output unit 34. A measurement button 41 is displayed on the display screen 40, and a message for operation guidance such as "Please set a sample and press" measurement "" is displayed in the display field 42 at a position near the measurement button 41. When the buckwheat flour as a sample is placed on the buckwheat flour sample cup 22 of the analysis unit 2 and the measurement button 41 is clicked, the measurement operation in the analysis unit 2 is started. The measurement result is displayed as an evaluation value from 0 to 100 in the scent display column, the taste display column, the freshness display column, and the greenness display column in the flavor index display area 44 of the display screen 40, respectively. Further, a fluorescence spectrum display region 50 is arranged next to the flavor index display region 44. In the fluorescence spectrum display region 50, the fluorescence spectrum of buckwheat flour, which is the measurement result, is displayed. In addition, four types of display columns for the first to fourth wavelengths set for use in flavor evaluation and display columns for the measured fluorescence amount of each wavelength are also arranged. In the figure, 500 nm (first wavelength), 640 nm (second wavelength), 685 nm (third wavelength), and 740 nm (fourth wavelength) are displayed in the display columns of the first to fourth wavelengths, respectively. The measured value is also displayed in the display column of the amount of fluorescence of each wavelength.

図3(A)はソバ粉の蛍光スペクトルの一例を示すグラフであり、図3(B)は風味の4指標の算出に用いる計算式を示す一覧表である。図2および図3を参照して、ソバ粉の風味評価装置1において行われる分光指数法によるソバ粉の風味評価手順を説明する。 FIG. 3A is a graph showing an example of the fluorescence spectrum of buckwheat flour, and FIG. 3B is a table showing a calculation formula used for calculating the four indicators of flavor. The procedure for evaluating the flavor of buckwheat flour by the spectroscopic index method performed in the buckwheat flour flavor evaluation device 1 will be described with reference to FIGS. 2 and 3.

制御部31の抽出部36においては、ソバ粉から得られる励起蛍光の分光分析結果に基づき、予め定めた第1~第4波長の蛍光量の測定値を抽出する。抽出部36では、第1波長帯域である500nmから550nmに含まれる第1波長、本例では500nmの蛍光量である第1測定値Aを抽出する。また、第2波長帯域である波長640nm~650nmに含まれる第2波長、本例では640nmの蛍光量である第2測定値Bを抽出する。さらに、PSII由来の第3波長(波長685nm)の蛍光量である第3測定値C、およびPSI由来の第4波長(波長740nm)の蛍光量である第4測定値Dを抽出する。 The extraction unit 36 of the control unit 31 extracts a predetermined measured value of the fluorescence amount of the first to fourth wavelengths based on the spectroscopic analysis result of the excitation fluorescence obtained from the buckwheat flour. The extraction unit 36 extracts the first measured value A, which is the fluorescence amount of the first wavelength included in the first wavelength band of 500 nm to 550 nm, in this example, 500 nm. Further, the second measured value B, which is the fluorescence amount of the second wavelength included in the wavelength 640 nm to 650 nm, which is the second wavelength band, and 640 nm in this example, is extracted. Further, the third measured value C, which is the fluorescence amount of the third wavelength (wavelength 685 nm) derived from PSI, and the fourth measured value D, which is the fluorescence amount of the fourth wavelength (wavelength 740 nm) derived from PSI, are extracted.

算出部37においては、第1~第4測定値A~Dから、ソバ粉の風味の評価に用いる複数の分光指数を算出する。本例では、640nmの蛍光量である第2測定値Bを正規化するための基準値として用いて、第1測定値Aと第2測定値Bとの差を正規化した第1分光指数Y、第4測定値Dと第2測定値Bとの差を正規化した第2分光指数Xを算出する。また、第4測定値Dを正規化のための基準値として用いて、第3測定値Cと第4測定値Dとの差を正規化した第3分光指数Vを算出する。
Y=(A-B)/(A+B)
X=(D-B)/(D+B)
V=(C-D)/(C+D)
In the calculation unit 37, a plurality of spectral indexes used for evaluating the flavor of buckwheat flour are calculated from the first to fourth measured values A to D. In this example, the first spectral index Y that normalizes the difference between the first measured value A and the second measured value B is used as a reference value for normalizing the second measured value B, which is a fluorescence amount of 640 nm. , The second spectral index X is calculated by normalizing the difference between the fourth measured value D and the second measured value B. Further, the third spectral index V is calculated by normalizing the difference between the third measured value C and the fourth measured value D by using the fourth measured value D as a reference value for normalization.
Y = (AB) / (A + B)
X = (DB) / (D + B)
V = (CD) / (C + D)

推定・評価部38においては、算出された分光指数X、Y、Vを用いて、ソバ粉の香りの良さ、味の良さ、鮮度および緑度の評価値を算出する。 The estimation / evaluation unit 38 uses the calculated spectral indices X, Y, and V to calculate the evaluation values of the aroma, taste, freshness, and greenness of buckwheat flour.

(香りの良さの評価)
まず、香りの良さを評価するために、推定・評価部38では、第1分光指数Yと第2分光指数Xとの相乗平均Zを取り、これを、ソバ粉に含まれる脂質含有量の推定値とする。算出された相乗平均Zを0~100の範囲で変化する評価指数に換算し、これを香り評価値として出力する。
Z=(X・Y)1/2
(Evaluation of good fragrance)
First, in order to evaluate the goodness of fragrance, the estimation / evaluation unit 38 takes a geometric mean Z of the first spectral index Y and the second spectral index X, and estimates the lipid content contained in buckwheat flour. Use as a value. The calculated geometric mean Z is converted into an evaluation index that changes in the range of 0 to 100, and this is output as a scent evaluation value.
Z = (XY) 1/2

