JP7086152B2 - 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料 - Google Patents

多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料 Download PDF

Info

Publication number
JP7086152B2
JP7086152B2 JP2020167227A JP2020167227A JP7086152B2 JP 7086152 B2 JP7086152 B2 JP 7086152B2 JP 2020167227 A JP2020167227 A JP 2020167227A JP 2020167227 A JP2020167227 A JP 2020167227A JP 7086152 B2 JP7086152 B2 JP 7086152B2
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
precursor
zinc
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020167227A
Other languages
English (en)
Other versions
JP2022059455A (ja
Inventor
成之 梅澤
剛 堂浦
幸治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2020167227A priority Critical patent/JP7086152B2/ja
Publication of JP2022059455A publication Critical patent/JP2022059455A/ja
Application granted granted Critical
Publication of JP7086152B2 publication Critical patent/JP7086152B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、高い比表面積値を得ることができる多孔質炭素材料およびその製造方法と、多孔質炭素材料の前駆体と、その多孔質炭素材料を用いた電極材料とに関するものである。
一般に、電気二重層キャパシタの分極性電極として、表面積が大きく導電性に優れている点から活性炭等の多孔質材料が用いられている。しかし、活性炭は、細孔が複雑に入り組んだ構造であるため、当該活性炭に吸着される電解質イオンの量が少なくなり、容量が有効に発現しなくなる。また、高出力領域において電解質イオンのスムーズな出し入れが困難になるため、高出力領域における容量が不足する。
そこで、従来より、このような活性炭に変わるものとして、本発明者等は、三次元網目構造に構成された金属錯体を合成した後、それを焼成することによって、電解質イオンの吸脱着を容易に行うことをできるようにした多孔性金属錯体の焼成体を提案している(例えば、特許文献1参照)。

