JP7085231B2 - Microstructure detection method and its equipment - Google Patents
Microstructure detection method and its equipment Download PDFInfo
- Publication number
- JP7085231B2 JP7085231B2 JP2020144019A JP2020144019A JP7085231B2 JP 7085231 B2 JP7085231 B2 JP 7085231B2 JP 2020144019 A JP2020144019 A JP 2020144019A JP 2020144019 A JP2020144019 A JP 2020144019A JP 7085231 B2 JP7085231 B2 JP 7085231B2
- Authority
- JP
- Japan
- Prior art keywords
- microstructure
- disk
- microorganisms
- detecting
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、微小構造物を光学的に検出するための検出装置、検出方法、及び微小構造物検出用ディスクに関する。 The present invention relates to a detection device for optically detecting microstructures, a detection method, and a disc for detecting microstructures.
従来、水中等に存在する微生物を初めとする微小構造物を検出する方法としては、培養法が最も多く用いられている。但し一般的には、微生物の培養のために約1日と、微生物の種類を特定する検査のために更に数日とを要することから、早々に検査結果を得ることはできていない。 Conventionally, the culture method is most often used as a method for detecting microstructures such as microorganisms existing in water or the like. However, in general, it takes about one day for culturing the microorganism and several more days for the test for identifying the type of the microorganism, so that the test result cannot be obtained at an early stage.
早期検出のための取り組みの例として、パーティクルカウンタ或いはフローサイトメータでは、検査対象水を流路に通した上でレーザ光を照射し、集光部を通過する微生物等からの蛍光や散乱光を測定することにより、微生物等の種類や大きさを特定することが行われている(特許文献1参照)。流路を用いる手法の課題としては、一般的に検査装置が大型で高価であることが挙げられる。 As an example of efforts for early detection, in a particle counter or flow cytometer, the water to be inspected is passed through a flow path and then irradiated with laser light to emit fluorescence or scattered light from microorganisms that pass through the condensing part. By measuring, the type and size of microorganisms and the like are specified (see Patent Document 1). One of the problems with the method using the flow path is that the inspection device is generally large and expensive.
小型で安価な検査装置の実現を目指し、光ディスクをベースとした手法が提案されている(特許文献2参照)。光ディスクは、映像や音楽などの情報記録のために開発され、長さが数百nmから数μmの記録ピットを高速に読み出すことができる技術である。この記録ピットを微生物等に見立てた測定を行うことで、光ディスクを使った微生物等の検出が可能となる。 An optical disc-based method has been proposed with the aim of realizing a compact and inexpensive inspection device (see Patent Document 2). Optical discs have been developed for recording information such as video and music, and are a technology that can read out recording pits with a length of several hundred nm to several μm at high speed. By measuring the recording pits as if they were microorganisms, it is possible to detect microorganisms using an optical disk.
本発明者らは、微小構造物の検出方法等に関して研究開発を行ってきた(特許文献3参照)。特許文献3では、トラッキングをとるためのトラック構造にマーカーを形成して、付着した微小構造物のマッピングを可能とする方法を提案した。
The present inventors have conducted research and development on a method for detecting microstructures and the like (see Patent Document 3).
従来から、微生物等を早期検出する技術が望まれているが、大型で高価であるという問題があった。 Conventionally, a technique for early detection of microorganisms and the like has been desired, but there is a problem that it is large and expensive.
また、従来の光ディスクを用いる微小構造物検出の技術では、夾雑物がある環境下で微生物等の有無を判定する方法と微生物の種類を特定する方法が確立されていない。 Further, in the conventional technique for detecting microstructures using an optical disc, a method for determining the presence or absence of microorganisms and the like in an environment with impurities and a method for specifying the type of microorganisms have not been established.
例えば、特許文献2では、検出したい微生物を特異的に捕捉する仕組みを予め基板上に設ける方法が示されているが、一般的には該反応とは無関係の微生物等も一定程度基板上に物理吸着してしまう。つまり、目的の微生物の有無を有意に判断できるのは、その個数が物理吸着する個数を十分上回る場合に限られるという問題がある。
For example,
本発明者らの特許文献3では、微小構造物のマッピングが可能であるが、夾雑物がある環境下では、その検出精度が不十分であった。
In
本発明は、これらの問題を解決しようとするものであり、本発明は、水中等に存在する微生物を初めとする微小構造物をディスクに搭載した状態で、光学的な手段により、液中の微生物の個数に関わらず、微生物の存在の有無を明らかにし、微生物の種類を特定するための、検出方法、検出装置及び検出用ディスクを提供することを目的とする。 The present invention is intended to solve these problems, and the present invention is to use an optical means in a liquid in a state where microstructures such as microorganisms existing in water or the like are mounted on a disk. It is an object of the present invention to provide a detection method, a detection device, and a detection disk for clarifying the presence or absence of microorganisms and identifying the type of microorganisms regardless of the number of microorganisms.
本発明は、前記目的を達成するために、以下の特徴を有するものである。 The present invention has the following features in order to achieve the above object.
本発明の微小構造物検出方法は、レーザ光を、微小構造物試料を搭載した回転するディスクの一方の面に照射し、前記ディスクの他方の面側の光を検出することにより、前記試料からの透過光強度または蛍光強度を測定することを特徴とする。例えば、前記透過光強度の測定は、微小構造物への染色前後の状態あるいは染色後の状態の、透過光を測定することが好ましい。または、例えば、前記蛍光強度の測定は、蛍光標識した微小構造物からの蛍光あるいは微小構造物の自家蛍光を測定することが好ましい。本発明の微小構造物検出方法において、前記レーザ光の前記ディスクからの反射光強度をもとに、前記ディスクにおける焦点位置を調整することが好ましい。前記透過光強度または前記蛍光強度の測定は、測定結果からディスク1回転に相当する周波数の20倍以下の周波数部分をカットすることにより、前記測定結果の揺らぎを除去することができる。 In the microstructure detection method of the present invention, a laser beam is applied to one surface of a rotating disk on which a microstructure sample is mounted, and the light on the other surface side of the disk is detected from the sample. It is characterized by measuring the transmitted light intensity or the fluorescence intensity of. For example, in the measurement of the transmitted light intensity, it is preferable to measure the transmitted light in the state before and after dyeing the microstructure or in the state after dyeing. Alternatively, for example, in the measurement of the fluorescence intensity, it is preferable to measure the fluorescence from the fluorescently labeled microstructure or the autofluorescence of the microstructure. In the microstructure detection method of the present invention, it is preferable to adjust the focal position on the disk based on the intensity of the reflected light of the laser beam from the disk. In the measurement of the transmitted light intensity or the fluorescence intensity, the fluctuation of the measurement result can be removed by cutting the frequency portion of 20 times or less the frequency corresponding to one rotation of the disk from the measurement result.