香りの良さの評価指数として、正規化した第1分光指数Yおよび第2分光指数Xの相乗平均Zを用いることについて説明する。
先に述べたように、ソバ粉には香りの元となる脂質が含まれているが、極めて微量であり、これを直接測ることが困難である。本発明者は、ソバの種子に含まれている脂質にはリン脂質と糖脂質とがあり、リン脂質はその殆どが細胞膜、核、微小器官の内部に存在し、糖脂質はその殆どが葉緑体の内部に存在することに着目した。
It will be described that the geometric mean Z of the normalized first spectral index Y and the second spectral index X is used as the evaluation index of the goodness of fragrance.
As mentioned earlier, buckwheat flour contains lipids that are the source of aroma, but the amount is extremely small and it is difficult to measure this directly. According to the present inventor, the lipids contained in buckwheat seeds include phospholipids and glycolipids, most of which are present inside cell membranes, nuclei, and microorgans, and most of glycolipids are leaves. We focused on the fact that it exists inside the green body.

リン脂質が含まれている細胞膜等のタンパク質含有量は、励磁蛍光におけるタンパク質由来の蛍光量(500nmから550nmの波長帯域に含まれる第1波長の蛍光量)から推定可能である。本発明者は、タンパク質含有量の増減に応じてリン脂質含有量も増減し、蛍光量から推定したタンパク質含有量を用いて、間接的にリン脂質含有量を推定できると仮定した。この点を検証するために、ソバ粉のタンパク質含有量とリン含有量との関係を調べたところ、これらの間には有意の相関があることが確認された。 The protein content of cell membranes and the like containing phospholipids can be estimated from the amount of protein-derived fluorescence in excitation fluorescence (the amount of fluorescence of the first wavelength contained in the wavelength band of 500 nm to 550 nm). The present inventor assumed that the phospholipid content also increases or decreases as the protein content increases or decreases, and that the phospholipid content can be indirectly estimated using the protein content estimated from the fluorescence amount. In order to verify this point, the relationship between the protein content and the phosphorus content of buckwheat flour was investigated, and it was confirmed that there was a significant correlation between them.

図4は、測定により得られたソバ粉(末粉)のタンパク質含有量とリン脂質含有量との関係を示すグラフである。このグラフから、分光分析に基づき推定したタンパク質含有量に基づき、香り成分であるリン脂質含有量を推定可能なことが示された。本例では、分光指数法により、タンパク質由来の第1波長(波長500nm)の蛍光量と第2波長(波長640nm)との差に基づき、ソバ粉のリン脂質の含有量を推定している。 FIG. 4 is a graph showing the relationship between the protein content and the phospholipid content of the buckwheat flour (powder powder) obtained by the measurement. From this graph, it was shown that the phospholipid content, which is a fragrance component, can be estimated based on the protein content estimated based on the spectroscopic analysis. In this example, the content of phospholipids in buckwheat flour is estimated based on the difference between the fluorescence amount of the first wavelength (wavelength 500 nm) derived from the protein and the second wavelength (wavelength 640 nm) derived from the protein by the spectroscopic index method.

一方、植物や藻類の葉緑体では、葉緑体の膜脂質の90%が糖脂質であることが知られている。また、糖脂質が含まれている葉緑体については、葉緑体が多いと葉緑体由来の蛍光量も多くなり、光合成の活性の程度を示す685nm波長のPSII由来の蛍光量あるいは740nm波長のPSI由来の蛍光量も多くなる。本発明者は、PSII由来の波長685nmの蛍光量あるいはPSI由来の波長740nmの蛍光量の増減に応じて葉緑体に含まれる糖脂質含有量も増減し、PSII由来あるいはPSI由来の蛍光量に基づき、間接的に糖脂質含油量を推定できるとの知見を得た。これに基づき、本例では、分光指数法により、PSI由来の第4波長(波長740nm)の蛍光量である第4測定値Dと基準値である640nmの蛍光量である第2測定値Bとの差に基づき、リン脂質含有量を推定している。 On the other hand, in the chloroplasts of plants and algae, it is known that 90% of the membrane lipids of the chloroplasts are glycolipids. As for chloroplasts containing glycolipids, the more chloroplasts there are, the greater the amount of fluorescence derived from chloroplasts, and the amount of fluorescence derived from PSII at 685 nm wavelength or 740 nm wavelength, which indicates the degree of photosynthetic activity. The amount of fluorescence derived from PSI is also increased. The present inventor also increases or decreases the glycolipid content in the chloroplast according to the increase or decrease in the fluorescence amount at a wavelength of 685 nm derived from PSII or the fluorescence amount at a wavelength of 740 nm derived from PSI, resulting in the fluorescence amount derived from PSI or PSI. Based on this, it was found that the glycolipid oil content can be estimated indirectly. Based on this, in this example, the fourth measured value D, which is the fluorescence amount of the fourth wavelength (wavelength 740 nm) derived from PSI, and the second measured value B, which is the fluorescence amount of 640 nm, which is the reference value, are obtained by the spectroscopic index method. The phospholipid content is estimated based on the difference between the two.

このようにして推定したリン脂質含有量および糖脂質含有量の相乗平均を取り、これを用いて香りの良さを示す香り評価値を算出している。本発明者等の検証実験によれば、得られた評価値は、ソバ粉の脂質含有量に基づき評価される香りの良さを反映するものであることが確認された。 The geometric mean of the phospholipid content and the glycolipid content estimated in this way is taken, and the fragrance evaluation value indicating the goodness of the fragrance is calculated using this geometric mean. According to the verification experiment of the present inventors, it was confirmed that the obtained evaluation value reflects the goodness of the fragrance evaluated based on the lipid content of the buckwheat flour.

