JP7084022B2 - Superconductor - Google Patents

Superconductor Download PDF

Info

Publication number
JP7084022B2
JP7084022B2 JP2018031880A JP2018031880A JP7084022B2 JP 7084022 B2 JP7084022 B2 JP 7084022B2 JP 2018031880 A JP2018031880 A JP 2018031880A JP 2018031880 A JP2018031880 A JP 2018031880A JP 7084022 B2 JP7084022 B2 JP 7084022B2
Authority
JP
Japan
Prior art keywords
superconductor
component
layer
superconducting
snpn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018031880A
Other languages
Japanese (ja)
Other versions
JP2019147973A (en
Inventor
水口佳一
後藤陽介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2018031880A priority Critical patent/JP7084022B2/en
Publication of JP2019147973A publication Critical patent/JP2019147973A/en
Application granted granted Critical
Publication of JP7084022B2 publication Critical patent/JP7084022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

特許法第30条第2項適用 平成29年11月17日~18日に開催された第11回物性科学領域横断研究会(開催場所:東京大学物性研究所6F大会議室、演題番号:P026*、タイトル「SnAs 伝導層をもつ新規層状超伝導体NaSn2As2」)にてポスター発表、平成29年12月22日に科学新聞(発行日:2017年12月22日、科学新聞、第3660号、第4頁、タイトル「SnAs伝導層を含む新規層状超伝導体発見」、発行所:科学新聞社)にて公表、平成29年9月26日にCornell University Libraryのウェブサイト (https://arxiv.org/abs/1709.08899)にて公表、平成29年11月1日に一般社団法人日本物理学会のJournal of the Physical Society of Japan(オンライン版)のウェブサイト (https://doi.org/10.7566/JPSJ.86.123701 http://journals.jps.jp/doi/10.7566/JPSJ.86.123701 http://www.jps.or.jp/books/jpsjselectframe/2017/files/17-12-1.pdf http://www.jps.or.jp/books/jpsjselectframe/2017/2017_12.php)にて公表、平成29年11月1日に公立大学法人首都大学東京のウェブサイト (https://www.tmu.ac.jp/news/topics/15628.html https://www.tmu.ac.jp/extra/download.html?d=assets/files/download/news/20171101_press.pdf https://www.houjin-tmu.ac.jp/news/press/6317.html?d=assets/files/download/press/press_20171101.pdf)にて公表、Application of Article 30, Paragraph 2 of the Patent Act The 11th Cross-disciplinary Study Group on Physical Society of Japan held from November 17 to 18, 2017 (Venue: Physical Society of Japan 6F Large Conference Room, Title No .: P026 *, Poster presentation at the title "New layered superconductor NaSn2As2 with SnAs conduction layer"), Science Newspaper on December 22, 2017 (Published: December 22, 2017, Science Newspaper, No. 3660, Page 4, title "Discovery of new layered superconductors including SnAs conductive layer", published by Kagaku Shimbun), published on September 26, 2017, on the website of Journal University Library (https://arxiv). .Org / abs / 1709.08899), published on November 1, 2017, on the website of the Journal of the Physical Society of Japan (online version) of the Physical Society of Japan (https://doi.org). /10.7566/JPSJ.86.123701 http: //journals.jps.jp/doi/10.7566/JPSJ.86.123701 http: //www.jps.or.jp/books/jpsjselectframe/2017/files /17-12-1.pdf http: //www.jps.or.jp/books/jpsjselectframe/2017/2017_12.php), published on November 1, 2017, on the website of Tokyo Metropolitan University. Site (https://www.tmu.ac.jp/news/topics/15628.html https: //www.tmu.ac.jp/extra/download.html?d=assets/files/download/news/20171 .Pdf https: //www.houjin-tmu.ac.jp/news/press/6317.html?d=assets/files/download/press/press_2171101.pdf)

特許法第30条第2項適用 平成29年11月1日に日本の研究.comのウェブサイト (https://research-er.jp/articles/view/64514)にて公表、平成29年11月5日に日本経済新聞(オンライン版)ウェブサイト (https://r.nikkei.com/article/DGXMZO23124210V01C17A1TJM000)にて公表、平成29年11月6日に首都大学東京 総合研究推進機構のFacebookページ (https://www.facebook.com/tmu.ura/photos/a.842732299229236.1073741829.838353023000497/893496074152858/?type=3&theater)にて公表、平成29年11月7日に首都大学東京 総合研究推進機構のウェブサイト(https://tmu-rao.jp/info/3005/)にて公表、平成29年11月8日EurekAlart!のウェブサイト (https://www.eurekalert.org/pub_releases/2017-11/tmu-jrd110817.php)にて公表、平成29年11月10日に首都大学東京 総合研究推進機構のFacebookページ (https://www.facebook.com/tmu.ura/posts/895130647322734)にて公表、平成29年11月29日にacademist Journalのウェブサイト (https://academist-cf.com/journal/?p=6566)にて公表、平成29年12月12日に一般社団法人日本物理学会JPSJ News and Commentsのウェブサイト (http://journals.jps.jp/journal/jpsjnc http://journals.jps.jp/doi/full/10.7566/JPSJNC.14.13)にて公表、平成29年12月31日にSuperconductor Week issueのウェブサイト (http://www.superconductorweek.com/store)にて公表Application of Article 30, Paragraph 2 of the Patent Act Japanese research on November 1, 2017. Com website (https://research-er.jp/articles/view/64514), published on November 5, 2017, Nihon Keizai Shimbun (online version) website (https://r.nikkei) .Com / article / DGXMZO23124210V01C17A1TJM000), published on November 6, 2017, on the Facebook page of the Tokyo Metropolitan University Research Promotion Organization (https://www.facebook.com/tmu.ura/photos/a.9223). Published on 1073741829.88335323000497 / 8934960741152858 /? Type = 3 & theater), and on November 7, 2017, on the website of Tokyo Metropolitan University Research Promotion Organization (https://tmu-rao.jp/info/3005/). Announced on November 8, 2017, EurekAlart! Published on the website (https://www.eurekarert.org/pub_releases/2017-11/tmu-jrd110817.php), Tokyo Metropolitan University Research Promotion Organization Facebook page (https) on November 10, 2017. : //Www.facebook.com/tmu.ura/posts/8951306473322734), published on November 29, 2017, on the academist Journal website (https://academist-cf.com/journal/?p=. Published in 6566), on December 12, 2017, the website of the Japan Physics Society JPSJ News and Communications (http://journals.jps.jp/journal/jpsjnchttp://journals.jps.jp. / Doi / full / 10.576 / JPSJNC. 14.13), published on December 31, 2017 on the Superconductor Week issu website (http://www.superconductorweek.com/store).