本発明の微小構造物検出装置は、ディスクを回転させる回転手段と、前記ディスクの一方の面にレーザ光を照射する照射手段と、前記レーザ光の前記ディスクからの反射光強度をもとに前記ディスクにおける焦点位置を調整する焦点位置調整手段と、前記ディスクの他方の面側で、前記レーザ光を光源として前記ディスクに搭載される試料からの透過光強度または蛍光強度を測定する測定手段とを備えることを特徴とする。例えば、微小構造物への染色前と染色後の前記測定の結果を入力して比較することにより、微小構造物の有無、個数、種類のうちのいずれか1以上を特定する信号処理手段を有してもよい。 The microstructure detection device of the present invention is based on a rotating means for rotating a disk, an irradiation means for irradiating one surface of the disk with a laser beam, and the intensity of the reflected light of the laser beam from the disk. A focal position adjusting means for adjusting a focal position on a disk and a measuring means for measuring transmitted light intensity or fluorescence intensity from a sample mounted on the disk using the laser beam as a light source on the other surface side of the disk. It is characterized by being prepared. For example, there is a signal processing means for specifying any one or more of the presence / absence, number, and type of microstructures by inputting and comparing the measurement results before and after staining the microstructures. You may.
本発明の微小構造物検出用ディスクは、レーザ光の焦点を合わせるための溝構造を有する基板を備え、レーザ光の一部を反射し一部を透過することを特徴とする。本発明の微小構造物検出用ディスクは、前記基板上に薄膜を備えることが好ましい。また、前記薄膜は、前記レーザ光の波長における屈折率が2.0以上であり、膜厚が5nm以上で200nm以下であることが好ましい。 The microstructure detection disk of the present invention comprises a substrate having a groove structure for focusing the laser beam, and is characterized in that a part of the laser beam is reflected and a part thereof is transmitted. The microstructure detection disk of the present invention preferably has a thin film on the substrate. Further, it is preferable that the thin film has a refractive index of 2.0 or more at the wavelength of the laser beam and a film thickness of 5 nm or more and 200 nm or less.
本発明では、微小構造物検出用ディスクを構成する材料は、レーザ光波長に対して光透過性があるものを用いる。また、検出したい微生物等の微小構造物は、レーザ光がディスクにおいて焦点を結ぶ面に搭載する。 In the present invention, as the material constituting the microstructure detection disk, a material having light transmission with respect to the laser light wavelength is used. Further, the microstructures such as microorganisms to be detected are mounted on the surface where the laser beam is focused on the disk.
本発明の微小構造物検出装置では、例えば、マッピング機能をもたすことにより、微小構造物検出用ディスク上に存在する微小構造物の個数を数えることができる。 In the microstructure detection device of the present invention, for example, by having a mapping function, the number of microstructures existing on the microstructure detection disk can be counted.
本発明の微小構造物検出方法では、例えば、まず、微生物検出用ディスクに微生物等を搭載した状態で回転させながら染色前の透過光強度を計測し、次に、前記ディスクに搭載した微生物を染色剤で染色した後に同じ箇所の染色後の透過光強度を測定し、染色前後の透過光強度の比較において、透過光強度のピークあるいはディップ部分に一定程度の差があった部分が染色に伴う透過光強度変化を表すことを利用して、微生物の存在の有無を明らかにし、微生物の種類を特定する。 In the microstructure detection method of the present invention, for example, first, the transmitted light intensity before dyeing is measured while rotating the disc for detecting microorganisms with the microorganisms mounted on the disc, and then the microorganisms mounted on the disc are dyed. After dyeing with the agent, the transmitted light intensity after dyeing of the same part is measured, and in the comparison of the transmitted light intensity before and after dyeing, the peak of the transmitted light intensity or the part where there is a certain difference in the dip part is the transmission accompanying the dyeing. By expressing the change in light intensity, the presence or absence of microorganisms is clarified, and the type of microorganism is specified.
本発明の微小構造物検出方法では、検出用ディスクに微生物等を搭載した状態において、照射手段で用いるレーザ光の波長に対して微生物等に高い光透過性がある環境下では、微生物等を搭載した状態で微生物を染色剤で染色した後に、前記ディスクを回転させながら染色後の透過光強度を計測することにより、染色に伴う光吸収により微生物が存在する部分の透過光強度にディップが生じることから、微生物等の存在の有無を明らかにし、微生物等の種類を特定する。 In the microstructure detection method of the present invention, in a state where microorganisms and the like are mounted on a detection disk, microorganisms and the like are mounted in an environment where the microorganisms and the like have high light transmittance with respect to the wavelength of the laser light used in the irradiation means. By measuring the transmitted light intensity after dyeing while rotating the disk after dyeing the microorganisms with a dyeing agent in this state, a dip occurs in the transmitted light intensity of the portion where the microorganisms are present due to the light absorption accompanying the dyeing. From, the presence or absence of microorganisms, etc. is clarified, and the types of microorganisms, etc. are specified.
本発明で使用する染色剤は、照射手段で用いるレーザ光の波長に対して高い光吸収特性があるものを選択することが好ましい。前記染色剤は、微生物全般を染色できるものを用いた場合は微生物の存在の有無が明らかとなり、特定の微生物を染色できるものを用いた場合は微生物の種類を特定することができる。 As the dyeing agent used in the present invention, it is preferable to select one having high light absorption characteristics with respect to the wavelength of the laser light used in the irradiation means. When a dyeing agent capable of staining a whole microorganism is used, the presence or absence of the microorganism is clarified, and when a dyeing agent capable of dyeing a specific microorganism is used, the type of the microorganism can be specified.