ここで、香りの評価において使用する第1分光指数Y、第2分光指数Xの算出に用いる第1波長と第2波長の組み合わせ、第2波長と第4波長の組み合わせは、それぞれ、目的変数であるリン脂質含有量、糖脂質含有量のそれぞれとの間で適切な相関関係が得られるように、適切に選定することができる。 Here, the combination of the first wavelength and the second wavelength used for calculating the first spectral index Y and the second spectral index X used in the evaluation of the fragrance, and the combination of the second wavelength and the fourth wavelength are the objective variables, respectively. It can be appropriately selected so that an appropriate correlation can be obtained with each of a certain phospholipid content and glycolipid content.

なお、糖脂質含有量の推定に用いる第2分光指数Xの算出のために、第2波長(640nm)の蛍光量である第2測定値Bと、第3波長(685nm)の蛍光量である第3測定値Cとを採用し、次のようにして算出した分光指数を第2分光指数X´として用いることも可能である。
X´=(C-B)/(C+B)
In order to calculate the second spectral index X used for estimating the glycolipid content, the second measured value B, which is the fluorescence amount of the second wavelength (640 nm), and the fluorescence amount of the third wavelength (685 nm). It is also possible to adopt the third measured value C and use the spectral index calculated as follows as the second spectral index X'.
X'= (CB) / (C + B)

(味の良さの評価)
味の良さの評価は、ソバ粉のタンパク質含有量に基づき評価できる。タンパク質由来の第1波長帯域である500nmから550nmに含まれる第1波長、本例では500nmの蛍光量である第1測定値Aと、正規化のための第2波長帯域である波長640nm~650nmに含まれる第2波長、本例では640nmの蛍光量である第2測定値Bとの差を正規化した値である第1分光指数Yに基づき行う。
(Evaluation of good taste)
The good taste can be evaluated based on the protein content of buckwheat flour. The first wavelength included in the first wavelength band derived from the protein, 500 nm to 550 nm, the first measured value A, which is the fluorescence amount of 500 nm in this example, and the second wavelength band for normalization, 640 nm to 650 nm. This is performed based on the first spectral index Y, which is a normalized value of the difference from the second measured value B, which is the fluorescence amount of the second wavelength contained in, 640 nm in this example.

味の良さの評価において使用する第1分光指数Yの算出に用いる第1、第2波長の組み合わせは、本例では、香りの評価に用いた第1、第2波長の組み合わせと同一であるが、異なる波長の組み合わせとすることも可能である。いずれの場合においても、目的変数であるタンパク質含有量との間で適切な相関関係が得られるように選定すればよい。 In this example, the combination of the first and second wavelengths used for calculating the first spectral index Y used in the evaluation of good taste is the same as the combination of the first and second wavelengths used in the evaluation of aroma. , It is also possible to combine different wavelengths. In any case, the selection may be made so that an appropriate correlation can be obtained with the protein content, which is the objective variable.

(鮮度の評価)
鮮度の評価は、葉緑体における光合成の活性の程度を示すPSI由来の740nm波長の蛍光量である第4測定値Dに基づき行っている。
(Evaluation of freshness)
The freshness is evaluated based on the fourth measured value D, which is the amount of fluorescence at the 740 nm wavelength derived from PSI, which indicates the degree of photosynthetic activity in the chloroplast.

図5に示すように、ソバにおいて光酸素化酸化障害が生じると、灰色のラインL2で示す励磁蛍光スペクトルが黒色のラインL1で示すように変化し、PSI由来の740nm波長の蛍光量が他の波長成分に比べて大きく低下する。このPSI由来の蛍光量の低下に程度に基づき、ソバ粉の鮮度を評価できる。本例では、PSI由来の蛍光量である740nm波長の蛍光量である第4測定値Dと640nm波長の第2測定値Bとの差を正規化した値である第2分光指数Xに基づき、ソバ粉の鮮度を評価している。 As shown in FIG. 5, when photooxygenation oxidation failure occurs in buckwheat, the excitation fluorescence spectrum shown by the gray line L2 changes as shown by the black line L1, and the fluorescence amount at the 740 nm wavelength derived from PSI changes to the other. It is greatly reduced compared to the wavelength component. The freshness of buckwheat flour can be evaluated based on the degree of decrease in the amount of fluorescence derived from PSI. In this example, based on the second spectral index X, which is a normalized value of the difference between the fourth measured value D, which is the fluorescence amount of 740 nm wavelength, which is the fluorescence amount derived from PSI, and the second measured value B, which is the second measured value B of 640 nm wavelength. We are evaluating the freshness of buckwheat flour.

使用する第2分光指数Xについても、2つの波長を、目的変数との間で適切な相関関係が得られるように、選定することができる。例えば、第2分光指数Xの算出のために、第2波長(640nm)の蛍光量である第2測定値Bと、第3波長(685nm)の蛍光量である第3測定値Cとを採用して算出した分光指数X´{=(C-B)/(C+B)}を用いることも可能である。 For the second spectral index X to be used, the two wavelengths can also be selected so that an appropriate correlation can be obtained with the objective variable. For example, in order to calculate the second spectral index X, the second measured value B, which is the fluorescence amount of the second wavelength (640 nm), and the third measured value C, which is the fluorescence amount of the third wavelength (685 nm), are adopted. It is also possible to use the spectral index X'{= (CB) / (C + B)} calculated in the above.