特開2017-135196号公報
しかし、上記従来の多孔性金属錯体の焼成体の場合、活性炭に替わる電極材料として有効な性能を発揮するものの、本来の性能を発揮させるために幾つかの工夫をすることで、さらに高性能となることの知見を得て、本発明者等は新たな発明を完成するに至った。
本発明は、簡単な作業工程で製造でき、高比表面積で、電解質イオンの出し入れもスムーズに行うことができる多孔質炭素材料、およびその製造方法と、当該多孔質炭素材料を用いた電極材料を提供することを目的としている。
上記課題を解決するための本発明に係る多孔質炭素材料の製造方法は、複数のカルボキシル基を有する多環芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液と、亜鉛イオンを含む化合物を有機溶媒に溶解してなる亜鉛イオン溶液と、の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07となされた前駆体を調製した後、当該前駆体を焼成し、700℃で焼成した際に検出されるX線回折の回折角度のピークが検出されなくなるまで高温で焼成して多孔質にするものである。
上記多孔質炭素材料の製造方法において、比表面積が10m/g以下となされた前駆体を調製するものであってもよい。
上記多孔質炭素材料の製造方法において、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°25.03°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製するものであってもよい。
上記多孔質炭素材料の製造方法において、複数のカルボキシル基を有する多環芳香族炭化水素化合物として4,4-スチルベンジカルボン酸を用いるものであってもよい。
上記多孔質炭素材料の製造方法において、亜鉛イオンを含む化合物として酢酸亜鉛を用い、有機溶媒としてNMP(N-メチル-2-ピロリドン)を用いるものであってもよい。
上記課題を解決するための本発明の多孔質炭素材料は、上記製造方法によって得られる多孔質炭素材料であって、X線回折による回折ピーク(2θ)が31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出されないものである。
上記多孔質炭素材料は、比表面積が1350m/g以上となされたものであってもよい。
上記多孔質炭素材料は、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、11.9%以上となされたものであってもよい。
上記課題を解決するための本発明に係る多孔質炭素材料の前駆体は、焼成することで多孔質炭素材料として調製することができる前駆体であって、複数のカルボキシル基を有する多環芳香族炭化水素化合物を有機溶媒に溶解してなる有機リガンド液と、亜鉛イオンを含む化合物を有機溶媒に溶解してなる亜鉛イオン溶液と、の合成反応により得られ、EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07となされたものである。
上記多孔質炭素材料の前駆体は、比表面積が10m/g以下となされたものであってもよい。
上記多孔質炭素材料の前駆体は、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°25.03°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れるものであってもよい。
上記課題を解決するための本発明の電極材料は、上記多孔質炭素材料を含むものである。
上記多孔質炭素材料の製造方法において、複数のカルボキシル基を有する多環芳香族炭化水素化合物としては、複数のベンゼン環に、複数のカルボキシル基が設けられたものを使用することができる。具体的には、例えば、2,6-ナフタレンジカルボン酸、4,4-ビスフェニルジカルボン酸、4,4-スチルベンジカルボン酸を使用することができる。
上記多孔質炭素材料の製造方法において、複数のカルボキシル基を有する多環芳香族炭化水素化合物を溶解する有機溶媒としては、例えば、NMP(N-メチル-2-ピロリドン)、メタノール、エタノール、DMSO(ジメチルスルホキシド:CSO)、DMF(ジメチルホルムアミド:CNO)、DMA(ジメチルアセトアミド:CNO)、DEF(N,N-ジエチルホルムアミド)などを用いることができる。これらは、単独溶媒であってもよいし、複数種類を混合した混合溶媒であってもよい。この有機溶媒5~500mlに、上記した複数のカルボキシル基を有する多環芳香族炭化水素化合物0.05~0.5gを溶解することで、有機リガンド液が調製される。
上記多孔質炭素材料の製造方法において、亜鉛イオンを含む化合物としては、上記有機リガンド液の複数のカルボキシル基を有する多環芳香族炭化水素化合物と配位結合して合成可能な化合物であれば、特に限定されるものではなく、例えば、酢酸亜鉛、酢酸亜鉛二水和物、硝酸亜鉛六水和物などを使用することができる。
上記多孔質炭素材料の製造方法において、亜鉛イオンを含む化合物を溶解する溶媒としては、上記有機リガンド液に使用されているものと同じものが使用される。この有機溶媒10~200mlに、上記した亜鉛イオンを含む化合物0.1~0.8gを溶解することで、亜鉛イオン溶液が調製される。
上記有機リガンド液と上記亜鉛イオン溶液との合成反応により、前駆体が調製される。この際、合成に使用する、複数のカルボキシル基を有する多環芳香族炭化水素化合物、亜鉛イオンを含む化合物、溶媒、の各材料として上記したものを選定する。この選定をする際に、複数のカルボキシル基を有する多環芳香族担架水素化合物や亜鉛イオンを含む化合物の構造から、EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07となされた前駆体を調製することができる各材料を選定して合成する。EDS分析による亜鉛元素/炭素元素の比率が、0.04以下の場合は、焼成後に充分に多孔質になった多孔質炭素材料が得られず、0.07以上の場合には、得られた多孔質炭素材料の細孔分布にばらつきを生じてしまうこととなる。この選定をすることで、得られる前駆体は、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°25.03°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製することができる。例えば、酢酸亜鉛、NMP、4,4-スチルベンジカルボン酸を用いて合成することで、上記5つの回折角度のピークを有し、直径の1/3±15%の高さを有する略円柱状に形成された前駆体を調製することができる。この前駆体は、比表面積が10m/g以下となり、多孔質に形成されていない。有機リガンド液と亜鉛イオン溶液とを混ぜ合わせる際、ゆっくり混ぜ合わせると前駆体の粒子が大きくなり、早く混ぜ合わせると当該前駆体の粒子が小さくなるが、いずれの場合も前記したように、直径の1/3±15%の高さを有する略円柱状に整った前駆体が全体の90%以上を占める割合で調製される。ここで、「略円柱状」の「略円」とは、真円、楕円、以外に、面取りされて周縁が鈍角で構成された四角形以上の多角形を含む。また、「直径」とは、前記「略円」の部分に外接する外接円の直径を指す。
上記前駆体は、焼成することによって多孔質炭素材料とされる。この際、焼成は、前駆体を、700℃で焼成した際に検出されるX線回折の回折角度のピークが検出されなくなるまで高温で焼成する。すなわち、上記前駆体は、亜鉛イオン溶液を用いて合成しているので、当該前駆体を700℃程度の温度で焼成すると、前駆体に入り込んでいた酸化亜鉛や亜鉛が、当該前駆体に残ってしまい、長時間焼成しても、回折角度のピークとして検出される。確認したピークは、31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)である。しかし、亜鉛の沸点である907℃以上の温度で焼成させると、酸化亜鉛を分解し、亜鉛を蒸発させることができるので、前駆体に入り込んでいた酸化亜鉛や亜鉛を消失させ、上記したピークも無くなり、当該酸化亜鉛や亜鉛が入り込んでいた跡に、細孔が形成され多孔質になる。この際、亜鉛の沸点である907℃以上で焼成すれば、確実に細孔を形成して多孔質にすることができるが、亜鉛の沸点以下の温度であっても、長時間焼成すれば、酸化亜鉛や亜鉛の入り込んでいた跡に細孔を形成して多孔質にすることができる。850℃で焼成した場合は、長時間の焼成で上記したピークを無くし、細孔を形成して多孔質にすることができることが確認できている。したがって、焼成条件としては、酸化亜鉛を分解し、亜鉛を蒸発させることができる条件であれば、特に限定されるものではなく、目安としては、30分~8時間、または前駆体1g当たり3.84時間~61.6時間の焼成を行うことが好ましい。焼成時間が、前駆体1g当たり30時間を超えると、または2時間を超えると、指数関数的またはn次関数(n>1)的に酸化亜鉛や亜鉛が消失し始め、その時に細孔が形成されることとなるので、850℃以上であれば、前駆体1g当たり30時間以上または2時間以上焼成すれば、上記したピークを無くすことができる。また、亜鉛の沸点である907℃以上の場合には、上記したピークを無くすことができるだけでなく、上記したピークとして検出されなかった非晶質(アモルファス)な酸化亜鉛や亜鉛も消失させることができるので、これら非晶質な酸化亜鉛や亜鉛が抜けた跡にも細孔を形成することができることとなり、より多孔質にして高比表面積の多孔質炭素材料を得ることができることとなる。
また、この焼成の際、前駆体は、EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07としているので、比表面積が10m/g以下となり、前駆体内の空隙も少ない。しかも、焼成によって亜鉛が抜けた跡に細孔が形成されるが、前記した元素比率の範囲にある前駆体は、亜鉛が抜けた跡によって細孔分布がばらついたりすることなく、広範囲に渡って均一な細孔分布が得られる。
焼成は、不活性ガス雰囲気(窒素ガスもしくはアルゴンガス雰囲気)にて行うものであってもよい。この際、不活性ガス雰囲気は、0.1~1.0リットル/分のガス流量で焼成雰囲気を置換しながら行うものであってもよい。また、焼成時に所定の温度から5~10℃/分程度の昇温速度で昇温して所定温度にして焼成を行うものであってもよい。さらに、焼成は、減圧雰囲気下で行うものであってもよい。焼成する炉は、炉心管タイプ、ボックス炉、ロータリーキルン炉など用いることができる。
このようにして構成された多孔質炭素材料は、前駆体の段階では、EDS分析による亜鉛元素/炭素元素の比率を0.04<Zn/C<0.07としており、比表面積が10m/g以下の多孔質ではない状態であるが、当該前駆体の構造自体は、直径の1/3±15%の高さを有する円柱状に整った形に骨格が形成されて規則的な三次元網目構造となっているので、このような前駆体を焼成して、酸化亜鉛や亜鉛を消失させ、当該酸化亜鉛や亜鉛が入り込んでいた跡に、細孔を形成して多孔質化を図ることで、非常に規則正しく、広範囲に渡って均一な細孔分布をした、多孔質化された多孔質炭素材料を得ることができる。したがって、電極材料として使用すれば、電解質イオンの出し入れをスムーズに行うことができることとなり、静電容量の高い高性能な電極材料とすることができる。また、このようにして形成される細孔は、上記酸化亜鉛や亜鉛が抜けた跡に形成されるメソ孔の割合も多くなるため、IUPACで定義されるメソ孔(2~50nm)を多く形成できることとなり、全比表面積に占めるメソ孔の比表面積の割合を11.9%以上にすることができる。したがって、電解質イオンの出し入れを、よりスムーズに行うことができることとなる。さらに、このメソ孔は、亜鉛の沸点以上で、かつ、上記した長時間の焼成を行うことで、指数関数的またはn次関数(n>1)的に酸化亜鉛や亜鉛を消失させて、その跡に細孔を形成することができるので、比表面積を1350m/g以上とし、しかも、比表面積が1350m/gの状態でも活性炭以上にメソ孔を有し、かつ、広範囲に渡って均一な細孔分布の多孔質炭素材料を得ることができる。
また、多孔質炭素材料は、酸化亜鉛や亜鉛を消失させることができる高温で焼成するため、余計な不純物等も同時に消失させることができるので、焼成後の水洗の必要も無くすことができ、焼成工程後に得られた焼成体をそのまま使用することができることとなり、簡単な作業工程で多孔質炭素材料を得ることができる。
以上述べたように、本発明によると、4,4-スチルベンジカルボン酸をNMP(N-メチル-2-ピロリドン)に溶解してなる有機リガンド液と、酢酸亜鉛をNMP(N-メチル-2-ピロリドン)に溶解してなる亜鉛イオン溶液と、の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07となされ、比表面積が10m/g以下となされ、かつ、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°25.03°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製した後、当該前駆体を焼成し、700℃で焼成した際にX線回折によって31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出される酸化亜鉛や亜鉛の回折角度の回折ピーク(2θ)が検出されなくなるまで高温で焼成して多孔質にしているので、このようにして構成される多孔質炭素材料は、10m/g以下と比表面積が小さい前駆体から酸化亜鉛や亜鉛が抜けて、当該抜けた跡に、広範囲に渡って均一な細孔分布の空隙が形成されることとなり、電解質イオンの出入りが容易な多孔質材料とすることができる。したがって、比表面積当たりの静電容量の高い電極材料を形成することができる。
本発明に係る多孔質炭素材料の製造方法に使用する前駆体および純ケイ素の粉末X線回折の回折データを示すグラフである。 本発明に係る多孔質炭素材料の製造方法に使用する前駆体と、この製造方法によって得られた多孔質炭素材料のそれぞれの窒素吸脱着等温線を示すグラフであって、(a)は1時間焼成の実施例および比較例、(b)は5時間焼成の実施例および比較例を示している。 本発明に係る多孔質炭素材料の製造方法に使用する前駆体と、比較例2、実施例1、実施例3に係る多孔質炭素材料の電子顕微鏡写真である。 本発明に係る多孔質炭素材料の製造方法に使用する前駆体と、比較例2、実施例1、実施例3に係る多孔質炭素材料の粉末X線回折の回折データを示すグラフである。 (a)は比較例2に係る多孔質炭素材料の炭素、酸素、亜鉛のEDS分析による元素分布を示す電子顕微鏡写真、(b)は実施例3に係る多孔質炭素材料の炭素、酸素、亜鉛のEDS分析による元素分布を示す電子顕微鏡写真である。 本発明の実施例4に係る多孔質炭素材料と、比較例8に係る多孔質炭素材料との細孔分布を示すグラフである。 (a)および(b)は、本発明に係る多孔質炭素材料の製造方法に使用する前駆体を異なった合成条件で合成した状態を示す電子顕微鏡写真である。 本発明に係る多孔質炭素材料を使用した電極試験片による静電容量、および活性炭を使用した電極試験片による静電容量の測定試験の結果を示すグラフである。
以下、本発明に係る実施の形態について説明する。
[実施例1-3、比較例1-3]
(前駆体の調製)
酢酸亜鉛・二水和物0.2gに、NMP(N-メチル-2-ピロリドン)を50ml加えて溶解させたものを亜鉛イオン溶液として調製した。
