JP7083995B2 - Phenyltriazole metal complex and light emitting device - Google Patents

Phenyltriazole metal complex and light emitting device Download PDF

Info

Publication number
JP7083995B2
JP7083995B2 JP2018097294A JP2018097294A JP7083995B2 JP 7083995 B2 JP7083995 B2 JP 7083995B2 JP 2018097294 A JP2018097294 A JP 2018097294A JP 2018097294 A JP2018097294 A JP 2018097294A JP 7083995 B2 JP7083995 B2 JP 7083995B2
Authority
JP
Japan
Prior art keywords
phenyltriazole
group
mmol
compound
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097294A
Other languages
Japanese (ja)
Other versions
JP2019202943A (en
Inventor
英雄 今野
卓央 林
雅弘 堀口
昌幸 岩窪
佳孝 斉藤
良夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DIC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical DIC Corp
Priority to JP2018097294A priority Critical patent/JP7083995B2/en
Publication of JP2019202943A publication Critical patent/JP2019202943A/en
Application granted granted Critical
Publication of JP7083995B2 publication Critical patent/JP7083995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

本発明は、フェニルトリアゾール化合物、フェニルトリアゾール金属錯体及び発光素子に関する。 The present invention relates to phenyltriazole compounds, phenyltriazole metal complexes and light emitting devices.

有機エレクトロルミネッセンス素子(以下、「発光素子」ということがある。)の発光層に用いる発光材料として、三重項励起状態からの発光(以下、「燐光発光」ということがある。)を示す金属錯体は、一重項励起状態からの発光を示す蛍光材料と比較して高い発光効率をもたらすことが知られている。燐光発光を示す青色発光金属錯体としては、例えば、Ir、Pt、Au、Rh等の遷移金属に配位子が結合した金属錯体(特許文献1、2)、3-フェニル-1,2,4-トリアゾール誘導体を配位子とする金属錯体(特許文献3、4)等が知られている。 As a light emitting material used for the light emitting layer of an organic electroluminescence device (hereinafter, may be referred to as "light emitting element"), a metal complex exhibiting light emission from a triplet excited state (hereinafter, may be referred to as "phosphorescent light emission"). Is known to provide higher emission efficiency as compared to fluorescent materials that emit light from a single-term excited state. Examples of the blue light emitting metal complex exhibiting phosphorescent light emission include a metal complex in which a ligand is bonded to a transition metal such as Ir, Pt, Au, and Rh (Patent Documents 1 and 2), 3-phenyl-1,2,4. -A metal complex having a triazole derivative as a ligand (Patent Documents 3 and 4) and the like are known.

国際公開第2002/015645号International Publication No. 2002/015645 国際公開第2007/097153号International Publication No. 2007/097153 国際公開第2013/151989号International Publication No. 2013/151989 特開2013-147450号公報Japanese Unexamined Patent Publication No. 2013-147450

しかしながら、従来の燐光発光を示す青色発光金属錯体を用いた発光素子は素子寿命が短いという問題があった。 However, the conventional light emitting device using a blue light emitting metal complex exhibiting phosphorescent light emission has a problem that the device life is short.

本発明が解決しようとする課題は、新規なフェニルトリアゾール化合物、及び、このフェニルトリアゾール化合物を配位子として有するフェニルトリアゾール金属錯体、並びに、このフェニルトリアゾール金属錯体を用いる、長寿命で青色燐光発光することができる発光素子を提供することにある。 The problem to be solved by the present invention is a novel phenyltriazole compound, a phenyltriazole metal complex having the phenyltriazole compound as a ligand, and a long-life blue phosphorescent light emission using the phenyltriazole metal complex. It is an object of the present invention to provide a light emitting element capable of capable.

本発明は、以下の態様を包含するものである。
[1] 下記式(1)で表されるフェニルトリアゾール化合物。
The present invention includes the following aspects.
[1] A phenyltriazole compound represented by the following formula (1).

Figure 0007083995000001
(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は下記式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは下記式(2)で表される複素環である。
Figure 0007083995000001
( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the following formula (2), and are RA , RB , RC . , R D and RE at least one is a heterocycle represented by the following formula (2).

Figure 0007083995000002
(Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。*は結合部位を表す。)
Figure 0007083995000002
(YA, YB , YC , YD and YE are independently CR or N , and at least one of YA, YB , YC , YD and YE is N. R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. * Represents a bond site.)

、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。) R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group, respectively. )

[2] R及びRがアルキル基である、前記[1]に記載のフェニルトリアゾール化合物。
[3] R、R又はRが前記式(2)で表される複素環である、前記[1]又は[2]に記載のフェニルトリアゾール化合物。
[2] The phenyltriazole compound according to the above [1], wherein RA and RE are alkyl groups.
[3] The phenyltriazole compound according to the above [1] or [2], wherein RB , RC or RD is a heterocycle represented by the above formula (2).

[4] 下記式(A)で表されるフェニルトリアゾール金属錯体。 [4] A phenyltriazole metal complex represented by the following formula (A).

Figure 0007083995000003
(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は下記式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは下記式(2)で表される複素環である。
Figure 0007083995000003
( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the following formula (2), and are RA , RB , RC . , R D and RE at least one is a heterocycle represented by the following formula (2).

Figure 0007083995000004
(Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。*は結合部位を表す。)
Figure 0007083995000004
(YA, YB , YC , YD and YE are independently CR or N , and at least one of YA, YB , YC , YD and YE is N. R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. * Represents a bond site.)

、R、R、R、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。X、X及びXは、それぞれ独立して、CR、N又はNR10であり、XはC又はNであり、R及びR10は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。MはIr、Pt、Au又はRhであり、mは0、1又は2であり、nは1、2又は3である。ただし、MがIr又はRhのとき、m+n=3であり、MがPtのとき、m+n=2であり、MがAuのとき、m+n=1である。) R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independent alkyl groups substituted with hydrogen atoms, halogen atoms, alkyl groups, and halogen atoms, respectively. , Alkyloxy group or aryl group. X 1 , X 2 and X 3 are independently CR, N or NR 10 , X 4 is C or N, and R and R 10 are independent hydrogen and halogen atoms, respectively. It is an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. M is Ir, Pt, Au or Rh, m is 0, 1 or 2, and n is 1, 2 or 3. However, when M is Ir or Rh, m + n = 3, when M is Pt, m + n = 2, and when M is Au, m + n = 1. )

[5] R及びRがアルキル基である、前記[4]に記載のフェニルトリアゾール金属錯体。
[6] R、R又はRが前記式(2)で表される複素環である、前記[4]又は[5]に記載のフェニルトリアゾール金属錯体。
[5] The phenyltriazole metal complex according to the above [4], wherein RA and RE are alkyl groups.
[6] The phenyltriazole metal complex according to the above [4] or [5], wherein RB , RC or RD is a heterocycle represented by the above formula (2).

[7] 陽極と、陰極と、該陽極と該陰極との間に設けられた、前記[4]~[6]のうちいずれか一項に記載のフェニルトリアゾール金属錯体を含む層と、を備える発光素子。 [7] The anode and the cathode are provided with a layer containing the phenyltriazole metal complex according to any one of the above [4] to [6] provided between the anode and the cathode. Light emitting element.

本発明のフェニルトリアゾール化合物は、金属に配位する環以外に、電子求引性の複素環を有するので、電子注入性、電子耐性を高め、青色発光を保つことができる。これにより、このフェニルトリアゾール化合物を配位子とするフェニルトリアゾール金属錯体は、電子とホールの再結合を促進し、長寿命で青色燐光発光することができる発光素子の製造に有用である。 Since the phenyltriazole compound of the present invention has an electron-withdrawing heterocycle in addition to the ring coordinated to the metal, it can enhance electron injectability and electron resistance and maintain blue light emission. Thereby, the phenyltriazole metal complex using this phenyltriazole compound as a ligand is useful for producing a light emitting element capable of promoting the recombination of electrons and holes and emitting blue phosphorescence with a long life.

本発明の発光素子の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the light emitting element of this invention.

<<フェニルトリアゾール化合物>>
本発明のフェニルトリアゾール化合物は、下記式(1)で表される。
<< Phenyltriazole compound >>
The phenyltriazole compound of the present invention is represented by the following formula (1).

Figure 0007083995000005
Figure 0007083995000005

式(1)中、R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は下記式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは下記式(2)で表される複素環である。R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。 In the formula (1), RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the following formula (2), and RA , At least one of RB , RC , RD and R E is a heterocycle represented by the following formula (2). R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group, respectively.

Figure 0007083995000006
Figure 0007083995000006

、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。*は結合部位を表す。 Y A , Y B , Y C , Y D and Y E are independently CR or N, and at least one of Y A , Y B , Y C , Y D and Y E is N. Yes, R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. * Represents the binding site.

、R、R、R、R、R、R、R、R、R及びRで表されるアルキル基としては、直鎖状、分岐鎖状又は環状のいずれでもよい。直鎖状および分岐鎖状のアルキル基の炭素数は、好ましくは1~30であり、より好ましくは1~12であり、特に好ましくは1~4である。また、環状のアルキル基における炭素数は、好ましくは3~30であり、より好ましくは3~12であり、特に好ましくは3~10である。なお、アルキル基は、置換基を有していてもよいが、置換基の炭素数は上記の炭素数には含まれない。 The alkyl groups represented by RA , RB, RC , R D , RE , R 1 , R 2 , R 3 , R 4 , R 5 and R are linear, branched or cyclic. Either may be used. The linear and branched alkyl groups preferably have 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 4 carbon atoms. The number of carbon atoms in the cyclic alkyl group is preferably 3 to 30, more preferably 3 to 12, and particularly preferably 3 to 10. The alkyl group may have a substituent, but the carbon number of the substituent is not included in the above carbon number.

前記アルキル基の例としては、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、iso-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられ、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、iso-ブチル基、tert-ブチル基が好ましい。Rは、アルキル基であることが好ましい。 Examples of the alkyl group include methyl group, ethyl group, propyl group, iso-propyl group, butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group and octyl group. Examples thereof include 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group, trifluoromethyl group, pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group and the like. , Methyl group, ethyl group, propyl group, iso-propyl group, butyl group, iso-butyl group, tert-butyl group are preferable. R 1 is preferably an alkyl group.

、R、R、R、R及びRで表されるハロゲン原子、並びに、R、R、R、R、R及びRで表されるハロゲン原子で置換されたアルキル基のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。 Replaced with halogen atoms represented by R 1 , R 2 , R 3 , R 4 , R 5 and R, and halogen atoms represented by R 1 , R 2 , R 3 , R 4 , R 5 and R. Examples of the halogen atom of the alkyl group include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.

、R、R、R、R及びRで表されるアルキルオキシ基は、直鎖状、分岐鎖状又は環状のいずれでもよい。直鎖状および分岐鎖状のアルキルオキシ基の炭素数は、好ましくは1~30であり、より好ましくは1~12であり、特に好ましくは1~4である。また、環状のアルキルオキシ基の炭素数は、好ましくは3~30であり、より好ましくは3~12であり、特に好ましくは3~10である。アルキルオキシ基は、置換基を有していてもよいが、置換基の炭素数は上記の炭素数には含まれない。 The alkyloxy group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R may be linear, branched or cyclic. The linear and branched alkyloxy groups preferably have 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 4 carbon atoms. The number of carbon atoms of the cyclic alkyloxy group is preferably 3 to 30, more preferably 3 to 12, and particularly preferably 3 to 10. The alkyloxy group may have a substituent, but the carbon number of the substituent is not included in the above carbon number.

前記アルキルオキシ基の例としては、メチルオキシ基、エチルオキシ基、プロピルオキシ基、iso-プロピルオキシ基、ブチルオキシ基、iso-ブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメチルオキシ基、ペンタフルオロエチルオキシ基、パーフルオロブチルオキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、メチルオキシメチルオキシ基、2-メチルオキシエチルオキシ基等が挙げられ、メチルオキシ基、エチルオキシ基、プロピルオキシ基、iso-プロピルオキシ基、ブチルオキシ基、iso-ブチルオキシ基、tert-ブチルオキシ基が好ましい。 Examples of the alkyloxy group include a methyloxy group, an ethyloxy group, a propyloxy group, an iso-propyloxy group, a butyloxy group, an iso-butyloxy group, a tert-butyloxy group, a pentyloxy group, a hexyloxy group and a cyclohexyloxy group. , Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, trifluoromethyloxy group, pentafluoroethyloxy group, perfluorobutyloxy Examples include a group, a perfluorohexyloxy group, a perfluorooctyloxy group, a methyloxymethyloxy group, a 2-methyloxyethyloxy group, and the like, a methyloxy group, an ethyloxy group, a propyloxy group, an iso-propyloxy group, and a butyloxy group. Groups, iso-butyloxy groups and tert-butyloxy groups are preferred.

、R、R、R、R及びRで表されるアリール基は、炭素数が、通常6~60であり、好ましくは7~48である。アリール基は、置換基を有していてもよいが、置換基の炭素数は上記の炭素数には含まれない。 The aryl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R usually has 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms. The aryl group may have a substituent, but the carbon number of the substituent is not included in the above carbon number.

前記アリール基の例としては、フェニル基、C1~C12アルキルオキシフェニル基(「C1~C12アルキルオキシ」は、アルキルオキシ部分の炭素数が1~12であることを意味する。以下、同様である。)、C1~C12アルキルフェニル基(「C1~C12アルキル」は、アルキル部分の炭素数が1~12であることを意味する。以下、同様である。)、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、ペンタフルオロフェニル基等が挙げられ、C1~C12アルキルオキシフェニル基、C1~C12アルキルフェニル基が好ましい。ここで、アリール基とは、芳香族炭化水素から水素原子1個を除いた原子団である。この芳香族炭化水素としては、縮合環をもつもの、独立したベンゼン環及び/又は縮合環から選ばれる2個以上が直接又はビニレン等の基を介して結合したものが含まれる。 Examples of the aryl group include a phenyl group and a C1 to C12 alkyloxyphenyl group (“C1 to C12 alkyloxy” means that the alkyloxy moiety has 1 to 12 carbon atoms, and the same applies hereinafter. ), C1 to C12 alkylphenyl group (“C1 to C12 alkyl” means that the alkyl moiety has 1 to 12 carbon atoms; the same applies hereinafter), 1-naphthyl group, 2-naphthyl. Examples thereof include a group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a pentafluorophenyl group and the like, and a C1-C12 alkyloxyphenyl group and a C1-C12 alkylphenyl group are preferable. Here, the aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. The aromatic hydrocarbons include those having a fused ring and those in which two or more selected from an independent benzene ring and / or a fused ring are directly bonded or via a group such as vinylene.

上述のC1~C12アルキルは、炭素数1~12のアルキルであり、前記アルキル基で説明し、例示したものと同様である。したがって、例えば、前記基におけるC1~C12アルキルオキシとしては、メチルオキシ、エチルオキシ、プロピルオキシ、iso-プロピルオキシ、ブチルオキシ、iso-ブチルオキシ、tert-ブチルオキシ、ペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、2-エチルヘキシルオキシ、ノニルオキシ、デシルオキシ、3,7-ジメチルオクチルオキシ、ラウリルオキシ等が挙げられる。また、前記基におけるC1~C12アルキルフェニルとしては、メチルフェニル、エチルフェニル、ジメチルフェニル、プロピルフェニル、メシチル、メチルエチルフェニル、iso-プロピルフェニル、ブチルフェニル、iso-ブチルフェニル、tert-ブチルフェニル、ペンチルフェニル、イソアミルフェニル、ヘキシルフェニル、ヘプチルフェニル、オクチルフェニル、ノニルフェニル、デシルフェニル、ドデシルフェニル等が挙げられる。以下同様である。 The above-mentioned C1 to C12 alkyl are alkyls having 1 to 12 carbon atoms, and are the same as those described and exemplified by the above alkyl groups. Therefore, for example, as the C1 to C12 alkyloxy in the group, methyloxy, ethyloxy, propyloxy, iso-propyloxy, butyloxy, iso-butyloxy, tert-butyloxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, and the like. Examples thereof include octyloxy, 2-ethylhexyloxy, nonyloxy, decyloxy, 3,7-dimethyloctyloxy and lauryloxy. The C1 to C12 alkylphenyls in the group include methylphenyl, ethylphenyl, dimethylphenyl, propylphenyl, mesityl, methylethylphenyl, iso-propylphenyl, butylphenyl, iso-butylphenyl, tert-butylphenyl and pentyl. Examples thereof include phenyl, isoamylphenyl, hexylphenyl, heptylphenyl, octylphenyl, nonylphenyl, decylphenyl, dodecylphenyl and the like. The same applies hereinafter.

前記式(2)で表される複素環としては、芳香環であることが好ましい。また、Y、Y、Y、Y及びYのうち、Nのオルト位の一つはCR11(R11はアルキル基である。)であることが好ましく、Nのオルト位はCR11及びCR12(R11はアルキル基であり、R12は水素原子又はアルキル基である。)であることが好ましい。Y、Y、Y、Y及びYのうち、Nのオルト位の少なくとも一つがCR11であることにより、錯体合成時に遷移金属への望まない配位を抑制することができる。R11は炭素数1~4の直鎖状又は分岐鎖状のアルキル基がより好ましい。R12は水素原子又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基がより好ましい。 The heterocycle represented by the formula (2) is preferably an aromatic ring. Further, among Y A , Y B , Y C , Y D and Y E , one of the ortho positions of N is preferably CR 11 (R 11 is an alkyl group), and the ortho position of N is It is preferably CR 11 and CR 12 (R 11 is an alkyl group and R 12 is a hydrogen atom or an alkyl group). Since at least one of the ortho positions of N among Y A , Y B , Y C , Y D , and Y E is CR 11 , it is possible to suppress an undesired coordination to the transition metal during complex synthesis. R 11 is more preferably a linear or branched alkyl group having 1 to 4 carbon atoms. R 12 is more preferably a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.

前記式(2)で表される複素環としては、下記式(2-1)~式(2-6)で表される複素環が挙げられるが、これらに限られない。 Examples of the heterocycle represented by the above formula (2) include, but are not limited to, the heterocycles represented by the following formulas (2-1) to (2-6).