(緑度の評価指数)
次に、緑度はソバ粉のクロロフィル含有量に基づき評価できる。クロロフィル含有量は、PSII由来の第3波長(685nm)の蛍光量である第3測定値Cと、PSI由来の第4波長(740nm)の蛍光量である第4測定値Dとの差に対して、負の相関がある。本例では、第4測定値Dを正規化のための基準値として用いて、第3測定値Cと第4測定値Dとの差を正規化した第3分光指数Vを算出し、算出した分光指数Vを用いて、(1-V)の値Wを算出し、これを0~100の範囲で変化する評価指数に換算し、緑度の評価値として出力している。
W=1-V=1-{(C-D)/(C+D)}
(Evaluation index of greenness)
Next, the greenness can be evaluated based on the chlorophyll content of buckwheat flour. The chlorophyll content is the difference between the third measured value C, which is the fluorescence amount of the third wavelength (685 nm) derived from PSI, and the fourth measured value D, which is the fluorescence amount of the fourth wavelength (740 nm) derived from PSI. And there is a negative correlation. In this example, the third spectral index V obtained by normalizing the difference between the third measured value C and the fourth measured value D is calculated and calculated using the fourth measured value D as the reference value for normalization. Using the spectral index V, the value W of (1-V) is calculated, converted into an evaluation index that changes in the range of 0 to 100, and output as an evaluation value of greenness.
W = 1-V = 1-{(CD) / (C + D)}

図6に示す一覧表には、クロロフィル含有量推定のための分光指数Vの算出に用いる第1、第2波長Wi、Wjの組み合わせから算出した正規化分光指数と、クロロフィル含有量との間の相関係数を示してある。685nm及びその近辺の波長と740nm及びその近辺の波長とを用いて算出した正規化分光指数と、クロロフィル含有量との間の相関が高い。最も適切な相関関係が得られる2つの波長の蛍光量を用いることで、精度良くクロロフィル含有量を推定でき、これに基づき、ソバ粉の緑度を適切に評価できる。 In the list shown in FIG. 6, between the normalized spectral index calculated from the combination of the first and second wavelengths Wi and Wj used for calculating the spectral index V for estimating the chlorophyll content, and the chlorophyll content. The correlation coefficient is shown. There is a high correlation between the normalized spectroscopic index calculated using wavelengths at and around 685 nm and wavelengths near and around 740 nm and the chlorophyll content. By using the fluorescence amounts of the two wavelengths at which the most appropriate correlation can be obtained, the chlorophyll content can be estimated accurately, and based on this, the greenness of buckwheat flour can be appropriately evaluated.

本例では、鮮度の評価を、第2分光指数Xに基づき行っている。この代わりに、本例において緑度を評価するために用いた値W[=1-{(C-D)/(C+D)}]を使用し、この値Wと鮮度の評価値との間の予め設定した相関に基づき、算出された値Wから鮮度の評価値を求めてもよい。
また、緑度の評価を、第2波長(640nm)の蛍光量である第2測定値Bと、第3波長(685nm)の蛍光量である第3測定値Cとを採用して算出した分光指数X´{=(C-B)/(C+B)}に基づき行ってもよい。この場合は、分光指数X´と緑度の評価値との間の予め設定した相関に基づき、算出された分光指数X´の値から、緑度の評価値が求められる。
In this example, the freshness is evaluated based on the second spectral index X. Instead, the value W [= 1-{(CD) / (C + D)}] used to evaluate the greenness in this example is used, and between this value W and the evaluation value of freshness. An evaluation value of freshness may be obtained from the calculated value W based on a preset correlation.
Further, the evaluation of greenness is spectroscopically calculated by using the second measured value B, which is the fluorescence amount of the second wavelength (640 nm), and the third measured value C, which is the fluorescence amount of the third wavelength (685 nm). It may be performed based on the index X'{= (CB) / (C + B)}. In this case, the evaluation value of greenness is obtained from the calculated value of the spectral index X'based on the preset correlation between the spectral index X'and the evaluation value of greenness.

(評価対象のソバ粉の種類)
なお、本例の風味評価方法は、各種類のソバ粉の風味評価に用いることができるが、特に、玄そば粒を粉砕して得られる玄ソバ粉の風味評価に適している。これは、玄ソバ粉に比べて、石臼などで製粉された一番粉、二番粉等のソバ粉は、子葉の部分が少なく、胚乳のデンプンが多いので(タンパク質や脂質を多く含む部位が取り除かれているので)、葉緑体の中のPSIの蛍光が出にくいからである。
(Type of buckwheat flour to be evaluated)
The flavor evaluation method of this example can be used for flavor evaluation of each type of buckwheat flour, and is particularly suitable for flavor evaluation of buckwheat flour obtained by crushing buckwheat flour. This is because buckwheat flour such as first flour and second flour milled with a stone mill has less chloroplasts and more starch in the endosperm than brown buckwheat flour. (Because it has been removed), it is difficult for PSI to fluoresce in the chloroplast.

以上説明したように、本発明のソバ粉の風味評価方法および装置では、励起蛍光の分析結果に基づき、選定した波長の蛍光量を用いて、ソバ粉の風味を、香り、味、鮮度および緑度の4指標のそれぞれの評価値を算出している。本発明によれば、今まで一般的には行われていなかった客観的な指標に基づくソバ粉の風味評価を、分光分析結果に基づき算出した評価値に基づき行うことができる。よって、大掛かりな設備を用いることなく、ソバ粉の風味評価を客観的に行う簡便な方法および装置を実現できる。 As described above, in the method and apparatus for evaluating the flavor of buckwheat flour of the present invention, the flavor of buckwheat flour is aroma, taste, freshness and green using the fluorescence amount of the selected wavelength based on the analysis result of excitation fluorescence. The evaluation values of each of the four indicators of degree are calculated. According to the present invention, the flavor evaluation of buckwheat flour based on an objective index, which has not been generally performed until now, can be performed based on the evaluation value calculated based on the spectroscopic analysis result. Therefore, it is possible to realize a simple method and apparatus for objectively evaluating the flavor of buckwheat flour without using large-scale equipment.

1 風味評価装置
2 分析ユニット
3 情報処理ユニット
4 配線ケーブル
21 暗箱
22 ソバ粉サンプルカップ
23 LED
24 ショートパスフィルタ
25 ロングパスフィルタ
26 分光器
27 演算処理部
28 入出力端子部
31 制御部
32 記憶部
33 操作入力部
34 表示出力部
35 入出力端子部
36 抽出部
37 算出部
38 推定・評価部
39 表示制御部
40 表示画面
41 測定ボタン
42 表示欄
44 風味指数表示領域
50 蛍光スペクトル表示領域
51~54 測定蛍光強度の表示欄
1 Flavor evaluation device 2 Analysis unit 3 Information processing unit 4 Wiring cable 21 Dark box 22 Buckwheat flour sample cup 23 LED
24 Short pass filter 25 Long pass filter 26 Spectrometer 27 Arithmetic processing unit 28 Input / output terminal unit 31 Control unit 32 Storage unit 33 Operation input unit 34 Display output unit 35 Input / output terminal unit 36 Extraction unit 37 Calculation unit 38 Estimation / evaluation unit 39 Display control unit 40 Display screen 41 Measurement button 42 Display column 44 Flavor index display area 50 Fluorescence spectrum display area 51 to 54 Measurement fluorescence intensity display column

Claims (15)