本発明の微小構造物検出方法では、検出用ディスクに微小構造物を搭載した状態で回転させながら、レーザ光を励起光源として、微小構造物からの蛍光発光の有無を観察することにより、微小構造物の存在の有無を明らかにし、また微小構造物の種類を特定することができる。 In the microstructure detection method of the present invention, the microstructure is rotated while the microstructure is mounted on the detection disk, and the presence or absence of fluorescence emission from the microstructure is observed using a laser beam as an excitation light source. The presence or absence of an object can be clarified, and the type of microstructure can be specified.
蛍光発光を得るために蛍光剤を使って微生物等を蛍光標識しても良いし、微生物等からの自家蛍光を利用しても良い。前記蛍光剤は、検出装置で用いるレーザ光源の波長にて励起できるものを選択する。前記蛍光剤は、微生物全般を蛍光発光できるものを用いた場合は微生物等の存在の有無が明らかとなり、特定の微生物等のみを蛍光発光できるものを用いた場合は微生物等の種類を特定することができる。自家蛍光を利用する場合、本発明の検出装置で用いるレーザ光の波長は、微生物に元来備わる蛍光源を励起できる波長を選択する。 In order to obtain fluorescent light emission, a microorganism or the like may be fluorescently labeled with a fluorescent agent, or autofluorescence from the microorganism or the like may be used. The fluorescent agent is selected so that it can be excited by the wavelength of the laser light source used in the detection device. When a fluorescent agent capable of fluorescing all microorganisms is used, the presence or absence of microorganisms or the like is clarified, and when a fluorescent agent capable of fluorescing only specific microorganisms or the like is used, the type of microorganisms or the like should be specified. Can be done. When autofluorescence is used, the wavelength of the laser beam used in the detection device of the present invention selects a wavelength that can excite the fluorescence source originally provided in the microorganism.
光検出手段を用い透過光を検出する際に、検出用ディスク回転中の面振れや焦点位置調整手段の調整動作により、微生物等を搭載しない場合においても、前記ディスクが1回転する範囲内で、透過光の強度に揺らぎが発生する場合がある。光検出手段で蛍光を検出する際、原理的にはほぼ無いか小さいと見込まれるが、ディスクが1回転する範囲内で、蛍光の強度に揺らぎが発生する場合がある。前記揺らぎは、低周波数成分をカットすることにより除去でき、一定の基準に基づきピークあるいはディップの数を数えるなどして、微生物の計数を行うことが容易となる。具体的に、微生物検出用ディスクの回転速度をv、前記ディスクの半径位置をrとすると、ディスク1回転に相当する周波数fは、v/(2×π×r)で与えられるが、この周波数fの10倍の周波数までをカットすれば良く、より確実には周波数fの20倍の周波数までカットすれば良い。 When detecting transmitted light using the light detecting means, due to the surface runout during the rotation of the detection disc and the adjustment operation of the focal position adjusting means, even when microorganisms and the like are not mounted, the disc is within the range of one rotation. Fluctuations may occur in the intensity of transmitted light. When the fluorescence is detected by the photodetecting means, it is expected to be almost nonexistent or small in principle, but the intensity of the fluorescence may fluctuate within the range of one rotation of the disk. The fluctuation can be removed by cutting the low frequency component, and it becomes easy to count the microorganisms by counting the number of peaks or dips based on a certain standard. Specifically, assuming that the rotation speed of the disk for detecting microorganisms is v and the radial position of the disk is r, the frequency f corresponding to one rotation of the disk is given by v / (2 × π × r). The frequency may be cut up to 10 times the frequency f, and more reliably the frequency may be cut up to 20 times the frequency f.
本発明の微小構造物検出方法に際して、検出用ディスクに成膜する薄膜の膜厚を制御するなどして、微小構造物があるときに透過光強度が増大しピークを形成するようにしておいた上で、染色後の透過光強度が、微小構造物がないときと比較して減少しディップを形成するようにしておけば、染色に伴う光学特性はピークがディップに変化することとなり、染色効果をより明らかに確認することができる。 In the microstructure detection method of the present invention, the thickness of the thin film formed on the detection disk is controlled so that the transmitted light intensity increases and a peak is formed when there is a microstructure. Above, if the transmitted light intensity after dyeing is reduced as compared with the case where there are no microstructures to form a dip, the peak of the optical characteristics associated with the dyeing changes to a dip, and the dyeing effect is achieved. Can be confirmed more clearly.
本発明のように、微生物等を基板等に搭載した状態で光学的検出を行う方法において、微生物等の透過光強度または蛍光強度を測定することによって、微生物等及び夾雑物の個数に関わらず、微生物等を検出することができる。 In the method of performing optical detection with a microorganism or the like mounted on a substrate or the like as in the present invention, by measuring the transmitted light intensity or the fluorescence intensity of the microorganism or the like, regardless of the number of the microorganism or the contaminants. Microorganisms and the like can be detected.
本発明の検出装置によれば、従来の光ディスクの記録再生装置の技術を改良した検出装置により、個々の微生物の透過光及び蛍光特性を評価することができ、従来の検出装置に比べて小型で、精度が向上した。 According to the detection device of the present invention, the transmitted light and fluorescence characteristics of individual microorganisms can be evaluated by the detection device which is an improvement of the technique of the recording / playback device of the conventional optical disc, and the size is smaller than that of the conventional detection device. , The accuracy has improved.
本発明の検出方法によれば、使用するレーザ光波長に対して光吸収のある染色剤の微生物への作用状況を評価することにより、微生物を特定することができる。本発明の検出方法によれば、使用するレーザ光波長にて励起された結果、微生物から発せられた蛍光を測定することにより、微生物を特定することができる。 According to the detection method of the present invention, the microorganism can be identified by evaluating the action state of the dyeing agent having light absorption with respect to the laser light wavelength to be used on the microorganism. According to the detection method of the present invention, a microorganism can be identified by measuring the fluorescence emitted from the microorganism as a result of being excited by the laser light wavelength used.
本発明の微小構造物検出用ディスクによれば、微生物等の透過光強度または蛍光強度を測定することが可能となるので、従来のディスクに比べて、微生物等及び夾雑物の個数に関わらず、微生物等を検出することができる。 According to the microstructure detection disc of the present invention, it is possible to measure the transmitted light intensity or the fluorescence intensity of microorganisms and the like, so that the disc does not have any number of microorganisms and impurities as compared with the conventional disc. Microorganisms and the like can be detected.