Figure 0007083995000007
Figure 0007083995000007

前記式(2-1)で表される複素環としては、下記式(2-1―1)~式(2-1―2)で表される複素環が挙げられ、前記式(2-2)で表される複素環としては、下記式(2-2-1)~式(2-2-4)で表される複素環が挙げられ、前記式(2-3)で表される複素環としては、下記式(2-3-1)~式(2-3-2)で表される複素環が挙げられるが、これらに限られない。 Examples of the heterocycle represented by the above formula (2-1) include the heterocycles represented by the following formulas (2-1-1) to (2-1-2), and the above formula (2-2). Examples of the heterocycle represented by) include the heterocycles represented by the following formulas (2-2-1) to (2-2-4), and the heterocycles represented by the above formula (2-3). Examples of the ring include, but are not limited to, heterocycles represented by the following equations (2-3-1) to (2-3-2).

Figure 0007083995000008
Figure 0007083995000008

前記式(2-4)で表される複素環としては、下記式(2-4―1)~式(2-4―2)で表される複素環が挙げられ、前記式(2-5)で表される複素環としては、下記式(2-5-1)~式(2-5-2)で表される複素環が挙げられ、前記式(2-6)で表される複素環としては、下記式(2-6-1)~式(2-6-2)で表される複素環が挙げられるが、これらに限られない。 Examples of the heterocycle represented by the above formula (2-4) include the heterocycles represented by the following formulas (2-4-1) to (2-4-2), and the above formula (2-5). Examples of the heterocycle represented by) include the heterocycles represented by the following formulas (2-5-1) to (2-5-2), and the heterocycles represented by the above formula (2-6). Examples of the ring include, but are not limited to, heterocycles represented by the following equations (2-6-1) to (2-6-2).

Figure 0007083995000009
Figure 0007083995000009

式(1)中、R及びRはアルキル基であることが好ましい。R及びRがアルキル基であることにより、これらのアルキル基を有するベンゼン環と、トリアゾール環との間の平面性を減らして共役関係を断ち、青色発光を保つことができる。R及びRのアルキル基としては、炭素数1~4の直鎖状又は分岐鎖状のアルキル基がより好ましい。 In formula (1), RA and RE are preferably alkyl groups. Since RA and RE are alkyl groups, the planarity between the benzene ring having these alkyl groups and the triazole ring can be reduced to break the conjugate relationship and maintain blue light emission. As the alkyl group of RA and RE , a linear or branched alkyl group having 1 to 4 carbon atoms is more preferable.

式(1)中、R、R又はRが前記式(2)で表される複素環であることが好ましい。R、R又はRとしての式(2)で表される複素環としては、前記式(2-1)~式(2-6)で表される複素環、前記式(2-1-1)~式(2-6-2)で表される複素環が挙げられる。 In the formula (1), it is preferable that RB , RC or RD is a heterocycle represented by the above formula (2). Examples of the heterocycle represented by the formula (2) as RB , RC or RD include the heterocycle represented by the formulas (2-1) to (2-6) and the formula (2-1). -1) -The heterocycle represented by the equation (2-6-2) can be mentioned.

式(1)で表されるフェニルトリアゾール化合物としては、下記式(1-1)~式(1-10)で表されるフェニルトリアゾール化合物が挙げられるが、これらに限られない。 Examples of the phenyltriazole compound represented by the formula (1) include, but are not limited to, phenyltriazole compounds represented by the following formulas (1-1) to (1-10).

Figure 0007083995000010
Figure 0007083995000010

Figure 0007083995000011
Figure 0007083995000011

Figure 0007083995000012
Figure 0007083995000012

Figure 0007083995000013
Figure 0007083995000013

Figure 0007083995000014
Figure 0007083995000014

式(1)で表されるフェニルトリアゾール化合物の具体例としては、下記式(1-101)~式(1-128)が挙げられるが、これらに限られない。 Specific examples of the phenyltriazole compound represented by the formula (1) include, but are not limited to, the following formulas (1-101) to (1-128).

Figure 0007083995000015
Figure 0007083995000015

Figure 0007083995000016
Figure 0007083995000016

Figure 0007083995000017
Figure 0007083995000017

Figure 0007083995000018
Figure 0007083995000018

Figure 0007083995000019
Figure 0007083995000019

Figure 0007083995000020
Figure 0007083995000020

Figure 0007083995000021
Figure 0007083995000021

Figure 0007083995000022
Figure 0007083995000022

Figure 0007083995000023
Figure 0007083995000023

Figure 0007083995000024
Figure 0007083995000024

<フェニルトリアゾール化合物の製造方法>
式(1)で表されるフェニルトリアゾール化合物は、例えば、式(3-1)~式(3-9)の反応式により合成することができる。
<Manufacturing method of phenyltriazole compound>
The phenyltriazole compound represented by the formula (1) can be synthesized, for example, by the reaction formulas of the formulas (3-1) to (3-9).

Figure 0007083995000025
(R、R、R及びRは、それぞれ独立して、水素原子又はアルキル基であり、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。以下、式(3-2)及び式(3-2)において同じ。)
Figure 0007083995000025
(R a , R b , R d and R e are independent hydrogen atoms or alkyl groups, respectively, and R 1 , R 2 , R 3 , R 4 and R 5 are independent hydrogen atoms, respectively. , Halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group. Y A , Y B , Y C , Y D and Y E are independently CR or N, respectively. Yes, at least one of Y A , Y B , Y C , Y D and Y E is N, and R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, or an alkyloxy group. Or an aryl group. Hereinafter, the same applies to the formulas (3-2) and (3-2).

Figure 0007083995000026
Figure 0007083995000026

Figure 0007083995000027
Figure 0007083995000027

Figure 0007083995000028
(R、R、R、R及びRは、それぞれ独立して、水素原子又はアルキル基であり、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。以下、式(3-5)及び式(3-6)において同じ。)
Figure 0007083995000028
(R a , R b , R c , R d and R e are independent hydrogen atoms or alkyl groups, respectively, and R 1 , R 2 , R 3 , R 4 and R 5 are independent, respectively. , Hydrogen atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group. Y A , Y B , Y C , Y D and Y E are independently CR. Or N, at least one of Y A , Y B , Y C , Y D and Y E is N, where R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, It is an alkyloxy group or an aryl group. Hereinafter, the same applies to the formulas (3-5) and (3-6).

Figure 0007083995000029
Figure 0007083995000029

Figure 0007083995000030
Figure 0007083995000030

Figure 0007083995000031
(R、R、R、R及びRは、それぞれ独立して、水素原子又はアルキル基であり、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。以下、式(3-8)及び式(3-9)において同じ。)
Figure 0007083995000031
(R a , R b , R c , R d and R e are independent hydrogen atoms or alkyl groups, respectively, and R 1 , R 2 , R 3 , R 4 and R 5 are independent, respectively. , Hydrogen atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group. Y A , Y B , Y C , Y D and Y E are independently CR. Or N, at least one of Y A , Y B , Y C , Y D and Y E is N, where R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, It is an alkyloxy group or an aryl group. Hereinafter, the same applies to the formulas (3-8) and (3-9).

Figure 0007083995000032
Figure 0007083995000032

Figure 0007083995000033
Figure 0007083995000033

式(3-1)~式(3-9)の反応で用いる原料化合物は、下記式(3-10)の反応式により合成することができる。 The raw material compounds used in the reactions of the formulas (3-1) to (3-9) can be synthesized by the reaction formula of the following formula (3-10).

Figure 0007083995000034
(R’、R’、R’、R’及びR’は、それぞれ独立して、水素原子、アルキル基又はハロゲン原子であり、R’、R’、R’、R’及びR’のうち少なくとも一つはハロゲン原子である。R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。)
Figure 0007083995000034
(R a ', R b ', R c ', R d' and R e'are independent hydrogen atoms, alkyl groups or halogen atoms, respectively, and R a ', R b ', R c ', respectively. At least one of R d' and R e'is a halogen atom. R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atoms, halogen atoms, alkyl groups and halogen atoms, respectively. It is an alkyl group, an alkyloxy group or an aryl group substituted with.)

<<フェニルトリアゾール金属錯体>>
本発明のフェニルトリアゾール金属錯体は、下記式(A)で表される。
<< Phenyltriazole metal complex >>
The phenyltriazole metal complex of the present invention is represented by the following formula (A).

Figure 0007083995000035
(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は下記式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは下記式(2)で表される複素環である。
Figure 0007083995000035
( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the following formula (2), and are RA , RB , RC . , R D and RE at least one is a heterocycle represented by the following formula (2).

Figure 0007083995000036
(Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。*は結合部位を表す。)
Figure 0007083995000036
(YA, YB , YC , YD and YE are independently CR or N , and at least one of YA, YB , YC , YD and YE is N. R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. * Represents a bond site.)

、R、R、R、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。X、X及びXは、それぞれ独立して、CR、N又はNR10であり、XはC又はNであり、R及びR10は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。MはIr、Pt、Au又はRhであり、mは0、1又は2であり、nは1、2又は3である。ただし、MがIr又はRhのとき、m+n=3であり、MがPtのとき、m+n=2であり、MがAuのとき、m+n=1である。) R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independent alkyl groups substituted with hydrogen atom, halogen atom, alkyl group and halogen atom, respectively. , Alkyloxy group or aryl group. X 1 , X 2 and X 3 are independently CR, N or NR 10 , X 4 is C or N, and R and R 10 are independent hydrogen and halogen atoms, respectively. It is an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. M is Ir, Pt, Au or Rh, m is 0, 1 or 2, and n is 1, 2 or 3. However, when M is Ir or Rh, m + n = 3, when M is Pt, m + n = 2, and when M is Au, m + n = 1. )

nが3のとき、式(A)中の3個の配位子は、それぞれ同一の配位子(すなわち、1種の配位子)であることが好ましい。nが2のとき、式(A)中の2個の配位子は、それぞれ同一の配位子(すなわち、1種の配位子)であることが好ましい。mが2のとき、式(A)中の2個の配位子は、それぞれ同一の配位子(すなわち、1種の配位子)であることが好ましい。 When n is 3, the three ligands in the formula (A) are preferably the same ligand (that is, one kind of ligand). When n is 2, the two ligands in the formula (A) are preferably the same ligand (that is, one kind of ligand). When m is 2, it is preferable that the two ligands in the formula (A) are the same ligand (that is, one kind of ligand).

式(A)で表されるフェニルトリアゾール金属錯体のうち、n個の配位子は前記フェニルトリアゾール化合物である。式(A)で表されるフェニルトリアゾール金属錯体のうち、m個の配位子は、下記式(4)で表される。 Of the phenyltriazole metal complex represented by the formula (A), n ligands are the phenyltriazole compound. Of the phenyltriazole metal complex represented by the formula (A), m ligands are represented by the following formula (4).

Figure 0007083995000037
(R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。X、X及びXは、それぞれ独立して、CR、N又はNR10であり、XはC又はNであり、R及びR10は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。)
Figure 0007083995000037
(R 6 , R 7 , R 8 and R 9 are independently hydrogen atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group, respectively. X 1 , X. 2 and X 3 are independently CR, N or NR 10 , X 4 is C or N, and R and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups and halogens, respectively. It is an atomically substituted alkyl group, an alkyloxy group or an aryl group.)

式(4)で表される配位子としては、下記式(4-1)~式(4-4)で表される配位子が挙げられる。 Examples of the ligand represented by the formula (4) include ligands represented by the following formulas (4-1) to (4-4).

Figure 0007083995000038
(R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。Rは、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基であり、複数のRは、同じであっても異なっていてもよい。)
Figure 0007083995000038
(R 6 , R 7 , R 8 and R 9 are independent hydrogen atoms, halogen atoms, alkyl groups, alkyl groups substituted with halogen atoms, alkyloxy groups or aryl groups, respectively. R is hydrogen. It is an atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group, and a plurality of Rs may be the same or different.)

式(4-1)~式(4-4)で表される配位子としては、下記式(4-1―0)~式(4-4―0)で表される配位子が好ましい。 As the ligands represented by the formulas (4-1) to (4-4), the ligands represented by the following formulas (4-1-0) to (4-4-0) are preferable. ..

Figure 0007083995000039
(R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。Rは、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。)
Figure 0007083995000039
(R 6 , R 7 , R 8 and R 9 are independent hydrogen atoms, halogen atoms, alkyl groups, alkyl groups substituted with halogen atoms, alkyloxy groups or aryl groups, respectively. R is hydrogen. Atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group.)

下記式(4-1-0)~式(4-4-0)で表される配位子としては、例えば、下記式(4-1-1)~式(4-4-1)で表される配位子が挙げられる。 Examples of the ligand represented by the following formulas (4-1-0) to (4-4-0) are represented by the following formulas (4-1-1) to (4-4-1). Included are ligands that are used.

Figure 0007083995000040
Figure 0007083995000040

Figure 0007083995000041
Figure 0007083995000041

Figure 0007083995000042
Figure 0007083995000042

式(A)で表されるフェニルトリアゾール金属錯体のうち、遷移金属MがIrである錯体としては、下記式(5-1)で表されるホモレプティック錯体(m=0、n=3)、下記式(5-2)で表されるヘテロレプティック錯体(m=1、n=2)及び下記式(5-3)で表されるヘテロレプティック錯体(m=2、n=1)が挙げられる。 Among the phenyltriazole metal complexes represented by the formula (A), the complex in which the transition metal M is Ir is a homoreptic complex (m = 0, n = 3) represented by the following formula (5-1). , The heteroreptic complex (m = 1, n = 2) represented by the following formula (5-2) and the heteroreptic complex (m = 2, n = 1) represented by the following formula (5-3). Can be mentioned.

Figure 0007083995000043
(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは式(2)で表される複素環である。R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。以下、同じ。)
Figure 0007083995000043
( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the formula (2), and are RA , RB , RC , respectively. At least one of R D and RE is a heterocycle represented by the formula (2). R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atoms and halogen atoms, respectively. , An alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. The same shall apply hereinafter.)

Figure 0007083995000044
(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは式(2)で表される複素環である。R、R、R、R、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。X、X及びXは、それぞれ独立して、CR、N又はNR10であり、XはC又はNであり、R及びR10は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。以下、同じ。)
Figure 0007083995000044
( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the formula (2), and are RA , RB , RC , respectively. At least one of R D and RE is a heterocycle represented by the formula (2). R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 Are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. X 1 , X 2 and X 3 are independently CR. , N or NR 10 , X 4 is C or N, and R and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups, alkyl groups substituted with halogen atoms, alkyloxy groups or It is an aryl group. The same shall apply hereinafter.)

Figure 0007083995000045
Figure 0007083995000045

式(5-1)で表されるホモレプティック錯体としては、例えば、下記式(5-1-1)~式(5-1-10)で表されるホモレプティック錯体が挙げられるが、これらに限られない。 Examples of the homoreptic complex represented by the formula (5-1) include homoreptic complexes represented by the following formulas (5-1-1) to (5-1-10). Not limited to these.

Figure 0007083995000046
Figure 0007083995000046

Figure 0007083995000047
Figure 0007083995000047

Figure 0007083995000048
Figure 0007083995000048
Figure 0007083995000049
Figure 0007083995000049

Figure 0007083995000050
Figure 0007083995000050

Figure 0007083995000051
Figure 0007083995000051

Figure 0007083995000052
Figure 0007083995000052

Figure 0007083995000053
Figure 0007083995000053

Figure 0007083995000054
Figure 0007083995000054

Figure 0007083995000055
Figure 0007083995000055

式(5-2)で表されるヘテロレプティック錯体としては、例えば、下記式(5-2-1)~式(5-2-10)で表されるヘテロレプティック錯体が挙げられるが、これらに限られない。 Examples of the heteroreptic complex represented by the formula (5-2) include heteroreptic complexes represented by the following formulas (5-2-1) to (5-2-10). Not limited to these.

Figure 0007083995000056
Figure 0007083995000056

Figure 0007083995000057
Figure 0007083995000057

Figure 0007083995000058
Figure 0007083995000058

Figure 0007083995000059
Figure 0007083995000059

Figure 0007083995000060
Figure 0007083995000060

Figure 0007083995000061
Figure 0007083995000061

Figure 0007083995000062
Figure 0007083995000062

Figure 0007083995000063
Figure 0007083995000063

Figure 0007083995000064
Figure 0007083995000064

Figure 0007083995000065
Figure 0007083995000065

式(5-3)で表されるヘテロレプティック錯体としては、例えば、下記式(5-3-1)~式(5-3-10)で表されるヘテロレプティック錯体が挙げられるが、これらに限られない。 Examples of the heteroreptic complex represented by the formula (5-3) include heteroreptic complexes represented by the following formulas (5-3-1) to (5-3-10). Not limited to these.

Figure 0007083995000066
Figure 0007083995000066

Figure 0007083995000067
Figure 0007083995000067

Figure 0007083995000068
Figure 0007083995000068

Figure 0007083995000069
Figure 0007083995000069

Figure 0007083995000070
Figure 0007083995000070

Figure 0007083995000071
Figure 0007083995000071

Figure 0007083995000072
Figure 0007083995000072

Figure 0007083995000073
Figure 0007083995000073

Figure 0007083995000074
Figure 0007083995000074

Figure 0007083995000075
Figure 0007083995000075

式(A)で表されるフェニルトリアゾール金属錯体のうち、遷移金属MがPtである錯体としては、下記式(5-4)で表されるホモレプティック錯体(m=0、n=2)及び下記式(5-5)で表されるヘテロレプティック錯体(m=1、n=1)が挙げられる。 Among the phenyltriazole metal complexes represented by the formula (A), the complex in which the transition metal M is Pt is a homoreptic complex (m = 0, n = 2) represented by the following formula (5-4). And the heteroreptic complex (m = 1, n = 1) represented by the following formula (5-5) can be mentioned.

Figure 0007083995000076
Figure 0007083995000076

Figure 0007083995000077
Figure 0007083995000077

式(5-4)で表されるホモレプティック錯体としては、例えば、下記式(5-4-1)~式(5-4-10)で表されるホモレプティック錯体が挙げられるが、これらに限られない。 Examples of the homoreptic complex represented by the formula (5-4) include homoreptic complexes represented by the following formulas (5-4-1) to (5-4-10). Not limited to these.

Figure 0007083995000078
Figure 0007083995000078

Figure 0007083995000079
Figure 0007083995000079

Figure 0007083995000080
Figure 0007083995000080

Figure 0007083995000081
Figure 0007083995000081

Figure 0007083995000082
Figure 0007083995000082

Figure 0007083995000083
Figure 0007083995000083

Figure 0007083995000084
Figure 0007083995000084

Figure 0007083995000085
Figure 0007083995000085

Figure 0007083995000086
Figure 0007083995000086

Figure 0007083995000087
Figure 0007083995000087

式(5-5)で表されるヘテロレプティック錯体としては、例えば、下記式(5-5-1)~式(5-5-10)で表されるヘテロレプティック錯体が挙げられるが、これらに限られない。 Examples of the heteroreptic complex represented by the formula (5-5) include heteroreptic complexes represented by the following formulas (5-5-1) to (5-5-10). Not limited to these.