評価対象のソバ粉から得られる励起蛍光の分光分析に基づき前記ソバ粉の風味を評価するソバ粉の風味評価方法であって、
前記風味の評価指標の一つである香りの良さの評価を、分光指数法により算出した前記ソバ粉の脂質含有量の推定値に基づき行い、
前記分光指数法においては、
500nm~550nmの第1波長帯域に含まれる第1波長の蛍光量を第1測定値、
640nm~650nmの第2波長帯域に含まれる第2波長の蛍光量を第2測定値、
PSII由来の第3波長の蛍光量を第3測定値、および、
PSI由来の第4波長の蛍光量を第4測定値
として算出し、
前記第2測定値を正規化のための基準値として用いて、前記第1測定値と前記第2測定値との差を正規化した第1分光指数、および、前記第3測定値あるいは前記第4測定値と前記第2測定値との差を正規化した第2分光指数を算出し、
前記第1分光指数と前記第2分光指数との相乗平均を算出し、
前記相乗平均を、前記脂質含有量の推定値として用いることを特徴とする励起蛍光分光法によるソバ粉の風味評価方法。
A method for evaluating the flavor of buckwheat flour, which evaluates the flavor of the buckwheat flour based on the spectroscopic analysis of the excitation fluorescence obtained from the buckwheat flour to be evaluated.
The evaluation of the goodness of aroma, which is one of the evaluation indexes of the flavor, was performed based on the estimated value of the lipid content of the buckwheat flour calculated by the spectroscopic index method.
In the spectroscopic index method,
The amount of fluorescence of the first wavelength included in the first wavelength band of 500 nm to 550 nm is the first measured value.
The second measured value is the amount of fluorescence of the second wavelength included in the second wavelength band of 640 nm to 650 nm.
The amount of fluorescence of the third wavelength derived from PSII is the third measured value, and
The amount of fluorescence of the 4th wavelength derived from PSI was calculated as the 4th measured value, and
The first spectral index obtained by normalizing the difference between the first measured value and the second measured value using the second measured value as a reference value for normalization, and the third measured value or the second measured value. 4 Calculate the second spectral index that normalizes the difference between the measured value and the second measured value.
The geometric mean of the first spectral index and the second spectral index is calculated, and the geometric mean is calculated.
A method for evaluating the flavor of buckwheat flour by excitation fluorescence spectroscopy, which comprises using the geometric mean as an estimated value of the lipid content.
前記風味の評価指標の一つである鮮度の評価を、前記第2分光指数に基づき行う
請求項1に記載のソバ粉の風味評価方法。
The method for evaluating the flavor of buckwheat flour according to claim 1, wherein the evaluation of freshness, which is one of the evaluation indexes for flavor, is performed based on the second spectral index.
前記風味の評価指標の一つである味の良さの評価を、前記第1分光指数に基づき行う
請求項1または2に記載のソバ粉の風味評価方法。
The method for evaluating the flavor of buckwheat flour according to claim 1 or 2, wherein the evaluation of good taste, which is one of the evaluation indexes for flavor, is performed based on the first spectral index.
前記風味の評価指標の一つである緑度の評価を、
前記第4測定値を正規化のための基準値として、前記第3測定値と前記第4測定値との差を正規化した第3分光指数を算出し、算出した前記第3分光指数に基づき行う
請求項1、2または3に記載のソバ粉の風味評価方法。
The evaluation of greenness, which is one of the flavor evaluation indexes,
Using the 4th measured value as a reference value for normalization, a 3rd spectroscopic index obtained by normalizing the difference between the 3rd measured value and the 4th measured value was calculated, and based on the calculated 3rd spectroscopic index. The method for evaluating the flavor of buckwheat flour according to claim 1, 2 or 3.
前記第2分光指数として、前記第3測定値と前記第2測定値との差を正規化した第2分光指数を算出し、
前記風味の評価指標の一つである緑度の評価を、前記第2分光指数に基づき行い、
前記第4測定値を正規化のための基準値として、前記第3測定値と前記第4測定値との差を正規化した第3分光指数を算出し、
前記風味の評価指標の一つである鮮度の評価を、前記第3分光指数に基づき行う
請求項1または3に記載のソバ粉の風味評価方法。
As the second spectral index, a second spectral index obtained by normalizing the difference between the third measured value and the second measured value is calculated.
The greenness, which is one of the flavor evaluation indexes, is evaluated based on the second spectral index.
Using the fourth measured value as a reference value for normalization, a third spectral index obtained by normalizing the difference between the third measured value and the fourth measured value was calculated.
The method for evaluating the flavor of buckwheat flour according to claim 1 or 3, wherein the evaluation of freshness, which is one of the evaluation indexes for flavor, is performed based on the third spectral index.
評価対象のソバ粉から得られる励起蛍光の分光分析に基づき前記ソバ粉の風味を評価するソバ粉の風味評価をコンピュータに実行させるソバ粉の風味評価用プログラムであって、
前記ソバ粉から得られる前記励起蛍光の分光分析結果に基づき、予め定めた複数の波長の蛍光量の測定値を抽出する抽出ステップと、
前記測定値から、前記ソバ粉の脂質含有量の推定に用いる複数の分光指数を算出する算出ステップと、
前記分光指数を用いて、前記ソバ粉の脂質含有量を推定する推定ステップと、
推定された前記脂質含有量に基づき、前記ソバ粉の風味評価の指標である香りの評価値を算出する評価ステップと、
を含み、
前記抽出ステップでは、
前記分光分析結果から、500nm~550nmの第1波長帯域に含まれる第1波長の蛍光量である第1測定値と、640nm~650の第2波長帯域に含まれる第2波長の蛍光量である第2測定値と、PSII由来の第3波長の蛍光量である第3測定値と、PSI由来の第4波長の蛍光量である第4測定値とを抽出し、
前記算出ステップでは、
前記第2測定値を正規化ための基準値として用いて、前記第1測定値と前記第2測定値との差を正規化した第1分光指数、および、前記第3測定値あるいは前記第4測定値と前記第2測定値との差を正規化した第2分光指数を算出し、
前記推定ステップでは、
前記第1分光指数と前記第2分光指数との相乗平均を算出し、
前記相乗平均を、前記脂質含有量の推定値として出力することを特徴とするソバ粉の風味評価用プログラム。
This is a program for evaluating the flavor of buckwheat flour, which causes a computer to evaluate the flavor of the buckwheat flour, which evaluates the flavor of the buckwheat flour based on the spectral analysis of the excitation fluorescence obtained from the buckwheat flour to be evaluated.
An extraction step of extracting measured values of fluorescence amounts of a plurality of predetermined wavelengths based on the spectroscopic analysis result of the excitation fluorescence obtained from the buckwheat flour.
A calculation step for calculating a plurality of spectral indices used for estimating the lipid content of the buckwheat flour from the measured values, and
An estimation step for estimating the lipid content of the buckwheat flour using the spectral index, and
An evaluation step for calculating an evaluation value of aroma, which is an index for evaluating the flavor of buckwheat flour, based on the estimated lipid content, and an evaluation step.
Including
In the extraction step,
From the spectroscopic analysis results, it is the first measured value which is the fluorescence amount of the first wavelength included in the first wavelength band of 500 nm to 550 nm and the fluorescence amount of the second wavelength included in the second wavelength band of 640 nm to 650. The second measurement value, the third measurement value which is the fluorescence amount of the third wavelength derived from PSI, and the fourth measurement value which is the fluorescence amount of the fourth wavelength derived from PSI are extracted.
In the calculation step,
The first spectral index obtained by normalizing the difference between the first measured value and the second measured value using the second measured value as a reference value for normalization, and the third measured value or the fourth measured value. A second spectral index was calculated by normalizing the difference between the measured value and the second measured value.
In the estimation step,
The geometric mean of the first spectral index and the second spectral index is calculated, and the geometric mean is calculated.
A program for evaluating the flavor of buckwheat flour, which comprises outputting the geometric mean as an estimated value of the lipid content.
前記評価ステップは、更に、
前記風味評価の指標である鮮度を評価する鮮度評価ステップを含み、
前記鮮度評価ステップでは、前記鮮度の評価を、前記第2分光指数に基づき行う
請求項6に記載のソバ粉の風味評価用プログラム。
The evaluation step further
Including a freshness evaluation step for evaluating freshness, which is an index of flavor evaluation,
The program for evaluating the flavor of buckwheat flour according to claim 6, wherein in the freshness evaluation step, the freshness is evaluated based on the second spectral index.
前記評価ステップは、更に、
前記風味評価の指標である味を評価する味評価ステップを含み、
前記味評価ステップでは、前記味の評価を、前記第1分光指数に基づき行う
請求項6または7に記載のソバ粉の風味評価用プログラム。
The evaluation step further
Including a taste evaluation step for evaluating the taste, which is an index of the flavor evaluation,
The program for evaluating the flavor of buckwheat flour according to claim 6 or 7, wherein in the taste evaluation step, the taste is evaluated based on the first spectral index.
前記評価ステップは、更に、
前記風味評価の指標である緑度を評価する緑度評価ステップを含み、
前記緑度評価ステップでは、
前記第4測定値を正規化のための基準値として用いて、前記第3測定値と前記第4測定値との差を正規化した第3分光指数を算出し、
前記緑度の評価を、前記第3分光指数に基づき行う
請求項6、7または8に記載のソバ粉の風味評価用プログラム。
The evaluation step further
The greenness evaluation step for evaluating the greenness which is an index of the flavor evaluation is included.
In the greenness evaluation step,
Using the 4th measured value as a reference value for normalization, a 3rd spectral index obtained by normalizing the difference between the 3rd measured value and the 4th measured value was calculated.
The program for evaluating the flavor of buckwheat flour according to claim 6, 7 or 8, wherein the greenness is evaluated based on the third spectral index.
前記風味の評価指標の一つである緑度を評価する緑度評価ステップおよび前記風味の評価指標の一つである鮮度を評価する鮮度評価ステップを含み、
前記緑度評価ステップでは、
前記第2分光指数として、前記第3測定値と前記第2測定値との差を正規化した第2分光指数を算出し、
前記緑度の評価を、前記第2分光指数に基づき行い、
前記鮮度評価ステップでは、
前記第4測定値を正規化のための基準値として、前記第3測定値と前記第4測定値との差を正規化した第3分光指数を算出し、
前記鮮度の評価を、前記第3分光指数に基づき行う
請求項6または8に記載のソバ粉の風味評価用プログラム。
It includes a greenness evaluation step for evaluating greenness, which is one of the flavor evaluation indexes, and a freshness evaluation step for evaluating freshness, which is one of the flavor evaluation indexes.
In the greenness evaluation step,
As the second spectral index, a second spectral index obtained by normalizing the difference between the third measured value and the second measured value is calculated.
The greenness was evaluated based on the second spectral index.
In the freshness evaluation step,
Using the fourth measured value as a reference value for normalization, a third spectral index obtained by normalizing the difference between the third measured value and the fourth measured value was calculated.
The program for evaluating the flavor of buckwheat flour according to claim 6 or 8, wherein the freshness is evaluated based on the third spectral index.
評価対象のソバ粉から得られる励起蛍光の分光分析に基づき前記ソバ粉の風味を評価するソバ粉の風味評価装置であって、
評価対象のソバ粉を載せる試料載置部と、
前記試料載置部に載せた前記ソバ粉に励起光を照射する励起光照射部と、
前記試料載置部に載せた前記ソバ粉から発生する励起蛍光の分光分析を行う分光器と、
前記分光器による分光分析結果に基づき前記ソバ粉の風味評価を行う制御部と、
前記制御部において算出された風味評価結果を出力する表示出力部と、
を備えており、
前記制御部は、
前記ソバ粉から得られる前記励起蛍光の分光分析結果に基づき、予め定めた複数の波長の蛍光量の測定値を抽出する抽出部と、
前記測定値から、前記ソバ粉の脂質含有量の推定に用いる複数の分光指数を算出する算出部と、
前記分光指数を用いて、前記ソバ粉の脂質含有量を推定する推定部と、
推定された前記脂質含有量に基づき、前記ソバ粉の風味評価の指標である香りの評価値を算出する評価部と、
を含み、
前記抽出部では、
前記分光分析結果から、500nm~550nmの第1波長帯域に含まれる第1波長の蛍光量である第1測定値と、640nm~650nmの第2波長帯域に含まれる第2波長の蛍光量である第2測定値と、PSII由来の第3波長の蛍光量である第3測定値と、PSI由来の第4波長の蛍光量である第4測定値とを抽出し、
前記算出部では、
前記第2測定値を正規化ための基準値として用いて、前記第1測定値と前記第2測定値との差を正規化した第1分光指数、および、前記第3測定値あるいは前記第4測定値と前記第2測定値との差を正規化した第2分光指数を算出し、
前記推定部では、
前記第1分光指数と前記第2分光指数との相乗平均を算出し、
前記相乗平均を、前記脂質含有量の推定値として出力することを特徴とするソバ粉の風味評価装置。
A buckwheat flavor evaluation device that evaluates the flavor of the buckwheat flour based on the spectral analysis of the excitation fluorescence obtained from the buckwheat flour to be evaluated.
The sample placement part on which the buckwheat flour to be evaluated is placed, and
An excitation light irradiation unit that irradiates the buckwheat flour placed on the sample placement unit with excitation light,
A spectroscope that performs spectroscopic analysis of the excitation fluorescence generated from the buckwheat flour placed on the sample placing portion, and
A control unit that evaluates the flavor of buckwheat flour based on the results of spectroscopic analysis by the spectroscope, and
A display output unit that outputs the flavor evaluation result calculated by the control unit, and
Equipped with
The control unit
An extraction unit that extracts measured values of fluorescence amounts at a plurality of predetermined wavelengths based on the spectroscopic analysis results of the excitation fluorescence obtained from the buckwheat flour.
A calculation unit that calculates a plurality of spectral indices used for estimating the lipid content of the buckwheat flour from the measured values, and
An estimation unit that estimates the lipid content of the buckwheat flour using the spectral index, and
Based on the estimated lipid content, an evaluation unit that calculates an evaluation value of aroma, which is an index for evaluating the flavor of buckwheat flour, and an evaluation unit.
Including
In the extraction unit,
From the spectroscopic analysis results, it is the first measured value which is the fluorescence amount of the first wavelength included in the first wavelength band of 500 nm to 550 nm and the fluorescence amount of the second wavelength included in the second wavelength band of 640 nm to 650 nm. The second measurement value, the third measurement value which is the fluorescence amount of the third wavelength derived from PSI, and the fourth measurement value which is the fluorescence amount of the fourth wavelength derived from PSI are extracted.
In the calculation unit,
The first spectral index obtained by normalizing the difference between the first measured value and the second measured value using the second measured value as a reference value for normalization, and the third measured value or the fourth measured value. A second spectral index was calculated by normalizing the difference between the measured value and the second measured value.
In the estimation unit,
The geometric mean of the first spectral index and the second spectral index is calculated, and the geometric mean is calculated.
An apparatus for evaluating the flavor of buckwheat flour, which outputs the geometric mean as an estimated value of the lipid content.
前記評価部は、更に、前記風味評価の指標である鮮度を評価する鮮度評価部を含み、
前記鮮度評価部は、前記鮮度の評価を、前記第2分光指数に基づき行う
請求項11に記載のソバ粉の風味評価装置。
The evaluation unit further includes a freshness evaluation unit that evaluates freshness, which is an index for flavor evaluation.
The flavor evaluation device for buckwheat flour according to claim 11, wherein the freshness evaluation unit evaluates the freshness based on the second spectral index.
前記評価部は、更に、前記風味評価の指標である味を評価する味評価部を含み、
前記味評価部は、前記味の評価を、前記第1分光指数に基づき行う
請求項11または12に記載のソバ粉の風味評価装置。
The evaluation unit further includes a taste evaluation unit that evaluates the taste that is an index of the flavor evaluation.
The flavor evaluation device for buckwheat flour according to claim 11 or 12, wherein the taste evaluation unit evaluates the taste based on the first spectral index.
前記評価部は、更に、前記風味評価の指標である緑度を評価する緑度評価部を含み、
前記算出部は、前記第4測定値を正規化のための基準値として用いて、前記第3測定値と前記第4測定値との差を正規化した第3分光指数を算出し、
前記緑度評価部は、前記緑度の評価を、前記第3分光指数に基づき行う
請求項11、12または13に記載のソバ粉の風味評価装置。
The evaluation unit further includes a greenness evaluation unit that evaluates greenness, which is an index for flavor evaluation.
The calculation unit uses the fourth measured value as a reference value for normalization, and calculates a third spectral index in which the difference between the third measured value and the fourth measured value is normalized.
The buckwheat flour flavor evaluation device according to claim 11, 12 or 13, wherein the greenness evaluation unit evaluates the greenness based on the third spectral index.
前記評価部は、更に、前記風味評価の指標である緑度および鮮度をそれぞれ評価する緑度評価部および鮮度評価部を含み、
前記算出部は、
前記第2分光指数として、前記第3測定値と前記第2測定値との差を正規化した第2分光指数の算出、および、前記第4測定値を正規化のための基準値として、前記第3測定値と前記第4測定値との差を正規化した第3分光指数の算出を行い、
前記緑度評価部は、前記緑度の評価を、前記第2分光指数に基づき行い、
前記鮮度評価部は、前記鮮度の評価を、前記第3分光指数に基づき行う
請求項11または13に記載のソバ粉の風味評価装置。
The evaluation unit further includes a greenness evaluation unit and a freshness evaluation unit that evaluate greenness and freshness, which are indicators of flavor evaluation, respectively.
The calculation unit
As the second spectral index, the calculation of the second spectral index in which the difference between the third measured value and the second measured value is normalized, and the fourth measured value as a reference value for normalization are used as the reference value. The third spectral index was calculated by normalizing the difference between the third measured value and the fourth measured value.
The greenness evaluation unit evaluates the greenness based on the second spectral index.
The flavor evaluation device for buckwheat flour according to claim 11 or 13, wherein the freshness evaluation unit evaluates the freshness based on the third spectral index.
JP2022037569A 2022-03-10 2022-03-10 Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device Active JP7088479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022037569A JP7088479B1 (en) 2022-03-10 2022-03-10 Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022037569A JP7088479B1 (en) 2022-03-10 2022-03-10 Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device

Publications (2)

Publication Number Publication Date
JP7088479B1 true JP7088479B1 (en) 2022-06-21
JP2023132323A JP2023132323A (en) 2023-09-22

Family

ID=82100045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037569A Active JP7088479B1 (en) 2022-03-10 2022-03-10 Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device

Country Status (1)

Country Link
JP (1) JP7088479B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291444A (en) * 2001-03-29 2002-10-08 Tohoku Techno Arch Co Ltd Substance adsorbing active oxygen and emitting light by elimination of active oxygen
JP2018036150A (en) * 2016-08-31 2018-03-08 国立大学法人信州大学 Quality evaluation method, quality evaluation device and quality evaluation selection system for buckwheat
JP2020003423A (en) * 2018-06-29 2020-01-09 インダストリーネットワーク株式会社 System for evaluating quality of seed and selecting seeds
JP2021173672A (en) * 2020-04-27 2021-11-01 熊本製粉株式会社 Method for evaluating noodles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291444A (en) * 2001-03-29 2002-10-08 Tohoku Techno Arch Co Ltd Substance adsorbing active oxygen and emitting light by elimination of active oxygen
JP2018036150A (en) * 2016-08-31 2018-03-08 国立大学法人信州大学 Quality evaluation method, quality evaluation device and quality evaluation selection system for buckwheat
JP2020003423A (en) * 2018-06-29 2020-01-09 インダストリーネットワーク株式会社 System for evaluating quality of seed and selecting seeds
JP2021173672A (en) * 2020-04-27 2021-11-01 熊本製粉株式会社 Method for evaluating noodles

Also Published As

Publication number Publication date
JP2023132323A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
Li et al. Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils
US10458908B2 (en) System and method for qualifying plant material
Guzmán et al. Evaluation of the overall quality of olive oil using fluorescence spectroscopy
Abu-Khalaf et al. Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality
JP5574246B2 (en) Non-invasive measurement of carotenoids in biological tissues
Gupta et al. Portable Raman leaf-clip sensor for rapid detection of plant stress
US20180052144A1 (en) Method And Technique For Verification Of Olive Oil Composition
US20050250213A1 (en) FT-NIR fatty acid determination method
EP2376897B1 (en) Method for diagnosis of stresses and diseases in higher plants
Choi et al. Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears
EP1965193A1 (en) Method for determining the alcohol content of fluids
CN105380609A (en) Multi-spectrum based skin detection method and system
US10119905B2 (en) Verification of olive oil composition
Barboza da Silva et al. Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality
Strehle et al. On the way to a quality control of the essential oil of fennel by means of Raman spectroscopy
US7288768B2 (en) Method for measuring the amount of an organic substance in a food product with infrared electromagnetic radiation
Violino et al. AI-based hyperspectral and VOCs assessment approach to identify adulterated extra virgin olive oil
WO2017094188A1 (en) Skin glycation inspection device, skin glycation inspection device system, and skin glycation inspection method
Sun et al. Non-destructive detection of blackheart and soluble solids content of intact pear by online NIR spectroscopy
JP7088479B1 (en) Flavor evaluation method of buckwheat flour, program for flavor evaluation and flavor evaluation device
Bodor et al. Application of near infrared spectroscopy and classical analytical methods for the evaluation of Hungarian honey
Elfadl et al. Development of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
Yildiz et al. Monitoring PV in corn and soybean oils by NIR spectroscopy
Yamamoto et al. Subsurface sensing of biomedical tissues using a miniaturized Raman probe: study of thin-layered model samples
Ning et al. Study on apple damage detecting method based on relaxation single-wavelength laser and convolutional neural network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7088479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150