本発明の実施の形態について以下説明する。 Embodiments of the present invention will be described below.
本発明の微生物等の微小構造物検出装置の光学系配置を、図1に模式的に示す。本発明の検出装置は、基本的には、従来の光学記録再生装置の構造及び動作原理と、情報の記録再生をする機能の代わりに、微生物等を透過した光強度または微生物からの蛍光を測定することを除いて、共通する。ディスクを回転する回転手段1と、レーザ光を照射する照射手段2と、前記レーザ光の前記ディスクからの反射光強度を測定し、前記ディスクのとある面に焦点が合うようにレンズ位置等を調整する焦点位置調整手段3は、従来の光学記録再生装置における技術を適用することができる。焦点位置調整手段3は、例えば集光レンズ32と光検出器31を備える。
FIG. 1 schematically shows the arrangement of the optical system of the microstructure detection device for microorganisms and the like of the present invention. The detection device of the present invention basically measures the light intensity transmitted through a microorganism or the fluorescence from a microorganism instead of the structure and operating principle of the conventional optical recording / reproduction device and the function of recording / reproducing information. Common except for doing. The rotating means 1 for rotating the disk, the irradiating means 2 for irradiating the laser beam, and the intensity of the reflected light reflected from the disk of the laser beam are measured, and the lens position and the like are set so as to focus on a certain surface of the disk. As the focal position adjusting means 3 to be adjusted, the technique in the conventional optical recording / reproducing device can be applied. The focal position adjusting means 3 includes, for example, a
本発明の微小構造物検出装置は、従来の光学記録再生装置で用いられる情報記録再生用ディスクの代わりに、微生物検出用ディスク4を使用する。ディスク4は、基板上に薄膜を成膜して作製しても良い。但し、ディスク4を構成する材料は、照射手段2のレーザ光波長に対して光透過性があるものを用いる。
The microstructure detection device of the present invention uses the
光スポット径が小さい方が、微生物等が複数存在する場合の分解能が向上するため、照射手段2のレーザ光波長は、350nm以上800nm以下の範囲で、より短波長であることが好ましい。 The smaller the light spot diameter, the better the resolution when a plurality of microorganisms are present. Therefore, the laser light wavelength of the irradiation means 2 is preferably a shorter wavelength in the range of 350 nm or more and 800 nm or less.
本発明の微小構造物検出方法で用いる染色剤は、照射手段2のレーザ光波長に対して光吸収がある公知の染色剤を用いることができる。公知の染色剤は具体的に、ビスマルクブラウン、ブリリアントグリーン、クマシーブリリアントブルー、サフラニン、フクシン、ビクトリアブルー、クリソイジンなどである。 As the dyeing agent used in the microstructure detection method of the present invention, a known dyeing agent having light absorption with respect to the laser light wavelength of the irradiation means 2 can be used. Known dyes are specifically Bismarck Brown, Brilliant Green, Coomassie Brilliant Blue, Safranin, Fuchsin, Victoria Blue, Chrysoydin and the like.
本発明の微小構造物検出方法で用いる蛍光剤は、照射手段2のレーザ光波長において光励起できる公知の蛍光剤を用いることができる。公知の蛍光剤は具体的に、DAPI(4’,6-diamidino-2-phenylindole)、HOECHST34580、DRAQ5(BioStatus Limited社、登録商標)などである。 As the fluorescent agent used in the microstructure detection method of the present invention, a known fluorescent agent that can be photoexcited at the laser light wavelength of the irradiation means 2 can be used. Specific known fluorescent agents include DAPI (4', 6-diamidino-2-phenylindole), HOECHST34580, DRAQ5 (BioStatus Limited, registered trademark) and the like.
ディスク4は、本発明の検出装置に固定していても良く、あるいは脱着可能としても良い。固定とした場合は、予めバックグラウンドとなる透過光あるいは蛍光強度を測定しておき、微生物等の検出試験を行ったときの透過光あるいは蛍光強度の測定結果からバックグラウンド分を差し引けば、微生物等の検出は可能である。脱着可能とした場合は、微生物等の検出試験を行うときに未使用のディスク4を用いることでバックグラウンド分を差し引く手間が省けるほか、適宜微生物等の検出試験の内容に応じた形態のディスク4を用いることができる。
The
微小構造物検出用ディスク4の基板は、少なくとも回転時にその平面状の形態を維持できる程度に強靱であれば良い。基板材料は具体的には、合成石英や溶融石英やホウケイ酸ガラスのようなガラスや、ポリカーボネートやポリエチレンテレフタレートやアクリル樹脂などのプラスチックであることが望ましい。基板は記録再生用ディスクの基板と類似させた方が、既存の生産設備等が低コストにできることから、形状は円盤状とし、厚みは0.1~1.2mmの範囲にあることが好ましい。
The substrate of the
ディスク4の基板の一方の側には、照射手段2より発せられたレーザ光が焦点を結び且つディスク4の全面走査が可能となるような溝状のスパイラル構造を有していることが望ましい。
It is desirable that one side of the substrate of the
ディスク4の薄膜は、ディスク4の反射率調整と、微生物等を含む検査対象水に対する濡れ性制御を目的に、前記基板の照射手段2より発せられたレーザ光が焦点を結ぶ側に成膜する。薄膜材料は具体的には、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Mo、Pd、In、Sn、Sb、Te、Ce、Nd、Hf、Ta、W、Pt、Bi等の窒化物、酸化物、炭化物、硫化物であることが好ましい。二元に限らず、適宜三元及び四元の化合物としても良い。また薄膜は単層に限らず、機能別に複数層で構成しても良い。
The thin film of the
ディスク4の薄膜はまた、染色に伴う透過光強度変化を高感度に検出することを目的に、屈折率が2.0以上の薄膜材料を、膜厚を制御した上で成膜しても良い。薄膜材料は具体的には、In、In-Sn、Nd、Sb、Zr、Ce、Ti、Bi等の酸化物あるいはSiの窒化物であることが好ましい。
The thin film of the