Figure 0007083995000088
Figure 0007083995000088

Figure 0007083995000089
Figure 0007083995000089

Figure 0007083995000090
Figure 0007083995000090

Figure 0007083995000091
Figure 0007083995000091

Figure 0007083995000092
Figure 0007083995000092

Figure 0007083995000093
Figure 0007083995000093

Figure 0007083995000094
Figure 0007083995000094

Figure 0007083995000095
Figure 0007083995000095

Figure 0007083995000096
Figure 0007083995000096

Figure 0007083995000097
Figure 0007083995000097

式(A)で表されるフェニルトリアゾール金属錯体のうち、遷移金属MがAuである錯体としては、下記式(5-6)で表されるフェニルトリアゾール錯体(m=0、n=1)が挙げられる。 Among the phenyltriazole metal complexes represented by the formula (A), as the complex in which the transition metal M is Au, the phenyltriazole complex (m = 0, n = 1) represented by the following formula (5-6) is used. Can be mentioned.

Figure 0007083995000098
Figure 0007083995000098

式(5-6)で表されるフェニルトリアゾール錯体としては、例えば、下記式(5-6-1)~式(5-6-10)で表されるフェニルトリアゾール錯体が挙げられるが、これらに限られない。 Examples of the phenyltriazole complex represented by the formula (5-6) include phenyltriazole complexes represented by the following formulas (5-6-1) to (5-6-10). Not limited.

Figure 0007083995000099
Figure 0007083995000099

Figure 0007083995000100
Figure 0007083995000100

Figure 0007083995000101
Figure 0007083995000101

Figure 0007083995000102
Figure 0007083995000102

Figure 0007083995000103
Figure 0007083995000103

Figure 0007083995000104
Figure 0007083995000104

Figure 0007083995000105
Figure 0007083995000105

Figure 0007083995000106
Figure 0007083995000106

Figure 0007083995000107
Figure 0007083995000107

Figure 0007083995000108
Figure 0007083995000108

遷移金属MがRhである、式(A)で表されるフェニルトリアゾール金属錯体としては、下記式(5-7)で表されるホモレプティック錯体(m=0、n=3)、下記式(5-8)で表されるヘテロレプティック錯体(m=1、n=2)及び下記式(5-9)で表されるヘテロレプティック錯体(m=2、n=1)が挙げられる。 Examples of the phenyltriazole metal complex represented by the formula (A) in which the transition metal M is Rh include a homoreptic complex (m = 0, n = 3) represented by the following formula (5-7) and the following formula. Examples thereof include a heteroreptic complex (m = 1, n = 2) represented by (5-8) and a heteroreptic complex (m = 2, n = 1) represented by the following formula (5-9). ..

Figure 0007083995000109
Figure 0007083995000109

Figure 0007083995000110
Figure 0007083995000110

Figure 0007083995000111
Figure 0007083995000111

式(5-7)で表されるホモレプティック錯体としては、例えば、下記式(5-7-1)~式(5-7-10)で表されるホモレプティック錯体が挙げられるが、これらに限られない。 Examples of the homoreptic complex represented by the formula (5-7) include homoreptic complexes represented by the following formulas (5-7-1) to (5-7-10). Not limited to these.

Figure 0007083995000112
Figure 0007083995000112

Figure 0007083995000113
Figure 0007083995000113

Figure 0007083995000114
Figure 0007083995000114

Figure 0007083995000115
Figure 0007083995000115

Figure 0007083995000116
Figure 0007083995000116

Figure 0007083995000117
Figure 0007083995000117

Figure 0007083995000118
Figure 0007083995000118

Figure 0007083995000119
Figure 0007083995000119

Figure 0007083995000120
Figure 0007083995000120

Figure 0007083995000121
Figure 0007083995000121

式(5-8)で表されるヘテロレプティック錯体としては、例えば、下記式(5-8-1)~式(5-8-10)で表されるヘテロレプティック錯体が挙げられるが、これらに限られない。 Examples of the heteroreptic complex represented by the formula (5-8) include heteroreptic complexes represented by the following formulas (5-8-1) to (5-8-10). Not limited to these.

Figure 0007083995000122
Figure 0007083995000122

Figure 0007083995000123
Figure 0007083995000123

Figure 0007083995000124
Figure 0007083995000124

Figure 0007083995000125
Figure 0007083995000125

Figure 0007083995000126
Figure 0007083995000126

Figure 0007083995000127
Figure 0007083995000127

Figure 0007083995000128
Figure 0007083995000128

Figure 0007083995000129
Figure 0007083995000129

Figure 0007083995000130
Figure 0007083995000130

Figure 0007083995000131
Figure 0007083995000131

式(5-9)で表されるヘテロレプティック錯体としては、例えば、下記式(5-9-1)~式(5-9-10)で表されるヘテロレプティック錯体が挙げられるが、これらに限られない。 Examples of the heteroreptic complex represented by the formula (5-9) include heteroreptic complexes represented by the following formulas (5-9-1) to (5-9-10). Not limited to these.

Figure 0007083995000132
Figure 0007083995000132

Figure 0007083995000133
Figure 0007083995000133

Figure 0007083995000134
Figure 0007083995000134

Figure 0007083995000135
Figure 0007083995000135

Figure 0007083995000136
Figure 0007083995000136

Figure 0007083995000137
Figure 0007083995000137

Figure 0007083995000138
Figure 0007083995000138

Figure 0007083995000139
Figure 0007083995000139

Figure 0007083995000140
Figure 0007083995000140

Figure 0007083995000141
Figure 0007083995000141

<<フェニルトリアゾール金属錯体の製造方法>>
式(A)で表されるフェニルトリアゾール金属錯体の製造方法を説明する。
<< Method for Producing Phenyltriazole Metal Complex >>
A method for producing the phenyltriazole metal complex represented by the formula (A) will be described.

nが1、2又は3であって、m=0のとき、式(A)で表されるフェニルトリアゾール金属錯体(ホモレプティック錯体)は、例えば、次の反応式に沿って合成することができる。 When n is 1, 2 or 3, and m = 0, the phenyltriazole metal complex (homoleptic complex) represented by the formula (A) can be synthesized, for example, according to the following reaction formula. can.

Figure 0007083995000142
(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は下記式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは下記式(2)で表される複素環である。
Figure 0007083995000142
( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the following formula (2), and are RA , RB , RC . , R D and RE at least one is a heterocycle represented by the following formula (2).

Figure 0007083995000143
(Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。*は結合部位を表す。)
Figure 0007083995000143
(YA, YB , YC , YD and YE are independently CR or N , and at least one of YA, YB , YC , YD and YE is N. R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. * Represents a bond site.)

、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。MはIr、Pt、Au又はRhであり、nは1、2又は3である。ただし、MがIr又はRhのとき、n=3であり、MがPtのとき、n=2であり、MがAuのとき、n=1である。Tfはトリフルオロメチルスルホニル基を表す。以下、同じ。) R 1 , R 2 , R 3 , R 4 and R 5 are independently hydrogen atoms, halogen atoms, alkyl groups, alkyl groups substituted with halogen atoms, alkyloxy groups or aryl groups, respectively. M is Ir, Pt, Au or Rh, and n is 1, 2 or 3. However, when M is Ir or Rh, n = 3, when M is Pt, n = 2, and when M is Au, n = 1. Tf represents a trifluoromethylsulfonyl group. same as below. )

無機金属原料は、MCl・nHOの水和物であってもよく、MClの無水物であってもよく、KMCln+2の無水物であってもよい。ただし、MはIr、Pt、Au又はRhであり、MがIr又はRhのとき、n=3であり、MがPtのとき、n=2であり、MがAuのとき、n=1である。 The inorganic metal raw material may be a hydrate of MCl n · nH 2 O, an anhydrate of MCl n , or an anhydrate of K 2 MCl n + 2 . However, M is Ir, Pt, Au or Rh, n = 3 when M is Ir or Rh, n = 2 when M is Pt, and n = 1 when M is Au. be.

MがIr又はRhであって、m=2、n=1のとき、式(A)で表されるフェニルトリアゾール金属錯体(ヘテロレプティック錯体)は、例えば、次の反応式に沿って合成することができる。 When M is Ir or Rh and m = 2 and n = 1, the phenyltriazole metal complex (heteroreptic complex) represented by the formula (A) is synthesized, for example, according to the following reaction formula. be able to.

Figure 0007083995000144
(R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。X、X及びXは、それぞれ独立して、CR、N又はNR10であり、XはC又はNであり、R及びR10は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。MはIr又はRhである。)
Figure 0007083995000144
(R 6 , R 7 , R 8 and R 9 are independently hydrogen atom, halogen atom, alkyl group, alkyl group substituted with halogen atom, alkyloxy group or aryl group, respectively. X 1 , X. 2 and X 3 are independently CR, N or NR 10 , X 4 is C or N, and R and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups and halogens, respectively. It is an atomically substituted alkyl group, alkyloxy group or aryl group. M is Ir or Rh.)

Figure 0007083995000145
Figure 0007083995000145

Figure 0007083995000146
Figure 0007083995000146

MがIr又はRhであって、m=2、n=1のとき、無機金属原料は、MCl・nHOの水和物であってもよく、MClの無水物であってもよく、KMClの無水物であってもよい。ただし、MはIr又はRhである。 When M is Ir or Rh and m = 2 and n = 1, the inorganic metal raw material may be a hydrate of MCl 3 · nH 2 O or an anhydrate of MCl 3 . , K2 MCl 5 anhydrous . However, M is Ir or Rh.

MがIr又はRhであって、m=1、n=2のとき、式(A)で表されるフェニルトリアゾール金属錯体(ヘテロレプティック錯体)は、例えば、次の反応式に沿って合成することができる。 When M is Ir or Rh and m = 1 and n = 2, the phenyltriazole metal complex (heteroreptic complex) represented by the formula (A) is synthesized, for example, according to the following reaction formula. be able to.

Figure 0007083995000147
Figure 0007083995000147

Figure 0007083995000148
Figure 0007083995000148

Figure 0007083995000149
Figure 0007083995000149

MがIr又はRhであって、m=1、n=2のとき、無機金属原料は、MCl・nHOの水和物であってもよく、MClの無水物であってもよく、KMClの無水物であってもよい。 When M is Ir or Rh and m = 1 and n = 2, the inorganic metal raw material may be a hydrate of MCl 3 · nH 2 O or an anhydrate of MCl 3 . , K2 MCl 5 anhydrous .

MがPtであって、m=1、n=1のとき、式(A)で表されるフェニルトリアゾール金属錯体(ヘテロレプティック錯体)は、例えば、次の反応式に沿って合成することができる。 When M is Pt and m = 1 and n = 1, the phenyltriazole metal complex (heteroreptic complex) represented by the formula (A) can be synthesized, for example, according to the following reaction formula. can.

Figure 0007083995000150
(MはPtである。)
Figure 0007083995000150
(M is Pt.)

Figure 0007083995000151
Figure 0007083995000151

Figure 0007083995000152
Figure 0007083995000152

無機金属原料は、PtCl・nHOの水和物であってもよく、PtClの無水物であってもよく、KPtClの無水物であってもよい。 The inorganic metal raw material may be a hydrate of PtCl 2 · nH 2 O, an anhydrate of PtCl 2 , or an anhydride of K 2 PtCl 4 .

<<発光素子>>
本発明の発光素子は、陽極と、陰極と、該陽極と該陰極との間に設けられた、前記フェニルトリアゾール金属錯体を含む層と、を備える。
<< Light emitting element >>
The light emitting device of the present invention includes an anode, a cathode, and a layer containing the phenyltriazole metal complex provided between the anode and the cathode.

図1は、本発明の発光素子の一実施形態を模式的に示す断面図である。図1の発光素子1は、基材10上に、陽極20、正孔注入層30、正孔輸送層40、発光層50、電子輸送層60、電子注入層70及び陰極80が、この順に積層されており、発光層50が前記フェニルトリアゾール金属錯体を含む。 FIG. 1 is a cross-sectional view schematically showing an embodiment of a light emitting device of the present invention. In the light emitting element 1 of FIG. 1, the anode 20, the hole injection layer 30, the hole transport layer 40, the light emitting layer 50, the electron transport layer 60, the electron injection layer 70, and the cathode 80 are laminated in this order on the base material 10. The light emitting layer 50 contains the phenyltriazole metal complex.

本発明の発光素子において、発光層は、電界印加時に陽極、正孔注入層又は正孔輸送層より正孔を注入することができ、陰極、電子注入層又は電子輸送層より電子を注入することができる機能、注入した電荷(電子と正孔)を電界の力で移動させる機能、電子と正孔の再結合の場を提供し、これを発光につなげる機能を有するものである。前記フェニルトリアゾールは、金属に配位する環以外に、電子求引性の複素環を有するので、電子注入性、電子耐性を高めることができ、これにより、このフェニルトリアゾール化合物を配位子とするフェニルトリアゾール金属錯体を含む層は、電子とホールの再結合を促進し、高い発光効率、長い素子寿命の発光素子を提供することができる。前記発光層は、前記フェニルトリアゾール金属錯体をゲスト材料とするホスト材料を含有していてもよい。ホスト材料としては、公知の材料を適宜選択して用いることができる。また、前記ホスト材料と前記金属錯体等の発光材料とを混合して塗布するか、或いは共蒸着等することによって、前記発光材料が前記ホスト材料にドープされた発光層を形成することができる。 In the light emitting element of the present invention, the light emitting layer can inject holes from the anode, the hole injection layer or the hole transport layer when an electric field is applied, and injects electrons from the cathode, the electron injection layer or the electron transport layer. It has the function of being able to perform, the function of moving the injected electric charge (electrons and holes) by the force of an electric field, and the function of providing a field of recombination of electrons and holes and connecting this to light emission. Since the phenyltriazole has an electron-withdrawing complex ring in addition to the ring coordinated to the metal, electron injectability and electron resistance can be enhanced, whereby the phenyltriazole compound is used as a ligand. The layer containing the phenyltriazole metal complex promotes the recombination of electrons and holes, and can provide a light emitting device having high light emission efficiency and a long device life. The light emitting layer may contain a host material having the phenyltriazole metal complex as a guest material. As the host material, a known material can be appropriately selected and used. Further, by mixing and applying the host material and a light emitting material such as a metal complex, or by co-depositing the host material, a light emitting layer in which the light emitting material is doped with the host material can be formed.

本発明の発光素子において、陽極は、正孔注入層、正孔輸送層、発光層等に正孔を供給するものである。陽極の材料には、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等の公知の材料を適宜選択して用いることができる。 In the light emitting device of the present invention, the anode supplies holes to the hole injection layer, the hole transport layer, the light emitting layer, and the like. As the material of the anode, known materials such as metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof can be appropriately selected and used.

本発明の発光素子において、陰極は、電子注入層、電子輸送層、発光層等に電子を供給するものである。陰極の材料としては、金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物又はこれらの混合物等の公知の材料を適宜選択して用いることができる。 In the light emitting device of the present invention, the cathode supplies electrons to an electron injection layer, an electron transport layer, a light emitting layer, and the like. As the material of the cathode, a known material such as a metal, an alloy, a metal halide, a metal oxide, an electrically conductive compound or a mixture thereof can be appropriately selected and used.

正孔注入層及び正孔輸送層は、陽極から正孔を注入する機能、正孔を輸送する機能、陰極から注入された電子を障壁する機能のいずれかを有しているものであればよい。これらの層の材料には、公知の材料を適宜選択して用いることができる。 The hole injection layer and the hole transport layer may have any of a function of injecting holes from the anode, a function of transporting holes, and a function of blocking electrons injected from the cathode. .. As the material of these layers, a known material can be appropriately selected and used.

電子注入層及び電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入された正孔を障壁する機能のいずれかを有しているものであればよい。公知の材料を適宜選択して用いることができる。 The electron injection layer and the electron transport layer may have any of a function of injecting electrons from the cathode, a function of transporting electrons, and a function of blocking holes injected from the anode. Known materials can be appropriately selected and used.

以下、実施例により、本発明についてさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
また、以下の実施例及び比較例の組成物における「%」は「質量%」を意味する。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
Further, "%" in the compositions of the following Examples and Comparative Examples means "% by mass".

実施例の説明において以下の略号を用いる。
DMF:N,N-ジメチルホルムアミド
THF:テトラヒドロフラン
Ac:アセチル基
Tf:トリフルオロメチルスルホニル基
amphos:ジ-t-ブチル(p-ジメチルアミノフェニル)ホスフィン
dppf:1,1’-ビス(ジフェニルホスフィノ)フェロセン
dba:ジベンジリデンアセトン
SPhos:2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル
Bu:ブチル
Pr:プロピル
The following abbreviations are used in the description of the examples.
DMF: N, N-dimethylformamide THF: tetrahydrofuran Ac: acetyl group Tf: trifluoromethylsulfonyl group amphos: di-t-butyl (p-dimethylaminophenyl) phosphine dppf: 1,1'-bis (diphenylphosphino) Ferrocene dba: dibenzylideneacetone SPhos: 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl Bu: butyl Pr: propyl

[実施例1]
(錯体(A-1-1)の合成)
下記スキームに沿って、フェニルトリアゾール化合物(A-4)、及びフェニルトリアゾール金属錯体(A-1-1)を合成した。
[Example 1]
(Synthesis of complex (A-1-1))
A phenyltriazole compound (A-4) and a phenyltriazole metal complex (A-1-1) were synthesized according to the following scheme.

Figure 0007083995000153
Figure 0007083995000153

Figure 0007083995000154
Figure 0007083995000154

アセトアミジン塩酸塩(20g、213mmol)、水酸化ナトリウム(33%水溶液、425mmol)、アセトン(200mL)の混合物に、氷冷下、塩化ベンゾイル(28g、200mmol)のアセトン(150mL)溶液を10分間かけて滴下した。氷冷下で15分撹拌後、飽和食塩水を加え、得られた有機層の溶媒を減圧留去した。これに水を加え、ジクロロメタンで3回抽出、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去後、ジクロロメタン/ヘキサン混合溶媒から再結晶することにより、化合物(A-1)(27.09g、収率84%)を得た。 A mixture of acetoamidine hydrochloride (20 g, 213 mmol), sodium hydroxide (33% aqueous solution, 425 mmol) and acetone (200 mL) was sprinkled with an acetone (150 mL) solution of benzoyl chloride (28 g, 200 mmol) under ice cooling for 10 minutes. And dropped. After stirring for 15 minutes under ice-cooling, saturated brine was added, and the solvent of the obtained organic layer was distilled off under reduced pressure. Water was added to this, the mixture was extracted 3 times with dichloromethane, washed with saturated brine, and dried over anhydrous sodium sulfate. After distilling off the solvent under reduced pressure, the compound (A-1) (27.09 g, yield 84%) was obtained by recrystallization from a mixed dichloromethane / hexane solvent.