4,4-スチルベンジカルボン酸1gに、NMP(N-メチル-2-ピロリドン)を500ml加えて溶解させたものを有機リガンド液として調製した。
上記亜鉛イオン溶液と、上記有機リガンド液とを混合し、合成反応により前駆体を得た。
(前駆体の粉末X線回折)
上記の方法でそれぞれ調製した複数の前駆体を用意し、各前駆体を、高純度化学社製の純ケイ素と混ぜ合わせ、これら混合物の粉末約0.02gを、サンプルホルダーに乗せて整地し、回折を行った。純ケイ素のみの回折も行い、純ケイ素のピーク位置に対して、前駆体のピークがどこに出るのかを特定した。測定機種、測定条件などは下記の通りである。それぞれ別々に調製した3つの前駆体についてX線回折した結果を図1に示す。
測定機種:X線回折装置SmartLab SE(株式会社リガク社製)
測定条件:測定角度の範囲は2θ=2°~60°
スキャンスピード10°/min
X線源;Cu(Kα)
図1の結果から、調製された前駆体は、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°、25.03°に相当する少なくとも5つの回折角度のピークが現れることが確認できた。また、前駆体のピークを測定する際、当該前駆体に混合した純ケイ素のピークと、純ケイ素のみを測定したピークとが大きくずれることもなかった。
(前駆体の焼成)
上記の方法で調製した前駆体を複数個に分け、それぞれを異なる条件で焼成して多孔質炭素材料を得た。
上記前駆体の焼成条件は、窒素ガス雰囲気にて、ガス流量0.2リットル/分、室温25℃から昇温速度10℃/分で昇温し、700℃到達後、その温度で1時間の焼成を行った場合(比較例1)と5時間焼成を行った場合(比較例2)、同じく昇温し、850℃到達後、その温度で1時間の焼成を行った場合(比較例3)と5時間焼成を行った場合(実施例1)、同じく昇温し、1000℃到達後、その温度で1時間焼成を行った場合(実施例2)と5時間焼成を行った場合(実施例3)についてそれぞれ焼成を行い、それぞれの多孔質炭素材料を得た。
(窒素吸脱着測定(比表面積/細孔分布測定))
上記の方法で調製した前駆体および多孔質炭素材料のそれぞれを200℃で24時間減圧乾燥させ、室温雰囲気中で前駆体および多孔質炭素材料に吸着した水分を脱着させた後、当該前駆体および多孔質炭素材料のそれぞれの粉末0.02gをサンプル管に入れ、液体窒素雰囲気下で比表面積/細孔分布測定装置(BELLSORP-miniII:マイクロトラックベル株式会社製)によって窒素吸脱着等温線を測定した。また、同装置の解析プログラム(I型(ISO9277)BET自動解析)により比表面積を算出した。さらに、高い比表面積が得られた実施例2、3に係る多孔質炭素材料については、得られた窒素吸脱着等温線をBJH(Barrett-Joyner-Halenda)法により処理してIUPACで定義されているメソ孔(2~50nm)のサイズの比表面積を算出した。また、全比表面積に占めるメソ孔の比表面積の割合を算出した。前駆体および活性炭(クラレケミカル社製:YP50F)のデータと合わせて結果を表1および図2に示す。なお、図2は、1時間焼成した比較例1、比較例3、実施例2と(図2(a))、5時間焼成した比較例2、実施例1、実施例3と(図2(b))に分けて表示した。
Figure 0007086152000001
(電子顕微鏡写真)
上記の方法で調製した前駆体と、5時間焼成した、上記比較例2、実施例1、実施例3の各多孔質炭素材料とについて、その形状を電子顕微鏡で撮影した。撮像の測定条件は、下記の通りとした。結果を図3に示す。
測定機種:JSM-6010LA(日本電子株式会社製)
測定条件:加速電圧15kV、ワーキングディスタンス11mm、スポットサイズ30
測定倍率:10000倍
(焼成体の粉末X線回折)
上記の方法で調製した前駆体と、5時間焼成した、上記比較例2、実施例1、実施例3の各多孔質炭素材料とについて、それぞれの粉末約0.02gを、サンプルホルダーに乗せて整地し、回折を行った。測定機種、測定条件などは下記の通りである。結果を図4に示す。
測定機種:X線回折装置SmartLab SE(株式会社リガク社製)
測定条件:測定角度の範囲は2θ=2°~60°
スキャンスピード10°/min
X線源;Cu(Kα)
(焼成体のEDS分析)
700℃で5時間の焼成を行って得た多孔質炭素材料(比較例2)と、1000℃で5時間の焼成を行って得た多孔質炭素材料(実施例3)とについては、下記装置でEDS分析を行った。結果を図5および表2に示す。
測定機種:JEM-2100F(日本電子株式会社製)
測定条件:加速電圧200kV
Figure 0007086152000002
以上の結果から、前駆体の状態では、多孔質になっておらず、比表面積も4.6m/gと小さく、無細孔であることが確認できるが、焼成することにより、多孔質化して比表面積が増加していることが確認できる。また、焼成温度が低いと酸化亜鉛や亜鉛などの元素が残存するが、亜鉛の沸点である907℃を超える1000℃度で焼成すると、1時間で多孔質化した高比表面積の多孔質炭素材料を得ることができることが確認できた。亜鉛の沸点である907℃よりも低い700℃では5時間焼成しても多孔質化することができなかったが、850℃の場合は、1時間では多孔質化することが難しかったが、5時間焼成した場合は、多孔質化して比表面積を増加させることができることが確認できた。つまり、亜鉛の沸点以下の温度の場合であっても、850℃位の温度であれば、長時間焼成した場合には、酸化亜鉛や亜鉛を消失させて多孔質化した高比表面積の多孔質炭素材料を得ることができることが確認できた。また、各前駆体は、5時間焼成した場合、1時間焼成した場合と比較して、比表面積が飛躍的に増大することが確認できた。これは、X線回折の回折角度のピークとしては現れないが、前駆体中に存在する非晶質な酸化亜鉛や亜鉛が、当該酸化亜鉛や亜鉛の沸点を超える温度での長時間の焼成によって指数関数的またはn次関数(n>1)的に処理されて消失し、その跡に細孔が形成されてさらに多孔質化したことにより、比表面積が飛躍的に増大したものと推測される。図3に示すように、亜鉛の沸点である907℃よりも相当低い700℃の場合には、5時間焼成しても表面にナノ粒子が付着した状態となるが、焼成まで至らない。このことを裏付けるように、図4のX線回折の結果や、図5のEDS分析の結果を見てみると、700℃で焼成したものは、亜鉛や酸素が残存しているが、1000℃で焼成したものは、亜鉛や酸素が除去されて略炭素になっていることが確認できた。
[実施例4-9、比較例4-9]
(前駆体のZn/Cの元素比率)
上記実施例と同じ方法で複数の前駆体を調製した。得られた6つの前駆体について、上記実施例と同じ装置でEDS分析を行って、前駆体のZn/Cの元素比率を求めた。また、比較対象として、上記実施例の有機リガンド液で使用している4,4-スチルベンジカルボン酸を、テレフタル酸に変更した以外は、上記実施例と同様にして調製した前駆体を使用した。結果を表3に示す。
Figure 0007086152000003
表3の結果から、実施例に係る前駆体のZn/Cの元素比率は、0.04<Zn/C<0.07の範囲にあることが確認できた。
(多孔質炭素材料の細孔分布測定)
上記実施例4で得られた前駆体と、実施例4-9で得られた前駆体の中で最もZn/Cの元素比率が実施例に近い比較例8で得られた前駆体とを、実施例3と同じ方法で焼成して多孔質炭素材料を得た。得られた多孔質炭素材料を上記各実施例と同じ比表面積/細孔分布測定装置(BELLSORP-miniII:マイクロトラックベル株式会社製)を用いて比表面積を測定し、細孔分布測定を行った。結果を図6に示す。
図6の結果から、比較例4に係る多孔質炭素材料は、細孔分布がばらついているのに対し、本発明に係る実施例4の多孔質炭素材料は、0.83nm付近に強いピークが確認されるが、それ以外は、広範囲に渡って均一な細孔分布が得られていることが確認できた。
[実施例10-11]
(前駆体の形状確認)
上記実施例の前駆体と同じ亜鉛イオン溶液と有機リガンド液とを使用して以下の異なった2種類の方法で前駆体を合成した。
(1)有機リガンド液に亜鉛イオン溶液を滴下し、40℃恒温槽に一日放置した後、上澄み液を回収し、沈殿したものを、120℃で20時間減圧乾燥して前駆体を得た。
(2)有機リガンド液と亜鉛イオン溶液とを全量混合し、40℃の恒温槽に一日放置した後、上澄み液を回収し、沈殿したものを120℃で20時間減圧乾燥して前駆体を得た。
上記(1)(2)のそれぞれの前駆体を、上記実施例と同じ方法で電子顕微鏡写真を撮影した。結果を図7に示す。
以上の結果から、(1)の前駆体は粒子径が大きくなり、(2)の前駆体は粒子径が小さくなったが、何れの前駆体も、直径の1/3±15%の高さを有する円柱状に整った形状で調製されていることが確認できた。また、(2)の粒子径が小さくなった方の前駆体の比表面積を測定したところ、10.0m/gであった。
(三電極法による電極試験片の作製)
実施例3で得られた多孔質炭素材料を活物質として用い、当該活物質と、導電助剤(アセチレンブラック)と、結着剤(PVDF(ポリフッ化ビニリデン樹脂))とを、8:1:1の重量比で混練した。この混練物をチタンメッシュに塗布乾燥させて電極試験片を調製した。この電極試験片を作用極とし、Ag/AgClを参照電極とし、白金を対極とし、1M希硫酸を電解液として三電極法による三極セルを構成した。
(電極試験片の容量測定)
上記で調製したそれぞれの電極試験片の活物質重量あたり、50mA/gとなるように定電流を流して、参照電極に対して電位を0~0.8Vまで充電し、到達後、0.8~0Vまで放電し、その放電電気量から静電容量を算出した。静電容量は、電気化学計測器(VSP300 Biologic社製)を用いて測定した。また、比較対象として、実施例3で得られた多孔質炭素材料を、活性炭(クラレケミカル社製:YP50F)に変更して調製した電極試験片を用いて同様の測定を行った。その結果を表4および図8に示す。
Figure 0007086152000004
以上の結果から、本発明に係る多孔質炭素材料は、電極材料として、従来の活性炭と略同じ静電容量ながら、単位容積当たりの静電容量では、活性炭を上回る静電容量を得ることができ、電極材料として10%以上の小型化を図ることができることが確認できた。
なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。