ディスク4の薄膜を構成する個々の膜の膜厚の下限は、使用する薄膜材料が、一面を覆うことができず粒子状となる範囲を脱し、ようやく膜状となる膜厚である。薄膜の総厚の上限は、個々の微生物等を区別するため、照射手段2及び焦点位置調整手段3から成る光学系の焦点深度の範囲内にあることが好ましい。具体的には、薄膜の総厚は、5nm以上で3.9μm以下であることが望ましい。
The lower limit of the film thickness of each film constituting the thin film of the
ディスク4の薄膜はまた、基板との光学的な干渉を利用してディスク4の透過率や反射率を調整することを目的に、あるいは染色に伴う透過光強度変化を高感度に検出することを目的に、薄膜の膜厚を設計しても良い。前記目的に好適な条件は、膜厚に対して周期的に現れるが、膜厚が厚いときに基板が変形することを回避するため、膜厚の上限は500nm以下とすることが良く、より好ましくは200nm以下とすることが良い。
The thin film of the
ディスク4の薄膜は、薄膜表面に接着性があるなど、基本的には不特定多数の微生物等を捕捉できる仕組みがあっても良い。
The thin film of the
ディスク4への微生物等の搭載は、ディスク4の基板の照射手段2より発せられたレーザ光が焦点を結ぶ側に行い、前記焦点を結ぶ側に薄膜がある場合は薄膜上に行う。搭載は例えば検査対象水をディスク4に滴下することで行う。微生物検出試験の前に検査対象水を乾燥させれば、微生物等を薄膜上に直接載せることができ、微生物等の検出が可能である。また検査対象水を乾かさない場合も、微生物等が照射手段2及び焦点位置調整手段3から成る光学系の焦点深度の範囲内にあれば、やはり微生物等の検出は可能である。
The mounting of microorganisms or the like on the
検査対象水中の夾雑物を減らすため、予め検査対象水をフィルタ等に通水し微生物よりも大きい構造物を取り除いても良い。また搭載時に検査対象水を乾燥させた場合は、純水やエタノールなどでディスク4の表面を洗浄し、析出した夾雑物の量を低減させても良い。
In order to reduce impurities in the water to be inspected, the water to be inspected may be passed through a filter or the like in advance to remove structures larger than microorganisms. When the water to be inspected is dried at the time of mounting, the surface of the
ディスク4に微生物等を搭載した後、ディスク4が回転することに伴う微生物等の移動及び飛散を抑制するため、ディスク4の微生物等を搭載した側の表面に別途カバー層を設けても良い。前記カバー層は例えば、紫外線硬化樹脂などの樹脂で前記表面を覆っても良く、カバーガラスなどの平面状の構造物を接着剤あるいは検査対象水の表面張力で固定しても良い。
After mounting the microorganisms on the
本発明の微小構造物検出装置は、検出用ディスクに搭載した微生物等の微小構造物を透過した光あるいは微生物等の微小構造物からの蛍光を測定する光検出手段5を備える。光検出手段5は、光検出器53と、透過光及び蛍光を効率よく取得するため、光検出器53の前段に集光レンズ51等を配していることが好ましい。
The microstructure detection device of the present invention includes a
光検出手段5の光検出器53は、透過光あるいは蛍光の強度に応じて、フォトダイオードや光電子増倍管などを用いることができる。
As the
前記蛍光を測定する場合は、照射手段2のレーザ光波長を遮断し、レーザ光波長よりも長波長側の光の一部が通過するフィルタ52を前記光検出器53の前段に配していることが望ましい。
When measuring the fluorescence, a
実施例については後述するが、まず、ディスクを透過する光を検出する場合が、反射する光を検出する場合と比較して、微小構造物の検出において優れていることを、計算例によって説明する。 Examples will be described later, but first, it will be described by a calculation example that the case of detecting the light transmitted through the disk is superior to the case of detecting the reflected light in the detection of microstructures. ..
(計算例1)
ポリカーボネート製基板上に薄膜(膜厚:0~200nm)を備える微生物検出用ディスクの前記薄膜上に、微生物相当層(層厚:100nm)がある積層構造を仮定した。波長405nmの光を前記積層構造の薄膜がない側から照射し、前記積層構造の透過率を計算で求めた。波長405nmにおける屈折率はそれぞれ1.63(ポリカーボネート)、1.45(微生物)であり、薄膜の屈折率は1.0~3.0の範囲で変化させた。
(Calculation example 1)
A laminated structure having a microorganism-equivalent layer (layer thickness: 100 nm) on the thin film of a microorganism detection disk provided with a thin film (thickness: 0 to 200 nm) on a polycarbonate substrate was assumed. Light having a wavelength of 405 nm was irradiated from the side where the thin film of the laminated structure was not present, and the transmittance of the laminated structure was calculated. The refractive index at a wavelength of 405 nm was 1.63 (polycarbonate) and 1.45 (microorganism), respectively, and the refractive index of the thin film was varied in the range of 1.0 to 3.0.
図2に、微生物相当層の波長405nmにおける消衰係数を非染色時の0から染色時の0.01に変化させたときの透過率変化を計算した結果を示す。薄膜の膜厚を0~200nm、屈折率を1.0~3.0の範囲で変化させても、全ての場合において透過率は約2~3%減少した。 FIG. 2 shows the results of calculating the change in transmittance when the extinction coefficient of the microorganism-equivalent layer at a wavelength of 405 nm was changed from 0 at the time of non-staining to 0.01 at the time of staining. Even when the film thickness of the thin film was changed in the range of 0 to 200 nm and the refractive index was changed in the range of 1.0 to 3.0, the transmittance was reduced by about 2 to 3% in all cases.
図2で最も大きい透過率変化を示したのは、図中の「-3」で示した範囲であった。屈折率が3.0のときは膜厚が4~12nmと72~80nmと140~148nm、屈折率が2.5のときは膜厚が6~22nmと88~102nmと168~184nm、屈折率が2.0のときは16~36nmと118~136nmの各範囲であった。 The largest change in transmittance in FIG. 2 was in the range indicated by "-3" in the figure. When the refractive index is 3.0, the film thickness is 4 to 12 nm, 72 to 80 nm and 140 to 148 nm, and when the refractive index is 2.5, the film thickness is 6 to 22 nm, 88 to 102 nm and 168 to 184 nm, and the refractive index. When was 2.0, it was in the range of 16 to 36 nm and 118 to 136 nm.