化合物(A-1)の質量分析結果、及びH-NMRの測定結果を次に示す。
[M]:162
H-NMR(400MHz/CDCl,TMS):δ(ppm)=10.36(brs,1H),8.22(d,2H),7.47(m,3H),6.15(brs,1H),2.22(s,3H).
The mass spectrometry result of compound (A-1) and the measurement result of 1 H-NMR are shown below.
[M]: 162
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 10.36 (brs, 1H), 8.22 (d, 2H), 7.47 (m, 3H), 6.15 (brs) , 1H), 2.22 (s, 3H).

Figure 0007083995000155
Figure 0007083995000155

窒素雰囲気下、濃塩酸(32mL、375mmol)、H2O(6.4mL)の混合物に、4-ブロモ-2,6-ジメチルアニリン(25g、125mmol)を加えた。反応系内の温度を-2~-3℃に保ち、NaNO2(9.1g、131mmol)のH2O(22.6mL)溶液を2時間かけて加えた。-4℃で30分間撹拌した後、内温を-3℃に保ち、SnCl2・H2O(70.5 g、313mmol)の 濃塩酸(35mL)、水(35mL)溶液を2.5時間かけて滴下した。その後-3℃で1時間、室温で3時間撹拌した。析出した固体をろ取し、飽和食塩水で洗浄した。得られた固体にTHF(250mL)を加え氷冷し、50%NaOH水溶液(125g)を内温5~8℃で40分かけて滴下した。水層をTHF(50mL)で4回抽出し、あわせた有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥させ、溶媒を半分に濃縮した。これを氷冷し、4M HClジオキサン溶液(34mL、138mmol)を加えた。析出した固体をろ取し、THF(100mL)で3回洗った。これを乾燥することにより、化合物(A-2)(23.15g, 収率86%)を得た。 4-Bromo-2,6-dimethylaniline (25 g, 125 mmol) was added to a mixture of concentrated hydrochloric acid (32 mL, 375 mmol) and H 2 O (6.4 mL) under a nitrogen atmosphere. The temperature in the reaction system was kept at -2 to -3 ° C, and a solution of NaNO 2 (9.1 g, 131 mmol) in H 2 O (22.6 mL) was added over 2 hours. After stirring at -4 ° C for 30 minutes, the internal temperature was maintained at -3 ° C, and a solution of SnCl 2 · H 2 O (70.5 g, 313 mmol) in concentrated hydrochloric acid (35 mL) and water (35 mL) was added dropwise over 2.5 hours. .. Then, the mixture was stirred at −3 ° C. for 1 hour and at room temperature for 3 hours. The precipitated solid was collected by filtration and washed with saturated brine. THF (250 mL) was added to the obtained solid, the mixture was ice-cooled, and a 50% NaOH aqueous solution (125 g) was added dropwise at an internal temperature of 5 to 8 ° C. over 40 minutes. The aqueous layer was extracted 4 times with THF (50 mL), the combined organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was concentrated in half. This was ice-cooled and a 4M HCl dioxane solution (34 mL, 138 mmol) was added. The precipitated solid was collected by filtration and washed 3 times with THF (100 mL). By drying this, compound (A-2) (23.15 g, yield 86%) was obtained.

Figure 0007083995000156
Figure 0007083995000156

化合物(A-1)(12.00g、74mmol)、化合物(A-2)(22.28g、104mmol)、DMF(170mL)の混合物に、室温で酢酸(42.4mL、740mmol)を加え、90℃で3時間加熱撹拌した。反応溶液を飽和炭酸水素ナトリウム水溶液(1L)に注ぎ、析出した固体をろ取した。これをシリカゲルカラムクロマトグラフィー(シリカゲル75g、移動相:ヘキサン/酢酸エチル=7/3)により精製し、続いてヘキサンから再結晶することにより、化合物(A-3)(20.35g、収率80%)を得た。 Acetic acid (42.4 mL, 740 mmol) was added to a mixture of compound (A-1) (12.00 g, 74 mmol), compound (A-2) (22.28 g, 104 mmol) and DMF (170 mL) at room temperature, and 3 at 90 ° C. The mixture was heated and stirred for hours. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution (1 L), and the precipitated solid was collected by filtration. This was purified by silica gel column chromatography (silica gel 75 g, mobile phase: hexane / ethyl acetate = 7/3), and subsequently recrystallized from hexane to obtain compound (A-3) (20.35 g, yield 80%). ) Was obtained.

化合物(A-3)の質量分析結果、及びH-NMRの測定結果を次に示す。
[M]:341
H-NMR(400MHz/CDCl,TMS):δ(ppm)=7.45(m,2H),7.32(m,5H),2.52(s,3H),1.95(s,6H).
The mass spectrometry result of compound (A-3) and the measurement result of 1 H-NMR are shown below.
[M]: 341
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 7.45 (m, 2H), 7.32 (m, 5H), 2.52 (s, 3H), 1.95 (s) , 6H).

Figure 0007083995000157
Figure 0007083995000157

窒素雰囲気下、化合物(A-3)(11.3g、33mmol)、ジクロロビス[ジ-t-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(II)(1.7g、1.0mmol)、2mol/L炭酸カリウム水溶液(36mL、72mmol)及びTHF(150mL)を混合し、60℃に加熱した。加熱下、6-メチルピリジン-3-ボロン酸(5.0g、36mmol)のTHF(50mL)/H2O(50mL)溶液を滴下し、60℃にて9時間撹拌した。室温に戻した反応液に水を加え、水層を分離後、酢酸エチルで2回抽出し、有機層をあわせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去後、シリカゲルカラムクロマトグラフィー(シリカゲル120g、移動相:ヘキサン/酢酸エチル=2/1→1/1→1/2)により精製することにより、フェニルトリアゾール化合物(A-4)(6.67g、収率57%)を得た。 Under nitrogen atmosphere, compound (A-3) (11.3 g, 33 mmol), dichlorobis [di-t-butyl (p-dimethylaminophenyl) phosphino] palladium (II) (1.7 g, 1.0 mmol), 2 mol / L potassium carbonate Aqueous solution (36 mL, 72 mmol) and THF (150 mL) were mixed and heated to 60 ° C. Under heating, a solution of 6-methylpyridine-3-boronic acid (5.0 g, 36 mmol) in THF (50 mL) / H 2 O (50 mL) was added dropwise, and the mixture was stirred at 60 ° C. for 9 hours. Water was added to the reaction solution returned to room temperature, the aqueous layer was separated, extracted twice with ethyl acetate, the organic layers were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and then purified by silica gel column chromatography (silica gel 120 g, mobile phase: hexane / ethyl acetate = 2/1 → 1/1 → 1/2) to obtain a phenyltriazole compound (A-4) ( 6.67 g, yield 57%) was obtained.

フェニルトリアゾール化合物(A-4) の質量分析結果、及びH-NMRの測定結果を次に示す。
[M]:354
H-NMR(400MHz/CDCl,TMS):δ(ppm)=8.75(s,1H),7.80(dd,1H),7.45(m,8H),2.62(s,3H),2.54(s,3H),2.05(s,6H).
The mass spectrometry result of the phenyltriazole compound (A-4) and the measurement result of 1 H-NMR are shown below.
[M]: 354
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 8.75 (s, 1H), 7.80 (dd, 1H), 7.45 (m, 8H), 2.62 (s) , 3H), 2.54 (s, 3H), 2.05 (s, 6H).

Figure 0007083995000158
Figure 0007083995000158

塩化イリジウム(III)n水和物(1.4g、4mmol)、化合物(A-4)(3.5g、10mmol)、2-エトキシエタノール(220mL)、H2O(73mL)の混合物をアルゴン雰囲気下、24時間加熱還流した。放冷後、水を加えてろ過、ろ液を減圧留去した。水層をジクロロメタンで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。これをセライトろ過、溶媒を減圧留去、続いてジクロロメタン/ヘキサン混合溶媒から再結晶することにより、黄色固体(1.15g)を得た。 A mixture of iridium (III) chloride n-hydrate (1.4 g, 4 mmol), compound (A-4) (3.5 g, 10 mmol), 2-ethoxyethanol (220 mL), H 2 O (73 mL) under an argon atmosphere. The mixture was heated under reflux for 24 hours. After allowing to cool, water was added, the mixture was filtered, and the filtrate was distilled off under reduced pressure. The aqueous layer was extracted with dichloromethane, washed with saturated brine and dried over anhydrous sodium sulfate. This was filtered through cerite, the solvent was distilled off under reduced pressure, and then recrystallized from a mixed dichloromethane / hexane solvent to obtain a yellow solid (1.15 g).

この黄色固体(1.10g)、トリフルオロメタンスルホン酸銀(0.36g、1.4mmol)、化合物(A-4) (2.1g、5.9mmol)の混合物に、アルゴン雰囲気下、ジエチレングリコールジメチルエーテル(20mL)を加え、170℃で48時間加熱撹拌した。この混合物にエタノールを加え、黒色固体をろ過により除去し、エタノール、ジクロロメタンで洗浄した。溶媒を減圧留去後、シリカゲルカラムクロマトグラフィー(シリカゲル150g、移動相:酢酸エチル→ジクロロメタン/メタノール=10/1)により精製した。再度シリカゲルカラムクロマトグラフィー(シリカゲル150g、移動相:酢酸エチル→ジクロロメタン/メタノール=10/1)により精製し、続いてジクロロメタン/ヘキサン混合溶媒から再結晶、エタノールで懸濁洗浄することにより、実施例1のフェニルトリアゾール金属錯体(A-1-1)(0.12g、収率2%)を黄色固体として得た。 To this mixture of yellow solid (1.10 g), silver trifluoromethanesulfonate (0.36 g, 1.4 mmol) and compound (A-4) (2.1 g, 5.9 mmol), diethylene glycol dimethyl ether (20 mL) was added under an argon atmosphere. The mixture was heated and stirred at 170 ° C. for 48 hours. Ethanol was added to this mixture, the black solid was removed by filtration, and the mixture was washed with ethanol and dichloromethane. The solvent was distilled off under reduced pressure and then purified by silica gel column chromatography (silica gel 150 g, mobile phase: ethyl acetate → dichloromethane / methanol = 10/1). Example 1 was purified again by silica gel column chromatography (silica, 150 g, mobile phase: ethyl acetate → dichloromethane / methanol = 10/1), then recrystallized from a mixed solvent of dichloromethane / hexane, and suspended and washed with ethanol. The phenyltriazole metal complex (A-1-1) (0.12 g, yield 2%) was obtained as a yellow solid.

実施例1のフェニルトリアゾール金属錯体(A-1-1)のH-NMRの測定結果を次に示す。
H-NMR(400MHz/CDCl,TMS):δ(ppm)=8.80(s,3H),7.85(dd,3H),7.45(d,6H),7.27(d,3H),6.61(m,12H),2.63(s,9H),2.28(s,9H),2.15(s,9H),1.91(s,9H).
The measurement result of 1 1 H-NMR of the phenyltriazole metal complex (A-1-1) of Example 1 is shown below.
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 8.80 (s, 3H), 7.85 (dd, 3H), 7.45 (d, 6H), 7.27 (d) , 3H), 6.61 (m, 12H), 2.63 (s, 9H), 2.28 (s, 9H), 2.15 (s, 9H), 1.91 (s, 9H).

[実施例2]
(錯体(A-1-2)の合成)
下記スキームに沿って、フェニルトリアゾール化合物(C-2)、及びフェニルトリアゾール金属錯体(A-1-2)を合成した。
[Example 2]
(Synthesis of complex (A-1-2))
A phenyltriazole compound (C-2) and a phenyltriazole metal complex (A-1-2) were synthesized according to the following scheme.

Figure 0007083995000159
Figure 0007083995000159

Figure 0007083995000160
Figure 0007083995000160

化合物(A-3) 3.00g (8.77mmol)、ビス(ピナコラト)ジボロン 4.90g (19.3mmol)、酢酸カリウム2.59g (26.38mmol)、PdCl2(dppf)・CH2Cl2 0.215g (0.264mmol)、脱水1,4-ジオキサン50mlをアルゴン雰囲気下、90℃で16時間反応させた。反応溶液を室温まで冷却し、反応溶媒を減圧留去した後、ジクロロメタンと水を加えて抽出した。有機層を回収し濃縮して得られた生成物を、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサンの混合溶媒)を用いて分離精製した。化合物(C-1)の収率は95%であった。 Compound (A-3) 3.00 g (8.77 mmol), bis (pinacolato) diboron 4.90 g (19.3 mmol), potassium acetate 2.59 g (26.38 mmol), PdCl 2 (dppf), CH 2 Cl 2 0.215 g (0.264 mmol) , 50 ml of dehydrated 1,4-dioxane was reacted at 90 ° C. for 16 hours under an argon atmosphere. The reaction solution was cooled to room temperature, the reaction solvent was distilled off under reduced pressure, and dichloromethane and water were added for extraction. The product obtained by recovering and concentrating the organic layer was separated and purified by silica gel column chromatography (eluent: a mixed solvent of ethyl acetate and hexane). The yield of compound (C-1) was 95%.

化合物(C-1)のH-NMRの測定結果を次に示す。
H-NMR(400MHz/CDCl):δ(ppm)=7.58(s,2H),7.44(d,2H),7.33(t,1H),7.25(t,2H),2.52(s,3H),1.97(s,6H),1.38(t,12H).
The measurement results of 1 H-NMR of compound (C-1) are shown below.
1 1 H-NMR (400 MHz / CDCl 3 ): δ (ppm) = 7.58 (s, 2H), 7.44 (d, 2H), 7.33 (t, 1H), 7.25 (t, 2H) ), 2.52 (s, 3H), 1.97 (s, 6H), 1.38 (t, 12H).

Figure 0007083995000161
Figure 0007083995000161

化合物(C-1) 3.00g (7.71mmol)、5-ブロモ-2-tert-ブチルピリミジン 1.82g (8.48mmol)、K3PO4 5.40g (25.4mmol)、SPhos 0.139g (0.339mmol)、Pd2(dba)3 0.0776g (0.0847mmol)、トルエン60ml、水 5mlを、アルゴン雰囲気下、116℃で16時間反応させた。反応溶液を室温まで冷却後に、酢酸エチルと水を加えて抽出した。有機層を回収し濃縮して得られた生成物を、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサンの混合溶媒)を用いて分離精製した。得られた生成物を酢酸エチルとヘキサンを用いて再結晶した。フェニルトリアゾール化合物(C-2)の収率は70%であった。 Compound (C-1) 3.00 g (7.71 mmol), 5-bromo-2-tert-butylpyrimidine 1.82 g (8.48 mmol), K 3 PO 4 5.40 g (25.4 mmol), SPhos 0.139 g (0.339 mmol), Pd 2 (dba) 3 0.0776 g (0.0847 mmol), 60 ml of toluene and 5 ml of water were reacted at 116 ° C. for 16 hours under an argon atmosphere. After cooling the reaction solution to room temperature, ethyl acetate and water were added for extraction. The product obtained by recovering and concentrating the organic layer was separated and purified by silica gel column chromatography (eluent: a mixed solvent of ethyl acetate and hexane). The resulting product was recrystallized from ethyl acetate and hexanes. The yield of the phenyltriazole compound (C-2) was 70%.

フェニルトリアゾール化合物(C-2)のH-NMRの測定結果を次に示す。
H-NMR(400MHz/CDCl):δ(ppm)=8.90(s,2H),7.51(d,2H),7.28-7.39(m,5H),2.54(s,3H),2.06(s,6H),1.46(s,9H).
The measurement results of 1 H-NMR of the phenyltriazole compound (C-2) are shown below.
1 1 H-NMR (400 MHz / CDCl 3 ): δ (ppm) = 8.90 (s, 2H), 7.51 (d, 2H), 7.28-7.39 (m, 5H), 2.54 (S, 3H), 2.06 (s, 6H), 1.46 (s, 9H).

Figure 0007083995000162
Figure 0007083995000162

3塩化イリジウム3水和物0.403g(1.14mmol)、化合物(C-2)1.0g(2.52mmol)、2-エトキシエタノール45ml、水15mlをアルゴン雰囲気下、120℃で20時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、ジクロロメタンとメタノールを用いて再結晶した。化合物(B-1)の収率は93%であった。化合物(B-1)はこれ以上精製せずに次の段階で使用した。 3 Iridium chloride trihydrate 0.403 g (1.14 mmol), compound (C-2) 1.0 g (2.52 mmol), 2-ethoxyethanol 45 ml, water 15 ml are reacted at 120 ° C. for 20 hours under an argon atmosphere. I let you. The solid cooled to room temperature and precipitated was recovered by filtration and recrystallized using dichloromethane and methanol. The yield of compound (B-1) was 93%. Compound (B-1) was used in the next step without further purification.

Figure 0007083995000163
Figure 0007083995000163

化合物(B-1)1.10g(0.539mmol)、化合物(C-2)0.856g(2.15mmol)、トリフルオロメタンスルホン酸銀0.305g(1.19mmol)、ジグライム3mlをアルゴン雰囲気下、166℃で19時間反応させた。室温まで冷却した後、反応溶液をセライト層に通してろ過し、得られたろ液を減圧濃縮した。これをシリカゲルクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチル)を用いて分離精製した。得られた固体をジクロロメタンとヘキサンを用いて再結晶した。実施例2のフェニルトリアゾール金属錯体(A-1-2)の収率は39%であった。 1.10 g (0.539 mmol) of compound (B-1), 0.856 g (2.15 mmol) of compound (C-2), 0.305 g (1.19 mmol) of silver trifluoromethanesulfonate, and 3 ml of diglyme under an argon atmosphere. The reaction was carried out at 166 ° C. for 19 hours. After cooling to room temperature, the reaction solution was passed through a cerite layer and filtered, and the obtained filtrate was concentrated under reduced pressure. This was separated and purified using silica gel chromatography (eluent: dichloromethane and ethyl acetate). The obtained solid was recrystallized from dichloromethane and hexane. The yield of the phenyltriazole metal complex (A-1-2) of Example 2 was 39%.

実施例2のフェニルトリアゾール金属錯体(A-1-2)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=9.13(s,6H),7.85(s,3H),7.77(s,3H),6.55-6.69(m,12H),2.33(s,9H),2.19(s,9H),1.92(s,9H),1.45(s,27H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-2) of Example 2 is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 9.13 (s, 6H), 7.85 (s, 3H), 7.77 (s, 3H), 6.55-6. 69 (m, 12H), 2.33 (s, 9H), 2.19 (s, 9H), 1.92 (s, 9H), 1.45 (s, 27H).

[実施例3]
(錯体(A-1-3)の合成)
下記スキームに沿って、フェニルトリアゾール金属錯体(A-1-3)を合成した。
[Example 3]
(Synthesis of complex (A-1-3))
A phenyltriazole metal complex (A-1-3) was synthesized according to the following scheme.

Figure 0007083995000164
Figure 0007083995000164

Figure 0007083995000165
Figure 0007083995000165

反応容器に水20mL及び濃塩酸34.2gを加えた。-15℃に冷却し、式(C-3)で表される化合物15.0gを滴下し、20分間撹拌した。亜硝酸ナトリウム9.4gを水20mLに溶解させた水溶液を滴下し1時間撹拌した。塩化スズ(II)二水和物69.8gを水35mL及び濃塩酸35mLに溶解させた水溶液を滴下し2時間撹拌した。室温に昇温し、3時間撹拌した。反応液を氷冷し、10M水酸化ナトリウム水溶液を滴下し、反応液のpHを10とした。ジイソプロピルエーテルで抽出し、有機層を食塩水で洗浄した。カラムクロマトグラフィー(アルミナ、ジイソプロピルエーテル)により精製を行った後、1M塩化水素/ジエチルエーテルを加えた。析出物をろ過した後、再結晶(エタノール)により精製を行い、式(C-4)で表される化合物17.9gを得た。 20 mL of water and 34.2 g of concentrated hydrochloric acid were added to the reaction vessel. The mixture was cooled to −15 ° C., 15.0 g of the compound represented by the formula (C-3) was added dropwise, and the mixture was stirred for 20 minutes. An aqueous solution prepared by dissolving 9.4 g of sodium nitrite in 20 mL of water was added dropwise, and the mixture was stirred for 1 hour. An aqueous solution prepared by dissolving 69.8 g of tin (II) chloride dihydrate in 35 mL of water and 35 mL of concentrated hydrochloric acid was added dropwise, and the mixture was stirred for 2 hours. The temperature was raised to room temperature, and the mixture was stirred for 3 hours. The reaction solution was ice-cooled, and a 10 M aqueous sodium hydroxide solution was added dropwise to adjust the pH of the reaction solution to 10. The mixture was extracted with diisopropyl ether and the organic layer was washed with brine. After purification by column chromatography (alumina, diisopropyl ether), 1M hydrogen chloride / diethyl ether was added. After filtering the precipitate, purification was carried out by recrystallization (ethanol) to obtain 17.9 g of the compound represented by the formula (C-4).

Figure 0007083995000166
Figure 0007083995000166

反応容器に式(A-1)で表される化合物6.2g、N,N-ジメチルホルムアミド50mL、式(C-4)で表される化合物6.3gを加えた。酢酸20mLを加え、90℃で5時間加熱撹拌した。室温に冷却し、反応液を重曹水に注いだ。析出物をろ過し、水で洗浄した。カラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル(5:1))及び再結晶(ヘキサン)により精製を行い、式(C-5)で表される化合物7.9gを得た。 6.2 g of the compound represented by the formula (A-1), 50 mL of N, N-dimethylformamide, and 6.3 g of the compound represented by the formula (C-4) were added to the reaction vessel. 20 mL of acetic acid was added, and the mixture was heated and stirred at 90 ° C. for 5 hours. After cooling to room temperature, the reaction solution was poured into a sodium bicarbonate solution. The precipitate was filtered and washed with water. Purification was performed by column chromatography (silica gel, hexane / ethyl acetate (5: 1)) and recrystallization (hexane) to obtain 7.9 g of the compound represented by the formula (C-5).

式(C-5)で表される化合物のH-NMRの測定結果を次に示す。
H-NMR(CDCl)δ 1.98(s,6H),2.53(s,3H),7.15(d,2H),7.25-7.36(m,4H),7.47(m,2H)ppm.
The measurement results of 1 H-NMR of the compound represented by the formula (C-5) are shown below.
1 1 H-NMR (CDCl 3 ) δ 1.98 (s, 6H), 2.53 (s, 3H), 7.15 (d, 2H), 7.25-7.36 (m, 4H), 7 .47 (m, 2H) ppm.

Figure 0007083995000167
Figure 0007083995000167

アルゴン雰囲気下、反応容器に式(C-5)で表される化合物560.1mg、塩化イリジウム(III)水和物300.0mg、2-エトキシエタノール12mL、イオン交換水4mLを加え、120℃で22時間加熱撹拌した。室温に冷却し、反応液を水に注いだ。析出物をろ過した後、水で洗浄した。ジクロロメタンに溶解させ、硫酸ナトリウムで乾燥させた。ヘキサンで再沈殿させることによって、式(C-6)で表される化合物580.0mgを得た。 Under an argon atmosphere, 560.1 mg of the compound represented by the formula (C-5), 300.0 mg of iridium (III) chloride hydrate, 12 mL of 2-ethoxyethanol, and 4 mL of ion-exchanged water were added to the reaction vessel at 120 ° C. The mixture was heated and stirred for 22 hours. It was cooled to room temperature and the reaction solution was poured into water. The precipitate was filtered and then washed with water. It was dissolved in dichloromethane and dried over sodium sulfate. By reprecipitation with hexane, 580.0 mg of the compound represented by the formula (C-6) was obtained.

Figure 0007083995000168
Figure 0007083995000168

化合物(C-6) 0.850g (0.565mmol)、AgOTf 0.319g (1.24mmol)、ジクロロメタン40mL、メタノール0.8mLをアルゴン雰囲気下、室温で17時間反応させた。反応溶液をセライト層に通してろ過し、得られたろ液を減圧濃縮して生成物(C-7)を得た。 Compound (C-6) 0.850 g (0.565 mmol), AgOTf 0.319 g (1.24 mmol), dichloromethane 40 mL, and methanol 0.8 mL were reacted at room temperature for 17 hours under an argon atmosphere. The reaction solution was passed through a cerite layer and filtered, and the obtained filtrate was concentrated under reduced pressure to obtain the product (C-7).

Figure 0007083995000169
Figure 0007083995000169

引き続き、上記で得られた生成物(C-7)を全量、実施例2で合成した化合物(C-2) 1.12g (2.82mmol)、エタノール25mLをアルゴン雰囲気下、90℃で105時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、シリカゲルクロマトグラフィー(溶離液:ジクロロメタン)を用いて分離精製した。得られた固体をジクロロメタンとヘキサンを用いて再結晶した。フェニルトリアゾール金属錯体(A-1-3)の収率は45%であった。 Subsequently, the whole amount of the product (C-7) obtained above, 1.12 g (2.82 mmol) of the compound (C-2) synthesized in Example 2, and 25 mL of ethanol were reacted at 90 ° C. for 105 hours under an argon atmosphere. rice field. The solid that had been cooled to room temperature and precipitated was recovered by filtration, and separated and purified using silica gel chromatography (eluent: dichloromethane). The obtained solid was recrystallized from dichloromethane and hexane. The yield of the phenyltriazole metal complex (A-1-3) was 45%.

実施例3のフェニルトリアゾール金属錯体(A-1-3)のH-NMRの測定結果を次に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=9.12(s,2H),7.83(s,1H),7.75(s,1H),7.48(t,2H),7.41(d,2H),7.33(d,2H),6.53-6.67(m,10H),6.41(d,2H),2.32(s,3H),2.22(s,6H),2.15(s,6H),2.14(s,3H),1.90(s,3H),1.81(s,6H),1.44(s,9H).
The measurement result of 1 1 H-NMR of the phenyltriazole metal complex (A-1-3) of Example 3 is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 9.12 (s, 2H), 7.83 (s, 1H), 7.75 (s, 1H), 7.48 (t, 2H), 7.41 (d, 2H), 7.33 (d, 2H), 6.53-6.67 (m, 10H), 6.41 (d, 2H), 2.32 (s, 3H) ), 2.22 (s, 6H), 2.15 (s, 6H), 2.14 (s, 3H), 1.90 (s, 3H), 1.81 (s, 6H), 1.44 (S, 9H).

[実施例4]
(錯体(A-1-4)の合成)
下記スキームに沿って、フェニルトリアゾール化合物(D-1)、及びフェニルトリアゾール金属錯体(A-1-4)を合成した。
[Example 4]
(Synthesis of complex (A-1-4))
A phenyltriazole compound (D-1) and a phenyltriazole metal complex (A-1-4) were synthesized according to the following scheme.

Figure 0007083995000170
Figure 0007083995000170

Figure 0007083995000171
Figure 0007083995000171

化合物(C-1)3.50g(8.99mmol)、3-ブロモ-2,6-ジメチルピリジン1.84g(9.89mmol)、KPO 6.30g(29.7mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル 0.161g(0.392mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.0898g(0.0980mmol)、トルエン58ml、水 6mlを、アルゴン雰囲気下、116℃で16時間反応させた。反応溶液を室温まで冷却後に、酢酸エチルと水を加えて抽出した。有機層を回収し濃縮して得られた生成物を、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサンの混合溶媒)を用いて分離精製した。化合物(D-1)の収率は91%であった。 Compound (C-1) 3.50 g (8.99 mmol), 3-bromo-2,6-dimethylpyridine 1.84 g (9.89 mmol), K3 PO 4 6.30 g (29.7 mmol), 2 -dicyclohexyl Phosphino-2', 6'-dimethoxybiphenyl 0.161 g (0.392 mmol), tris (dibenzylideneacetone) dipalladium (0) 0.0898 g (0.0980 mmol), toluene 58 ml, water 6 ml under an argon atmosphere. , 116 ° C. for 16 hours. After cooling the reaction solution to room temperature, ethyl acetate and water were added for extraction. The product obtained by recovering and concentrating the organic layer was separated and purified by silica gel column chromatography (eluent: a mixed solvent of ethyl acetate and hexane). The yield of compound (D-1) was 91%.

化合物(D-1)のH-NMRデータを以下に示す。
H-NMR(400MHz/CDCl):δ(ppm)=7.52(d,2H),7.42(d,1H),7.37(dd,1H),7.30(dd,2H),7.08(s,2H),7.05(d,1H),2.58(s,3H),2.55(s,3H),2.48(s,3H),2.02(s,6H).
The 1 H-NMR data of compound (D-1) is shown below.
1 1 H-NMR (400 MHz / CDCl 3 ): δ (ppm) = 7.52 (d, 2H), 7.42 (d, 1H), 7.37 (dd, 1H), 7.30 (dd, 2H) ), 7.08 (s, 2H), 7.05 (d, 1H), 2.58 (s, 3H), 2.55 (s, 3H), 2.48 (s, 3H), 2.02 (S, 6H).

Figure 0007083995000172
Figure 0007083995000172

実施例3の方法で合成された化合物(C-7)2.04g(2.26mmol)、化合物(D-1)2.08g(5.64mmol)、エタノール49mlをアルゴン雰囲気下、90℃で280時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、シリカゲルクロマトグラフィー(溶離液:ジクロロメタン)を用いて分離精製した。得られた固体をジクロロメタンとヘキサンを用いて再結晶した。実施例4のフェニルトリアゾール金属錯体(A-1-4)の収率は32%であった。 2.04 g (2.26 mmol) of compound (C-7) synthesized by the method of Example 3, 2.08 g (5.64 mmol) of compound (D-1), and 49 ml of ethanol were added to 280 at 90 ° C. under an argon atmosphere. Reacted for time. The solid that had been cooled to room temperature and precipitated was recovered by filtration, and separated and purified using silica gel chromatography (eluent: dichloromethane). The obtained solid was recrystallized from dichloromethane and hexane. The yield of the phenyltriazole metal complex (A-1-4) of Example 4 was 32%.

実施例4のフェニルトリアゾール金属錯体(A-1-4)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=7.58(s,1H),7.47(t,2H),7.32-7.41(m,6H),7.17(d,1H),6.51-6.67(m,10H),6.41(d,2H),2.51(s,3H),2.50(s,3H),2.28(s,3H),2.22(s,6H),2.16(s,3H),2.15(s,3H),2.14(s,3H),1.87(s,3H),1.81(s,6H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-4) of Example 4 is shown below.
1 1 H-NMR (400 MHz / Acetone-d6): δ (ppm) = 7.58 (s, 1H), 7.47 (t, 2H), 7.32-7.41 (m, 6H), 7. 17 (d, 1H), 6.51-6.67 (m, 10H), 6.41 (d, 2H), 2.51 (s, 3H), 2.50 (s, 3H), 2.28 (S, 3H), 2.22 (s, 6H), 2.16 (s, 3H), 2.15 (s, 3H), 2.14 (s, 3H), 1.87 (s, 3H) , 1.81 (s, 6H).

[実施例5]
(錯体(A-1-5)の合成)
下記スキームに沿って、フェニルトリアゾール金属錯体(A-1-5)を合成した。
[Example 5]
(Synthesis of complex (A-1-5))
A phenyltriazole metal complex (A-1-5) was synthesized according to the following scheme.

Figure 0007083995000173
Figure 0007083995000173

国際公開第2007/097153号(特許文献2)の段落[0204]~[0205]に記載の方法で合成された化合物(E-1)0.278g(0.185mmol)、トリフルオロメタンスルホン酸銀0.105g(0.409mmol)、ジクロロメタン13ml、メタノール0.2mlをアルゴン雰囲気下、室温で17時間反応させた。反応溶液をセライト層に通してろ過し、得られたろ液を減圧濃縮して化合物(E-2)を得た。 0.278 g (0.185 mmol) of the compound (E-1) synthesized by the method described in paragraphs [0204] to [0205] of International Publication No. 2007/097153 (Patent Document 2), silver trifluoromethanesulfonate 0 .105 g (0.409 mmol), 13 ml of dichloromethane and 0.2 ml of methanol were reacted at room temperature for 17 hours under an argon atmosphere. The reaction solution was passed through a cerite layer and filtered, and the obtained filtrate was concentrated under reduced pressure to obtain compound (E-2).

上記で得られた化合物(E-2)を全量、化合物(C-2)0.344g(0.865mmol)、エタノール8mlをアルゴン雰囲気下、90℃で156時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。実施例5のフェニルトリアゾール金属錯体(A-1-5)の収率は13%であった。 The total amount of the compound (E-2) obtained above, 0.344 g (0.865 mmol) of the compound (C-2) and 8 ml of ethanol were reacted at 90 ° C. for 156 hours under an argon atmosphere. The solid that had been cooled to room temperature and precipitated was recovered by filtration, and separated and purified using silica gel chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The yield of the phenyltriazole metal complex (A-1-5) of Example 5 was 13%.

実施例5のフェニルトリアゾール金属錯体(A-1-5)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=9.13(s,2H),9.12(s,2H),7.82(s,1H),7.79(s,1H),7.77(s,1H),7.76(s,1H),7.19(s,1H),7.10(s,1H),7.06(s,1H),6.96(s,1H),6.75(d,1H),6.47-6.67(m,10H),6.28(d,1H),2.40(s,3H),2.30(s,3H),2.27(s,3H),2.18(s,3H),2.16(s,3H),2.09(s,3H),2.02(s,3H),1.93(s,3H),1.68(s,3H),1.44(s,18H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-5) of Example 5 is shown below.
1 1 H-NMR (400 MHz / Deuterated-d6): δ (ppm) = 9.13 (s, 2H), 9.12 (s, 2H), 7.82 (s, 1H), 7.79 (s, 1H), 7.77 (s, 1H), 7.76 (s, 1H), 7.19 (s, 1H), 7.10 (s, 1H), 7.06 (s, 1H), 6. 96 (s, 1H), 6.75 (d, 1H), 6.47-6.67 (m, 10H), 6.28 (d, 1H), 2.40 (s, 3H), 2.30 (S, 3H), 2.27 (s, 3H), 2.18 (s, 3H), 2.16 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H) , 1.93 (s, 3H), 1.68 (s, 3H), 1.44 (s, 18H).

[実施例6]
(錯体(A-1-6)の合成)
下記スキームに沿って、フェニルトリアゾール金属錯体(A-1-6)を合成した。
[Example 6]
(Synthesis of complex (A-1-6))
A phenyltriazole metal complex (A-1-6) was synthesized according to the following scheme.

Figure 0007083995000174
Figure 0007083995000174

J. Am. Chem. Soc., 2003, 125, 7377-7387に記載の方法で合成した化合物(F-1)1.26g(1.23mmol)、トリフルオロメタンスルホン酸銀0.694g(2.70mmol)、ジクロロメタン83ml、メタノール1.5mlをアルゴン雰囲気下、室温で17時間反応させた。反応溶液をセライト層に通してろ過し、得られたろ液を減圧濃縮して化合物(F-2)を得た。 1.26 g (1.23 mmol) of the compound (F-1) synthesized by the method described in J. Am. Chem. Soc., 2003, 125, 7377-7387, 0.694 g (2.70 mmol) of silver trifluoromethanesulfonate. ), 83 ml of dichloromethane and 1.5 ml of methanol were reacted at room temperature for 17 hours under an argon atmosphere. The reaction solution was passed through a cerite layer and filtered, and the obtained filtrate was concentrated under reduced pressure to obtain compound (F-2).

上記で得られた化合物(F-2)を全量、化合物(A-3)2.10g(6.137mmol)、エタノール9mlをアルゴン雰囲気下、90℃で155時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。化合物(F-3)の収率は21%であり、化合物(F-4)の収率は36%であった。 The total amount of the compound (F-2) obtained above, 2.10 g (6.137 mmol) of the compound (A-3), and 9 ml of ethanol were reacted at 90 ° C. for 155 hours under an argon atmosphere. The solid that had been cooled to room temperature and precipitated was recovered by filtration, and separated and purified using silica gel chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The yield of compound (F-3) was 21%, and the yield of compound (F-4) was 36%.

化合物(F-3)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=8.49(d,1H),8.48(d,1H),7.56(d,2H),7.44(t,2H),7.42(d,1H),7.02(d,1H),6.82-6.89(m,3H),6.75(d,1H),6.62-6.67(m,4H),6.54-6.59(m,2H),6.49(t,1H),6.40(d,1H),2.08(s,3H),1.85(s,3H),1.72(s,3H).
1 1 H-NMR data of compound (F-3) is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 8.49 (d, 1H), 8.48 (d, 1H), 7.56 (d, 2H), 7.44 (t, 2H), 7.42 (d, 1H), 7.02 (d, 1H), 6.82-6.89 (m, 3H), 6.75 (d, 1H), 6.62-6.67 (M, 4H), 6.54-6.59 (m, 2H), 6.49 (t, 1H), 6.40 (d, 1H), 2.08 (s, 3H), 1.85 ( s, 3H), 1.72 (s, 3H).

化合物(F-4)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=8.53(d,1H),7.59(d,2H),7.57(s,1H),7.54(s,1H),7.47(d,1H),7.42(d,1H),6.87(dd,1H),6.76(d,1H),6.55-6.67(m,8H),6.45(d,1H),6.43(d,1H),2.16(s,3H),2.14(s,3H),2.07(s,3H),1.90(s,3H),1.77(s,3H),1.72(s,3H).
1 1 H-NMR data of compound (F-4) is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 8.53 (d, 1H), 7.59 (d, 2H), 7.57 (s, 1H), 7.54 (s, 1H), 7.47 (d, 1H), 7.42 (d, 1H), 6.87 (dd, 1H), 6.76 (d, 1H), 6.55-6.67 (m, 8H). ), 6.45 (d, 1H), 6.43 (d, 1H), 2.16 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 1.90 (S, 3H), 1.77 (s, 3H), 1.72 (s, 3H).

化合物(F-3)0.432g(0.527mmol)、2-(tert-ブチル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリミジン 0.152g(0.580mmol)、KPO 0.336g(1.58mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル 0.0433g(0.105mmol) 、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.0241g(0.0263mmol)、トルエン3.5ml、水0.3mlを、アルゴン雰囲気下、110℃で24時間反応させた。反応溶液を室温まで冷却後に、酢酸エチルと水を加えて抽出した。有機層を回収し濃縮して得られた生成物を、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。得られた生成物を酢酸エチルとヘキサンを用いて再結晶した。実施例6のフェニルトリアゾール金属錯体(A-1-6)の収率は76%であった。 Compound (F-3) 0.432 g (0.527 mmol), 2- (tert-butyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyrimidin 0.152 g (0.580 mmol), K 3 PO 4 0.336 g (1.58 mmol), 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl 0.0433 g (0.105 mmol), tris (dibenzilidenacetone) ) Dipalladium (0) 0.0241 g (0.0263 mmol), 3.5 ml of toluene and 0.3 ml of water were reacted at 110 ° C. for 24 hours under an argon atmosphere. After cooling the reaction solution to room temperature, ethyl acetate and water were added for extraction. The product obtained by recovering and concentrating the organic layer was separated and purified by silica gel column chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The resulting product was recrystallized from ethyl acetate and hexanes. The yield of the phenyltriazole metal complex (A-1-6) of Example 6 was 76%.

実施例6のフェニルトリアゾール金属錯体(A-1-6)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=9.10(s,2H),8.50(d,1H),8.49(d,1H),7.75(d,2H),7.43-7.48(m,3H),7.03(d,1H),6.83-6.90(m,3H),6.76(d,1H),6.60-6.68(m,5H),6.50-6.55(m,2H),6.46(d,1H),2.18(s,3H),1.94(s,3H),1.75(s,3H),1.43(s,9H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-6) of Example 6 is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 9.10 (s, 2H), 8.50 (d, 1H), 8.49 (d, 1H), 7.75 (d, 2H), 7.43-7.48 (m, 3H), 7.03 (d, 1H), 6.83-6.90 (m, 3H), 6.76 (d, 1H), 6.60 -6.68 (m, 5H), 6.50-6.55 (m, 2H), 6.46 (d, 1H), 2.18 (s, 3H), 1.94 (s, 3H), 1.75 (s, 3H), 1.43 (s, 9H).

[実施例7]
(錯体(A-1-7)の合成)
実施例6に示したスキームに沿って、フェニルトリアゾール金属錯体(A-1-7)を合成した。
[Example 7]
(Synthesis of complex (A-1-7))
A phenyltriazole metal complex (A-1-7) was synthesized according to the scheme shown in Example 6.

化合物(F-4)0.450g(0.442mmol)、2-(tert-ブチル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル) 0.255g(0.974mmol)、KPO 0.564g(2.66mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル 0.0727g(0.177mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.0405g(0.0442mmol)、トルエン3ml、水0.3mlを、アルゴン雰囲気下、110℃で24時間反応させた。反応溶液を室温まで冷却後に、酢酸エチルと水を加えて抽出した。有機層を回収し濃縮して得られた生成物を、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。得られた生成物を酢酸エチルとヘキサンを用いて再結晶した。実施例7のフェニルトリアゾール金属錯体(A-1-7)の収率は89%であった。 Compound (F-4) 0.450 g (0.442 mmol), 2- (tert-butyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) 0 .255 g (0.974 mmol), K 3 PO 4 0.564 g (2.66 mmol), 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl 0.0727 g (0.177 mmol), tris (dibenzilidenacetone) 0.0405 g (0.0442 mmol) of dipalladium (0), 3 ml of toluene and 0.3 ml of water were reacted at 110 ° C. for 24 hours under an argon atmosphere. After cooling the reaction solution to room temperature, ethyl acetate and water were added for extraction. The product obtained by recovering and concentrating the organic layer was separated and purified by silica gel column chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The resulting product was recrystallized from ethyl acetate and hexanes. The yield of the phenyltriazole metal complex (A-1-7) of Example 7 was 89%.

実施例7のフェニルトリアゾール金属錯体(A-1-7)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=9.11(s,4H),8.55(d,1H),7.80(d,2H),7.77(s,1H),7.74(s,1H),7.49(d,1H),7.46(d,1H),6.89(t,1H),6.79(d,1H),6.49-6.71(m,10H),2.27(s,3H),2.24(s,3H),2.13(s,3H),2.01(s,3H),1.87(s,3H),1.76(s,3H),1.43(s,18H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-7) of Example 7 is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 9.11 (s, 4H), 8.55 (d, 1H), 7.80 (d, 2H), 7.77 (s, 1H), 7.74 (s, 1H), 7.49 (d, 1H), 7.46 (d, 1H), 6.89 (t, 1H), 6.79 (d, 1H), 6. 49-6.71 (m, 10H), 2.27 (s, 3H), 2.24 (s, 3H), 2.13 (s, 3H), 2.01 (s, 3H), 1.87 (S, 3H), 1.76 (s, 3H), 1.43 (s, 18H).

[実施例8]
(錯体(A-1-8)の合成)
下記スキームに沿って、フェニルトリアゾール金属錯体(A-1-8)を合成した。
[Example 8]
(Synthesis of complex (A-1-8))
A phenyltriazole metal complex (A-1-8) was synthesized according to the following scheme.

Figure 0007083995000175
Figure 0007083995000175

Figure 0007083995000176
Figure 0007083995000176

窒素雰囲気下、濃塩酸(49mL、375mmol)、H2O(98mL)の混合物に、3-クロロ-2,6-ジメチルアニリン(30g、193mmol)を加えた。反応系内の温度を-1℃以下に保ち、NaNO2(14.0g、203mmol)のH2O(35mL)溶液を2時間かけて加えた。50分間撹拌した後、内温を-2℃に保ち、SnCl2・H2O(108.7 g、482mmol)の 濃塩酸(55mL)、水(55mL)溶液を2.5時間かけて滴下し、その後2時間撹拌した。析出した固体をろ取し、飽和食塩水で洗浄した。得られた固体にTHF(250mL)を加え氷冷し、50%NaOH水溶液(150mL)を内温8~12℃で40分かけて滴下した。水層をTHF(50mL)で4回抽出し、あわせた有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥させ、溶媒を半分に濃縮した。これを氷冷し、4M HClジオキサン溶液(53mL、211mmol)を加えた。析出した固体をろ取し、THF(100mL)で3回洗った。これを乾燥することにより、化合物(H-1)(26.47g, 収率66%)を得た。 3-Chloro-2,6-dimethylaniline (30 g, 193 mmol) was added to a mixture of concentrated hydrochloric acid (49 mL, 375 mmol) and H 2 O (98 mL) under a nitrogen atmosphere. The temperature in the reaction system was kept below -1 ° C., and a solution of NaNO 2 (14.0 g, 203 mmol) in H 2 O (35 mL) was added over 2 hours. After stirring for 50 minutes, the internal temperature was kept at -2 ° C, and a solution of SnCl 2 · H 2 O (108.7 g, 482 mmol) in concentrated hydrochloric acid (55 mL) and water (55 mL) was added dropwise over 2.5 hours, and then for 2 hours. Stirred. The precipitated solid was collected by filtration and washed with saturated brine. THF (250 mL) was added to the obtained solid, ice-cooled, and a 50% NaOH aqueous solution (150 mL) was added dropwise at an internal temperature of 8 to 12 ° C. over 40 minutes. The aqueous layer was extracted 4 times with THF (50 mL), the combined organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was concentrated in half. This was ice-cooled and a 4M HCl dioxane solution (53 mL, 211 mmol) was added. The precipitated solid was collected by filtration and washed 3 times with THF (100 mL). By drying this, compound (H-1) (26.47 g, yield 66%) was obtained.

Figure 0007083995000177
Figure 0007083995000177

化合物(A-1)(15.0g、93mmol)、化合物(H-1)(26.0g、126mmol)、DMF(400mL)の混合物に、室温で酢酸(55mL、960mmol)を加え、90℃で5時間加熱撹拌した。反応溶液に水(1L)を加え、酢酸エチルで3回抽出、あわせた有機層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去後、シリカゲルカラムクロマトグラフィー(シリカゲル100g、移動相:ヘキサン/酢酸エチル=1/1)により精製し、続いてヘキサンで懸濁洗浄し、ヘキサン/酢酸エチル混合溶媒で不純物を析出させ除去することにより、化合物(H-2)(21.84g、収率81%)を得た。 Acetic acid (55 mL, 960 mmol) was added to a mixture of compound (A-1) (15.0 g, 93 mmol), compound (H-1) (26.0 g, 126 mmol) and DMF (400 mL) at room temperature for 5 hours at 90 ° C. It was heated and stirred. Water (1 L) was added to the reaction solution, and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated sodium chloride solution, and dried over anhydrous sodium sulfate. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (silica, 100 g, mobile phase: hexane / ethyl acetate = 1/1), then suspended and washed with hexane, and impurities were precipitated with a mixed solvent of hexane / ethyl acetate. The compound (H-2) (21.84 g, yield 81%) was obtained by removing the mixture.

化合物(H-2)の質量分析結果、及びH-NMRの測定結果を次に示す。
[M]:297
H-NMR(400MHz/CDCl,TMS):δ(ppm)=7.35(m,6H),7.10(d,1H),2.53(s,3H),2.01(s,3H),1.93(s,3H).
The mass spectrometry result of compound (H-2) and the measurement result of 1 H-NMR are shown below.
[M]: 297
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 7.35 (m, 6H), 7.10 (d, 1H), 2.53 (s, 3H), 2.01 (s) , 3H), 1.93 (s, 3H).

Figure 0007083995000178
Figure 0007083995000178

窒素雰囲気下、3-ブロモ-2,6-ジメチルピリジン(7.5g、40mmol)のジイソプロピルエーテル(240mL)溶液に、n-ブチルリチウム(1.6Mヘキサン溶液、37.5mL、60mmol)を-78℃で滴下し、45分間撹拌した。-78℃でイソプロポキシボロン酸ピナコール(15.3g、80mmol)のジイソプロピルエーテル(80mL)溶液を滴下し、4時間撹拌した。イソプロピルエーテルを滴下し、室温で飽和食塩水を加えた。水層をジクロロメタンで6回抽出し、あわせた有機層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥させ、溶媒を留去し、化合物(H-3)(9.02g、ガスクロマトグラフィー純度70%)を得た。 Under a nitrogen atmosphere, n-butyllithium (1.6 M hexane solution, 37.5 mL, 60 mmol) was added to -78 in a diisopropyl ether (240 mL) solution of 3-bromo-2,6-dimethylpyridine (7.5 g, 40 mmol). The mixture was added dropwise at ° C. and stirred for 45 minutes. A solution of pinacol isopropoxyboronate (15.3 g, 80 mmol) in diisopropyl ether (80 mL) was added dropwise at −78 ° C., and the mixture was stirred for 4 hours. Diisopropyl ether was added dropwise, and saturated brine was added at room temperature. The aqueous layer was extracted 6 times with dichloromethane, the combined organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, the solvent was distilled off, and the compound (H-3) (9.02 g, gas chromatography purity 70) was removed. %) Was obtained.

化合物(H-3)の質量分析結果、及びH-NMRの測定結果を次に示す。
[M]:233
H-NMR(400MHz/CDCl,TMS):δ(ppm)=7.90(d,1H),6.95(d,1H),2.71(s,3H),2.52(s,3H),1.34(s,12H).
The mass spectrometry result of compound (H-3) and the measurement result of 1 H-NMR are shown below.
[M]: 233
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 7.90 (d, 1H), 6.95 (d, 1H), 2.71 (s, 3H), 2.52 (s) , 3H), 1.34 (s, 12H).

Figure 0007083995000179
Figure 0007083995000179

窒素雰囲気下、化合物(H-2)(3.0g、10mmol)、ジクロロビス[ジ-t-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(II)(0.2g、0.3mmol)、2mol/Lリン酸三カリウム水溶液(15mL、30mmol)及び1,4-ジオキサン(100mL)を混合し、100℃に加熱した。加熱下、化合物(H-3)(6.8g、純度70%、20mmol)の1,4-ジオキサン(50mL)溶液を滴下し、100℃にて3時間撹拌した。室温に戻した反応液に水を加え、水層を分離後、酢酸エチルで3回抽出し、有機層をあわせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去後、シリカゲルカラムクロマトグラフィー(シリカゲル20g、移動相:ヘキサン/酢酸エチル=1/1)により精製、乾燥させた。 Under nitrogen atmosphere, compound (H-2) (3.0 g, 10 mmol), dichlorobis [di-t-butyl (p-dimethylaminophenyl) phosphino] palladium (II) (0.2 g, 0.3 mmol), 2 mol / Aqueous solution of tripotassium L phosphate (15 mL, 30 mmol) and 1,4-dioxane (100 mL) were mixed and heated to 100 ° C. Under heating, a solution of compound (H-3) (6.8 g, purity 70%, 20 mmol) in 1,4-dioxane (50 mL) was added dropwise, and the mixture was stirred at 100 ° C. for 3 hours. Water was added to the reaction solution returned to room temperature, the aqueous layer was separated, extracted three times with ethyl acetate, the organic layers were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, purified by silica gel column chromatography (silica gel 20 g, mobile phase: hexane / ethyl acetate = 1/1), and dried.

再度シリカゲルカラムクロマトグラフィー(シリカゲル25g、移動相:ヘキサン/酢酸エチル=2/1→1/1)により精製することにより、フェニルトリアゾール化合物(H-4)(3.27g、収率88%)を得た。 Purification by silica gel column chromatography (silica gel 25 g, mobile phase: hexane / ethyl acetate = 2/1 → 1/1) again gives a phenyltriazole compound (H-4) (3.27 g, yield 88%). rice field.

フェニルトリアゾール化合物(H-4)の質量分析結果、及びH-NMRの測定結果を次に示す。
[M]:368
H-NMR(400MHz/CDCl,TMS):δ(ppm)=7.49(m,2H),7.37(m,1H),7.29(m,3H),7.24(m,1H),7.17(m,1H),7.03(m,1H),2.57―1.95(m,15H).
The mass spectrometry result of the phenyltriazole compound (H-4) and the measurement result of 1 H-NMR are shown below.
[M]: 368
1 1 H-NMR (400MHz / CDCl 3 , TMS): δ (ppm) = 7.49 (m, 2H), 7.37 (m, 1H), 7.29 (m, 3H), 7.24 (m) , 1H), 7.17 (m, 1H), 7.03 (m, 1H), 2.57-1.95 (m, 15H).

Figure 0007083995000180
Figure 0007083995000180

化合物(C-7)(3.5mmol)、化合物(H-4)(3.27g、8.8mmol)、エタノール90mlをアルゴン雰囲気下、90℃で170時間反応させた。室温まで冷却し溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル)を用いて分離精製した。得られた固体をジクロロメタンに溶解させ、この溶液をヘキサンに滴下することで再沈殿させ、ろ過することで黄色固体を得た。ろ液の溶媒を減圧留去し、再沈殿を繰り返し行った。合わせた固体を再沈殿(ジクロロメタン/ヘキサン)し、アルミナカラムクロマトグラフィー(溶離液:ジクロロメタン)を用いて精製し、再沈殿(ジクロロメタン/ヘキサン)することで、フェニルトリアゾール金属錯体(A-1-8)(0.21g、収率6%)を黄色固体として得た。 Compound (C-7) (3.5 mmol), compound (H-4) (3.27 g, 8.8 mmol) and 90 ml of ethanol were reacted at 90 ° C. for 170 hours under an argon atmosphere. After cooling to room temperature, the solvent was distilled off under reduced pressure, and the residue was separated and purified by silica gel column chromatography (eluent: ethyl acetate). The obtained solid was dissolved in dichloromethane, this solution was added dropwise to hexane to reprecipitate, and the solution was filtered to obtain a yellow solid. The solvent of the filtrate was distilled off under reduced pressure, and reprecipitation was repeated. The combined solids are reprecipitated (dichloromethane / hexane), purified using alumina column chromatography (eluent: dichloromethane), and reprecipitated (dichloromethane / hexane) to form a phenyltriazole metal complex (A-1-8). ) (0.21 g, yield 6%) was obtained as a yellow solid.

フェニルトリアゾール金属錯体(A-1-8)のH-NMRの測定結果を次に示す。
H-NMR(400MHz/CDCl,TMS):δ(ppm)=7.40-7.21(m,9H),7.06(m,1H),6.69-6.48(m,10H),6.41(m,2H),2.58(d,3H),2.37-2.06(m,21H),1.91-1.81(m,9H).
The measurement results of 1 H-NMR of the phenyltriazole metal complex (A-1-8) are shown below.
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 7.40-7.21 (m, 9H), 7.06 (m, 1H), 6.69-6.48 (m, 10H), 6.41 (m, 2H), 2.58 (d, 3H), 2.37-2.06 (m, 21H), 1.91-1.81 (m, 9H).

[実施例9]
(錯体(A-1-9)の合成)
下記スキームに沿って、フェニルトリアゾール金属錯体(A-1-9)を合成した。
[Example 9]
(Synthesis of complex (A-1-9))
A phenyltriazole metal complex (A-1-9) was synthesized according to the following scheme.

Figure 0007083995000181
Figure 0007083995000181

化合物(C-6)1.0g(0.666mmol)、トリフルオロメタンスルホン酸銀0.375g(1.47mmol)、ジクロロメタン47ml、メタノール1mlをアルゴン雰囲気下、室温で17時間反応させた。反応溶液をセライト層に通してろ過し、得られたろ液を減圧濃縮して化合物(C-7)を得た。 The compound (C-6) 1.0 g (0.666 mmol), silver trifluoromethanesulfonate 0.375 g (1.47 mmol), dichloromethane 47 ml, and methanol 1 ml were reacted at room temperature for 17 hours under an argon atmosphere. The reaction solution was passed through a cerite layer and filtered, and the obtained filtrate was concentrated under reduced pressure to obtain compound (C-7).

上記で得られた化合物(C-7)を全量、化合物(A-3) 1.14g(3.33mmol)、エタノール49mlをアルゴン雰囲気下、90℃で236時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。得られた固体をジクロロメタンとヘキサンを用いて再結晶した。化合物(I-1)の収率は89%であった。 The total amount of the compound (C-7) obtained above, 1.14 g (3.33 mmol) of the compound (A-3) and 49 ml of ethanol were reacted at 90 ° C. for 236 hours under an argon atmosphere. The solid that had been cooled to room temperature and precipitated was recovered by filtration, and separated and purified using silica gel chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The obtained solid was recrystallized from dichloromethane and hexane. The yield of compound (I-1) was 89%.

化合物(I-1)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=7.62(s,1H),7.55(s,1H),7.46(t,2H),7.39(d,2H),7.32(d,2H),6.53-6.66(m,9H),6.46(d,1H),6.39(d,2H),2.22(s,3H),2.20(s,6H),2.10-2.12(m,9H),1.80(s,9H).
The 1 H-NMR data of compound (I-1) is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 7.62 (s, 1H), 7.55 (s, 1H), 7.46 (t, 2H), 7.39 (d, 2H), 7.32 (d, 2H), 6.53-6.66 (m, 9H), 6.46 (d, 1H), 6.39 (d, 2H), 2.22 (s, 3H) ), 2.20 (s, 6H), 2.10-2.12 (m, 9H), 1.80 (s, 9H).

化合物(I-1)0.40g(0.378mmol)、2-メチル-4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジン 0.0912g(0.416mmol)、KPO0.241g(1.13mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル 0.0311g(0.0757mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.0173g(0.0189mmol)、トルエン2.4ml、水0.2mlを、アルゴン雰囲気下、110℃で24時間反応させた。反応溶液を室温まで冷却後に、酢酸エチルと水を加えて抽出した。有機層を回収し濃縮して得られた生成物を、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。得られた生成物を酢酸エチルとヘキサンを用いて再結晶した。実施例9のフェニルトリアゾール金属錯体(A-1-9)の収率は78%であった。 Compound (I-1) 0.40 g (0.378 mmol), 2-methyl-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine 0.0912 g ( 0.416 mmol), K 3 PO 4 0.241 g (1.13 mmol), 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl 0.0311 g (0.0757 mmol), Tris (dibenzilidenacetone) dipalladium ( 0) 0.0173 g (0.0189 mmol), 2.4 ml of toluene and 0.2 ml of water were reacted at 110 ° C. for 24 hours under an argon atmosphere. After cooling the reaction solution to room temperature, ethyl acetate and water were added for extraction. The product obtained by recovering and concentrating the organic layer was separated and purified by silica gel column chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The resulting product was recrystallized from ethyl acetate and hexanes. The yield of the phenyltriazole metal complex (A-1-9) of Example 9 was 78%.

実施例9のフェニルトリアゾール金属錯体(A-1-9)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=8.43(d,1H),7.70(s,1H),7.62(s,1H),7.54(s,1H),7.45(d,1H),7.35(t,2H),7.28(d,2H),7.20(d,2H),6.38-6.54(m,10H),6.28(d,2H),2.46(s,3H),2.18(s,3H),2.09(s,6H),2.02(s,6H),2.01(s,3H),1.77(s,3H),1.68(s,6H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-9) of Example 9 is shown below.
1 1 H-NMR (400MHz / Acetone-d6): δ (ppm) = 8.43 (d, 1H), 7.70 (s, 1H), 7.62 (s, 1H), 7.54 (s, 1H), 7.45 (d, 1H), 7.35 (t, 2H), 7.28 (d, 2H), 7.20 (d, 2H), 6.38-6.54 (m, 10H) ), 6.28 (d, 2H), 2.46 (s, 3H), 2.18 (s, 3H), 2.09 (s, 6H), 2.02 (s, 6H), 2.01 (S, 3H), 1.77 (s, 3H), 1.68 (s, 6H).

[実施例10]
(錯体(A-1-10)の合成)
下記スキームに沿って、フェニルトリアゾール金属錯体(A-1-10)を合成した。
[Example 10]
(Synthesis of complex (A-1-10))
A phenyltriazole metal complex (A-1-10) was synthesized according to the following scheme.

Figure 0007083995000182
Figure 0007083995000182

Figure 0007083995000183
Figure 0007083995000183

J. Am. Chem. Soc., 2003, 125, 7377-7387に記載の方法で合成した化合物(F-1)0.364g(0.354mmol)、トリフルオロメタンスルホン酸銀0.20g(0.779mmol)、ジクロロメタン24ml、メタノール0.5mlをアルゴン雰囲気下、室温で17時間反応させた。反応溶液をセライト層に通してろ過し、得られたろ液を減圧濃縮して化合物(F-2)を得た。 0.364 g (0.354 mmol) of the compound (F-1) synthesized by the method described in J. Am. Chem. Soc., 2003, 125, 7377-7387, 0.20 g (0.779 mmol) of silver trifluoromethanesulfonate. ), 24 ml of dichloromethane and 0.5 ml of methanol were reacted at room temperature for 17 hours under an argon atmosphere. The reaction solution was passed through a cerite layer and filtered, and the obtained filtrate was concentrated under reduced pressure to obtain compound (F-2).

上記で得られた化合物(F-2)を全量、化合物(D-1)0.650g(1.770mmol)、エタノール9mlをアルゴン雰囲気下、75℃で94時間反応させた。室温まで冷却し析出した固体をろ過することで回収し、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチルの混合溶媒)を用いて分離精製した。得られた生成物をジクロロメタンとヘキサンを用いて再結晶した。フェニルトリアゾール金属錯体(A-1-10)の収率は0.2%であった。 The total amount of the compound (F-2) obtained above, 0.650 g (1.770 mmol) of the compound (D-1), and 9 ml of ethanol were reacted at 75 ° C. for 94 hours under an argon atmosphere. The solid that had been cooled to room temperature and precipitated was recovered by filtration, and separated and purified using silica gel chromatography (eluent: a mixed solvent of dichloromethane and ethyl acetate). The resulting product was recrystallized from dichloromethane and hexanes. The yield of the phenyltriazole metal complex (A-1-10) was 0.2%.

フェニルトリアゾール金属錯体(A-1-10)のH-NMRデータを以下に示す。
H-NMR(400MHz/Acetone-d6):δ(ppm)=8.50(dd,1H),7.55(d,2H),7.43-7.48(m,3H),7.33(d,2H),7.15(d,1H),7.03(d,1H),6.83-6.90(m,3H),6.76(d,1H),6.63-6.69(m,4H),6.60(t,1H),6.55(dd,1H),6.51(t,1H),6.46(d,1H),2.50(s,3H),2.48(s,3H),2.14(s,3H),1.91(s,3H),1.75(s,3H).
The 1 H-NMR data of the phenyltriazole metal complex (A-1-10) is shown below.
1 1 H-NMR (400 MHz / Acetone-d6): δ (ppm) = 8.50 (dd, 1H), 7.55 (d, 2H), 7.43-7.48 (m, 3H), 7. 33 (d, 2H), 7.15 (d, 1H), 7.03 (d, 1H), 6.83-6.90 (m, 3H), 6.76 (d, 1H), 6.63 -6.69 (m, 4H), 6.60 (t, 1H), 6.55 (dd, 1H), 6.51 (t, 1H), 6.46 (d, 1H), 2.50 ( s, 3H), 2.48 (s, 3H), 2.14 (s, 3H), 1.91 (s, 3H), 1.75 (s, 3H).

[比較例1]
(錯体(B-1-1)の合成)
国際公開第2013/151989号(特許文献3:特表2015-519306号)の合成例4の記載を参考に、下記スキームに沿ってフェニルトリアゾール金属錯体(B-1-1)を合成した。
[Comparative Example 1]
(Synthesis of complex (B-1-1))
The phenyltriazole metal complex (B-1-1) was synthesized according to the following scheme with reference to the description of Synthesis Example 4 of International Publication No. 2013/151989 (Patent Document 3: Japanese Patent Application Laid-Open No. 2015-511306).

Figure 0007083995000184
Figure 0007083995000184

Figure 0007083995000185
Figure 0007083995000185

窒素雰囲気下、濃塩酸(34g、333mmol)、H2O(56mL)の混合物に、2,4,6-トリメチルアニリン(15.0g、111mmol)を加えた。反応系内の温度を-8~-10℃に保ち、NaNO2(8.1g、117mmol)のH2O(20mL)溶液を25分かけて加えた。-10℃で30分間撹拌した後、内温を-6℃~-12℃に保ち、SnCl2(52.6 g、277mmol)の 濃塩酸(31mL)、水(31mL)溶液を4時間かけて滴下した。その後室温で3時間撹拌した。析出した固体をろ取し、飽和食塩水で洗浄した。得られた固体にTHF(300mL)を加え氷冷し、10M NaOH水溶液(200mL)を内温5~8℃で15分かけて滴下した。水(100mL)を加え、水層をTHF(50mL)で2回抽出し、あわせた有機層を無水硫酸ナトリウムで乾燥させた。これを氷冷し、4M HClジオキサン溶液(27mL、108mmol)を加え1時間撹拌した。析出した固体をろ取し、乾燥することにより、化合物(X-2) (4.3g, 収率21%)を得た。 Under a nitrogen atmosphere, 2,4,6-trimethylaniline (15.0 g, 111 mmol) was added to a mixture of concentrated hydrochloric acid (34 g, 333 mmol) and H 2 O (56 mL). The temperature in the reaction system was kept at -8 to -10 ° C, and a solution of NaNO 2 (8.1 g, 117 mmol) in H 2 O (20 mL) was added over 25 minutes. After stirring at -10 ° C for 30 minutes, the internal temperature was maintained at -6 ° C to -12 ° C, and a solution of SnCl 2 (52.6 g, 277 mmol) in concentrated hydrochloric acid (31 mL) and water (31 mL) was added dropwise over 4 hours. .. Then, the mixture was stirred at room temperature for 3 hours. The precipitated solid was collected by filtration and washed with saturated brine. THF (300 mL) was added to the obtained solid, the mixture was ice-cooled, and a 10 M NaOH aqueous solution (200 mL) was added dropwise at an internal temperature of 5 to 8 ° C. over 15 minutes. Water (100 mL) was added, the aqueous layer was extracted twice with THF (50 mL) and the combined organic layer was dried over anhydrous sodium sulfate. This was ice-cooled, 4M HCl dioxane solution (27 mL, 108 mmol) was added, and the mixture was stirred for 1 hour. The precipitated solid was collected by filtration and dried to give compound (X-2) (4.3 g, yield 21%).

Figure 0007083995000186
Figure 0007083995000186

化合物(A-1) (2.09g、13mmol)、化合物(X-2) (3.34g、18mmol)、DMF(30mL)の混合物に、室温で酢酸(7.4mL、130mmol)を加え、90℃で3時間加熱撹拌した。反応溶液を飽和炭酸水素ナトリウム水溶液(230mL)に注ぎ、析出した固体をろ取した。これをシリカゲルカラムクロマトグラフィー(シリカゲル18g、移動相:ヘキサン/酢酸エチル)により精製し、続いてヘキサンから再結晶することにより、化合物(X-3) (3.70g、収率80%)を得た。 Add acetic acid (7.4 mL, 130 mmol) to a mixture of compound (A-1) (2.09 g, 13 mmol), compound (X-2) (3.34 g, 18 mmol) and DMF (30 mL) at room temperature and add 3 at 90 ° C. The mixture was heated and stirred for hours. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution (230 mL), and the precipitated solid was collected by filtration. This was purified by silica gel column chromatography (silica gel 18 g, mobile phase: hexane / ethyl acetate), and subsequently recrystallized from hexane to obtain compound (X-3) (3.70 g, yield 80%). ..

化合物(X-3)の質量分析結果を以下に示す。
[M]:277
The mass spectrometric results of compound (X-3) are shown below.
[M]: 277

Figure 0007083995000187
Figure 0007083995000187

塩化イリジウム(III)n水和物(0.8g、2.1mmol)、化合物(X-3) (1.3g、4.7mmol)、2-エトキシエタノール(22mL)、H2O(7.5mL)の混合物をアルゴン雰囲気下、15時間加熱還流した。放冷後、水を加えてろ過した。得られた固体をジクロロメタンに溶かし、無水硫酸ナトリウムで乾燥させた。これをろ過、溶媒を減圧留去することにより、固体(1.71g)を得た。 Argon a mixture of iridium (III) chloride n-hydrate (0.8 g, 2.1 mmol), compound (X-3) (1.3 g, 4.7 mmol), 2-ethoxyethanol (22 mL), H 2 O (7.5 mL) Under the atmosphere, it was heated and refluxed for 15 hours. After allowing to cool, water was added and the mixture was filtered. The obtained solid was dissolved in dichloromethane and dried over anhydrous sodium sulfate. This was filtered and the solvent was distilled off under reduced pressure to obtain a solid (1.71 g).

この固体(0.84g)、トリフルオロメタンスルホン酸銀(0.56g、2.2mmol)、化合物(X-3) (1.2g、4.3mmol)の混合物に、アルゴン雰囲気下、ジエチレングリコールジメチルエーテル(10mL)を加え、155℃で13時間加熱撹拌した。この混合物にメタノールを加え、ろ過により黒色固体を得た。これをシリカゲルカラムクロマトグラフィー(シリカゲル3g、移動相:ジクロロメタン→ジクロロメタン/メタノール=100/1)により精製した。再度シリカゲルカラムクロマトグラフィー(シリカゲル4g、移動相:ジクロロメタン/酢酸エチル=25/1)により精製することにより、比較例1のフェニルトリアゾール金属錯体(B-1-1) (0.68g、収率61%)を黄色固体として得た。 To this mixture of solid (0.84 g), silver trifluoromethanesulfonate (0.56 g, 2.2 mmol) and compound (X-3) (1.2 g, 4.3 mmol), diethylene glycol dimethyl ether (10 mL) was added under an argon atmosphere, and 155. The mixture was heated and stirred at ° C for 13 hours. Methanol was added to this mixture and filtration was performed to obtain a black solid. This was purified by silica gel column chromatography (silica gel 3 g, mobile phase: dichloromethane → dichloromethane / methanol = 100/1). The phenyltriazole metal complex (B-1-1) of Comparative Example 1 (0.68 g, yield 61%) was purified again by silica gel column chromatography (silica gel 4 g, mobile phase: dichloromethane / ethyl acetate = 25/1). ) Was obtained as a yellow solid.

比較例1のフェニルトリアゾール金属錯体(B-1-1)のH-NMRデータを以下に示す。
H-NMR(400MHz/CDCl,TMS):δ(ppm)=7.03(d,6H),6.65(t,3H),6.56(t,6H),6.44(d,3H),2.39(s,9H),2.14(s,9H),2.09(s,9H),1.78(s,9H).
The 1 H-NMR data of the phenyltriazole metal complex (B-1-1) of Comparative Example 1 is shown below.
1 1 H-NMR (400 MHz / CDCl 3 , TMS): δ (ppm) = 7.03 (d, 6H), 6.65 (t, 3H), 6.56 (t, 6H), 6.44 (d). , 3H), 2.39 (s, 9H), 2.14 (s, 9H), 2.09 (s, 9H), 1.78 (s, 9H).

<PL(フォトルミネッセンス)測定> <PL (photoluminescence) measurement>

発光材料として実施例2~5で合成したフェニルトリアゾール金属錯体を用いて、PL測定を行った。THF(関東化学株式会社製:分光分析用グレード)に発光材料を1×10-6mol/Lになるように溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定した。 PL measurement was performed using the phenyltriazole metal complex synthesized in Examples 2 to 5 as a light emitting material. After dissolving the luminescent material in THF (manufactured by Kanto Chemical Co., Ltd .: grade for spectroscopic analysis) to a concentration of 1 × 10 -6 mol / L and aerating argon gas, the absolute PL quantum yield manufactured by Hamamatsu Photonics Co., Ltd. The emission spectrum (excitation wavelength: 350 nm) at room temperature was measured using a measuring device (C9920).

発光材料として実施例6で合成したフェニルトリアゾール金属錯体を用いて、PL測定を行った。トルエン(東京化成工業株式会社製:吸光分析用グレード)に発光材料を1×10-6mol/Lになるように溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定した。 PL measurement was performed using the phenyltriazole metal complex synthesized in Example 6 as a light emitting material. After dissolving the luminescent material in toluene (manufactured by Tokyo Kasei Kogyo Co., Ltd .: grade for absorption analysis) to a concentration of 1 × 10 -6 mol / L and aerating argon gas, the absolute PL quantum yield manufactured by Hamamatsu Photonics Co., Ltd. The emission spectrum (excitation wavelength: 350 nm) at room temperature was measured using a rate measuring device (C9920).

発光材料として実施例7で合成したフェニルトリアゾール金属錯体を用いて、PL測定を行った。THF(関東化学株式会社製:分光分析用グレード)に発光材料を1×10-6mol/Lになるように溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定した。 PL measurement was performed using the phenyltriazole metal complex synthesized in Example 7 as a light emitting material. After dissolving the luminescent material in THF (manufactured by Kanto Chemical Co., Ltd .: grade for spectroscopic analysis) to a concentration of 1 × 10 -6 mol / L and aerating argon gas, the absolute PL quantum yield manufactured by Hamamatsu Photonics Co., Ltd. The emission spectrum (excitation wavelength: 350 nm) at room temperature was measured using a measuring device (C9920).

発光材料として実施例8で合成したフェニルトリアゾール金属錯体を用いて、PL測定を行った。THF(関東化学株式会社製:分光分析用グレード)に発光材料を1×10-6mol/Lになるように溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定した。 PL measurement was performed using the phenyltriazole metal complex synthesized in Example 8 as a light emitting material. After dissolving the luminescent material in THF (manufactured by Kanto Chemical Co., Ltd .: grade for spectroscopic analysis) to a concentration of 1 × 10 -6 mol / L and aerating argon gas, the absolute PL quantum yield manufactured by Hamamatsu Photonics Co., Ltd. The emission spectrum (excitation wavelength: 350 nm) at room temperature was measured using a measuring device (C9920).

発光材料として実施例9で合成したフェニルトリアゾール金属錯体を用いて、PL測定を行った。THF(関東化学株式会社製:分光分析用グレード)に発光材料を1×10-6mol/Lになるように溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定した。 PL measurement was performed using the phenyltriazole metal complex synthesized in Example 9 as a light emitting material. After dissolving the luminescent material in THF (manufactured by Kanto Chemical Co., Ltd .: grade for spectroscopic analysis) to a concentration of 1 × 10 -6 mol / L and aerating argon gas, the absolute PL quantum yield manufactured by Hamamatsu Photonics Co., Ltd. The emission spectrum (excitation wavelength: 350 nm) at room temperature was measured using a measuring device (C9920).

発光材料として実施例10で合成したフェニルトリアゾール金属錯体を用いて、PL測定を行った。THF(関東化学株式会社製:分光分析用グレード)に発光材料を1×10-6mol/Lになるように溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定した。
CIE(x,y)、発光波長の極大値(λmax)、量子収率の結果を、以下の表1に記載した。表1の評価結果から、本発明の化合物はTHF中又はトルエン中で効率よく青色発光することがわかった。
PL measurement was performed using the phenyltriazole metal complex synthesized in Example 10 as a light emitting material. After dissolving the luminescent material in THF (manufactured by Kanto Chemical Co., Ltd .: grade for spectroscopic analysis) to a concentration of 1 × 10 -6 mol / L and aerating argon gas, the absolute PL quantum yield manufactured by Hamamatsu Photonics Co., Ltd. The emission spectrum (excitation wavelength: 350 nm) at room temperature was measured using a measuring device (C9920).
The results of CIE (x, y), maximum emission wavelength (λmax), and quantum yield are shown in Table 1 below. From the evaluation results in Table 1, it was found that the compound of the present invention efficiently emits blue light in THF or toluene.

Figure 0007083995000188
Figure 0007083995000188

<発光素子の作製>
発光材料として実施例1~4、9及び比較例1で合成したフェニルトリアゾール金属錯体を用いて、発光素子(すなわち、有機エレクトロルミネッセンス素子)を作製した。使用した材料の構造を以下に示す。
<Manufacturing of light emitting element>
A light emitting device (that is, an organic electroluminescence device) was produced using the phenyltriazole metal complex synthesized in Examples 1 to 4 and 9 and Comparative Example 1 as a light emitting material. The structure of the material used is shown below.

Figure 0007083995000189
Figure 0007083995000189

先ず、陽極として厚さ150nmのITO膜が形成されたガラス基材上に、通常の真空蒸着法を用いて、正孔注入層(HIL)として、真空中(圧力:1×10-4Pa)で膜厚30nmのHAT-CNを成膜した。 First, in a vacuum (pressure: 1 × 10 -4 Pa) as a hole injection layer (HIL) on a glass substrate on which an ITO film having a thickness of 150 nm was formed as an anode by using a normal vacuum vapor deposition method. A HAT-CN having a film thickness of 30 nm was formed in the film.

正孔輸送層(HTL)としてNPBを用いて薄膜(厚さ:30nm)を成膜した。 A thin film (thickness: 30 nm) was formed using NPB as the hole transport layer (HTL).

発光層(EML)として発光材料(15%の前記フェニルトリアゾール金属錯体)とホスト材料(85%の26DCzPPy)を用いて薄膜(厚さ:30nm)を成膜した。 A thin film (thickness: 30 nm) was formed using a light emitting material (15% of the phenyltriazole metal complex) and a host material (85% of 26DCzPPy) as the light emitting layer (EML).

電子輸送層(ETL)として50%のETL-A(ケミプロ化成社製ETL材料)と50%のLiqを用いて薄膜(厚さ:35nm)を成膜した。 A thin film (thickness: 35 nm) was formed using 50% ETL-A (ETL material manufactured by Chemipro Kasei Co., Ltd.) and 50% Liq as the electron transport layer (ETL).

電子注入層(EIL)としてLiqを用いて薄膜(厚さ:0.5nm)を成膜した。 A thin film (thickness: 0.5 nm) was formed using Liq as the electron injection layer (EIL).

最後に陰極としてAlを80nmの厚みになるまで蒸着した。 Finally, Al was deposited as a cathode until it had a thickness of 80 nm.

真空チャンバー内を大気圧に戻し、得られた積層体を蒸着装置から取り出し、下記の構造を有する有機エレクトロルミネッセンス素子を製造した。 The inside of the vacuum chamber was returned to atmospheric pressure, and the obtained laminate was taken out from the vapor deposition apparatus to manufacture an organic electroluminescence device having the following structure.

(実施例1のフェニルトリアゾール金属錯体(A-1-1)を用いて作製した発光素子)
ガラス基板/ITO(150nm)/HAT-CN(30nm)/NPB(30nm)/85%26DCzPPy:15%フェニルトリアゾール金属錯体(A-1-1)(30nm)/ETL-A(50%)、Liq(50%)(35nm)/Liq(0.5nm)/Al(80nm)。
(Light emitting device produced using the phenyltriazole metal complex (A-1-1) of Example 1)
Glass substrate / ITO (150 nm) / HAT-CN (30 nm) / NPB (30 nm) / 85% 26DCzPPy: 15% phenyltriazole metal complex (A-1-1) (30 nm) / ETL-A (50%), Liq (50%) (35 nm) / Liq (0.5 nm) / Al (80 nm).

(実施例2のフェニルトリアゾール金属錯体(A-1-2)を用いて作製した発光素子)
ガラス基板/ITO(150nm)/HAT-CN(30nm)/NPB(30nm)/85%26DCzPPy:15%フェニルトリアゾール金属錯体(A-1-2)(30nm)/ETL-A(50%)、Liq(50%)(35nm)/Liq(0.5nm)/Al(80nm)。
(Light emitting device produced using the phenyltriazole metal complex (A-1-2) of Example 2)
Glass substrate / ITO (150 nm) / HAT-CN (30 nm) / NPB (30 nm) / 85% 26DCzPPy: 15% phenyltriazole metal complex (A-1-2) (30 nm) / ETL-A (50%), Liq (50%) (35 nm) / Liq (0.5 nm) / Al (80 nm).

(実施例3のフェニルトリアゾール金属錯体(A-1-3)を用いて作製した発光素子)
ガラス基板/ITO(150nm)/HAT-CN(30nm)/NPB(30nm)/85%26DCzPPy:15%フェニルトリアゾール金属錯体(A-1-3)(30nm)/ETL-A(50%)、Liq(50%)(35nm)/Liq(0.5nm)/Al(80nm)。
(Light emitting device produced using the phenyltriazole metal complex (A-1-3) of Example 3)
Glass substrate / ITO (150 nm) / HAT-CN (30 nm) / NPB (30 nm) / 85% 26DCzPPy: 15% phenyltriazole metal complex (A-1-3) (30 nm) / ETL-A (50%), Liq (50%) (35 nm) / Liq (0.5 nm) / Al (80 nm).

(実施例4のフェニルトリアゾール金属錯体(A-1-4)を用いて作製した発光素子)
ガラス基板/ITO(150nm)/HAT-CN(30nm)/NPB(30nm)/85%26DCzPPy:15%フェニルトリアゾール金属錯体(A-1-4)(30nm)/ETL-A(50%)、Liq(50%)(35nm)/Liq(0.5nm)/Al(80nm)。
(Light emitting device produced using the phenyltriazole metal complex (A-1-4) of Example 4)
Glass substrate / ITO (150 nm) / HAT-CN (30 nm) / NPB (30 nm) / 85% 26DCzPPy: 15% phenyltriazole metal complex (A-1-4) (30 nm) / ETL-A (50%), Liq (50%) (35 nm) / Liq (0.5 nm) / Al (80 nm).

(実施例9のフェニルトリアゾール金属錯体(A-1-9)を用いて作製した発光素子)
ガラス基板/ITO(150nm)/HAT-CN(30nm)/NPB(30nm)/85%26DCzPPy:15%フェニルトリアゾール金属錯体(A-1-9)(30nm)/ETL-A(50%)、Liq(50%)(35nm)/Liq(0.5nm)/Al(80nm)。
(Light emitting device produced using the phenyltriazole metal complex (A-1-9) of Example 9)
Glass substrate / ITO (150 nm) / HAT-CN (30 nm) / NPB (30 nm) / 85% 26DCzPPy: 15% phenyltriazole metal complex (A-1-9) (30 nm) / ETL-A (50%), Liq (50%) (35 nm) / Liq (0.5 nm) / Al (80 nm).

(比較例1のフェニルトリアゾール金属錯体(B-1-1)を用いて作製した発光素子)
ガラス基板/ITO(150nm)/HAT-CN(30nm)/NPB(30nm)/85%26DCzPPy:15%フェニルトリアゾール金属錯体(B-1-1)(30nm)/ETL-A(50%)、Liq(50%)(35nm)/Liq(0.5nm)/Al(80nm)。
(Light emitting device manufactured by using the phenyltriazole metal complex (B-1-1) of Comparative Example 1)
Glass substrate / ITO (150 nm) / HAT-CN (30 nm) / NPB (30 nm) / 85% 26DCzPPy: 15% phenyltriazole metal complex (B-1-1) (30 nm) / ETL-A (50%), Liq (50%) (35 nm) / Liq (0.5 nm) / Al (80 nm).

作製した発光素子のCIE(x,y)値(国際照明委員会、1931年)、発光波長の極大値(λmax)、500cd/mにおける初期発光輝度が半減するまでの時間(LT50)を以下の表2に記載した。 The CIE (x, y) value (International Commission on Illumination, 1931) of the manufactured light emitting element, the maximum value of the light emitting wavelength (λmax), and the time until the initial light emitting brightness at 500 cd / m 2 is halved (LT50) are as follows. It is described in Table 2 of.

Figure 0007083995000190
Figure 0007083995000190

表2の結果に示される通り、本発明のフェニルトリアゾール金属錯体を用いて作製した発光素子は、従来の発光素子に比べて長寿命で青色燐光発光することができた。 As shown in the results in Table 2, the light emitting device produced by using the phenyltriazole metal complex of the present invention was able to emit blue phosphorescence with a longer life than the conventional light emitting device.

1・・・発光素子、10・・・基材、20・・・陽極、30・・・正孔注入層、40・・・正孔輸送層、50・・・発光層、60・・・電子輸送層、70・・・電子注入層、80・・・陰極 1 ... light emitting element, 10 ... base material, 20 ... anode, 30 ... hole injection layer, 40 ... hole transport layer, 50 ... light emitting layer, 60 ... electron Transport layer, 70 ... electron injection layer, 80 ... cathode

Claims (4)

下記式(A)で表されるフェニルトリアゾール金属錯体。
Figure 0007083995000191

(R、R、R、R及びRは、それぞれ独立して、水素原子、アルキル基又は下記式(2)で表される複素環であり、R、R、R、R及びRのうち少なくとも一つは下記式(2)で表される複素環である。
Figure 0007083995000192

(Y、Y、Y、Y及びYは、それぞれ独立して、CR又はNであり、Y、Y、Y、Y及びYのうち、少なくとも一つはNであり、Rは水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。*は結合部位を表す。)
、R、R、R、R、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。 はCR、X はNR 10 、X はNR 10 であり、XCであり、R及びR10は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン原子で置換されたアルキル基、アルキルオキシ基又はアリール基である。MはIr、Pt又はRhであり、mは1又は2であり、nは1又は2である。ただし、MがIr又はRhのとき、m+n=3であり、MがPtのとき、m+n=2である。)
A phenyltriazole metal complex represented by the following formula (A).
Figure 0007083995000191

( RA , RB , RC , RD and RE are each independently a hydrogen atom, an alkyl group or a heterocycle represented by the following formula (2), and are RA , RB , RC . , R D and RE at least one is a heterocycle represented by the following formula (2).
Figure 0007083995000192

(YA, YB , YC , YD and YE are independently CR or N , and at least one of YA, YB , YC , YD and YE is N. R is a hydrogen atom, a halogen atom, an alkyl group, an alkyl group substituted with a halogen atom, an alkyloxy group or an aryl group. * Represents a bond site.)
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independent alkyl groups substituted with hydrogen atoms, halogen atoms, alkyl groups, and halogen atoms, respectively. , Alkyloxy group or aryl group. X 1 is CR, X 2 is NR 10 , X 3 is NR 10 , X 4 is C, and R and R 10 are independently substituted with hydrogen atom, halogen atom, alkyl group, and halogen atom, respectively. It is an alkyl group, an alkyloxy group or an aryl group. M is Ir, Pt or Rh, m is 1 or 2, and n is 1 or 2 . However, when M is Ir or Rh, m + n = 3, and when M is Pt, m + n = 2 . )
及びRがアルキル基である、請求項に記載のフェニルトリアゾール金属錯体。 The phenyltriazole metal complex according to claim 1 , wherein RA and RE are alkyl groups. 、R又はRが前記式(2)で表される複素環である、請求項又はに記載のフェニルトリアゾール金属錯体。 The phenyltriazole metal complex according to claim 1 or 2 , wherein RB , RC or RD is a heterocycle represented by the above formula (2). 陽極と、陰極と、該陽極と該陰極との間に設けられた、請求項のうちいずれか一項に記載のフェニルトリアゾール金属錯体を含む層と、を備える発光素子。 A light emitting device comprising an anode, a cathode, and a layer provided between the anode and the cathode and containing the phenyltriazole metal complex according to any one of claims 1 to 3 .
JP2018097294A 2018-05-21 2018-05-21 Phenyltriazole metal complex and light emitting device Active JP7083995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097294A JP7083995B2 (en) 2018-05-21 2018-05-21 Phenyltriazole metal complex and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097294A JP7083995B2 (en) 2018-05-21 2018-05-21 Phenyltriazole metal complex and light emitting device

Publications (2)

Publication Number Publication Date
JP2019202943A JP2019202943A (en) 2019-11-28
JP7083995B2 true JP7083995B2 (en) 2022-06-14

Family

ID=68726129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097294A Active JP7083995B2 (en) 2018-05-21 2018-05-21 Phenyltriazole metal complex and light emitting device

Country Status (1)

Country Link
JP (1) JP7083995B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147450A (en) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd Metal complex and light-emitting element including the metal complex
JP2013221157A (en) 2005-05-06 2013-10-28 Universal Display Corp Stabilizing oled material and device with improved stability
JP2013235994A (en) 2012-05-10 2013-11-21 Konica Minolta Inc Organic electroluminescent element, display device, and lighting device
WO2016125560A1 (en) 2015-02-03 2016-08-11 住友化学株式会社 Composition and light-emitting element using same
JP2017108135A (en) 2015-12-07 2017-06-15 住友化学株式会社 Light emitting device and metal complex
WO2017170812A1 (en) 2016-03-31 2017-10-05 コニカミノルタ株式会社 Luminescent thin film and organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221157A (en) 2005-05-06 2013-10-28 Universal Display Corp Stabilizing oled material and device with improved stability
JP2013147450A (en) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd Metal complex and light-emitting element including the metal complex
JP2013235994A (en) 2012-05-10 2013-11-21 Konica Minolta Inc Organic electroluminescent element, display device, and lighting device
WO2016125560A1 (en) 2015-02-03 2016-08-11 住友化学株式会社 Composition and light-emitting element using same
JP2017108135A (en) 2015-12-07 2017-06-15 住友化学株式会社 Light emitting device and metal complex
WO2017170812A1 (en) 2016-03-31 2017-10-05 コニカミノルタ株式会社 Luminescent thin film and organic electroluminescent element

Also Published As

Publication number Publication date
JP2019202943A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
KR102360548B1 (en) Organic electroluminescent materials and devices
JP5324229B2 (en) Metal complexes of cyclometalated imidazo [1,2-f] phenanthridine and diimidazo [1,2-a: 1 &#39;, 2&#39;-c] quinazoline ligands and their isoelectronic and benzofused analogs
KR102444004B1 (en) Organic electroluminescent materials and devices
JP5208391B2 (en) Metal complex, light emitting material and light emitting device
KR20180040130A (en) Light-emitting device, electronic device, and lighting device utilizing phosphorescence
EP2007780B1 (en) Light-emitting material
JP6765107B2 (en) Method for producing iridium complex, iridium complex and luminescent material composed of the compound
KR102034902B1 (en) Phosphorescent emitters with phenylimidazole ligands
WO2003084973A1 (en) Metal complexes and organic electroluminescent devices
WO2008056799A1 (en) Iridium complex compound, organic electroluminescent device obtained by using the same, and uses of the device
WO2007046201A1 (en) Metal complex, light-emitting material, and light-emitting device
WO2007102350A1 (en) Metal complex, polymeric compound, and element comprising these
WO2007042474A2 (en) Light-emitting material
Zhang et al. Photo-and electro-luminescence of four cuprous complexes with sterically demanding and hole transmitting diimine ligands
KR101252603B1 (en) Deep-Blue Phosphorescent Iridium(III) Complexes Utilizing N-Methylimidazolyltriazoles
JP2023552218A (en) Metal complexes and their applications
KR102287786B1 (en) Organic electroluminescent materials and devices
KR20200130669A (en) Heteroleptic osmium complex and method of making the same
KR101335548B1 (en) platinum complex for phosphorescent materials and organic electroluminescent device containing the same
JP7083995B2 (en) Phenyltriazole metal complex and light emitting device
JP2005023071A (en) Metal coordination compound, polymer composition, and organic electroluminescent element using them
JP5416097B2 (en) Luminescent substance
JP2005023070A (en) Metal coordination compound, polymer composition and organoelectroluminescent element obtained using the same
JP6842096B2 (en) An iridium complex having a phenyltriazole ligand and a luminescent material using the compound
JP2019169641A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7083995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150