Claims (4)

  1. 4,4-スチルベンジカルボン酸をNMP(N-メチル-2-ピロリドン)に溶解してなる有機リガンド液と、
    酢酸亜鉛をNMP(N-メチル-2-ピロリドン)に溶解してなる亜鉛イオン溶液と、
    の合成反応により、EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07となされ、比表面積が10m/g以下となされ、かつ、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°25.03°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れる前駆体を調製した後、
    当該前駆体を焼成し、700℃で焼成した際にX線回折によって31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出される酸化亜鉛や亜鉛の回折角度の回折ピーク(2θ)が検出されなくなるまで高温で焼成して多孔質にする
    ことを特徴とする多孔質炭素材料の製造方法。
  2. 請求項1に記載の製造方法によって得られる多孔質炭素材料であって、
    X線回折による回折ピーク(2θ)が31.7°、34.3°、36.2°、47.45°、56.5°(何れのピークも誤差±0.3)に検出されず、比表面積が1350m/g以上となされ、窒素吸脱着等温線より得られた結果をBJH法により算出して得られる、全比表面積に占めるメソ孔(2~50nm)の比表面積の割合が、11.9%以上となされた多孔質炭素材料。
  3. 焼成することで多孔質炭素材料として調製することができる前駆体であって、
    4,4-スチルベンジカルボン酸をNMP(N-メチル-2-ピロリドン)に溶解してなる有機リガンド液と、
    酢酸亜鉛をNMP(N-メチル-2-ピロリドン)に溶解してなる亜鉛イオン溶液と、
    の合成反応により得られ、
    EDS分析による亜鉛元素/炭素元素の比率が、0.04<Zn/C<0.07となされ、比表面積が10m/g以下となされ、かつ、純ケイ素の回折角度のピーク(2θ)が28.2°、47.12°、55.9°に測定される条件で、X線回折した際、9.92°、10.82°、13.53°、18.87°25.03°(何れのピークも誤差±0.3°)に相当する少なくとも5つの回折角度のピークが現れることを特徴とする多孔質炭素材料の前駆体。
  4. 請求項2に記載の多孔質炭素材料を含む電極材料。
JP2020167227A 2020-10-01 2020-10-01 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料 Active JP7086152B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020167227A JP7086152B2 (ja) 2020-10-01 2020-10-01 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167227A JP7086152B2 (ja) 2020-10-01 2020-10-01 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料

Publications (2)

Publication Number Publication Date
JP2022059455A JP2022059455A (ja) 2022-04-13
JP7086152B2 true JP7086152B2 (ja) 2022-06-17

Family

ID=81124337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167227A Active JP7086152B2 (ja) 2020-10-01 2020-10-01 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料

Country Status (1)

Country Link
JP (1) JP7086152B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079774A (ja) * 2021-11-29 2023-06-08 星和電機株式会社 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218603A (ja) 2013-05-09 2014-11-20 独立行政法人産業技術総合研究所 多孔質金属配位高分子化合物及び多孔質炭素材料の製造方法
CN104229768A (zh) 2014-07-01 2014-12-24 江西师范大学 具有三维结构的多孔碳方法
US20200259168A1 (en) 2017-09-28 2020-08-13 Lg Chem, Ltd. Carbon-sulfur composite, preparation method therefor, and lithium secondary battery comprising same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639663B1 (ko) * 2018-08-20 2024-02-21 주식회사 엘지에너지솔루션 금속 유기 골격체, 이의 제조방법 및 다공성 탄소 구조체의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218603A (ja) 2013-05-09 2014-11-20 独立行政法人産業技術総合研究所 多孔質金属配位高分子化合物及び多孔質炭素材料の製造方法
CN104229768A (zh) 2014-07-01 2014-12-24 江西师范大学 具有三维结构的多孔碳方法
US20200259168A1 (en) 2017-09-28 2020-08-13 Lg Chem, Ltd. Carbon-sulfur composite, preparation method therefor, and lithium secondary battery comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079774A (ja) * 2021-11-29 2023-06-08 星和電機株式会社 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料
JP7293320B2 (ja) 2021-11-29 2023-06-19 星和電機株式会社 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料

Also Published As

Publication number Publication date
JP2022059455A (ja) 2022-04-13

Similar Documents

Publication Publication Date Title
Huang et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst
Zhang et al. Selective synthesis of hierarchical mesoporous spinel NiCo 2 O 4 for high-performance supercapacitors
Li et al. MOF derived Co 3 O 4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR
Mohiuddin et al. Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution
Lee et al. A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties
Ng et al. Enhancing the performance of 3D porous N-doped carbon in oxygen reduction reaction and supercapacitor via boosting the meso-macropore interconnectivity using the “exsolved” dual-template
Wu et al. Three-dimensional Co 3 O 4/flocculent graphene hybrid on Ni foam for supercapacitor applications
Liu et al. Hierarchically porous nickel–iridium–ruthenium–aluminum alloys with tunable compositions and electrocatalytic activities towards the oxygen/hydrogen evolution reaction in acid electrolyte
US10388967B2 (en) Porous carbon catalyst, method for producing same, electrode and battery
WO2014091447A1 (en) Carbon bodies and ferromagnetic carbon bodies
JP7086152B2 (ja) 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料
Zakaria Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction
Alonso-Lemus et al. Platinum nanoparticles synthesis supported in mesoporous silica and its effect in MCM-41 lattice
Wang et al. N-doped carbon nanocages with high catalytic activity and durability for oxygen reduction
JP7048693B1 (ja) 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料
Liu et al. Iron–nitrogen co-doped hierarchically mesoporous carbon spheres as highly efficient electrocatalysts for the oxygen reduction reaction
Kumaresan et al. Single-step synthesis of Mn3N2, MnxON and Mn3O4 nanoparticles by thermal plasma arc discharge technique and their comparative study as electrode material for supercapacitor application
KR101735337B1 (ko) 니켈(ii) 착물 유래 3차원 메조기공 그래핀 및 그 제조방법
Li et al. In situ synthesis of well crystallized rhodium sulfide/carbon composite nanospheres as catalyst for hydrochloric acid electrolysis
Zhao et al. Magnetic MnxCo3-xO4 microboxes fabricated from Prussian blue analogue templates for electrochemical applications
JP7293320B2 (ja) 多孔質炭素材料およびその製造方法、多孔質炭素材料の前駆体、ならびに多孔質炭素材料を用いた電極材料
Pacuła et al. Preparation and characterization of the electroactive composites containing nickel nanoparticles and carbon nanotubes
Ramani et al. Engineering surface and morphology of La/WO 3 for electrochemical oxygen reduction
KR101815756B1 (ko) 금속 입자를 함유하는 중공형 다공성 탄소복합체 및 이의 제조방법
US20210087063A1 (en) Nanostructured Carbons and Methods of Preparing the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7086152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150