(計算例2)
計算例1と積層構造及び膜厚条件及び屈折率条件は同じだが、消衰係数を非染色時の0から染色時の0.1に変化させたときの透過率変化を計算した。薄膜の膜厚及び屈折率を変化させても、全ての場合において透過率は約18~26%減少した。
(Calculation example 2)
Although the laminated structure, film thickness condition, and refractive index condition are the same as those in Calculation Example 1, the change in transmittance when the extinction coefficient was changed from 0 at the time of non-staining to 0.1 at the time of dyeing was calculated. Even if the film thickness and the refractive index of the thin film were changed, the transmittance was reduced by about 18 to 26% in all cases.
このように消衰係数の変化分が大きいときは、薄膜の屈折率及び膜厚に関わらず大きな透過率変化を示すことから、透過光測定において染色効果を十分確認することができる。 When the change in the extinction coefficient is large as described above, the large change in the transmittance is shown regardless of the refractive index and the film thickness of the thin film, so that the dyeing effect can be sufficiently confirmed in the transmitted light measurement.
(計算例3)
計算例1と微生物検出用ディスク及び膜厚及び屈折率は同じだが、微生物相当層の層厚を1μmとし、消衰係数を非染色時の0から染色時の0.01に変化させたときの透過率変化を計算した。薄膜の膜厚を0~200nm、屈折率を1.0~3.0の範囲で変化させても、全ての場合において透過率は約13~29%減少した。
(Calculation example 3)
The disk for detecting microorganisms and the film thickness and refractive index are the same as those in Calculation Example 1, but when the layer thickness of the microorganism-equivalent layer is 1 μm and the extinction coefficient is changed from 0 at the time of non-staining to 0.01 at the time of staining. The change in transmittance was calculated. Even when the film thickness of the thin film was changed in the range of 0 to 200 nm and the refractive index was changed in the range of 1.0 to 3.0, the transmittance was reduced by about 13 to 29% in all cases.
このように微生物の厚みが厚いときは、薄膜の屈折率及び膜厚に関わらず大きな透過率変化を示すことから、透過光測定において染色効果を十分確認することができる。 When the microorganism is thick as described above, a large change in transmittance is exhibited regardless of the refractive index and the film thickness of the thin film, so that the dyeing effect can be sufficiently confirmed in the transmitted light measurement.
(計算例4)
ポリカーボネート製基板上にTiO2薄膜(膜厚:40nmまたは80nm)がある微生物検出用ディスクの前記薄膜上に、微生物相当層(層厚:100nm)がある積層構造を仮定した。前記基板の溝を走査することとし、前記薄膜と微生物相当層の間に空気層(層厚:34nm)を挿入した。波長405nmの光を前記積層構造の薄膜がない側から照射し、前記積層構造の反射率及び透過率を計算で求めた。波長405nmにおける屈折率はそれぞれ1.63(ポリカーボネート)、2.7(TiO2)、1.0(空気)、1.45(微生物)である。
(Calculation example 4)
A laminated structure having a microorganism-equivalent layer (layer thickness: 100 nm) on the thin film of a microorganism detection disk having a TiO 2 thin film (thickness: 40 nm or 80 nm) on a polycarbonate substrate was assumed. It was decided to scan the groove of the substrate, and an air layer (layer thickness: 34 nm) was inserted between the thin film and the microorganism-equivalent layer. Light having a wavelength of 405 nm was irradiated from the side where the thin film of the laminated structure was not present, and the reflectance and transmittance of the laminated structure were calculated. The refractive index at a wavelength of 405 nm is 1.63 (polycarbonate), 2.7 (TiO 2 ), 1.0 (air), and 1.45 (microorganisms), respectively.
図3に、微生物相当層の波長405nmにおける消衰係数を非染色時の0から、染色時の0より大きい値に変化させたときの計算結果を示す。反射率はほぼ変化しないのに対し、透過率は消衰係数の増大とともに減少することが明らかである。 FIG. 3 shows the calculation results when the extinction coefficient of the microorganism-equivalent layer at a wavelength of 405 nm was changed from 0 at the time of non-staining to a value larger than 0 at the time of staining. It is clear that the reflectance decreases with increasing extinction coefficient, while the reflectance remains almost unchanged.
本発明の微小構造物検出方法に際して、検出用ディスクに成膜する薄膜の膜厚を制御するなどして、微小構造物があるときに透過光強度が増大しピークを形成するようにしておくとよい。染色後の透過光強度が、微小構造物がないときと比較して減少しディップを形成するようにしておけば、染色に伴う光学特性はピークがディップに変化することとなり、染色効果をより明らかに確認することができる。 In the microstructure detection method of the present invention, it is necessary to control the film thickness of the thin film formed on the detection disk so that the transmitted light intensity increases and a peak is formed when there is a microstructure. good. If the transmitted light intensity after dyeing is reduced as compared with the case without microstructures to form a dip, the peak of the optical characteristics associated with the dyeing changes to a dip, and the dyeing effect becomes clearer. Can be confirmed in.
例えば特許文献2にあるような反射光を測定する方法では、微生物染色に伴う光学的な変化を高感度に取得できないのに対して本発明の微小構造物検出装置における光学的配置により透過光を測定することにより、初めて高感度な検出が可能となる。
For example, in the method of measuring reflected light as described in
(実施例)
溝周期構造のあるポリカーボネート製基板上に、TiO2薄膜(膜厚:40nm)を成膜し、微生物検出用ディスク4を作製した。微生物としては大腸菌を用い、大腸菌を含む検査対象水をディスク4上に滴下した後、乾燥させた状態で大腸菌の検出試験を行った。
(Example)
A TiO 2 thin film (film thickness: 40 nm) was formed on a polycarbonate substrate having a groove periodic structure to prepare a
波長405nm、レーザ光パワー1.0mW、開口数0.65の光学系からなる照射手段2及び焦点位置調整手段3と、倍率50倍で開口数0.50の対物レンズ及び光電子増倍管からなる光検出手段5を用いて実験し、微生物検出用ディスクは線速5.0m/sで回転させた。また光検出手段5で得られた信号は、信号増幅器により5倍に増幅した。前記光電子増倍管においては、光を検出すると、負の電圧が出力される仕組みとなっている。 It consists of an irradiation means 2 and a focal position adjusting means 3 consisting of an optical system having a wavelength of 405 nm, a laser light power of 1.0 mW, and a numerical aperture of 0.65, an objective lens having a numerical aperture of 50 times and a numerical aperture of 0.50, and a photoelectron multiplying tube. An experiment was carried out using the light detection means 5, and the microscopic detection disk was rotated at a linear speed of 5.0 m / s. Further, the signal obtained by the photodetector means 5 was amplified five times by a signal amplifier. The photomultiplier tube has a mechanism in which a negative voltage is output when light is detected.
