JP7087409B2 - Vinyl chloride-vinyl acetate copolymer resin and automobile underbody coating agent - Google Patents

Vinyl chloride-vinyl acetate copolymer resin and automobile underbody coating agent Download PDF

Info

Publication number
JP7087409B2
JP7087409B2 JP2018011948A JP2018011948A JP7087409B2 JP 7087409 B2 JP7087409 B2 JP 7087409B2 JP 2018011948 A JP2018011948 A JP 2018011948A JP 2018011948 A JP2018011948 A JP 2018011948A JP 7087409 B2 JP7087409 B2 JP 7087409B2
Authority
JP
Japan
Prior art keywords
vinyl acetate
vinyl chloride
polymerization
weight
acetate copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018011948A
Other languages
Japanese (ja)
Other versions
JP2018203982A (en
Inventor
和徳 渡邉
勇太 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2018203982A publication Critical patent/JP2018203982A/en
Application granted granted Critical
Publication of JP7087409B2 publication Critical patent/JP7087409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、塩化ビニル-酢酸ビニル共重合体樹脂及びその用途に関するものであり、さらに詳細には、コート剤、特に自動車アンダーボディコート用、自動車シーラント用として有用な塩化ビニル-酢酸ビニル共重合体樹脂及びその用途に関するものである。 The present invention relates to a vinyl chloride-vinyl acetate copolymer resin and its use, and more particularly, a vinyl chloride-vinyl acetate copolymer useful for a coating agent, particularly an automobile underbody coat and an automobile sealant. It relates to resins and their uses.

ペースト加工用塩化ビニル系樹脂(以下、ペースト塩ビと略記する場合もある。)は、一般に可塑剤、充填剤、安定剤又はその他の配合剤などと共に混練することにより、ペースト塩ビゾルを調製し、該ペースト塩ビゾルを使用し種々の成形加工法により壁紙、タイルカーペット、手袋などの様々な成形加工品に用いられている。また、加工温度の低い用途用として、比較的低温でも機械的強度が得られるゲル化溶融性に優れた特性を持つペースト塩ビとして、塩化ビニルに酢酸ビニルを共重合させた塩化ビニル/酢酸ビニル共重合樹脂が知られており、さらに、ペースト塩ビゾル調製後から加工までの長期の保存安定性に対する対策として、ゾル粘度の経時変化が少ないペースト塩ビが求められている。 A vinyl chloride resin for paste processing (hereinafter, may be abbreviated as paste vinyl chloride) is generally kneaded with a plasticizer, a filler, a stabilizer, or other compounding agent to prepare a paste vinyl chloride resin. The paste PVC sol is used in various molded products such as wallpaper, tile carpet, and gloves by various molding methods. In addition, for applications with low processing temperature, vinyl chloride / vinyl acetate obtained by copolymerizing vinyl acetate with vinyl acetate as a paste vinyl chloride having excellent gelling and meltability properties that can obtain mechanical strength even at a relatively low temperature. Polymerized resins are known, and as a measure for long-term storage stability from preparation of paste vinyl chloride to processing, paste vinyl chloride with little change in sol viscosity with time is required.

ゾル粘度の経時変化の少ないペースト塩ビを製造する方法として、特定の界面活性剤を使用したシードミクロ懸濁重合によるペースト加工用ポリ塩化ビニル樹脂の製造方法が提案されている(例えば特許文献1参照。)。 As a method for producing a paste PVC having a small change in sol viscosity with time, a method for producing a polyvinyl chloride resin for paste processing by seed microsuspension polymerization using a specific surfactant has been proposed (see, for example, Patent Document 1). .).

その他に、ペースト塩ビゾルに特定の化合物を配合するポリ塩化ビニル系樹脂組成物が提案されている(例えば特許文献2参照。)。 In addition, a polyvinyl chloride-based resin composition in which a specific compound is blended with a paste vinyl chloride resin has been proposed (see, for example, Patent Document 2).

特開平06-056915号公報Japanese Unexamined Patent Publication No. 06-056915 特開2010-241977号公報Japanese Unexamined Patent Publication No. 2010-241977

しかし、特許文献1に提案の方法によって得られるペースト塩ビは、ゾル粘度の経時変化に対する厳しい安定性を要求される用途、例えば自動車用アンダーボディコート、自動車用シーラント等の用途に用いる場合には、市場要求を満足できるものではなかった。 However, the paste PVC obtained by the method proposed in Patent Document 1 is used in applications that require strict stability against changes in sol viscosity over time, such as automobile underbody coats and automobile sealants. It did not meet the market demands.

一方、特許文献2に提案の方法においては、粘度の経時変化が比較的少ないペースト塩ビゾルを提供することが可能なものではあるが、ペースト加工用塩化ビニル系樹脂の提供を目的としたものではなく、また長期の粘度安定性については検討されていないものであった。 On the other hand, in the method proposed in Patent Document 2, it is possible to provide a paste vinyl chloride resin having a relatively small change in viscosity with time, but it is not intended to provide a vinyl chloride resin for paste processing. No, and long-term viscosity stability has not been investigated.

そこで、本発明は、ゾル粘度の経時変化が極めて少なく、低温加工による成形体であっても破断伸びに優れ、コート剤、特に自動車アンダーボディコート用、自動車用シーラント用として優れた特性を有する塩化ビニル-酢酸ビニル共重合体樹脂及び自動車アンダーボディコート剤を提供することにある。 Therefore, the present invention has extremely little change in sol viscosity with time, is excellent in breaking elongation even in a molded product by low temperature processing, and has excellent characteristics as a coating agent, particularly for an automobile underbody coat and an automobile sealant. It is an object of the present invention to provide a vinyl-vinyl acetate copolymer resin and an automobile underbody coating agent.

本発明者は、上記の課題について鋭意検討を重ねた結果、酢酸ビニル残基単位含有量が特定の分布、特定の重合度と特定量の平均酢酸ビニル残基単位含有量を有し、特定の平均一次粒子径を有する塩化ビニル-酢酸ビニル共重合体樹脂が、破断伸びに優れ、ゾル粘度の経時変化が極めて少ないペースト塩ビゾルを提供することができることを見出し、本発明を完成させるに至った。 As a result of diligent studies on the above-mentioned problems, the present inventor has a specific distribution, a specific degree of polymerization and a specific amount of average vinyl acetate residue unit content, and a specific vinyl acetate residue unit content. We have found that a vinyl chloride-vinyl acetate copolymer resin having an average primary particle size can provide a paste vinyl chloride sol having excellent elongation at break and extremely little change in sol viscosity with time, and have completed the present invention. ..

即ち、本発明は、酢酸ビニル残基単位含有量が0~50重量%の範囲内で連続分布し、その分布の極大値が1つであり、平均重合度500~3000、平均酢酸ビニル残基単位含有量15重量%を超えて30重量%以下の塩化ビニル-酢酸ビニル共重合体であり、該塩化ビニル-酢酸ビニル共重合体の平均一次粒子径が1~2μmであることを特徴とする塩化ビニル-酢酸ビニル共重体樹脂及びそれよりなる自動車アンダーボディコート剤に関するものである。 That is, in the present invention, the vinyl acetate residue unit content is continuously distributed within the range of 0 to 50% by weight, the maximum value of the distribution is one, the average polymerization degree is 500 to 3000, and the average vinyl acetate residue is. It is a vinyl chloride-vinyl acetate copolymer having a unit content of more than 15% by weight and 30% by weight or less, and the average primary particle size of the vinyl chloride-vinyl acetate copolymer is 1 to 2 μm. It relates to a vinyl chloride-vinyl acetate copolymer resin and an automobile underbody coating agent comprising the same.

以下、本発明に関し詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、一般的に塩化ビニル-酢酸ビニル共重合体の一次粒子の集合体であり、該一次粒子が凝集した粒子形状を有するものであってもよい。そして、該塩化ビニル-酢酸ビニル共重合体樹脂は、酢酸ビニル残基単位含有量が0~50重量%の範囲内で連続分布し、その分布の極大値が1つであり、平均重合度500~3000、平均酢酸ビニル残基単位含有量15重量%を超えて30重量部以下の塩化ビニル-酢酸ビニル共重合体であり、該塩化ビニル-酢酸ビニル共重合体は平均一次粒子径1~2μmを有する粒子である。 The vinyl chloride-vinyl acetate copolymer resin of the present invention is generally an aggregate of primary particles of a vinyl chloride-vinyl acetate copolymer, and may have a particle shape in which the primary particles are aggregated. .. The vinyl chloride-vinyl acetate copolymer resin is continuously distributed in the range of 0 to 50% by weight of vinyl acetate residue unit content, and the maximum value of the distribution is one, and the average degree of polymerization is 500. It is a vinyl chloride-vinyl acetate copolymer having an average vinyl acetate residue unit content of more than 15% by weight and 30 parts by weight or less, and the vinyl chloride-vinyl acetate copolymer has an average primary particle diameter of 1 to 2 μm. It is a particle having.

本発明の塩化ビニル-酢酸ビニル共重合体樹脂を構成する塩化ビニル-酢酸ビニル共重合体は、平均酢酸ビニル残基単位含有量が15重量%を超えて30重量%以下(すなわち、平均酢酸ビニル残基単位含有量は、塩化ビニル-酢酸ビニル共重合体100重量部に対して15重量部を超えて30重量部以下に相当する。)、平均重合度が500~3000のものである。該塩化ビニル-酢酸ビニル共重合体は、酢酸ビニル残基単位含有量が0~50%の範囲内で連続分布し、その分布が1つの極大値を与えるものであり、その平均酢酸ビニル残基単位の含有量が15重量%を超えて30重量%以下を有するものである。 The vinyl chloride-vinyl acetate copolymer constituting the vinyl chloride-vinyl acetate copolymer resin of the present invention has an average vinyl acetate residue unit content of more than 15% by weight and 30% by weight or less (that is, average vinyl acetate). The residue unit content corresponds to more than 15 parts by weight and 30 parts by weight or less with respect to 100 parts by weight of the vinyl chloride-vinyl acetate copolymer), and the average degree of polymerization is 500 to 3000. The vinyl chloride-vinyl acetate copolymer has a vinyl acetate residue unit content continuously distributed within the range of 0 to 50%, and the distribution gives one maximum value, and the average vinyl acetate residue thereof. The unit content is more than 15% by weight and 30% by weight or less.

そして、特に低温加工での破断伸びに優れる成形体を供し、ペースト塩ビゾルとした際の粘度の経時変化が共に極めて優れたものとなり、特に自動車アンダーボディコート用、自動車用シーラント用として優れ、破断伸びにも優れたものとなることから、当該平均酢酸ビニル残基単位含有量は15.5~20重量%(すなわち、平均酢酸ビニル残基単位含有量は、塩化ビニル-酢酸ビニル共重合体100重量部に対して15.5~20重量部に相当する。)であることが好ましい。ここで、平均酢酸ビニル残基単位含有量が15重量%以下のものである場合、塩化ビニル-酢酸ビニル共重合体組成物を低温加工に供した際の成形品は破断伸びの低いものとなるため好ましくない。一方、平均酢酸ビニル残基単位含量が30重量%を超えるものである場合、ゾルとした際の粘度の経時変化が大きいものとなるため好ましくない。 Then, a molded body having excellent break elongation especially in low temperature processing is provided, and the change in viscosity with time when made into a paste vinyl acetate sol is extremely excellent. The average vinyl acetate residue unit content is 15.5 to 20% by weight (that is, the average vinyl acetate residue unit content is vinyl chloride-vinyl acetate copolymer 100) because the elongation is also excellent. It corresponds to 15.5 to 20 parts by weight with respect to parts by weight). Here, when the average vinyl acetate residue unit content is 15% by weight or less, the molded product when the vinyl chloride-vinyl acetate copolymer composition is subjected to low-temperature processing has low breaking elongation. Therefore, it is not preferable. On the other hand, when the average vinyl acetate residue unit content exceeds 30% by weight, the viscosity of the sol changes significantly with time, which is not preferable.

また、該塩化ビニル-酢酸ビニル共重合体の平均重合度は、例えばJIS-K6721に準拠した方法で求めることができ、その平均重合度は500~3000のものである。そして、自動車アンダーボディコート用、自動車用シーラント用として優れたものとなることから、前記平均重合度は1000~2800であることが好ましく、さらに1900~2500であることが好ましい。ここで、平均重合度が、500未満である場合、低温加工での破断伸び及び機械的強度に劣るものとなるため好ましくない。また、ペースト塩ビゾルとした際の粘度の経時変化が大きなものとなる。一方、平均重合度が3000を超える場合、ペースト塩ビゾルとした際の粘度の経時変化は優れたものとなるが、重合時間が長くなるため生産上好ましくない。 The average degree of polymerization of the vinyl chloride-vinyl acetate copolymer can be determined, for example, by a method according to JIS-K6721, and the average degree of polymerization is 500 to 3000. The average degree of polymerization is preferably 1000 to 2800, and more preferably 1900 to 2500, because it is excellent for automobile underbody coats and automobile sealants. Here, when the average degree of polymerization is less than 500, it is not preferable because it is inferior in breaking elongation and mechanical strength in low temperature processing. In addition, the change in viscosity with time when the paste is made into a vinyl chloride solution becomes large. On the other hand, when the average degree of polymerization exceeds 3000, the change in viscosity with time when the paste PVC is used is excellent, but the polymerization time becomes long, which is not preferable in terms of production.

該塩化ビニル-酢酸ビニル共重合体は、酢酸ビニル残基単位含有量が0~50重量%の範囲内で連続分布し、その分布の極大値は1つのものである。中でも、よりペースト塩ビゾルとした際の粘度の経時変化が小さく、優れたものとなることから、酢酸ビニル残基単位含有量が0~45重量%の範囲内で連続分布し、その分布の極大値は1つのものであることが好ましく、特に、酢酸ビニル残基単位含有量が0~40重量%の範囲内で連続分布し、その分布の極大値は1つのものであることが好ましい。その際の酢酸ビニル残基単位含有量の分布測定としては、例えば液体クロマトグラフィーのグラジエント溶出法を用い、蒸発型光散乱検出器により酢酸ビニル残基単位を測定することによる分布測定を挙げることができる。そして、酢酸ビニル残基単位含有量が0~50重量%の範囲内で連続に分布していない場合、例えば50重量%を越えて分散している場合、得られる塩化ビニル-酢酸ビニル共重合体樹脂は加工性に劣るものとなる。また、酢酸ビニル残基単位含有量の分布の極大値が1つでない場合、例えば酢酸ビニル残基単位含有量の分布が0~50重量%の範囲で連続に分布し、その分布が2つの極大値を持つ場合などは、低温加工での破断伸びに劣る塩化ビニル-酢酸ビニル共重合体樹脂となる。 The vinyl chloride-vinyl acetate copolymer is continuously distributed in the range of 0 to 50% by weight of vinyl acetate residue unit content, and the maximum value of the distribution is one. Above all, the change in viscosity with time is small and excellent when the paste is made into a vinyl chloride solution. Therefore, the vinyl acetate residue unit content is continuously distributed within the range of 0 to 45% by weight, and the distribution is maximized. The value is preferably one, and in particular, the vinyl acetate residue unit content is continuously distributed within the range of 0 to 40% by weight, and the maximum value of the distribution is preferably one. As the distribution measurement of the vinyl acetate residue unit content at that time, for example, the distribution measurement by measuring the vinyl acetate residue unit by the evaporative light scattering detector using the gradient elution method of liquid chromatography can be mentioned. can. Then, when the vinyl acetate residue unit content is not continuously distributed in the range of 0 to 50% by weight, for example, when it is dispersed in excess of 50% by weight, the obtained vinyl chloride-vinyl acetate copolymer is obtained. The resin is inferior in processability. When the maximum value of the vinyl acetate residue unit content distribution is not one, for example, the vinyl acetate residue unit content distribution is continuously distributed in the range of 0 to 50% by weight, and the distribution is two maximum values. If it has a value, it will be a vinyl chloride-vinyl acetate copolymer resin that is inferior in elongation at break in low temperature processing.

なお、酢酸ビニル残基単位含有量が0~50重量%の範囲内で連続分布し、その分布の極大値は1つとは、酢酸ビニル-塩化ビニル共重合体における酢酸ビニル残基単位の組成分布、さらには組成分布の均一性を示すものであり、酢酸ビニル残基単位含有量の分布範囲が狭く、極大値が少なく、その破断伸びが高いほどより均一性を示すものである。 The vinyl acetate residue unit content is continuously distributed within the range of 0 to 50% by weight, and the maximum value of the distribution is one, which is the composition distribution of the vinyl acetate residue unit in the vinyl acetate-vinyl chloride copolymer. Furthermore, it shows the uniformity of the composition distribution, and the more the distribution range of the vinyl acetate residue unit content is narrow, the maximum value is small, and the elongation at break is high, the more uniform it is.

本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、ペースト塩ビゾルとした際の粘度の経時変化が少なく、優れたものとなることからアルキル硫酸エステル塩を該塩化ビニル-酢酸ビニル共重合体100重量部に対して0.5~2重量部含有する樹脂であることが好ましく、特に低温加工での成形品の破断伸び、ペースト塩ビゾルとした際の粘度の経時変化が共に極めて優れたものとなり、特に自動車アンダーボディコート剤、自動車用シーラント用として優れたものとなることから、当該アルキル硫酸エステル塩の含有量は前記塩化ビニル-酢酸ビニル共重合体100重量部に対して0.8~1.5重量部含有するものであることが好ましく、更に0.9~1.2重量部含有するものであることが好ましい。また、この際のアルキル硫酸エステル塩については、ゾル粘度の経時変化が少ないものとなることから、全炭素数が10~14のアルキル硫酸エステル塩であることが好ましく、例えば、ラウリル硫酸リチウム、ラウリル硫酸カリウム、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアンモニウム等のラウリル硫酸塩;オレイル硫酸リチウム、オレイル硫酸カリウム、オレイル硫酸ナトリウム、オレイル硫酸アンモニウム、オレイル硫酸トリエタノールアンモニウム等のオレイル硫酸塩;ミリスチル硫酸リチウム、ミリスチル硫酸カリウム、ミリスチル硫酸ナトリウム、ミリスチル硫酸アンモニウム、ミリスチル硫酸トリエタノールアンモニウム等のミリスチル硫酸塩、等が挙げられ、特にラウリル硫酸リチウム、ラウリル硫酸カリウム、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアンモニウム等のラウリル硫酸エステル塩であることが好ましい。 Since the vinyl chloride-vinyl acetate copolymer resin of the present invention has little change in viscosity with time when it is made into a paste vinyl chloride bisol and is excellent, the alkyl sulfate ester salt is used as the vinyl chloride-vinyl acetate copolymer 100. It is preferable that the resin contains 0.5 to 2 parts by weight with respect to parts by weight, and in particular, the elongation at break of the molded product in low-temperature processing and the change in viscosity with time when made into a paste PVC sol are extremely excellent. In particular, the content of the alkyl sulfate ester salt is 0.8 to 1 with respect to 100 parts by weight of the vinyl chloride-vinyl acetate copolymer because it is excellent for an automobile underbody coating agent and an automobile sealant. It is preferably contained in an amount of 5.5 parts by weight, and more preferably 0.9 to 1.2 parts by weight. Further, the alkyl sulfate ester salt at this time is preferably an alkyl sulfate ester salt having a total carbon number of 10 to 14 because the sol viscosity does not change with time, and is preferably, for example, lithium lauryl sulfate or lauryl. Lauryl sulfates such as potassium sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, and triethanolammonium lauryl sulfate; oleyl sulfates such as lithium oleyl sulfate, potassium oleyl sulfate, sodium oleyl sulfate, ammonium oleyl sulfate, and triethanolammonium oleyl sulfate; lithium myristyl sulfate. , Myristyl sulfate such as potassium myristyl sulfate, sodium myristyl sulfate, ammonium myristyl sulfate, triethanolammonyl lauryl sulfate, etc., and in particular, lithium lauryl sulfate, potassium lauryl sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolammonium lauryl sulfate, etc. It is preferably a lauryl sulfate ester salt.

本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1~2μmを有する塩化ビニル-酢酸ビニル共重合体の一次粒子が凝集してなるものであり、特に低温加工での破断伸び、ペースト塩ビゾルとした際の粘度の経時変化が少なく共に極めて優れたものとなり、特に自動車アンダーボディコート剤、自動車用シーラント用として優れたものとなることから、1~1.7μmであることが好ましく。更に1.2~1.6μmであることが好ましい。なお、塩化ビニル-酢酸ビニル共重合体の平均一次粒子径が1μmより小さいとゾル粘度の経時変化が大きくなるため好ましくない。また、2μmより大きいと、低温加工での破断伸びに劣る成形体となるために好ましくない。そして、平均一次粒子径は、塩化ビニル-酢酸ビニル共重合体である一次粒子の凝集体とする前の塩化ビニル-酢酸ビニル共重体ラテックスにおける一次粒子の平均一次粒子径として測定することができる。 The vinyl chloride-vinyl acetate copolymer resin of the present invention is formed by aggregating the primary particles of the vinyl chloride-vinyl acetate copolymer having an average primary particle diameter of 1 to 2 μm, and is particularly stretched at break in low temperature processing. The viscosity of the paste PVC sol is extremely excellent with little change over time, and it is particularly excellent for automobile underbody coating agents and automobile sealants. Therefore, it should be 1 to 1.7 μm. Preferably. Further, it is preferably 1.2 to 1.6 μm. If the average primary particle size of the vinyl chloride-vinyl acetate copolymer is smaller than 1 μm, the sol viscosity changes significantly with time, which is not preferable. Further, if it is larger than 2 μm, it is not preferable because the molded product is inferior in breaking elongation in low temperature processing. The average primary particle size can be measured as the average primary particle size of the primary particles in the vinyl chloride-vinyl acetate copolymer latex before the aggregate of the primary particles which is the vinyl chloride-vinyl acetate copolymer.

そして、本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、特にペースト塩ビゾルとした際の粘度の経時変化が極めて優れたものとなり、特に強度特性に優れたものとなることから増粘率が90%以下となるものが好ましく、さらに自動車アンダーボディコート剤、自動車用シーラント用として優れたものとなることから、増粘率が50%未満となるものが好ましい。その際の増粘率の測定方法については後述する。 The vinyl chloride-vinyl acetate copolymer resin of the present invention has an extremely excellent change in viscosity with time, especially when it is made into a paste vinyl chloride solution, and has a particularly excellent strength characteristic, so that the thickening rate is high. Those having a viscosity of 90% or less are preferable, and those having a viscosity increase rate of less than 50% are preferable because they are excellent for automobile underbody coating agents and automobile sealants. The method for measuring the thickening rate at that time will be described later.

また、本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、特に低温加工での破断伸びに優れる成形体となり、特に自動車アンダーボディコート剤、自動車用シーラント用として優れたものとなることから、破断伸び300%以上を示すものであることが好ましい。その際の破断伸びの測定方法としては、例えば、塩化ビニル-酢酸ビニル共重合体樹脂100重量部に対し、フタル酸ジイソノニル100重量部、炭酸カルシウム70重量部、ナフテン系炭化水素溶剤15重量部を配合し、ペースト塩ビゾルを調製し、2mm厚に塗布したシートから、JIS3号ダンベル試験片を用い、測定方法は、試験片の中央に20mm間隔の標線を入れ、引張り試験装置に取り付け、50mm/分の速度で引張り、破断時の荷重及び標線間の伸びを測定し、破断伸び及び引張強度を求めることができる。 Further, the vinyl chloride-vinyl acetate copolymer resin of the present invention becomes a molded product having excellent breaking elongation especially in low temperature processing, and is particularly excellent for an automobile underbody coating agent and an automobile sealant. It is preferable that the elongation is 300% or more. As a method for measuring the elongation at break at that time, for example, 100 parts by weight of diisononyl phthalate, 70 parts by weight of calcium carbonate, and 15 parts by weight of a naphthenic hydrocarbon solvent are used with respect to 100 parts by weight of the vinyl chloride-vinyl acetate copolymer resin. A JIS No. 3 dumbbell test piece was used from a sheet that had been mixed, prepared with a paste PVC solution, and applied to a thickness of 2 mm. It can be pulled at a rate of / minute, the load at break and the elongation between marked lines can be measured, and the elongation at break and the tensile strength can be obtained.

本発明の塩化ビニル-酢酸ビニル共重合体樹脂をアルキル硫酸エステル塩を含有する物として製造する際の製造方法としては、該塩化ビニル-酢酸ビニル共重合体樹脂の製造が可能であれば如何なる方法を用いてもよく、例えば塩化ビニル-酢酸ビニル共重合体樹脂の製造の際に、該アルキル硫酸エステル塩を併用する方法、製造後の塩化ビニル-酢酸ビニル共重合体に該アルキル硫酸エステル塩を添加する方法等を挙げることができる。 As a production method for producing the vinyl chloride-vinyl acetate copolymer resin of the present invention as a substance containing an alkyl sulfate ester salt, any method can be used as long as the vinyl chloride-vinyl acetate copolymer resin can be produced. For example, a method in which the alkyl sulfate ester salt is used in combination in the production of a vinyl chloride-vinyl acetate copolymer resin, and the alkyl sulfate ester salt is added to the vinyl chloride-vinyl acetate copolymer after production. Examples thereof include a method of adding.

そして、塩化ビニル-酢酸ビニル共重合体を製造する際には、重合開始剤、連鎖移動剤、架橋剤、緩衝剤、水溶性開始剤、還元剤、高級アルコール等を適宜用いることができる。当該添加剤については、本発明の目的を奏する限りにおいて、本発明の塩化ビニル-酢酸ビニル共重合体樹脂に含まれていてもよい。また、塩化ビニル-酢酸ビニル共重合体の製造方法としては、例えば、塩化ビニルモノマーと酢酸ビニルモノマーの混合液を、重合開始剤の存在下において水性媒体中で重合する製造方法を挙げることができる。 Then, in producing the vinyl chloride-vinyl acetate copolymer, a polymerization initiator, a chain transfer agent, a cross-linking agent, a buffering agent, a water-soluble initiator, a reducing agent, a higher alcohol and the like can be appropriately used. The additive may be contained in the vinyl chloride-vinyl acetate copolymer resin of the present invention as long as the object of the present invention is achieved. Further, as a method for producing a vinyl chloride-vinyl acetate copolymer, for example, a production method in which a mixed solution of a vinyl chloride monomer and a vinyl acetate monomer is polymerized in an aqueous medium in the presence of a polymerization initiator can be mentioned. ..