本発明は、十分な超電導を示し、低コストで加工の簡便性も有する超電導体に関する。 The present invention relates to a superconductor that exhibits sufficient superconductivity, is low in cost, and is easy to process.

現在主に実用化されている超電導体はNb-Ti合金、Nb2Snであるが、更なる超電導技術の実用化のために高温で高電導を示す超電導物質が求められている。
このような要望を満足する次世代の超電導材料として、超電導転移温度が高くい、鋼酸化物高温超電導体とMgB、鉄系超電導体等が提案されている。さらに超電導技術の発展のために、より高温・強磁場下で超電導を示し、低コスト、加工の簡便性などを備えた新しい超電導物質系の開発が求められている。
かかる要望を満足するために種々提案がなされており、例えば以下の特許文献1、2等の提案がなされている。
特許文献1:マグネシウムの酸化を引き起こしにくい緩衝膜を用いてより超電導性のよいホウ化マグネシウムの薄膜が形成できるようにするために、サファイア(酸化アルミニウム)からなり主表面がC面とされた基板101の上に例えば窒化ガリウム(GaN)などのガリウムと窒素とから構成された緩衝層102が形成され、緩衝層102の上に接してホウ化マグネシウムからなる超電導体層103が形成され、緩衝層102は、膜厚250nm程度に形成され、超電導体層103は、膜厚100~120nm程度に形成されている超電導体。
特許文献2:Ba-Ir-Geに代表される3元系化合物の超電導体として、化学式ATM(AはCa、SrまたはBaであり、TMは遷移金属であり、BはSi、GeまたはSnである)で示され、上記TMおよびBからなるTMB層が積層し、斜方晶系Ammm結晶構造を有する超電導体。
Currently, the superconductors that are mainly put into practical use are Nb—Ti alloys and Nb2Sn, but in order to further put into practical use of superconducting technology, superconducting materials that exhibit high conductivity at high temperatures are required.
As next-generation superconducting materials that satisfy such demands, steel oxide high-temperature superconductors, MgB 2 , iron-based superconductors, etc., which have a high superconducting transition temperature, have been proposed. Furthermore, for the development of superconducting technology, it is required to develop a new superconducting material system that exhibits superconductivity under higher temperature and strong magnetic field, has low cost, and is easy to process.
Various proposals have been made in order to satisfy such a request, and for example, the following patent documents 1 and 2 have been proposed.
Patent Document 1: A substrate made of sapphire (aluminum oxide) whose main surface is the C surface in order to be able to form a thin film of magnesium boride with better superconductivity by using a buffer film that does not easily cause oxidation of magnesium. A buffer layer 102 composed of gallium such as gallium nitride (GaN) and nitrogen is formed on the 101, and a superconductor layer 103 made of magnesium diboride is formed in contact with the buffer layer 102 to form a buffer layer. 102 is a superconductor having a thickness of about 250 nm, and the superconductor layer 103 is a superconductor having a thickness of about 100 to 120 nm.
Patent Document 2: As a superconductor of a ternary compound represented by Ba-Ir-Ge, the chemical formula ATM 2 B 7 (A is Ca, Sr or Ba, TM is a transition metal, and B is Si, Ge. A superconductor having an orthorhombic Ammm crystal structure in which the TMB layers composed of the above TM and B are laminated, which is indicated by (or Sn).

特開2006-278105号公報Japanese Unexamined Patent Publication No. 2006-278105 特開2015-25180号公報Japanese Unexamined Patent Publication No. 2015-25180

しかしながら、従来提案されている超電導体では、未だ十分な超電導を示すと共にコストや加工性においても十分に要求を満足するものではなかった。
従って、本発明の目的は、十分な超電導を示し、低コストで加工の簡便性も有する超電導体を提供することにある。
However, the conventionally proposed superconductors still exhibit sufficient superconductivity and do not sufficiently satisfy the requirements in terms of cost and workability.
Therefore, an object of the present invention is to provide a superconductor that exhibits sufficient superconductivity, is low in cost, and is easy to process.