染色方法は、ビスマルクブラウン粉末を純水で約10%の濃度になるように調節したものを染色剤として用い、ディスク4上の大腸菌がある箇所を十分覆う量を滴下した後、1分間放置し、その後ディスク4を水洗いして余剰な染色剤を取り除いた。光学顕微鏡を用い、前記染色方法にて大腸菌は染色されていることを確認した。
As a dyeing method, Bismarck brown powder adjusted to a concentration of about 10% with pure water was used as a dyeing agent, and an amount sufficient to cover the part of E. coli on the
図4及び図5に、それぞれ、大腸菌を染色する前後の透過光強度信号を示す。図4及び5の両方の図中の「大腸菌スポット6」は大腸菌を含む検査対象水を滴下した箇所を示し、横軸はレーザ光走査の時間を表す。図4では、大腸菌がある箇所の透過光強度は、大腸菌がない箇所に対して増加または減少している様子が観測されている。図5では、大腸菌がある箇所の透過光強度は、大腸菌がない箇所に対してほぼ減少している様子が観測されている。図4と5の対比から、染色に伴い、大腸菌の透過光強度の多くが減少に転じたことがわかる。 4 and 5 show transmitted light intensity signals before and after staining E. coli, respectively. “E. coli spot 6” in both FIGS. 4 and 5 indicates a place where the water to be inspected containing E. coli is dropped, and the horizontal axis represents the time of laser light scanning. In FIG. 4, it is observed that the transmitted light intensity of the portion with E. coli increases or decreases with respect to the portion without E. coli. In FIG. 5, it is observed that the transmitted light intensity at the portion with E. coli is almost reduced with respect to the portion without E. coli. From the comparison between FIGS. 4 and 5, it can be seen that most of the transmitted light intensity of E. coli began to decrease with staining.
(比較例)
図6及び図7に、それぞれ、図4及び図5と同じ箇所の大腸菌を染色する前後の反射光強度信号を示す。反射光強度は、焦点位置調整手段3の光検出器にて測定した。図6と図7において、大腸菌がある箇所の反射光強度はともに、大腸菌がない箇所に対して減少しており、染色の効果は両図の比較において明らかではない。
(Comparative example)
6 and 7, respectively, show the reflected light intensity signals before and after staining E. coli at the same sites as in FIGS. 4 and 5, respectively. The reflected light intensity was measured by the photodetector of the focal position adjusting means 3. In FIGS. 6 and 7, the reflected light intensity of the portion with E. coli is both decreased with respect to the portion without E. coli, and the effect of staining is not clear in the comparison between the two figures.
図4から図7の結果は、計算例4の膜厚が40nmの場合の計算結果と整合性がある。よって、大腸菌等の微生物を染色する前後で透過光強度信号を測定及び比較することにより、微生物の有無を精度よく判定できることが明らかである。 The results of FIGS. 4 to 7 are consistent with the calculation results when the film thickness of Calculation Example 4 is 40 nm. Therefore, it is clear that the presence or absence of a microorganism can be accurately determined by measuring and comparing the transmitted light intensity signal before and after staining a microorganism such as Escherichia coli.
なお、上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。 It should be noted that the examples shown in the above embodiments and the like are described for the sake of easy understanding of the invention, and are not limited to this embodiment.
本発明の検出用ディスクや検出装置を用いて、微生物等からの透過光強度あるいは微生物等からの蛍光を測定することができ、また、本発明の検出方法にて微生物の有無及びその種類を特定できることから、水中に存在する微生物を早期検出することに適しているので、産業上有用である。 Using the detection disk or detection device of the present invention, the intensity of transmitted light from microorganisms or the like or fluorescence from microorganisms can be measured, and the presence or absence of microorganisms and their types can be specified by the detection method of the present invention. Since it can be used, it is suitable for early detection of microorganisms existing in water, and is therefore industrially useful.
1 回転手段
2 照射手段
3 焦点位置調整手段
4 微生物検出用ディスク
5 光検出手段
6 大腸菌スポット
31、53 光検出器
32、51 集光レンズ
52 フィルタ
1 Rotating means 2 Irradiation means 3 Focus position adjusting means 4
Claims (5)
前記試料は前記スパイラル溝の上に直接搭載され、
検出対象の前記微小構造物は、前記レーザ光のレーザ光波長にて、自家蛍光を有し又は蛍光発光するように処理され、
回転する前記ディスクからの前記透過光について、前記レーザ光波長を遮断して、前記レーザ光波長よりも長波長側の光の一部を通過させるフィルタを与えて、前記光検出器にて前記微小構造物からの蛍光強度の時間変化を検出することを特徴とする微小構造物検出方法。 While scanning one surface of the rotating disk on which the sample is mounted on the upper side of the spiral groove for focusing the laser beam with the laser light so as to be from the lower side of the spiral groove , the said A method of detecting the presence or absence of a specific microstructure in a sample by detecting the transmitted light from the other surface of the disk with a photodetector.
The sample is mounted directly on the spiral groove and
The microstructure to be detected is processed so as to have autofluorescence or emit fluorescence at the laser wavelength of the laser beam.
With respect to the transmitted light from the rotating disk, the laser light wavelength is blocked, a filter is provided to pass a part of the light on the wavelength side longer than the laser light wavelength, and the light detector is used. A method for detecting a microstructure, which comprises detecting a change in fluorescence intensity from a microstructure over time .