該製造方法においては、平均酢酸ビニル残基単位含有量を15重量%を超えて30重量%以下とする塩化ビニル-酢酸ビニル共重合体を効率的に製造することが可能となることから、塩化ビニルモノマー/酢酸ビニルモノマー=85/15~50/50(重量/重量)よりなる混合単量体を用いてなることが好ましく、特に低温加工での破断伸び、ペースト塩ビゾルとした際の粘度の経時変化が共に極めて優れたものとなり、特に自動車アンダーボディコート剤、自動車用シーラント用として優れるものを効率的に製造することが可能となることから、塩化ビニルモノマー/酢酸ビニルモノマー=83/17~60/40(重量/重量)よりなることが好ましい。 In this production method, since it is possible to efficiently produce a vinyl chloride-vinyl acetate copolymer having an average vinyl acetate residue unit content of more than 15% by weight and 30% by weight or less, chloride is available. It is preferable to use a mixed monomer consisting of vinyl monomer / vinyl acetate monomer = 85/15 to 50/50 (weight / weight), and in particular, the elongation at break in low-temperature processing and the viscosity when made into a paste vinyl chloride bisol. Both changes over time are extremely excellent, and it is possible to efficiently produce products that are particularly excellent for automobile underbody coating agents and automobile sealants. Therefore, vinyl chloride monomer / vinyl acetate monomer = 83/17 ~ It is preferably 60/40 (weight / weight).

重合開始剤としては、重合開始剤の範疇に属するものであれば如何なるものであってもよく、例えば、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤;アゾビスイソブチロニトリル等のアゾ化合物,ラウロイルパーオキサイド、t-ブチルペルオキシピバレート、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート等の過酸化物,等の油溶性重合開始剤等を挙げることができる。また、シードミクロ懸濁重合法の際には、油溶性開始剤を含む種粒子(シード)であってもよい。 The polymerization initiator may be any one that belongs to the category of the polymerization initiator, and for example, a water-soluble polymerization initiator such as potassium persulfate or ammonium persulfate; azo such as azobisisobutyronitrile. Examples thereof include oil-soluble polymerization initiators such as compounds, lauroyl peroxide, t-butyl peroxypivalate, diacyl peroxide, peroxy ester, and peroxides such as peroxy dicarbonate. Further, in the case of the seed microsuspension polymerization method, seed particles (seed) containing an oil-soluble initiator may be used.

そして、本発明の塩化ビニル-酢酸ビニル共重合体樹脂が、アルキル硫酸エステル塩を含む樹脂である場合、該アルキル硫酸エステル塩を塩化ビニル-酢酸ビニル共重合体へ含有させる方法については、特に限定するものではなく、重合反応が完了した後に添加・混練する方法、重合反応開始前又は重合反応中に添加する方法等が挙げられる。該アルキル硫酸エステル塩の添加方法としては、破断伸び、ペースト塩ビゾルとした際の粘度の経時変化の小さい塩化ビニル-酢酸ビニル共重合体樹脂を効率よく製造することが可能となることから、重合開始前又は重合開始後の重合反応中に連続又は一括で仕込むことが好ましく、特に低温加工での破断伸び、ペースト塩ビゾルとした際の粘度の経時変化が共に極めて優れたものとなり、特に自動車アンダーボディコート剤、自動車用シーラント用として優れるものを効率的に製造することが可能となることから、重合開始後から重合転化率が85%に達するまでに連続又は一括で仕込むことが好ましい。 When the vinyl chloride-vinyl acetate copolymer resin of the present invention is a resin containing an alkyl sulfate ester salt, the method for incorporating the alkyl sulfate ester salt into the vinyl chloride-vinyl acetate copolymer is particularly limited. Examples thereof include a method of adding and kneading after the completion of the polymerization reaction, a method of adding before the start of the polymerization reaction or during the polymerization reaction, and the like. As a method for adding the alkyl sulfate ester salt, polymerization can be performed because it is possible to efficiently produce a vinyl chloride-vinyl acetate copolymer resin having a small change in viscosity with time when it is stretched at break and made into a paste salt bisol. It is preferable to charge continuously or collectively during the polymerization reaction before the start or after the start of the polymerization, and in particular, the elongation at break in low-temperature processing and the change in viscosity with time when made into a paste PVC sol are both extremely excellent, especially under the automobile. Since it is possible to efficiently produce excellent body coat agents and sealants for automobiles, it is preferable to charge them continuously or collectively from the start of polymerization until the polymerization conversion rate reaches 85%.

そして、該製造方法における重合法としては、例えば塩化ビニル単量体、酢酸ビニル単量体、界面活性剤、油溶性重合開始剤、必要に応じて脂肪族高級アルコール等の乳化補助剤を脱イオン水に添加しホモジナイザー等で混合分散した後、緩やかな攪拌下で重合を行うミクロ懸濁重合法;ミクロ懸濁重合法で得られた油溶性重合開始剤を含む種粒子(シード)を用いて行うシードミクロ懸濁重合法;塩化ビニル系単量体を脱イオン水、界面活性剤、水溶性重合開始剤とともに緩やかな攪拌下で重合を行う乳化重合法で得られた粒子をシードとして用いて乳化重合を行うシード乳化重合法等があげられ、その際に、例えば、重合温度は30~80℃とし、塩化ビニル-酢酸ビニル共重合体樹脂ラテックスとして得ることができる。これらの重合により製造された塩化ビニル-酢酸ビニル共重合体樹脂ラテックスを噴霧乾燥し、必要に応じて粉砕することにより、塩化ビニル-酢酸ビニル共重合体の一次粒子が凝集した本発明の塩化ビニル-酢酸ビニル共重合体樹脂を得ることができる。 Then, as a polymerization method in the production method, for example, a vinyl chloride monomer, a vinyl acetate monomer, a surfactant, an oil-soluble polymerization initiator, and, if necessary, an emulsifying aid such as an aliphatic higher alcohol are deionized. Microsuspension polymerization method in which the mixture is added to water, mixed and dispersed with a homogenizer, etc., and then polymerized under gentle stirring; using seed particles (seed) containing an oil-soluble polymerization initiator obtained by the microsuspension polymerization method. Seed microsuspended polymerization method; Particles obtained by an emulsion polymerization method in which a vinyl chloride-based monomer is polymerized with deionized water, a surfactant, and a water-soluble polymerization initiator under gentle stirring are used as seeds. Examples thereof include a seed emulsification polymerization method in which emulsification polymerization is carried out. At that time, for example, the polymerization temperature is set to 30 to 80 ° C., and a vinyl chloride-vinyl acetate copolymer resin latex can be obtained. The vinyl chloride-vinyl acetate copolymer resin latex produced by these polymerizations is spray-dried and pulverized as necessary, whereby the primary particles of the vinyl chloride-vinyl acetate copolymer are aggregated to be the vinyl chloride of the present invention. -A vinyl acetate copolymer resin can be obtained.

塩化ビニル-酢酸ビニル共重合体樹脂とする際に用いる乾燥機は一般的に使用されているものでよく、例えば、噴霧乾燥機等が挙げられる(具体例としては、「SPRAY DRYING HANDBOOK」(K.Masters著、3版、1979年、GeorgegodwinLimitedより出版)の121頁第4.10図に記載されている各種の噴霧乾燥機)。乾燥用空気入口温度、乾燥用空気出口温度に特に制限はなく、乾燥用空気入口温度は80~200℃、乾燥用空気出口温度は45~75℃が一般的に用いられる。乾燥用空気入口温度は100~170℃、乾燥用空気出口温度は50~70℃が更に好ましい。乾燥後に得られる塩化ビニル-酢酸ビニル共重合体樹脂は、ラテックスを構成する一次粒子の集合体であり、通常10~100μmの顆粒状である。乾燥出口温度が55℃を超える場合には、得られた顆粒状塩化ビニル-酢酸ビニル共重合体樹脂を粉砕した方が可塑剤への分散の点から好ましく、乾燥出口温度が55℃以下の場合には、顆粒状のままでも粉砕して使用してもどちらでも良い。 The dryer used to prepare the vinyl chloride-vinyl acetate copolymer resin may be one that is generally used, and examples thereof include a spray dryer (specific example is "SPRAY DRYING HANDBOOK" (K). .Various spray dryers described in Figure 4.10, p. 121, by Masters, 3rd edition, 1979, published by Georgegodwin Limited). The drying air inlet temperature and the drying air outlet temperature are not particularly limited, and the drying air inlet temperature is generally 80 to 200 ° C. and the drying air outlet temperature is 45 to 75 ° C. The drying air inlet temperature is more preferably 100 to 170 ° C., and the drying air outlet temperature is more preferably 50 to 70 ° C. The vinyl chloride-vinyl acetate copolymer resin obtained after drying is an aggregate of primary particles constituting the latex, and is usually in the form of granules having a size of 10 to 100 μm. When the dry outlet temperature exceeds 55 ° C, it is preferable to pulverize the obtained granular vinyl chloride-vinyl acetate copolymer resin from the viewpoint of dispersion in a plasticizer, and when the dry outlet temperature is 55 ° C or less. Either in the form of granules or crushed and used.

本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、可塑剤に分散させて調製したペースト塩ビゾルの粘度の経時変化が少なく、低温加工時の機械的強度、破断伸びに優れ、コート剤、特に自動車アンダーボディコート剤、自動車用シーラント用として優れた特性を有するものである。 The vinyl chloride-vinyl acetate copolymer resin of the present invention has little change in the viscosity of the paste vinyl chloride solution prepared by dispersing it in a plasticizer, has excellent mechanical strength and elongation at break during low-temperature processing, and is a coating agent, particularly. It has excellent properties for automobile underbody coating agents and automobile sealants.

以下に、本発明を実施例により、さらに詳細に説明するが本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

以下に実施例より得られた塩化ビニル-酢酸ビニル共重合体樹脂の評価方法を示す。 The evaluation method of the vinyl chloride-vinyl acetate copolymer resin obtained from the Example is shown below.

<増粘率の測定方法>
塩化ビニル-酢酸ビニル共重合体樹脂100重量部、フタル酸ジイソノニル100重量部(株式会社ジェイプラス製)、脂肪酸塩表面処理炭酸カルシウム((商品名)Viscolite-OS 白石工業株式会社製)70重量部、及びナフテン系炭化水素溶剤((商品名)Exxsol D40 東燃ゼネラル石油株式会社製)15重量部を混練し、ペースト塩ビゾルを得た。得られたペースト塩ビゾルを23℃にて24時間保管した後、B8H型回転粘度計で23℃、20rpm条件にて測定した粘度を粘度Aとし、該ゾルを、更に23℃にて7日間保管した後、B8H型回転粘度計で23℃、20rpm条件にて測定した粘度を粘度Bとした。粘度A及び粘度Bを下記式にて、得られたペースト塩ビゾルの増粘率を求めた。
<Measurement method of thickening rate>
100 parts by weight of vinyl chloride-vinyl acetate copolymer resin, 100 parts by weight of diisononyl phthalate (manufactured by J-Plus Co., Ltd.), 70 parts by weight of fatty acid salt surface-treated calcium carbonate ((trade name) Viscolite-OS Shiraishi Kogyo Co., Ltd.) , And 15 parts by weight of a naphthenic hydrocarbon solvent ((trade name) Exxsol D40 manufactured by Tonen General Petroleum Co., Ltd.) were kneaded to obtain a paste vinyl chloride solution. The obtained paste vinyl chloride sol was stored at 23 ° C. for 24 hours, and then the viscosity measured with a B8H type rotational viscometer under the conditions of 23 ° C. and 20 rpm was defined as viscosity A, and the sol was further stored at 23 ° C. for 7 days. After that, the viscosity measured with a B8H type rotational viscometer under the conditions of 23 ° C. and 20 rpm was defined as viscosity B. The viscosity A and the viscosity B were determined by the following formulas to determine the thickening rate of the obtained paste vinyl chloride sol.

増粘率(%)=100×(B-A)/A
<破断伸びの測定方法>
塩化ビニル-酢酸ビニル共重合体樹脂100重量部、フタル酸ジイソノニル100重量部(株式会社ジェイプラス製)、脂肪酸塩表面処理炭酸カルシウム((商品名)Viscolite-OS 白石工業株式会社製)70重量部、及びナフテン系炭化水素溶剤((商品名)Exxsol D40 東燃ゼネラル石油株式会社製)15重量部を混練してペースト塩ビゾルを製造した。脱泡処理した前記ペースト塩ビゾルを離型紙で2mm厚に塗布し、140℃×30min分間加熱してペースト塩ビシートを作成した。得られたペースト塩ビシートからJIS3号ダンベルを用いて試験片を作成し、試験片の中央に20mm間隔の標線を入れ、引張り試験装置に取り付け、23℃で50mm/分の速度で引張り、破断時の荷重及び標線間の伸びを測定し、破断伸び及び引張強度を求めた。
Thickness increase rate (%) = 100 × (BA) / A
<Measurement method of breaking elongation>
100 parts by weight of vinyl chloride-vinyl acetate copolymer resin, 100 parts by weight of diisononyl phthalate (manufactured by J-Plus Co., Ltd.), 70 parts by weight of fatty acid salt surface-treated calcium carbonate ((trade name) Viscolite-OS Shiraishi Kogyo Co., Ltd.) , And 15 parts by weight of a naphthenic hydrocarbon solvent ((trade name) Exxsol D40 manufactured by Tonen General Petroleum Co., Ltd.) were kneaded to produce a paste PVC bisole. The defoamed paste PVC sheet was applied to a thickness of 2 mm with a release paper and heated at 140 ° C. for 30 min to prepare a paste PVC sheet. A test piece was prepared from the obtained paste vinyl chloride sheet using a JIS No. 3 dumbbell, marked lines at intervals of 20 mm were placed in the center of the test piece, attached to a tensile test device, pulled at a speed of 50 mm / min at 23 ° C, and fractured. The load at the time and the elongation between the marked lines were measured, and the breaking elongation and the tensile strength were determined.

<平均重合度の測定>
JIS-K6721に準拠し求めた。
<Measurement of average degree of polymerization>
Obtained in accordance with JIS-K6721.

<平均酢酸ビニル残基単位含有量の測定方法>
塩化ビニル-酢酸ビニル共重合体中に含有する平均酢酸ビニル残基単位含有量(重量%)(VAc含量と記す場合もある。)は、塩化ビニル-酢酸ビニル共重合体100mgと臭化カリウム10mgを混合し、すりつぶして成形した測定サンプルと、赤外分光光度計(島津社製、(商品名)FTIR-8100A)を用いて、下記式より算出した。
<Measurement method of average vinyl acetate residue unit content>
The average vinyl acetate residue unit content (% by weight) (sometimes referred to as VAc content) contained in the vinyl chloride-vinyl acetate copolymer is 100 mg of the vinyl chloride-vinyl acetate copolymer and 10 mg of potassium bromide. Was mixed and ground to form a measurement sample, and an infrared spectrophotometer (manufactured by Shimadzu Corporation, (trade name) FTIR-8100A) was used to calculate from the following formula.

VAc含量=(3.73×B/A+0.024)×1.04
A:1430cm-1付近のC-H面内変角による吸収ピークトップのAbs.値。
B:1740cm-1付近のC=O伸縮による吸収ピークトップのAbs.値。
VAc content = (3.73 x B / A + 0.024) x 1.04
A: Abs . value.
B: Abs at the top of the absorption peak due to C = O expansion and contraction near 1740 cm -1 . value.

<酢酸ビニル残基単位含有量の分布の測定>
高速液体クロマトグラフィー(HPLC)、グラジエント溶出法により、酢酸ビニル残基単位含有量の分布の測定を行った。
装置:HPLC8020シリーズ(東ソー株式会社製)。
検出器:蒸発型光散乱検出器(ELSD) Varian380-LC(Varian製)。
カラム:TSKgel ODS-100V(東ソー株式会社製)。
カラム温度:40℃。
移動相:A液:水/アセトニトリル=5/5
B液:テトラヒドロフラン
流速:1.0ml/min。
濃度:1mg/ml。
注入量:20μm。
<Measurement of vinyl acetate residue unit content distribution>
The distribution of vinyl acetate residue unit content was measured by high performance liquid chromatography (HPLC) and gradient elution method.
Equipment: HPLC8020 series (manufactured by Tosoh Corporation).
Detector: Evaporative light scattering detector (ELSD) Varian380-LC (manufactured by Varian).
Column: TSKgel ODS-100V (manufactured by Tosoh Corporation).
Column temperature: 40 ° C.
Mobile phase: Liquid A: Water / acetonitrile = 5/5
Solution B: Tetrahydrofuran flow rate: 1.0 ml / min.
Concentration: 1 mg / ml.
Injection amount: 20 μm.

合成例1(開始剤等含有シードの製造例)
1mオートクレーブ中に脱イオン水360kg、塩化ビニルモノマー300kg、過酸化ラウロイル6kg及び15重量%ドデシルベンゼンスルホン酸ナトリウム水溶液30kgを仕込み、該重合液をホモジナイザーを用いて2時間循環し、均質化処理後、温度を45℃に上げて、重合を進めた。45℃における塩化ビニルモノマーの飽和蒸気圧より0.2MPa圧力が低下した後、未反応の塩化ビニルモノマーを回収した。得られた開始剤等含有シードラテックス(以下、シード1と略記する。)の平均粒子径は0.60μm、固形分濃度は32%であった。
Synthesis Example 1 (Production example of seed containing initiator, etc.)
360 kg of deionized water, 300 kg of vinyl chloride monomer, 6 kg of lauroyl peroxide and 30 kg of 15 wt% sodium dodecylbenzene sulfonate aqueous solution were charged in a 1 m3 autoclave, and the polymer solution was circulated for 2 hours using a homogenizer, and after homogenization treatment. , The temperature was raised to 45 ° C. to proceed with the polymerization. After the pressure dropped by 0.2 MPa from the saturated vapor pressure of the vinyl chloride monomer at 45 ° C., the unreacted vinyl chloride monomer was recovered. The obtained seed latex containing an initiator and the like (hereinafter, abbreviated as Seed 1) had an average particle size of 0.60 μm and a solid content concentration of 32%.

実施例1
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを450g(混合単量体の全仕込み量に対して56重量%)と酢酸ビニルモノマーを160g(混合単量体の全仕込み量に対して20重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を35℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が50%となったところで、2段目仕込み単量体として、塩化ビニルモノマー130g(混合単量体の全仕込み量に対して16重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が75%となったところで、3段目仕込み単量体として、塩化ビニルモノマー65g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて3段目重合を継続し、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Example 1
500 g of deionized water in a 2.5 liter autoclave, 450 g of vinyl chloride monomer (56% by weight based on the total amount of mixed monomer charged) and 160 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 20% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 35 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 50%, 130 g of vinyl chloride monomer (16% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 35 ° C. Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 65 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, the third stage polymerization was continued at a polymerization temperature of 35 ° C., and the polymerization conversion rate was 90% with respect to the total amount of the mixed monomers. When it became, the polymerization was completed.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.5μmを有し、平均重合度1460、平均酢酸ビニル残基単位含有量15.2重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~44重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.5 μm, an average degree of polymerization of 1460, and an average vinyl acetate residue unit content of 15.2% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 44% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例2
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを450g(混合単量体の全仕込み量に対して56重量%)と酢酸ビニルモノマーを160g(混合単量体の全仕込み量に対して20重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を35℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が40%となったところで、2段目仕込み単量体として、塩化ビニルモノマー65g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が60%となったところで、3段目仕込み単量体として、塩化ビニルモノマー65g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて3段目重合を継続した。
Example 2
500 g of deionized water in a 2.5 liter autoclave, 450 g of vinyl chloride monomer (56% by weight based on the total amount of mixed monomer charged) and 160 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 20% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 35 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 40%, 65 g of vinyl chloride monomer (8% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 35 ° C. Further, when the polymerization conversion rate was 60% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 65 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, and the third-stage polymerization was continued at a polymerization temperature of 35 ° C.

更に、1段目仕込み単量体と2段目仕込み単量体、3段目仕込み単量体の合計に対して重合転化率が75%となったところで、4段目仕込み単量体として、塩化ビニルモノマー32g(混合単量体の全仕込み量に対して4重量%))を2.5リットルオートクレーブに仕込み、重合温度35℃にて4段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体、3段目仕込み単量体、4段目仕込み単量体の合計に対して重合転化率が85%となったところで、5段目仕込み単量体として、塩化ビニルモノマー32g(混合単量体の全仕込み量に対して4重量%))を2.5リットルオートクレーブに仕込み、重合温度35℃にて5段目重合を継続した。 Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer, the second-stage charged monomer, and the third-stage charged monomer, the fourth-stage charged monomer was used. 32 g of vinyl chloride monomer (4% by weight based on the total amount of the mixed monomer charged) was charged into a 2.5 liter autoclave, and the fourth-stage polymerization was continued at a polymerization temperature of 35 ° C. Further, when the polymerization conversion rate is 85% with respect to the total of the first-stage charged monomer, the second-stage charged monomer, the third-stage charged monomer, and the fourth-stage charged monomer, 5 32 g of vinyl chloride monomer (4% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the stage-charged monomer, and the fifth-stage polymerization was continued at a polymerization temperature of 35 ° C. did.

そして、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。 Then, the polymerization was terminated when the polymerization conversion rate was 90% with respect to the total of the mixed monomers.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.5μmを有し、平均重合度1520、平均酢酸ビニル残基単位含有量15.7重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~43重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.5 μm, an average degree of polymerization of 1520, and an average vinyl acetate residue unit content of 15.7% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 43% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例3
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを430g(混合単量体の全仕込み量に対して54重量%)と酢酸ビニルモノマーを190g(混合単量体の全仕込み量に対して24重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を35℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が50%となったところで、2段目仕込み単量体として、塩化ビニルモノマー120g(混合単量体の全仕込み量に対して15重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が75%となったところで、3段目仕込み単量体として、塩化ビニルモノマー60g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて3段目重合を継続し、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Example 3
In a 2.5 liter autoclave, 500 g of deionized water, 430 g of vinyl chloride monomer as the first-stage charged monomer (54% by weight based on the total amount of mixed monomer charged) and 190 g of vinyl acetate monomer (mixed simplex). 24% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 35 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 50%, 120 g of vinyl chloride monomer (15% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 35 ° C. Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 60 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, the third stage polymerization was continued at a polymerization temperature of 35 ° C., and the polymerization conversion rate was 90% with respect to the total amount of the mixed monomers. When it became, the polymerization was completed.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.6μmを有し、平均重合度1440、平均酢酸ビニル残基単位含有量17.0重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~37重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.6 μm, an average degree of polymerization of 1440, and an average vinyl acetate residue unit content of 17.0% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 37% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer fat, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例4
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを410g(混合単量体の全仕込み量に対して51重量%)と酢酸ビニルモノマーを210g(混合単量体の全仕込み量に対して26重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を35℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が50%となったところで、2段目仕込み単量体として、塩化ビニルモノマー120g(混合単量体の全仕込み量に対して15重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が75%となったところで、3段目仕込み単量体として、塩化ビニルモノマー60g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて3段目重合を継続し、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Example 4
500 g of deionized water in a 2.5 liter autoclave, 410 g of vinyl chloride monomer (51% by weight based on the total amount of mixed monomer charged) and 210 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 26% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 35 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 50%, 120 g of vinyl chloride monomer (15% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 35 ° C. Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 60 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, the third stage polymerization was continued at a polymerization temperature of 35 ° C., and the polymerization conversion rate was 90% with respect to the total amount of the mixed monomers. When it became, the polymerization was completed.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.6μmを有し、平均重合度1370、平均酢酸ビニル残基単位含有量20.1重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~42重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.6 μm, an average degree of polymerization of 1370, and an average vinyl acetate residue unit content of 20.1% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 42% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例5
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを410g(混合単量体の全仕込み量に対して51重量%)と酢酸ビニルモノマーを210g(混合単量体の全仕込み量に対して26重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を35℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が40%となったところで、2段目仕込み単量体として、塩化ビニルモノマー60g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が60%となったところで、3段目仕込み単量体として、塩化ビニルモノマー60g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度35℃にて3段目重合を継続した。
Example 5
500 g of deionized water in a 2.5 liter autoclave, 410 g of vinyl chloride monomer (51% by weight based on the total amount of mixed monomer charged) and 210 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 26% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 35 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 40%, 60 g of vinyl chloride monomer (8% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 35 ° C. Further, when the polymerization conversion rate was 60% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 60 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, and the third-stage polymerization was continued at a polymerization temperature of 35 ° C.

更に、1段目仕込み単量体と2段目仕込み単量体、3段目仕込み単量体の合計に対して重合転化率が75%となったところで、4段目仕込み単量体として、塩化ビニルモノマー30g(混合単量体の全仕込み量に対して4重量%))を2.5リットルオートクレーブに仕込み、重合温度35℃にて4段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体、3段目仕込み単量体、4段目仕込み単量体の合計に対して重合転化率が85%となったところで、5段目仕込み単量体として、塩化ビニルモノマー30g(混合単量体の全仕込み量に対して4重量%))を2.5リットルオートクレーブに仕込み、重合温度35℃にて5段目重合を継続した。 Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer, the second-stage charged monomer, and the third-stage charged monomer, the fourth-stage charged monomer was used. 30 g of vinyl chloride monomer (4% by weight based on the total amount of the mixed monomer charged) was charged into a 2.5 liter autoclave, and the fourth-stage polymerization was continued at a polymerization temperature of 35 ° C. Further, when the polymerization conversion rate is 85% with respect to the total of the first-stage charged monomer, the second-stage charged monomer, the third-stage charged monomer, and the fourth-stage charged monomer, 5 As the stage-charged monomer, 30 g of vinyl chloride monomer (4% by weight based on the total charge of the mixed monomer) was charged into a 2.5 liter autoclave, and the fifth-stage polymerization was continued at a polymerization temperature of 35 ° C. did.

そして、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 Then, the polymerization was terminated when the polymerization conversion rate was 90% with respect to the total of the mixed monomers. From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.6μmを有し、平均重合度1410、平均酢酸ビニル残基単位含有量19.5重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~40重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体組成物樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.6 μm, an average degree of polymerization of 1410, and an average vinyl acetate residue unit content of 19.5% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 40% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer composition resin, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例6
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを410g(混合単量体の全仕込み量に対して51重量%)と酢酸ビニルモノマーを210g(混合単量体の全仕込み量に対して26重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を25℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が50%となったところで、2段目仕込み単量体として、塩化ビニルモノマー120g(混合単量体の全仕込み量に対して15重量%)を2.5リットルオートクレーブに仕込み、重合温度25℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が75%となったところで、3段目仕込み単量体として、塩化ビニルモノマー60g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度25℃にて3段目重合を継続し、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Example 6
500 g of deionized water in a 2.5 liter autoclave, 410 g of vinyl chloride monomer (51% by weight based on the total amount of mixed monomer charged) and 210 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 26% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 25 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 50%, 120 g of vinyl chloride monomer (15% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 25 ° C. Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 60 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, the third stage polymerization was continued at a polymerization temperature of 25 ° C., and the polymerization conversion rate was 90% with respect to the total amount of the mixed monomers. When it became, the polymerization was completed.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.7μmを有し、平均重合度1830、平均酢酸ビニル残基単位含有量18.9重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~36重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.7 μm, an average degree of polymerization of 1830, and an average vinyl acetate residue unit content of 18.9% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 36% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例7
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを410g(混合単量体の全仕込み量に対して51重量%)と酢酸ビニルモノマーを210g(混合単量体の全仕込み量に対して26重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を20℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が50%となったところで、2段目仕込み単量体として、塩化ビニルモノマー120g(混合単量体の全仕込み量に対して15重量%)を2.5リットルオートクレーブに仕込み、重合温度20℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が75%となったところで、3段目仕込み単量体として、塩化ビニルモノマー60g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度20℃にて3段目重合を継続し、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Example 7
500 g of deionized water in a 2.5 liter autoclave, 410 g of vinyl chloride monomer (51% by weight based on the total amount of mixed monomer charged) and 210 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 26% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 20 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 50%, 120 g of vinyl chloride monomer (15% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 20 ° C. Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 60 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, the third stage polymerization was continued at a polymerization temperature of 20 ° C., and the polymerization conversion rate was 90% with respect to the total amount of the mixed monomers. When it became, the polymerization was completed.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.6μmを有し、平均重合度2500、平均酢酸ビニル残基単位含有量19.0重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~43重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.6 μm, an average degree of polymerization of 2500, and an average vinyl acetate residue unit content of 19.0% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 43% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 1.

実施例8
2.5リットルオートクレーブ中に脱イオン水500g、1段目仕込み単量体として塩化ビニルモノマーを450g(混合単量体の全仕込み量に対して56重量%)と酢酸ビニルモノマーを160g(混合単量体の全仕込み量に対して20重量%)、5%水溶液ラウリル硫酸ナトリウムを9g、シード1を85g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を20℃に上げて1段目重合を開始するとともに、0.05重量%アスコルビン酸水溶液を全重合時間を通じて、重合温度を維持するように連続的に添加した。重合転化率が50%となったところで、2段目仕込み単量体として、塩化ビニルモノマー130g(混合単量体の全仕込み量に対して16重量%)を2.5リットルオートクレーブに仕込み、重合温度20℃にて2段目重合を継続した。更に、1段目仕込み単量体と2段目仕込み単量体の合計に対して重合転化率が75%となったところで、3段目仕込み単量体として、塩化ビニルモノマー65g(混合単量体の全仕込み量に対して8重量%)を2.5リットルオートクレーブに仕込み、重合温度20℃にて3段目重合を継続し、混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Example 8
500 g of deionized water in a 2.5 liter autoclave, 450 g of vinyl chloride monomer (56% by weight based on the total amount of mixed monomer charged) and 160 g of vinyl acetate monomer (mixed simpler) as the first-stage charged monomer. 20% by weight based on the total amount of the polymer charged), 9 g of 5% aqueous sodium lauryl sulfate, 85 g of seed 1, 4 g of 0.1% aqueous copper sulfate, and then the temperature of this reaction mixture was adjusted to 20 ° C. The polymerization was started in the first stage, and a 0.05 wt% aqueous solution of ascorbic acid was continuously added so as to maintain the polymerization temperature throughout the entire polymerization time. When the polymerization conversion rate reached 50%, 130 g of vinyl chloride monomer (16% by weight based on the total amount of mixed monomers) was charged into a 2.5 liter autoclave as the second-stage charged monomer for polymerization. The second stage polymerization was continued at a temperature of 20 ° C. Further, when the polymerization conversion rate was 75% with respect to the total of the first-stage charged monomer and the second-stage charged monomer, 65 g of vinyl chloride monomer (mixed unit amount) was used as the third-stage charged monomer. 8% by weight based on the total amount of the body charged) was charged into a 2.5 liter autoclave, the third stage polymerization was continued at a polymerization temperature of 20 ° C., and the polymerization conversion rate was 90% with respect to the total amount of the mixed monomers. When it became, the polymerization was completed.

なお、重合開始してから重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120gを連続的に添加した。 From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate was continuously added.

そして、未反応モノマーを回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均一次粒子径1.5μmを有し、平均重合度2250、平均酢酸ビニル残基単位含有量15.5重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~35重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値が1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表1に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average primary particle size of 1.5 μm, an average degree of polymerization of 2250, and an average vinyl acetate residue unit content of 15.5% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the polymer. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 35% by weight, and the maximum value of the distribution was one. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 1.

Figure 0007087409000001
Figure 0007087409000001

比較例1
2.5Lオートクレーブ中に脱イオン水1100g、塩化ビニル単量体を400gと酢酸ビニル単量体を75g、5%水溶液ラウリル硫酸ナトリウムを80g、セチルアルコール6g、開始剤としてクミルパーオキシネオデカネート((商品名)パークミルND、日本油脂製)0.4gを仕込み、この重合液を2時間ホモジナイザーを用いて循環し、均質化処理後、温度を35℃に上げて重合を進めた。混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Comparative Example 1
In a 2.5 L autoclave, 1100 g of deionized water, 400 g of vinyl chloride monomer, 75 g of vinyl acetate monomer, 80 g of 5% aqueous sodium lauryl sulfate, 6 g of cetyl alcohol, and cumilperoxyneodecaneate as an initiator ( (Product name) Park Mill ND, manufactured by Nippon Yushi) 0.4 g was charged, and this polymerization solution was circulated using a homogenizer for 2 hours. After homogenization treatment, the temperature was raised to 35 ° C. to proceed with the polymerization. The polymerization was terminated when the polymerization conversion rate was 90% with respect to the total of the mixed monomers.

そして、未反応単量体を回収してラテックスとし、スプレードライヤーにて、熱風入口160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均粒子径1.6μmを有し、平均重合度1460、酢酸ビニル残基単位の含有量12.7重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム1.1重量部、を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~33重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表2に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average particle size of 1.6 μm, an average degree of polymerization of 1460, and a vinyl chloride-vinyl acetate residue unit content of 12.7% by weight. It contained 1.1 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the combined product. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 33% by weight, and was one of the maximum values of the distribution. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 2.

比較例2
2.5Lオートクレーブ中に脱イオン水500g、塩化ビニル単量体を560gと酢酸ビニル単量体を240g、5%水溶液ラウリル硫酸ナトリウムを8.6g、シード1を80g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を35℃に上げて重合を進めた。重合開始から重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120g、0.05%水溶液アスコルビン酸を連続的に添加した。混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Comparative Example 2
500 g of deionized water, 560 g of vinyl chloride monomer and 240 g of vinyl acetate monomer in a 2.5 L autoclave, 8.6 g of 5% aqueous sodium lauryl sulfate, 80 g of seed 1 and 0.1% aqueous copper sulfate. Was charged, and then the temperature of this reaction mixture was raised to 35 ° C. to proceed with the polymerization. From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate and 0.05% aqueous solution ascorbic acid were continuously added. The polymerization was terminated when the polymerization conversion rate was 90% with respect to the total of the mixed monomers.

そして、未反応単量体を回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均粒子径1.6μmを有し、平均重合度1370、酢酸ビニル残基単位の含有量21.1重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部、を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~53重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表2に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average particle size of 1.6 μm, an average degree of polymerization of 1370, and a vinyl chloride-vinyl acetate residue unit content of 21.1% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the combined product. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 53% by weight, and was one of the maximum values of the distribution. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 2.

比較例3
2.5Lオートクレーブ中に脱イオン水500g、塩化ビニル単量体を660gと酢酸ビニル単量体を140g、5%水溶液ラウリル硫酸ナトリウムを8.6g、シード1を80g、0.1%水溶液硫酸銅を4g仕込み、その後、この反応混合物の温度を20℃に上げて重合を進めた。重合開始から重合終了までの間、5%水溶液ラウリル硫酸ナトリウム120g、0.05%水溶液アスコルビン酸を連続的に添加した。混合単量体の合計に対して重合転化率が90%となったところで重合を終了した。
Comparative Example 3
500 g of deionized water, 660 g of vinyl chloride monomer and 140 g of vinyl acetate monomer, 8.6 g of 5% aqueous sodium lauryl sulfate, 80 g of seed 1 and 0.1% aqueous copper sulfate in a 2.5 L autoclave. Was charged, and then the temperature of this reaction mixture was raised to 20 ° C. to proceed with the polymerization. From the start of the polymerization to the end of the polymerization, 120 g of 5% aqueous sodium lauryl sulfate and 0.05% aqueous solution ascorbic acid were continuously added. The polymerization was terminated when the polymerization conversion rate was 90% with respect to the total of the mixed monomers.

そして、未反応単量体を回収してラテックスとし、スプレードライヤーにて、熱風入口温度160℃、出口温度55℃で噴霧乾燥を行って、塩化ビニル-酢酸ビニル共重合体樹脂を得た。得られた塩化ビニル-酢酸ビニル共重合体樹脂は、平均粒子径1.6μmを有し、平均重合度3500、酢酸ビニル残基単位の含有量10.8重量%の塩化ビニル-酢酸ビニル共重合体100重量部に対し、ラウリル硫酸ナトリウム0.9重量部、を含むものであった。その際の塩化ビニル-酢酸ビニル共重合体は、0~23重量%の範囲で酢酸ビニル残基単位含有量が連続分布し、その分布の極大値1つのものであった。また、得られた塩化ビニル-酢酸ビニル共重合体樹脂を用いてペースト塩ビゾルを作製し、物性を評価した。その結果を表2に示す。 Then, the unreacted monomer was recovered to obtain latex, and spray-dried with a spray dryer at a hot air inlet temperature of 160 ° C. and an outlet temperature of 55 ° C. to obtain a vinyl chloride-vinyl acetate copolymer resin. The obtained vinyl chloride-vinyl acetate copolymer resin has an average particle size of 1.6 μm, an average degree of polymerization of 3500, and a vinyl chloride-vinyl acetate residue unit content of 10.8% by weight. It contained 0.9 parts by weight of sodium lauryl sulfate with respect to 100 parts by weight of the combined product. At that time, the vinyl chloride-vinyl acetate copolymer had a continuous distribution of vinyl acetate residue unit content in the range of 0 to 23% by weight, and was one of the maximum values of the distribution. Moreover, the paste vinyl chloride bisol was prepared using the obtained vinyl chloride-vinyl acetate copolymer resin, and the physical characteristics were evaluated. The results are shown in Table 2.

Figure 0007087409000002
Figure 0007087409000002

本発明の塩化ビニル-酢酸ビニル共重合体樹脂は、可塑剤に分散させて調製したペースト塩ビゾルの粘度の経時変化が少なく、低温加工した際の成形品の破断伸びに優れ、コート剤、特に自動車アンダーボディコート剤、自動車用シーラント用として優れた特性を有するものであり、その産業上の利用価値は高いものである。 The vinyl chloride-vinyl acetate copolymer resin of the present invention has little change in the viscosity of the paste vinyl chloride solution prepared by dispersing it in a plasticizer with time, and is excellent in breaking elongation of the molded product when processed at low temperature, and a coating agent, particularly It has excellent properties for automobile underbody coating agents and automobile sealants, and its industrial utility value is high.

Claims (6)

酢酸ビニル残基単位含有量が0~50重量%の範囲内で連続分布し、その分布の極大値が1つであり、平均重合度1000~2800、平均酢酸ビニル残基単位含有量15重量%をこえて30重量%以下である塩化ビニル-酢酸ビニル共重合体であり、該塩化ビニル-酢酸ビニル共重合体の平均一次粒子径が1~2μmであることを特徴とするペースト加工用塩化ビニル-酢酸ビニル共重合体樹脂。 The vinyl acetate residue unit content is continuously distributed within the range of 0 to 50% by weight, the maximum value of the distribution is one, the average polymerization degree is 1000 to 2800 , and the average vinyl acetate residue unit content is 15% by weight. It is a vinyl chloride-vinyl acetate copolymer having a weight of 30% by weight or less, and the average primary particle size of the vinyl chloride-vinyl acetate copolymer is 1 to 2 μm. -Vinyl acetate copolymer resin. 塩化ビニル-酢酸ビニル共重合体100重量部に対して、アルキル硫酸エステル塩0.5~2重量部を含むものであることを特徴とする請求項1に記載のペースト加工用塩化ビニル-酢酸ビニル共重合体樹脂。 The vinyl chloride-vinyl acetate copolymer for paste processing according to claim 1, which contains 0.5 to 2 parts by weight of an alkyl sulfate ester salt with respect to 100 parts by weight of the vinyl chloride-vinyl acetate copolymer. Combined resin. アルキル硫酸エステル塩が、ラウリル硫酸リチウム、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム及びラウリル硫酸トリエタノールアンモニウムからなる群より選択されるものであることを特徴とする請求項2に記載のペースト加工用塩化ビニル-酢酸ビニル共重合体樹脂。 The vinyl chloride-acetate for paste processing according to claim 2, wherein the alkyl sulfate ester salt is selected from the group consisting of lithium lauryl sulfate, sodium lauryl sulfate, ammonium lauryl sulfate and triethanolammonium lauryl sulfate. Vinyl copolymer resin. 酢酸ビニル残基単位含有量が0~45重量%の範囲内で連続分布し、その分布の極大値が1つである塩化ビニル-酢酸ビニル共重合体であることを特徴とする請求項1~3のいずれかに記載のペースト加工用塩化ビニル-酢酸ビニル共重合体樹脂。 Claims 1 to 1, which are vinyl chloride-vinyl acetate copolymers having a vinyl acetate residue unit content continuously distributed in the range of 0 to 45% by weight and having one maximum value of the distribution. The vinyl chloride-vinyl acetate copolymer resin for paste processing according to any one of 3. 請求項1~4のいずれかに記載のペースト加工用塩化ビニル-酢酸ビニル共重合体樹脂を含んでなることを特徴とする自動車アンダーボディコート剤。 An automobile underbody coating agent comprising the vinyl chloride-vinyl acetate copolymer resin for paste processing according to any one of claims 1 to 4. 請求項5に記載の自動車アンダーボディコート剤を熱融着することを特徴とする自動車アンダーボディコートの製造方法。 A method for producing an automobile underbody coat, which comprises heat-sealing the automobile underbody coat agent according to claim 5.
JP2018011948A 2017-05-30 2018-01-26 Vinyl chloride-vinyl acetate copolymer resin and automobile underbody coating agent Active JP7087409B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106928 2017-05-30
JP2017106928 2017-05-30

Publications (2)

Publication Number Publication Date
JP2018203982A JP2018203982A (en) 2018-12-27
JP7087409B2 true JP7087409B2 (en) 2022-06-21

Family

ID=64956502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011948A Active JP7087409B2 (en) 2017-05-30 2018-01-26 Vinyl chloride-vinyl acetate copolymer resin and automobile underbody coating agent

Country Status (1)

Country Link
JP (1) JP7087409B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619503B1 (en) * 2021-08-13 2023-12-28 한국기술교육대학교 산학협력단 Varifocal lens composition comprising poly(vinyl chloride-co-vinyl acetate), varifocal lens having the same and manufacturing method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114839A (en) 1999-10-20 2001-04-24 Nisshin Chem Ind Co Ltd Vinyl chloride-based copolymer resin and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450273A (en) * 1990-06-15 1992-02-19 Aisin Chem Co Ltd Undercoat composition
JPH0481477A (en) * 1990-07-24 1992-03-16 Honda Motor Co Ltd Chipping-resistant coating
JP3390643B2 (en) * 1997-09-12 2003-03-24 アサヒゴム株式会社 Undercoat agent for noise prevention

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114839A (en) 1999-10-20 2001-04-24 Nisshin Chem Ind Co Ltd Vinyl chloride-based copolymer resin and method for producing the same

Also Published As

Publication number Publication date
JP2018203982A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6572591B2 (en) Vinyl chloride resin for paste processing and method for producing the same
KR102661730B1 (en) Thermoplastic compositions containing acrylic copolymers as melt strength and clarity processing aids
JP6828462B2 (en) Vinyl chloride-vinyl acetate copolymer particles and automobile underbody coating agent
JP7087409B2 (en) Vinyl chloride-vinyl acetate copolymer resin and automobile underbody coating agent
JP2017105966A (en) Vinyl chloride-vinyl acetate copolymer composition particle and application thereof
JP2019502804A5 (en)
US10703866B2 (en) Multistage polymer powder composition, its method of preparation and use
JP6638456B2 (en) Vinyl chloride resin for paste processing and its production method
JP7225578B2 (en) Vinyl chloride-vinyl acetate copolymer particles and automobile underbody coating agent comprising the same
JP6848227B2 (en) Vinyl chloride resin for paste processing and its manufacturing method
JP7234665B2 (en) Vinyl chloride-vinyl acetate copolymer resin
JP6572592B2 (en) Vinyl chloride resin for paste processing and its manufacturing method
TWI753895B (en) Method for preparing oriented polyvinyl chloride
JP6800407B2 (en) Manufacturing method of vinyl chloride resin seed
JP6816537B2 (en) Manufacturing method of vinyl chloride resin for paste processing
JP2855691B2 (en) Method for producing vinyl chloride copolymer
JP2021116328A (en) Hydroxy group-containing vinyl chloride copolymer composition particle
JP7234669B2 (en) Vinyl chloride resin for paste processing and vinyl chloride resin composition for paste processing using the same
JP2782805B2 (en) Method for producing vinyl chloride copolymer
US20230048489A1 (en) Polymer composition, its method of preparation and use
JP2016121284A (en) Polymer fine particle aggregate and manufacturing method therefor
JP2017160282A (en) Production method of vinyl chloride resin for paste processing
JP2019151689A (en) Manufacturing method of vinyl chloride resin for paste processing and application thereof
TW201807048A (en) Process aids for oriented polyvinyl chloride
JPS6289709A (en) Method of polymerizing vinyl chloride monomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151