本発明者らは、前記課題を解決するべく鋭意検討した結果、SnPn(PnはP、As、Sb、Bi)層を超電導層として持つ層状超電導系を発見し、更に鋭意検討した結果、本発明を完成するに至った。
本発明は、下記の発明を提供するものである。
1.構成成分Aと、
構成成分Bとを具備し、
上記構成成分Aからなる、超電導挙動を示す超電導層と、上記構成成分Bからなり、上記超電導層を空間的に離隔させるスペーサー層とが積層されて形成されており、
上記構成成分Aが、化学式 SnxMy(式中Mは、P,As,Sb及びBiからなる群より選択される元素を示し、x及びyは、x:y=1:0.5~1.5の関係にある)で表される化合物である
超電導体。
2.上記構成成分Bは、Na,Li,Sr,Eu、Sn、As、P、Sb及びKからなる群より選択される1種以上を含む成分である1記載の超電導体。
As a result of diligent studies to solve the above problems, the present inventors have discovered a layered superconducting system having a SnPn (Pn is P, As, Sb, Bi) layer as a superconducting layer, and further diligently studied the present invention. Has been completed.
The present invention provides the following inventions.
1. 1. Component A and
It is equipped with the component B and
A superconducting layer composed of the component A and exhibiting superconducting behavior and a spacer layer composed of the component B and spatially separating the superconducting layer are laminated and formed.
The component A represents an element selected from the group consisting of the chemical formula SnxMy (M in the formula is P, As, Sb and Bi, and x and y are x: y = 1: 0.5 to 1.5. A superconductor which is a compound represented by).
2. 2. 1. The superconductor according to 1. The component B is a component containing at least one selected from the group consisting of Na, Li, Sr, Eu, Sn, As, P, Sb and K.

本発明の超電導体は、十分な超電導を示し、低コストで加工の簡便性も有するものである。 The superconductor of the present invention exhibits sufficient superconductivity, is low in cost, and is easy to process.

図1は本発明の超電導体の1実施形態を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing one embodiment of the superconductor of the present invention. 図2は実施例1で得られた超電導体の電気抵抗率の温度依存性を示す図である。FIG. 2 is a diagram showing the temperature dependence of the electrical resistivity of the superconductor obtained in Example 1. 図3は実施例2で得られた超電導体の電気抵抗率の温度依存性を示す図である。FIG. 3 is a diagram showing the temperature dependence of the electrical resistivity of the superconductor obtained in Example 2. 図4は実施例3で得られた超電導体の電気抵抗率の温度依存性を示す図である。FIG. 4 is a diagram showing the temperature dependence of the electrical resistivity of the superconductor obtained in Example 3. 図5は実施例4で得られた超電導体の電気抵抗率の温度依存性を示す図である。FIG. 5 is a diagram showing the temperature dependence of the electrical resistivity of the superconductor obtained in Example 4. 図6は実施例5で得られた超電導体の電気抵抗率の温度依存性を示す図である。FIG. 6 is a diagram showing the temperature dependence of the electrical resistivity of the superconductor obtained in Example 5. 図7は実施例1で得られた超電導体のX線構造解析チャートである。FIG. 7 is an X-ray structure analysis chart of the superconductor obtained in Example 1. 図8は実施例2で得られた超電導体のX線構造解析チャートである。FIG. 8 is an X-ray structure analysis chart of the superconductor obtained in Example 2. 図9は実施例3で得られた超電導体のX線構造解析チャートである。FIG. 9 is an X-ray structure analysis chart of the superconductor obtained in Example 3. 図10は実施例4で得られた超電導体のX線構造解析チャートである。FIG. 10 is an X-ray structure analysis chart of the superconductor obtained in Example 4. 図11は実施例5で得られた超電導体のX線構造解析チャートである。FIG. 11 is an X-ray structure analysis chart of the superconductor obtained in Example 5.

以下、本発明について、その好ましい実施形態に基づき詳細に説明する。
<全体構成>
本発明の超電導体(以下、「SnPn系超電導体」という場合もある)は、構成成分Aと、構成成分Bとを具備し、
上記構成成分Aからなる、超電導挙動を示す超電導層と、上記構成成分Bからなり、上記超電導層を空間的に離隔させるスペーサー層とが積層されて形成されており、
上記構成成分Aが、化学式 SnxMy(式中Mは、P,As,Sb及びBiからなる群より選択される元素を示し、x及びyは、x:y=1:0.5~1.5の関係にある)で表される化合物である。
なお、構成成分Aと構成成分Bとはそれぞれが薄膜成長された状態で積層された状態でもよいが、両者は化学的に結合しているのが好ましく、この両者が結合した状態で超電導層とスペーサー層とが積層されているのが好ましい。
以下、詳述する。
Hereinafter, the present invention will be described in detail based on the preferred embodiment thereof.
<Overall configuration>
The superconductor of the present invention (hereinafter, may be referred to as “SnPn-based superconductor”) comprises a constituent component A and a constituent component B.
A superconducting layer composed of the component A and exhibiting superconducting behavior and a spacer layer composed of the component B and spatially separating the superconducting layer are laminated and formed.
The component A represents an element selected from the group consisting of the chemical formula SnxMy (M in the formula is P, As, Sb and Bi, and x and y are x: y = 1: 0.5 to 1.5. It is a compound represented by).
The constituent component A and the constituent component B may be laminated in a thin film-grown state, but it is preferable that the constituent components A and the constituent component B are chemically bonded to each other, and the superconducting layer and the constituent component B are bonded to each other. It is preferable that the spacer layer is laminated.
The details will be described below.

<超電導層>
上記超電導層は、化学式 SnxMyで表される構成成分Aからなる。
なお、「超電導挙動を示す」とは、本明細書においては、温度の限定はなく、超電導温度が存在することを意味し、「超電導挙動を示さない」超電導温度が存在しないことを意味する。
上記化学式におけるMは、P,As,Sb及びBiからなる群より選択される元素を示す。
また、x及びyは、x:y=1:0.5~1.5の関係にある。
このような関係を示す具体的な成分としては、以下に示す成分等を挙げることができる。
SnP
SnAs
SnSb
SnBi
Sn
SnAs
SnSb
SnBi
<Superconducting layer>
The superconducting layer is composed of a constituent component A represented by the chemical formula SnxMy.
In addition, "exhibiting superconducting behavior" means that there is no limitation on the temperature in the present specification and that a superconducting temperature exists, and that there is no superconducting temperature that "does not exhibit superconducting behavior".
M in the above chemical formula indicates an element selected from the group consisting of P, As, Sb and Bi.
Further, x and y have a relationship of x: y = 1: 0.5 to 1.5.
Specific components showing such a relationship include the following components and the like.
SnP
SnAs
SnSb
SnBi
Sn 2 P 2
Sn 2 As 2
Sn 2 Sb 2
Sn 2 Bi 2

<スペーサー層>
上記スペーサー層を構成する構成成分Bとしては、Na,Li,Sr,Eu、Sn、As、P、Sb及びKからなる群より選択される1種以上を含む成分が挙げられる。
上記スペーサー層を構成する構成成分Bの具体例としては、下記の成分等が挙げられる。
Na、
Li、
Sr、
Eu、
K、
またはこれらの欠損NaやSr
またはこれらの固溶Na1-xLiやNa1-xSr(ただし、これらのxは0より大きく1より小さい数を示す)、
化合物成分として、Sn2PやSn2As等
<Spacer layer>
Examples of the component B constituting the spacer layer include a component containing at least one selected from the group consisting of Na, Li, Sr, Eu, Sn, As, P, Sb and K.
Specific examples of the component B constituting the spacer layer include the following components and the like.
Na,
Li,
Sr,
Eu,
K,
Or these deficient Na x or Sr x ,
Or these solid-dissolved Na 1-x Li x and Na 1-x Sr x (where these x indicate numbers greater than 0 and less than 1),
As compound components, Sn 2 P, Sn 2 As, etc.

<超電導体の構造>
本発明の超電導体1は、図1に示すように、超電導層10、即ち超電導挙動を示す層と、スペーサー層20、即ち超電導層10を空間的に隔て、超電導挙動を示さない層とを積層してなる。ここで「積層」とは、超電導層10とスペーサー層20とが交互に存在する状態、超電導層10が複数積層されて積層された層(積層層)が形成されており、この積層層間にスペーサー層20が存在する状態(図1に示す形態)、スペーサー層20が複数積層されて積層された層(積層層)が形成されており、この積層層間に超電導層10が存在する状態、及びこれらの状態が組み合わされた状態を意味する。
図1はNaSnAsで示される超電導体の構造を模式的に示す図であり、図1に示す例においては、超電導層10が、層状に連なった構成成分A(SnAs)からなり、かかる構成成分Aの層が2層重なって超電導層10を形成している。なお、これは一例を示したものであり、種々形態の超電導層10があってよく、上記構成成分Aの層が3層以上重なっていてもよく、また1層のみで形成されていてもよい。
また超電導層10において小さい球体11はSnを示し、大きい球体12はMとしてのAsを示す。また両者をつなぐ線13は便宜上入れているものであり、化学結合または分子間力による結合など種々の強い結合ならびに弱い結合を示す。
層20はスペーサー層であり、球21は上記物質としてのNaを示す。
なお、超電導体を組成式NaSnAsで表すのは、構成成分A及び構成成分Bを総合して表すためであり、図中の枠線で示す単位格子中の原子数に基づいて原子数をカウントした場合の組成に基づいて上記の組成式で表される。
図1に示す形態をとる超電導体としては、上述の組成式で表されるもののほかにLiSnAs、NaSn22, Sn4As3, Sn43等が挙げられる。
各層の厚みは各原子の結合状態及び結晶構造に起因し、特に制限されるものではない。また超電導層10及びスペーサー層20の間隔は、超電導層10を構成する成分とスペーサー層20を構成する成分分子のイオン半径やそれらの間の化学結合力により決定される。
また、超電導層10及びスペーサー層20の平面視面積(図1の矢印A方向に矢視した際の面積)は、どの程度の分子を結合させるかに応じて任意である。
超電導層10とスペーサー層20との積層数も任意である。
<Structure of superconductor>
As shown in FIG. 1, in the superconductor 1 of the present invention, a superconducting layer 10, that is, a layer exhibiting superconducting behavior, and a spacer layer 20, that is, a layer exhibiting superconducting behavior are laminated by spatially separating the spacer layer 20, that is, the superconducting layer 10. It will be. Here, "lamination" means that a superconducting layer 10 and a spacer layer 20 are alternately present, and a layer (laminated layer) in which a plurality of superconducting layers 10 are laminated is formed, and a spacer is formed between the laminated layers. A state in which the layer 20 is present (the form shown in FIG. 1), a state in which a plurality of spacer layers 20 are laminated and laminated (a laminated layer) is formed, and a superconducting layer 10 is present between the laminated layers, and these. It means a state in which the states of are combined.
FIG. 1 is a diagram schematically showing the structure of a superconductor represented by NaSn 2 As 2. In the example shown in FIG. 1, the superconducting layer 10 is composed of a component A (Sn 2 As 2 ) in which the superconducting layer 10 is connected in a layered manner. Therefore, two layers of the constituent component A are overlapped to form the superconducting layer 10. It should be noted that this is an example, and there may be various forms of the superconducting layer 10, and the layers of the constituent component A may be stacked in three or more layers, or may be formed by only one layer. ..
Further, in the superconducting layer 10, the small sphere 11 indicates Sn, and the large sphere 12 indicates As as M. Further, the line 13 connecting the two is included for convenience, and shows various strong bonds such as chemical bonds or bonds by intermolecular force and weak bonds.
The layer 20 is a spacer layer, and the sphere 21 shows Na as the above-mentioned substance.
The superconductor is represented by the composition formula NaSn 2 As 2 in order to collectively represent the constituent components A and B, and the number of atoms is based on the number of atoms in the unit cell shown by the frame line in the figure. Is expressed by the above composition formula based on the composition when counting.
Examples of the superconductor having the form shown in FIG. 1 include LiSn 2 As 2 , NaSn 2 P 2 , Sn 4 As 3 , Sn 4 P 3 , and the like, in addition to those represented by the above-mentioned composition formula.
The thickness of each layer depends on the bonding state of each atom and the crystal structure, and is not particularly limited. The distance between the superconducting layer 10 and the spacer layer 20 is determined by the ionic radii of the components constituting the superconducting layer 10 and the component molecules constituting the spacer layer 20 and the chemical bonding force between them.
Further, the area of the superconducting layer 10 and the spacer layer 20 in a plan view (area when viewed in the direction of arrow A in FIG. 1) is arbitrary depending on how many molecules are bound.
The number of layers of the superconducting layer 10 and the spacer layer 20 is also arbitrary.

<製造方法>
本発明の超電導体は、以下の製法に準じて得ることができる。
すなわち、原料成分を300~1000℃で1~30時間焼成する焼成工程を行うことで得ることができる(以下、この方法を「合成方法1」という)。
また、更にこの焼成工程の後、得られた焼成物を徐々に冷却することで50~200時間かけて冷却を行い、室温まで冷却する冷却工程を行うことで得ることもできる(以下、この方法を「合成方法2」という)。
また、上記の冷却工程に代えて、焼成工程の後、得られた焼成物を水中に投入し、水中にて急速に冷却する急冷工程を行うことで得ることもできる(以下、この方法を「合成方法3」という)。なお、この際の冷却時間は好ましくは1~10秒であり、好ましくは10~25℃の水を用い、室温まで冷却するのが好ましい。
<Manufacturing method>
The superconductor of the present invention can be obtained according to the following production method.
That is, it can be obtained by performing a firing step of firing the raw material component at 300 to 1000 ° C. for 1 to 30 hours (hereinafter, this method is referred to as "synthesis method 1").
Further, after this firing step, it can also be obtained by performing a cooling step of gradually cooling the obtained fired product to cool it for 50 to 200 hours and then cooling it to room temperature (hereinafter, this method). Is called "synthesis method 2").
Further, instead of the above cooling step, it can also be obtained by putting the obtained fired product into water and performing a quenching step of rapidly cooling in water after the firing step (hereinafter, this method is referred to as "this method". Synthesis method 3 "). The cooling time at this time is preferably 1 to 10 seconds, and it is preferable to use water at 10 to 25 ° C. for cooling to room temperature.

本発明は上述した実施形態に何ら制限されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形可能である。 The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the present invention.

以下、本発明について実施例を示してさらに具体的に説明するが、本発明はこれらに何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

〔実施例1〕
実施例1に係るSnPn系超電導体は、超電導層の構成成分AがSn2As2であり、スペーサー層の構成成分BがNaである超電導体である。
実施例1に係るNaSn2As2超電導体は以下のようにして製造した。すなわち、出発原料にNa(シグマ-アルドリッチ社製、Naキューブ、99.9%)、Sn(高純度化学社製、Sn粉末、99.9%)、As(高純度化学社製、99.9999%)を用い、Ar雰囲気のグローブボックス中で組成比がNaSn2As2になるように秤量した。
[Example 1]
The SnPn-based superconductor according to the first embodiment is a superconductor in which the component A of the superconducting layer is Sn 2 As 2 and the component B of the spacer layer is Na.
The NaSn 2 As 2 superconductor according to Example 1 was manufactured as follows. That is, the starting materials are Na (Sigma-Aldrich, Na Cube, 99.9%), Sn (High Purity Chemicals, Sn Powder, 99.9%), As (High Purity Chemicals, 99.99999). %) Was used and weighed so that the composition ratio was NaSn 2 As 2 in a glove box in an Ar atmosphere.

次に、秤量して得られた各原料を石英ガラス管に真空封入し、電気炉にて750℃で20時間焼成した。これにより、実施例1に係るSnPn系超電導体としてNaSn2As2が得られた。なお、実施例1に係るNaSn2As2超電導体の合成方法を以下、「合成方法1」という。 Next, each raw material obtained by weighing was vacuum-sealed in a quartz glass tube and fired at 750 ° C. for 20 hours in an electric furnace. As a result, NaSn 2 As 2 was obtained as the SnPn-based superconductor according to Example 1. The method for synthesizing the NaSn 2 As 2 superconductor according to Example 1 is hereinafter referred to as "synthesis method 1".

〔実施例2〕
実施例2に係るSnPn系超電導体は、構成成分AがSn2As2であり、構成成分BがLiである超電導体である。すなわち、実施例2に係るSnPn系超電導体は、組成式がLiSn2As2で表される超電導体である。
[Example 2]
The SnPn-based superconductor according to the second embodiment is a superconductor in which the component A is Sn 2 As 2 and the component B is Li. That is, the SnPn-based superconductor according to Example 2 is a superconductor whose composition formula is represented by LiSn 2 As 2 .

実施例2に係るLiSn2As2超電導体は以下のようにして製造した。すなわち、出発原料にLi(高純度化学社製、Liインゴット、99.9%)、Sn(高純度化学社製、Sn粉末、99、9%)、As(高純度化学社製、99.9999%)を用い、Ar雰囲気のグローブボックス中で組成比がLi0.7Sn2.3As2になるように秤量した。 The LiSn 2 As 2 superconductor according to Example 2 was manufactured as follows. That is, the starting materials are Li (manufactured by High Purity Chemical Co., Ltd., Li ingot, 99.9%), Sn (manufactured by High Purity Chemical Co., Ltd., Sn powder, 99, 9%), As (manufactured by High Purity Chemical Co., Ltd., 99.99999). %) Was used and weighed so that the composition ratio was Li 0.7 Sn 2.3 As 2 in a glove box in an Ar atmosphere.

次に、秤量して得られた各原料を石英ガラス管に真空封入し、電気炉にて700℃で2時間焼成し、室温まで100時間かけて冷却した。これにより、実施例1に係るSnPn系超電導体としてLi0.7Sn2.3As2が得られた。なお、実施例2に係るLi0.7Sn2.3As2超電導体の合成方法を以下、「合成方法2」という。
〔実施例3〕
Next, each raw material obtained by weighing was vacuum-sealed in a quartz glass tube, fired in an electric furnace at 700 ° C. for 2 hours, and cooled to room temperature over 100 hours. As a result, Li 0.7 Sn 2.3 As 2 was obtained as the SnPn-based superconductor according to Example 1. The method for synthesizing the Li 0.7 Sn 2.3 As 2 superconductor according to Example 2 is hereinafter referred to as “synthesis method 2”.
[Example 3]

実施例3に係るSnPn系超電導体は、構成成分AがSn2As2であり、構成成分BがSn2Asである超電導体である。すなわち、実施例2に係るSnPn系超電導体は、組成式がSnAs3で表される超電導体である。 The SnPn-based superconductor according to the third embodiment is a superconductor in which the component A is Sn 2 As 2 and the component B is Sn 2 As 2. That is, the SnPn-based superconductor according to the second embodiment is a superconductor whose composition formula is represented by Sn 4 As 3 .

実施例2に係るSnAs3超電導体は以下のようにして製造した。すなわち、出発原料にSn(高純度化学社製、Sn粉末、99、9%)、As(高純度化学社製、99.9999%)を用い、Ar雰囲気のグローブボックス中で組成比がSnAs3になるように秤量した。 The Sn 4 As 3 superconductor according to Example 2 was manufactured as follows. That is, Sn (manufactured by High Purity Chemical Co., Ltd., Sn powder, 99, 9%) and As (manufactured by High Purity Chemical Co., Ltd., 99.99999%) are used as starting materials, and the composition ratio is Sn 4 in an Ar atmosphere glove box. Weighed to As 3 .

次に、秤量して得られた各原料を混合した後にペレット状に成形することで原料ペレットを得た。続いて、得られた原料ペレットを石英ガラス管に真空封入し、電気炉にて450℃で20時間焼成し、水中にて急冷した。この際、室温(25℃)の水を用い、数秒(10秒以内)で室温まで冷却した。これにより、実施例3に係るSnPn系超電導体としてSnAs3が得られた。なお、実施例3に係るSnAs3超電導体の合成方法を以下、「合成方法3」という。 Next, raw material pellets were obtained by mixing the raw materials obtained by weighing and then molding into pellets. Subsequently, the obtained raw material pellets were vacuum-sealed in a quartz glass tube, fired in an electric furnace at 450 ° C. for 20 hours, and rapidly cooled in water. At this time, water at room temperature (25 ° C.) was used, and the mixture was cooled to room temperature within a few seconds (within 10 seconds). As a result, Sn 4 As 3 was obtained as the SnPn-based superconductor according to Example 3. The method for synthesizing the Sn 4 As 3 superconductor according to the third embodiment is hereinafter referred to as "synthesis method 3".

〔実施例4〕
実施例4に係るSnPn系超電導体は、構成成分AがSn22であり、構成成分BがSn2Pである超電導体である。すなわち、実施例2に係るSnPn系超電導体は、組成式がSn3で表される超電導体である。
[Example 4]
The SnPn-based superconductor according to the fourth embodiment is a superconductor in which the component A is Sn 2 P 2 and the component B is Sn 2 P. That is, the SnPn-based superconductor according to the second embodiment is a superconductor whose composition formula is represented by Sn 4 P 3 .

実施例4に係るSn3超電導体は以下のようにして製造した。すなわち、出発原料にSn(高純度化学社製、Sn粉末、99、9%)、P(高純度化学社製、99.9999%)を用い、Ar雰囲気のグローブボックス中で組成比がSn3になるように秤量した。 The Sn 4 P 3 superconductor according to Example 4 was manufactured as follows. That is, Sn (manufactured by High Purity Chemical Co., Ltd., Sn powder, 99, 9%) and P (manufactured by High Purity Chemical Co., Ltd., 99.99999%) were used as starting materials, and the composition ratio was Sn 4 in an Ar atmosphere glove box. Weighed to P3.

次に、秤量して得られた各原料を混合した後にペレット状に成形することで原料ペレットを得た。続いて、得られた原料ペレットを石英ガラス管に真空封入し、電気炉にて450℃で20時間焼成し、水中にて急冷した。この際、室温(25℃)の水を用い、数秒(10秒以内)で室温まで冷却した。これにより、実施例4に係るSnPn系超電導体としてSn3が得られた。なお、実施例4に係るSn3超電導体の合成方法を以下、「合成方法4」という。 Next, raw material pellets were obtained by mixing the raw materials obtained by weighing and then molding into pellets. Subsequently, the obtained raw material pellets were vacuum-sealed in a quartz glass tube, fired in an electric furnace at 450 ° C. for 20 hours, and rapidly cooled in water. At this time, water at room temperature (25 ° C.) was used, and the mixture was cooled to room temperature within a few seconds (within 10 seconds). As a result, Sn 4 P 3 was obtained as the SnPn-based superconductor according to Example 4. The method for synthesizing the Sn 4 P 3 superconductor according to the fourth embodiment is hereinafter referred to as “synthesis method 4”.

〔実施例5〕
実施例5に係るSnPn系超電導体は、超電導層の構成成分AがSn22であり、スペーサー層の構成成分BがNaである超電導体である。
実施例5に係るNaSn22超電導体は以下のようにして製造した。すなわち、出発原料にNa3P、Sn(高純度化学社製、Sn粉末、99.9%)、P(高純度化学社製、99.9999%)を用い、Ar雰囲気のグローブボックス中で組成比がNaSn2P2になるように秤量した。ここで、Na3PはNa(シグマ-アルドリッチ社製、Naキューブ、99.9%)とPを石英ガラス管に真空封入し、電気炉にて300~400℃で20時間焼成することで得た。
[Example 5]
The SnPn-based superconductor according to the fifth embodiment is a superconductor in which the component A of the superconducting layer is Sn 2 P 2 and the component B of the spacer layer is Na.
The NaSn 2 P 2 superconductor according to Example 5 was manufactured as follows. That is, Na 3P , Sn (manufactured by High Purity Chemical Co., Ltd., Sn powder, 99.9%) and P (manufactured by High Purity Chemical Co., Ltd., 99.99999%) were used as starting materials, and the composition was made in an Ar atmosphere glove box. Weighed so that the ratio was NaSn 2 P 2 . Here, Na 3 P can be obtained by vacuum-sealing Na (Na cube, 99.9% manufactured by Sigma-Aldrich) and P in a quartz glass tube and firing at 300 to 400 ° C. for 20 hours in an electric furnace. rice field.

次に、秤量して得られた各原料を石英ガラス管に真空封入し、電気炉にて400℃で20時間焼成した。これにより、実施例5に係るSnPn系超電導体としてNaSn22が得られた。なお、実施例5に係るNaSn22超電導体の合成方法を以下、「合成方法5」という。 Next, each raw material obtained by weighing was vacuum-sealed in a quartz glass tube and fired at 400 ° C. for 20 hours in an electric furnace. As a result, NaSn 2 P 2 was obtained as the SnPn-based superconductor according to Example 5. The method for synthesizing the NaSn 2 P 2 superconductor according to Example 5 is hereinafter referred to as “synthesis method 5”.

(実施例で得られた超電導体の評価結果)
実施例1~5で得られたSnPn系超電導体の超電導転移温度(Tc)電気抵抗率の温度依存性により決定した。電気抵抗率は4端子法を用いて測定した。その結果を図2~6に示す。
また、実施例1~5で得られたSnPn系超電導体について、X線構造解析を実施した。その結果を図7~11に示す。この結果から明らかなように、すべての超電導体について空間群R-3m構造に特徴的なピークが観測された。したがって、各超電導体が、空間群がR-3mである三方晶の層状構造をしていることが示された。
実施例1~5に係るSnPn系超電導体の製造に用いた出発原料の混合比と、得られた超電導体の超電導転移温度(Tc)の値を表1に示す。

Figure 0007084022000001
(Evaluation result of superconductor obtained in Examples)
It was determined by the temperature dependence of the superconducting transition temperature (Tc) electrical resistivity of the SnPn-based superconductors obtained in Examples 1 to 5. The electrical resistivity was measured using the 4-terminal method. The results are shown in FIGS. 2 to 6.
In addition, X-ray structure analysis was performed on the SnPn-based superconductors obtained in Examples 1 to 5. The results are shown in FIGS. 7 to 11. As is clear from this result, peaks characteristic of the space group R-3m structure were observed for all superconductors. Therefore, it was shown that each superconductor has a trigonal layered structure in which the space group is R-3 m.
Table 1 shows the mixing ratio of the starting raw materials used for producing the SnPn-based superconductors according to Examples 1 to 5 and the values of the superconducting transition temperature (Tc) of the obtained superconductors.
Figure 0007084022000001

Claims (1)

構成成分Aと、構成成分Bとを具備し、上記構成成分Aからなる、超電導挙動を示す超電導層と、上記構成成分Bからなり、上記超電導層を空間的に離隔させるスペーサー層とが積層されて形成されており、
上記構成成分Aが、化学式 SnxMy(式中Mは、PまたはAsであり、x及びyは、x:y=1:0.5~1.5の関係にある)で表される化合物であり、
上記構成成分Bが、Na,Li,Sn 2 P、またはSn 2 Asであり、
上記構成成分Aと上記構成成分Bとのモル比は、上記構成成分A:上記構成成分B=1:1である
超電導体。
A superconducting layer having a component A and a component B and exhibiting superconducting behavior, which is composed of the component A, and a spacer layer composed of the component B and spatially separating the superconducting layer are laminated. Is formed and
The component A is a compound represented by the chemical formula SnxMy (M in the formula is P or As, and x and y have a relationship of x: y = 1: 0.5 to 1.5). ,
The component B is Na, Li, Sn 2 P, or Sn 2 As.
The molar ratio of the component A to the component B is the component A: the component B = 1: 1.
Superconductor.
JP2018031880A 2018-02-26 2018-02-26 Superconductor Active JP7084022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018031880A JP7084022B2 (en) 2018-02-26 2018-02-26 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018031880A JP7084022B2 (en) 2018-02-26 2018-02-26 Superconductor

Publications (2)

Publication Number Publication Date
JP2019147973A JP2019147973A (en) 2019-09-05
JP7084022B2 true JP7084022B2 (en) 2022-06-14

Family

ID=67850233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031880A Active JP7084022B2 (en) 2018-02-26 2018-02-26 Superconductor

Country Status (1)

Country Link
JP (1) JP7084022B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234847A (en) 2008-03-27 2009-10-15 Japan Science & Technology Agency Superconductor comprising lamellar compound and method of producing the same
CN101814344A (en) 2010-03-10 2010-08-25 中国科学院电工研究所 Method for preparing iron-based superconductor
JP2011026176A (en) 2009-07-28 2011-02-10 Sumitomo Electric Ind Ltd Method for production of groups iii-v compound crystal
JP2012199234A (en) 2011-03-10 2012-10-18 Osaka Prefecture Univ Lithium ion battery, and negative electrode material therefor
JP2015127280A (en) 2013-12-27 2015-07-09 国立研究開発法人産業技術総合研究所 Phosphorus compound and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522945A (en) * 1994-07-01 1996-06-04 General Electric Company Method for forming triniobium tin superconductor with bismuth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234847A (en) 2008-03-27 2009-10-15 Japan Science & Technology Agency Superconductor comprising lamellar compound and method of producing the same
JP2011026176A (en) 2009-07-28 2011-02-10 Sumitomo Electric Ind Ltd Method for production of groups iii-v compound crystal
CN101814344A (en) 2010-03-10 2010-08-25 中国科学院电工研究所 Method for preparing iron-based superconductor
JP2012199234A (en) 2011-03-10 2012-10-18 Osaka Prefecture Univ Lithium ion battery, and negative electrode material therefor
JP2015127280A (en) 2013-12-27 2015-07-09 国立研究開発法人産業技術総合研究所 Phosphorus compound and use thereof

Also Published As

Publication number Publication date
JP2019147973A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
Wang et al. Electron and phonon transport properties of layered Bi2O2Se and Bi2O2Te from first-principles calculations
Haleoot et al. Thermodynamic and thermoelectric properties of CoFeYGe (Y= Ti, Cr) quaternary Heusler alloys: first principle calculations
Krellner et al. Ferromagnetic quantum criticality in the quasi-one-dimensional heavy fermion metal YbNi4P2
Saparov et al. Properties of binary transition-metal arsenides (TAs)
Capps et al. Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te
Galanakis et al. High-T C fully compensated ferrimagnetic semiconductors as spin-filter materials: The case of CrVXAl (X= Ti, Zr, Hf) Heusler compounds
Ciftci et al. First principle study of structural, electronic, mechanical, dynamic and optical properties of half-Heusler compound LiScSi under pressure
Fujitsu et al. Iron based superconductors processing and properties
Lamichhane et al. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP
Mahmoud et al. First principles investigation of thermoelectric and mechanical properties of VScO3 semiconductor perovskite for sustainable and renewable energy
Berri Search for New Half-Metallic Ferromagnets in Quaternary Diamond-Like Compounds I–II 2–III–VI 4 and I 2–II–IV–VI 4 (I= Cu; II= Mn, Fe, Co; III= In; IV= Ge, Sn; VI= S, Se, Te)
Amin et al. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain
Serrano-Sánchez et al. Low lattice thermal conductivity in arc-melted GeTe with Ge-deficient crystal structure
Harayama et al. Superconductivity in Al-Nb-Ti-V-Zr multicomponent alloy
Muranaka et al. Superconductivity in MgB2
JP7084022B2 (en) Superconductor
Fuccillo et al. Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior
Serebryanaya et al. Monoclinic structure and electrical properties of metastable Sb2Te3 and Bi0. 4Sb1. 6Te3 phases
Javaid et al. DFT based comparative study of physical properties of Y3AlC3, YAl3C3 and Y3AlC carbides
Liu et al. First-principles calculations to investigate electronic, magnetism, elastic properties of TbxDy1-xFe2 (x= 0, 0.25, 0.5, 1)
Azouaoui et al. The temperature effect on the physical properties of CoMnSb half-Heusler ferromagnetic: Density functional theory and Monte Carlo simulation
Zheng et al. Improvement of the Thermoelectric Properties of (Sr 0.9 La 0.1) 3 Ti 2 O 7 by Ag Addition
Kumar et al. Magnetic, magnetothermal, and magnetotransport properties in SmMn2Si2− xGex compounds
Sefat et al. Magnetization, resistivity and heat capacity of the anisotropic RVSb3 crystals (R= La–Nd, Sm, Gd–Dy)
Djaafri et al. Thermoelectric properties and thermal stability of ferromagnetic half metallic CoVTe alloy, first principles study

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220526

R150 Certificate of patent or registration of utility model

Ref document number: 7084022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150