前記試料は前記スパイラル溝の上に直接搭載され、
検出対象の前記微小構造物は、前記レーザ光のレーザ光波長にて、自家蛍光を有し又は蛍光発光するように処理されており、
回転する前記ディスクからの前記透過光について、前記レーザ光波長を遮断して、前記レーザ光波長よりも長波長側の光の一部を通過させるフィルタを与え、前記光検出器にて前記微小構造物からの蛍光強度の時間変化を検出することを特徴とする微小構造物検出装置。
以上 While scanning one surface of the rotating disk on which the sample is mounted on the upper side of the spiral groove for focusing the laser beam with the laser light so as to be from the lower side of the spiral groove , the said A device that detects the presence or absence of a specific microstructure in the sample by detecting the transmitted light from the other surface of the disk with a photodetector.
The sample is mounted directly on the spiral groove and
The microstructure to be detected has autofluorescence or is processed so as to emit fluorescence at the laser wavelength of the laser beam.
With respect to the transmitted light from the rotating disk, the laser light wavelength is blocked, a filter is provided to allow a part of the light on the wavelength side longer than the laser light wavelength to pass through, and the microstructure is provided by the light detector. A microstructure detection device characterized by detecting a change in fluorescence intensity from an object over time .
that's all
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020144019A JP7085231B2 (en) | 2020-08-28 | 2020-08-28 | Microstructure detection method and its equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020144019A JP7085231B2 (en) | 2020-08-28 | 2020-08-28 | Microstructure detection method and its equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016017895A Division JP6761217B2 (en) | 2016-02-02 | 2016-02-02 | Microstructure detection device and microstructure detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021004882A JP2021004882A (en) | 2021-01-14 |
JP7085231B2 true JP7085231B2 (en) | 2022-06-16 |
Family
ID=74098202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020144019A Active JP7085231B2 (en) | 2020-08-28 | 2020-08-28 | Microstructure detection method and its equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7085231B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003248007A (en) | 2002-02-25 | 2003-09-05 | Matsushita Electric Ind Co Ltd | Analytical equipment |
US20050074784A1 (en) | 2003-10-07 | 2005-04-07 | Tuan Vo-Dinh | Integrated biochip with continuous sampling and processing (CSP) system |
JP2005164615A (en) | 1994-09-21 | 2005-06-23 | Univ Court Of The Univ Of Glasgow | Processing method and device for optical examination |
JP2007033170A (en) | 2005-07-26 | 2007-02-08 | Fujifilm Corp | Fluorescence detection method and fluorescence detection system |
WO2014068951A1 (en) | 2012-10-30 | 2014-05-08 | パナソニック株式会社 | Specimen holding carrier and fluorescence detector using same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3404631B2 (en) * | 2001-02-23 | 2003-05-12 | 松本物産株式会社 | How to attach the lift to the setback heel and footwear using this |
-
2020
- 2020-08-28 JP JP2020144019A patent/JP7085231B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005164615A (en) | 1994-09-21 | 2005-06-23 | Univ Court Of The Univ Of Glasgow | Processing method and device for optical examination |
JP2003248007A (en) | 2002-02-25 | 2003-09-05 | Matsushita Electric Ind Co Ltd | Analytical equipment |
US20050074784A1 (en) | 2003-10-07 | 2005-04-07 | Tuan Vo-Dinh | Integrated biochip with continuous sampling and processing (CSP) system |
JP2007033170A (en) | 2005-07-26 | 2007-02-08 | Fujifilm Corp | Fluorescence detection method and fluorescence detection system |
WO2014068951A1 (en) | 2012-10-30 | 2014-05-08 | パナソニック株式会社 | Specimen holding carrier and fluorescence detector using same |
Also Published As
Publication number | Publication date |
---|---|
JP2021004882A (en) | 2021-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130162804A1 (en) | Method and Apparatus For Automatic Focusing of Substrates in Flourescence Microscopy | |
JP6244556B2 (en) | Sample holding carrier and fluorescence detection apparatus using the same | |
NL8702156A (en) | DEVICE FOR DETECTING DEFECTS ON THE SURFACE OF A PLASTIC MOM-PLATE AND MEASURING THE THICKNESS OF THE PLASTIC COATING COAT. | |
US8007887B2 (en) | Optical information recording medium and method for manufacturing the same | |
JP7085231B2 (en) | Microstructure detection method and its equipment | |
JP6266581B2 (en) | Method of writing and reading data by fluorescence on a photosensitive medium and related medium | |
US20060013111A1 (en) | Method for recording data onto optical recording medium, data recording device, and optical recording medium | |
JP6761217B2 (en) | Microstructure detection device and microstructure detection method | |
JP2001236691A (en) | Recordable optical medium having silver-palladium reflection layer | |
JP4108553B2 (en) | Optical information recording medium and optical information recording apparatus | |
Mansberg et al. | Quantitative fluorescence microscopy: fluorescent antibody automatic scanning techniques | |
CA3143720A1 (en) | Systems and methods for increasing data rate and storage density in 3-dimensional optical data storage media | |
JP2013530480A5 (en) | ||
JP6120310B2 (en) | MICROSTRUCTURE DETECTION DEVICE AND METHOD, AND DETECTION DISC | |
EP1950759A1 (en) | Optical storage medium with a mask layer providing a super resolution near filed effect and respective manufacturing method | |
US10614848B2 (en) | Media, systems and methods for optical data storage | |
EP0848380A3 (en) | Light Pickup | |
US8130623B2 (en) | Optical information recording and/or reproducing apparatus, optical information recording and/or reproducing method, optical information recording medium, and solid immersion lens | |
KR20030094051A (en) | Optical recording and playback method, and optical recording media | |
US8247058B2 (en) | Information recording medium and manufacturing method thereof | |
US7692801B2 (en) | Optical stacked structure inspecting method and optical stacked structure inspecting apparatus | |
JPS6131907A (en) | Film thickness measuring instrument | |
JP2007141289A (en) | Optical information recording and reproducing device and optical information recording medium | |
US20010017837A1 (en) | Method and device for reproducing information from an optical recording medium and an optical recording medium | |
US20150043322A1 (en) | Optical information recording medium, reproduction apparatus, and reproduction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210908 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7085231 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |