JP7083185B2 - Biological information calculation system - Google Patents

Biological information calculation system Download PDF

Info

Publication number
JP7083185B2
JP7083185B2 JP2020206629A JP2020206629A JP7083185B2 JP 7083185 B2 JP7083185 B2 JP 7083185B2 JP 2020206629 A JP2020206629 A JP 2020206629A JP 2020206629 A JP2020206629 A JP 2020206629A JP 7083185 B2 JP7083185 B2 JP 7083185B2
Authority
JP
Japan
Prior art keywords
unit
data
pulse wave
extraction
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020206629A
Other languages
Japanese (ja)
Other versions
JP2022042920A (en
Inventor
進太郎 倉沢
駿 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSST CO., LTD.
Original Assignee
SSST CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020148048A external-priority patent/JP6851665B1/en
Application filed by SSST CO., LTD. filed Critical SSST CO., LTD.
Priority to JP2020206629A priority Critical patent/JP7083185B2/en
Publication of JP2022042920A publication Critical patent/JP2022042920A/en
Application granted granted Critical
Publication of JP7083185B2 publication Critical patent/JP7083185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、生体情報演算システムに関する。 The present invention relates to a biometric information calculation system.

従来、ユーザから血液を採取する侵襲測定方法では、ユーザから生体情報を直接測定する場合がある。例えば生体情報として血糖値を測定する際には、穿刺によって血液を採取し、酵素電極法などの血糖値センサで測定する。このような生体情報の測定のための侵襲測定方法は、血液採取においてユーザの心身への負担が生じる。 Conventionally, in the invasive measurement method of collecting blood from a user, biological information may be directly measured from the user. For example, when measuring a blood glucose level as biological information, blood is collected by puncture and measured by a blood glucose level sensor such as an enzyme electrode method. Such an invasive measurement method for measuring biological information causes a burden on the user's mind and body in blood collection.

このため、ユーザの心身への負担を軽減するために非侵襲生体情報測定法の技術が必要とされている。この非侵襲生体情報測定法によれば、例えばひずみセンサ、ジャイロセンサ、光電容積脈波計によって測定された脈波の波形信号から、予め定めた脈波と生体情報の相関関係に基づき、ユーザの生体情報を求める技術が注目されている。 Therefore, a technique for non-invasive biometric information measurement is required in order to reduce the burden on the user's mind and body. According to this non-invasive biometric information measurement method, for example, from a waveform signal of a pulse wave measured by a strain sensor, a gyro sensor, or a photoelectric volume pulse wave meter, a user can use a predetermined correlation between the pulse wave and the biometric information. Technology for obtaining biometric information is attracting attention.

また、脈波には血糖値や血圧などの様々な生体情報と相関関係があることを利用し、脈波の波形信号から非侵襲的方法で生体情報を取得する生体情報推定装置及びその方法が提案されている(例えば特許文献1参照)。 In addition, a biometric information estimation device and its method that acquire biometric information from the waveform signal of the pulse wave by a non-invasive method by utilizing the fact that the pulse wave has a correlation with various biometric information such as blood pressure level and blood pressure. It has been proposed (see, for example, Patent Document 1).

特許文献1では、生体信号から複数の特徴値を抽出して、特徴値に基づいてスケール因子を決定し、スケール因子と特徴値に基づいて正確かつ安定した生体情報を推定する生体情報推定装置及びその方法が開示されている。 In Patent Document 1, a biological information estimation device that extracts a plurality of feature values from biological signals, determines a scale factor based on the feature values, and estimates accurate and stable biological information based on the scale factor and the feature values. The method is disclosed.

特開2019-141583号公報Japanese Unexamined Patent Publication No. 2019-141583

ここで、脈波の波形信号は、抽出条件や処理の方法に応じて、取得できる生体情報の数値にばらつきが生じる場合がある。例えば抽出条件として微分を行った脈波を処理した場合と、抽出条件として微分を行わなかった脈波を処理した場合とを比較したとき、取得できる生体情報の数値にばらつきが生じることが懸念される。すなわち、脈波の波形信号を利用して十分な精度がある生体情報を取得するためには、複数種類の抽出条件等を経て同時に出力された複数の生体情報から、脈波の波形信号を多角的に評価する必要がある。 Here, in the waveform signal of the pulse wave, the numerical value of the biometric information that can be acquired may vary depending on the extraction conditions and the processing method. For example, when comparing the case where the pulse wave differentiated as the extraction condition is processed and the case where the pulse wave without differentiation is processed as the extraction condition, there is a concern that the numerical value of the biometric information that can be acquired may vary. To. That is, in order to acquire biometric information with sufficient accuracy by using the pulse wave waveform signal, the pulse wave waveform signal is polygonized from a plurality of biometric information output simultaneously through a plurality of types of extraction conditions and the like. It is necessary to evaluate it.

一方、特許文献1では、1つの脈波の波形信号に対して、複数種類の抽出条件等を経て、複数の生体情報を同時に出力することが開示されていない。このため、特許文献1の開示技術では抽出条件等によって取得できる生体情報にばらつきが生じるので、十分な精度が得られないという問題点があった。 On the other hand, Patent Document 1 does not disclose that a plurality of biological information is simultaneously output for a waveform signal of one pulse wave through a plurality of types of extraction conditions and the like. For this reason, the disclosure technique of Patent Document 1 has a problem that sufficient accuracy cannot be obtained because the biometric information that can be acquired varies depending on the extraction conditions and the like.

そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、多角的な評価によって高精度な評価結果を得ることができる生体情報演算システムを提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a biometric information calculation system capable of obtaining highly accurate evaluation results by multifaceted evaluation. It is in.

第1発明に係る生体情報演算システムは、速度脈波を脈波信号として取得する取得手段と、第1抽出条件を参照し、前記取得手段によって取得された脈波信号に基づく第1評価データを抽出する第1抽出手段と、前記第1抽出条件に紐づく第1処理条件を参照し、前記第1抽出手段によって抽出された第1評価データに対する第1血糖値を、第1データとして取得する第1データ取得手段と、第2抽出条件を参照し、前記取得手段によって取得された脈波信号に基づく第2評価データを抽出する第2抽出手段と、前記第2抽出条件に紐づく第2処理条件を参照し、前記第2抽出手段によって抽出された第2評価データに対する、前記第1データと異なる種類の生体情報からなる第2データを取得する第2データ取得手段と、を備え、前記第1評価データと、前記第2評価データとは、同一の前記脈波信号に基づいて抽出されることを特徴とする。 The biological information calculation system according to the first invention refers to an acquisition means for acquiring a velocity pulse wave as a pulse wave signal and a first extraction condition, and obtains first evaluation data based on the pulse wave signal acquired by the acquisition means. With reference to the first extraction means to be extracted and the first processing condition associated with the first extraction condition, the first blood glucose level for the first evaluation data extracted by the first extraction means is acquired as the first data . The first data acquisition means, the second extraction means for extracting the second evaluation data based on the pulse wave signal acquired by the acquisition means with reference to the second extraction condition, and the second extraction means associated with the second extraction condition. The second data acquisition means for acquiring the second data consisting of biological information of a type different from the first data with respect to the second evaluation data extracted by the second extraction means with reference to the processing conditions is provided. The first evaluation data and the second evaluation data are characterized in that they are extracted based on the same pulse wave signal.

第2発明に係る生体情報演算システムは、第1発明において、前記第1抽出手段は、前記取得手段によって取得された脈波信号を微分しない前記第1抽出条件を参照し、前記第2抽出手段は、前記取得手段によって取得された脈波信号を微分する前記第2抽出条件を参照することを特徴とする。 In the first invention, the biological information calculation system according to the second invention refers to the first extraction condition in which the first extraction means does not differentiate the pulse wave signal acquired by the acquisition means, and the second extraction means. Is characterized by referring to the second extraction condition for differentiating the pulse wave signal acquired by the acquisition means.

第3発明に係る生体情報演算システムは、第1発明又は第2発明において、前記第1データ取得手段は、予め取得された第1評価データと生体情報の実測値との相関関係に基づいて構築された第1検量モデルを用いて、前記第1抽出手段によって抽出された第1評価データに対する第1データを取得する第1回帰分析手段を有し、前記第1回帰分析手段は、前記第1検量モデルを用いて、前記第1抽出手段によって抽出された第1評価データに対する第1血糖値を、前記第1データとして取得することを特徴とする。 The biological information calculation system according to the third invention is constructed in the first invention or the second invention by the first data acquisition means based on the correlation between the first evaluation data acquired in advance and the measured value of the biological information. The first regression analysis means has a first regression analysis means for acquiring the first data for the first evaluation data extracted by the first extraction means by using the first calibration model, and the first regression analysis means is said to be the first. Using a calibration model, the first blood glucose level for the first evaluation data extracted by the first extraction means is acquired as the first data.

第1発明~第3発明によれば、本発明の生体情報演算システムは、第1抽出条件を参照した第1抽出手段によって、脈波信号に基づく第1評価データを抽出し、さらに第1抽出条件に紐づく第1処理条件を参照した第1データ取得手段によって、第1評価データに対する第1データを取得する。また、本発明の生体情報演算システムは、第2抽出条件を参照した第2抽出手段によって、脈波信号に基づく第2評価データを抽出し、さらに第2抽出条件に紐づく第2処理条件を参照した第2データ取得手段によって、第2評価データに対する第2データを取得する。これらによって、入力された1つの脈波信号から、異なる抽出方法及び処理方法を施した複数の生体情報を同時に取得できる。この複数の生体情報によって、一つの脈波信号で生体情報の多角的な評価によって高精度な評価結果を得ることが可能になる。 According to the first to third inventions, the biometric information calculation system of the present invention extracts the first evaluation data based on the pulse wave signal by the first extraction means with reference to the first extraction condition, and further first extracts. The first data for the first evaluation data is acquired by the first data acquisition means referring to the first processing condition associated with the condition. Further, the biometric information calculation system of the present invention extracts the second evaluation data based on the pulse wave signal by the second extraction means with reference to the second extraction condition, and further sets the second processing condition associated with the second extraction condition. The second data for the second evaluation data is acquired by the referenced second data acquisition means. As a result, it is possible to simultaneously acquire a plurality of biometric information to which different extraction methods and processing methods are applied from one input pulse wave signal. With this plurality of biometric information, it is possible to obtain highly accurate evaluation results by multifaceted evaluation of biometric information with one pulse wave signal.

特に、第2発明によれば、本発明の生体情報演算システムは、第1抽出手段で脈波信号を微分することにより、加速度脈波を第1評価データとして抽出する。また、本発明の生体情報演算システムは、第2抽出手段で脈波信号を微分しないことにより、速度脈波を第2評価データとして抽出する。これらによって、一つの脈波信号から加速度脈波と速度脈波を取得できる。加速度脈波と速度脈波から得られる特徴点が異なるため、これらのデータから生体情報を取得することにより、生体情報のより多角的な評価によって高精度な評価結果を得ることが可能になる。 In particular, according to the second invention, the biometric information calculation system of the present invention extracts the acceleration pulse wave as the first evaluation data by differentiating the pulse wave signal by the first extraction means. Further, the biometric information calculation system of the present invention extracts the velocity pulse wave as the second evaluation data by not differentiating the pulse wave signal by the second extraction means. With these, the acceleration pulse wave and the velocity pulse wave can be acquired from one pulse wave signal. Since the feature points obtained from the acceleration pulse wave and the velocity pulse wave are different, by acquiring the biological information from these data, it becomes possible to obtain a highly accurate evaluation result by more multifaceted evaluation of the biological information.

特に、第3発明によれば、第1回帰分析手段は、第1検量モデルを用いて、第1抽出手段によって抽出された第1評価データに対する第1血糖値を、前記第1データとして取得する。これによって、誤検出の少ない速度脈波を第1評価データとして用いることができ、血糖値を算出することができるため、さらに高精度な評価結果を得ることが可能になる。 In particular, according to the third invention, the first regression analysis means uses the first calibration model to acquire the first blood glucose level for the first evaluation data extracted by the first extraction means as the first data. .. As a result, the velocity pulse wave with less erroneous detection can be used as the first evaluation data, and the blood glucose level can be calculated, so that more accurate evaluation results can be obtained.

図1は、本実施形態における生体情報演算システムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a biometric information calculation system according to the present embodiment. 図2は、本実施形態におけるセンサの具体的な構成例を示す図である。FIG. 2 is a diagram showing a specific configuration example of the sensor in the present embodiment. 図3は、リストバンドに埋め込まれたセンサの一例を示す図である。FIG. 3 is a diagram showing an example of a sensor embedded in a wristband. 図4は、本実施形態における電子機器の具体的な構成例を示す図である。FIG. 4 is a diagram showing a specific configuration example of the electronic device in the present embodiment. 図5は、本実施形態における電子機器の生体情報演算プログラムを実現するためのシーケンスを示す図である。FIG. 5 is a diagram showing a sequence for realizing the biometric information calculation program of the electronic device in the present embodiment. 図6は、本実施形態における第1抽出部及び第1データ取得部の具体的な構成例を示す図である。FIG. 6 is a diagram showing a specific configuration example of the first extraction unit and the first data acquisition unit in the present embodiment. 図7は、本実施形態における第2抽出部及び第2データ取得部の具体的な構成例を示す図である。FIG. 7 is a diagram showing a specific configuration example of the second extraction unit and the second data acquisition unit in the present embodiment. 図8は、本実施形態における生体情報演算システムの一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of the biometric information calculation system according to the present embodiment. 図9は、本実施形態における加速度脈波の分類パターンの一例を示す図である。FIG. 9 is a diagram showing an example of the classification pattern of the acceleration pulse wave in the present embodiment. 図10は、本実施形態における速度脈波の分類パターンの一例を示す図である。FIG. 10 is a diagram showing an example of a classification pattern of velocity pulse waves in the present embodiment.

以下、本発明を適用した生体情報演算システム1について、図面を参照しながら詳細に説明をする。 Hereinafter, the biological information calculation system 1 to which the present invention is applied will be described in detail with reference to the drawings.

本発明を適用した生体情報演算システム1は、例えば図1に示すような構成により具現化される。この生体情報演算システム1は、電子機器2と、この電子機器2に対して公衆通信網3を介して接続されるサーバ4、センサ5とを備えている。 The biometric information calculation system 1 to which the present invention is applied is embodied by, for example, the configuration shown in FIG. The biometric information calculation system 1 includes an electronic device 2, a server 4 connected to the electronic device 2 via a public communication network 3, and a sensor 5.

公衆通信網3は、電子機器2と、サーバ4と、センサ5とを通信回線を介して接続されるインターネット網等である。公衆通信網3は、生体情報演算システム1を一定の狭いエリア内で運用する場合には、LAN(Local Area Network)で構成されてもよい。また、公衆通信網3は、いわゆる光ファイバ通信網で構成されてもよい。また、この公衆通信網3は、有線通信網に限定されるものではなく、無線通信網で実現されてもよい。 The public communication network 3 is an Internet network or the like in which an electronic device 2, a server 4, and a sensor 5 are connected via a communication line. When the biometric information calculation system 1 is operated in a certain narrow area, the public communication network 3 may be configured by a LAN (Local Area Network). Further, the public communication network 3 may be configured by a so-called optical fiber communication network. Further, the public communication network 3 is not limited to the wired communication network, and may be realized by a wireless communication network.

サーバ4は、公衆通信網3を介して送られてきた情報が蓄積されたデータベースで構築されている。また、このサーバ4は、電子機器2からの要求に基づいて、この蓄積した情報を公衆通信網3を介して電子機器2へと送信する。 The server 4 is constructed of a database in which information sent via the public communication network 3 is stored. Further, the server 4 transmits the accumulated information to the electronic device 2 via the public communication network 3 based on the request from the electronic device 2.

図2は、センサ5の具体的な構成例を示している。センサ5は、取得部50と、通信I/F51(通信I/F27)と、メモリ52と、命令部53とがそれぞれ内部バス54で接続されている。センサ5は、例えば図3のようにリストバンド55に埋め込まれ、リストバンド55は、手首に装着される。それによって、センサ5は、取得部50が手首の脈に接触するので、脈波信号を容易に測定できる。また、センサ5は、衣服に埋め込まれていてもよい。また、センサ5は、ユーザとして、人間に取り付けられることを想定して説明しているが、人間に限らず、ペットや牛、豚などの家畜、又は養殖中の魚類にも使用してもよい。 FIG. 2 shows a specific configuration example of the sensor 5. In the sensor 5, the acquisition unit 50, the communication I / F 51 (communication I / F 27), the memory 52, and the command unit 53 are connected by an internal bus 54, respectively. The sensor 5 is embedded in the wristband 55 as shown in FIG. 3, for example, and the wristband 55 is worn on the wrist. As a result, the sensor 5 can easily measure the pulse wave signal because the acquisition unit 50 comes into contact with the wrist pulse. Further, the sensor 5 may be embedded in clothes. Further, although the sensor 5 is described on the assumption that it can be attached to a human as a user, it may be used not only for humans but also for livestock such as pets, cows and pigs, or fish being cultivated. ..

脈波信号は、ユーザの速度脈波に対応するデジタル信号又はアナログ信号を示し、例えば縦軸を速度脈波の振幅、横軸を時間とした平面上のグラフに波形としてプロットでき、振幅の大きさの時間変化を可視化した信号として扱うことができる。 The pulse wave signal indicates a digital signal or an analog signal corresponding to the user's velocity pulse wave. For example, the vertical axis can be plotted as a waveform on a plane graph with the amplitude of the velocity pulse wave and the horizontal axis with time, and the amplitude can be large. It can be treated as a signal that visualizes the change over time.

取得部50は、ユーザから脈波信号を測定するための少なくとも一つの測定器を備える。例えば、取得部50は、ファイバブラッググレーティング(FBG)センサなどのひずみセンサと、ジャイロセンサと、脈波信号測定のための1つ以上の電極と、光電容積脈波(PPG)センサと、圧力センサと、光源及び検出器を含んだ光検出モジュールとの内の少なくとも1つを含む測定器を備えている。取得部50は、測定器を通じてユーザと直接インターフェースされて脈波信号を取得することができる。取得部50は、取得した脈波信号を通信I/F51、又はメモリ52へと送信する。 The acquisition unit 50 includes at least one measuring instrument for measuring a pulse wave signal from the user. For example, the acquisition unit 50 includes a strain sensor such as a fiber Bragg grating (FBG) sensor, a gyro sensor, one or more electrodes for measuring pulse wave signals, a photoelectric volume pulse wave (PPG) sensor, and a pressure sensor. A measuring instrument including at least one of a light source and a light detection module including a detector. The acquisition unit 50 can directly interface with the user through the measuring instrument to acquire the pulse wave signal. The acquisition unit 50 transmits the acquired pulse wave signal to the communication I / F 51 or the memory 52.

通信I/F51は、公衆通信網3を介して取得部50から送信された脈波信号を電子機器2、又はサーバ4に送信する。また、通信I/F51は、公衆通信網3と接続するための回線制御回路や、電子機器2及びサーバ4との間でデータ通信を行うための信号変換回路等が実装されている。通信I/F51は、内部バス54からの各種命令に変換処理を施して、これを公衆通信網3側へ送出するとともに、公衆通信網3からのデータを受信した場合には、これに所定の変換処理を施して内部バス54へ送信する。 The communication I / F 51 transmits a pulse wave signal transmitted from the acquisition unit 50 via the public communication network 3 to the electronic device 2 or the server 4. Further, the communication I / F 51 is equipped with a line control circuit for connecting to the public communication network 3, a signal conversion circuit for performing data communication with the electronic device 2 and the server 4, and the like. The communication I / F 51 performs conversion processing on various instructions from the internal bus 54 and sends them to the public communication network 3 side, and when data from the public communication network 3 is received, the communication I / F 51 is predetermined. It is converted and transmitted to the internal bus 54.

メモリ52は、取得部50から送信された脈波信号を保存する。メモリ52は、公衆通信網3を介して接続される他の末端装置から命令を受けることにより、保存した脈波信号を通信I/F51へ送信する。 The memory 52 stores the pulse wave signal transmitted from the acquisition unit 50. The memory 52 transmits the stored pulse wave signal to the communication I / F 51 by receiving a command from another terminal device connected via the public communication network 3.

命令部53は、取得部50へ脈波信号の取得の命令を入力するための操作ボタンやキーボード等で構成される。この命令部53は、脈波信号の取得の命令を受け付けた場合に、これを取得部50に通知する。この通知を受けた取得部50は、脈波信号を取得する。 The command unit 53 includes an operation button, a keyboard, and the like for inputting a command for acquiring a pulse wave signal to the acquisition unit 50. When the command unit 53 receives the command for acquiring the pulse wave signal, the command unit 53 notifies the acquisition unit 50 of the command. Upon receiving this notification, the acquisition unit 50 acquires the pulse wave signal.

電子機器2は、例えば、パーソナルコンピュータ(PC)、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等であり、少なくともユーザの操作に基づいて、公衆通信網3を介して通信可能なデバイスである。なお、この電子機器2は、センサ5を内蔵し、センサ5に対して公衆通信網3を介した通信を行わない機器であってもよい。以下の例では、この電子機器2に、PCを適用する場合を例にとり説明をする。 The electronic device 2 is, for example, a personal computer (PC), a mobile phone, a smartphone, a tablet terminal, a wearable terminal, or the like, and is a device capable of communicating via a public communication network 3 at least based on a user's operation. The electronic device 2 may be a device that has a built-in sensor 5 and does not communicate with the sensor 5 via the public communication network 3. In the following example, a case where a PC is applied to the electronic device 2 will be described as an example.

図4は、電子機器2の具体的な構成例を示している。この電子機器2は、ROM(Read Only Memory)20と、RAM(Random Access Memory)21と、CPU(Central Processing Unit)22と、操作部23と、出力I/F16と、記憶部24と、データ入出力部25と、通信I/F27とが内部バス26にそれぞれ接続されている。また、出力I/F16には、表示部28が接続されている。 FIG. 4 shows a specific configuration example of the electronic device 2. The electronic device 2 includes a ROM (Read Only Memory) 20, a RAM (Random Access Memory) 21, a CPU (Central Processing Unit) 22, an operation unit 23, an output I / F 16, a storage unit 24, and data. The input / output unit 25 and the communication I / F 27 are connected to the internal bus 26, respectively. Further, a display unit 28 is connected to the output I / F 16.

また、電子機器2は、CPU22が、RAM21を作業領域として、記憶部24等に記憶された生体情報演算プログラムを実行することにより、脈波信号から生体情報を取得する。 Further, in the electronic device 2, the CPU 22 acquires biometric information from the pulse wave signal by executing the biometric information calculation program stored in the storage unit 24 or the like with the RAM 21 as the working area.

ROM20は、電子機器2全体のハードウェア資源を制御するためのプログラムが格納されている。 The ROM 20 stores a program for controlling the hardware resources of the entire electronic device 2.

RAM21は、電子機器2全体のハードウェア資源を制御するときの各種命令を一時的に記憶するデータの蓄積や展開等に使用する作業領域である。 The RAM 21 is a work area used for storing and expanding data that temporarily stores various instructions when controlling the hardware resources of the entire electronic device 2.

CPU22は、内部バス26を介して制御信号を送信することにより、電子機器2内に実装された各構成要素を制御するためのいわゆる中央演算ユニットである。また、このCPU22は、操作部23を介したユーザの操作に応じて各種制御用の指令を、内部バス26を介して伝達する。 The CPU 22 is a so-called central arithmetic unit for controlling each component mounted in the electronic device 2 by transmitting a control signal via the internal bus 26. Further, the CPU 22 transmits various control commands via the internal bus 26 according to the user's operation via the operation unit 23.

操作部23は、各種制御用の指令を入力するためのマウスやキーボード、タッチパネル、及び操作ボタン等のデバイスで構成されている。操作部23は、ユーザが実際に取得したい生体情報に関する情報が入力される他、生体情報演算プログラムを実行するための実行命令がユーザから入力される。操作部23は、上述した実行命令がユーザにより入力された場合には、これをCPU22に通知する。この通知を受けたCPU22は、生体情報演算プログラムを記憶部24から読み出して実行する。 The operation unit 23 is composed of devices such as a mouse, a keyboard, a touch panel, and operation buttons for inputting various control commands. In the operation unit 23, information about the biometric information that the user actually wants to acquire is input, and an execution command for executing the biometric information calculation program is input from the user. When the above-mentioned execution command is input by the user, the operation unit 23 notifies the CPU 22 of this. Upon receiving this notification, the CPU 22 reads the biometric information calculation program from the storage unit 24 and executes it.

出力I/F16は、各種情報の表示を制御する。出力I/F16はCPU22による制御に基づいて、表示画像を作り出すグラフィックコントローラにより構成されている。この出力I/F16に接続される表示部28は、例えば、液晶ディスプレイ(LCD)等によって実現される。 The output I / F 16 controls the display of various information. The output I / F 16 is configured by a graphic controller that creates a display image based on control by the CPU 22. The display unit 28 connected to the output I / F 16 is realized by, for example, a liquid crystal display (LCD) or the like.

記憶部24は、ハードディスク等に代表される記録媒体であり、実行すべき生体情報取得プログラムが格納されている。記憶部24は、ハードディスクで構成される場合において、CPU22による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。記憶部24はCPU22により読み出されて生体情報取得プログラムを出力されることになる。 The storage unit 24 is a recording medium typified by a hard disk or the like, and stores a biometric information acquisition program to be executed. When the storage unit 24 is composed of a hard disk, predetermined information is written to each address based on the control by the CPU 22, and is read out as needed. The storage unit 24 is read by the CPU 22 and outputs a biometric information acquisition program.

通信I/F27は、公衆通信網3と接続するための回線制御回路や、他の端末装置との間でデータ通信を行うための信号変換回路等が実装されている。通信I/F27は、内部バス26からの各種命令に変換処理を施して、これを公衆通信網3側へ送出するとともに、公衆通信網3からのデータを受信した場合には、これに所定の変換処理を施して、内部バス26、又はCPU22へ送信する。 The communication I / F 27 is equipped with a line control circuit for connecting to the public communication network 3, a signal conversion circuit for performing data communication with other terminal devices, and the like. The communication I / F 27 performs conversion processing on various instructions from the internal bus 26 and sends them to the public communication network 3 side, and when data from the public communication network 3 is received, the communication I / F 27 is predetermined. It is converted and transmitted to the internal bus 26 or the CPU 22.

データ入出力部25は、外部から電子機器2内へデータを入力し、又は電子機器2において生成されたデータを外部へ出力する。データ入出力部25は、USB(Universal Serial Bus)メモリや、記録媒体との間でデータを入力するためのインターフェースとして構成されている。 The data input / output unit 25 inputs data from the outside into the electronic device 2, or outputs the data generated in the electronic device 2 to the outside. The data input / output unit 25 is configured as an interface for inputting data to / from a USB (Universal Serial Bus) memory or a recording medium.

本発明を適用した生体情報演算システム1は、電子機器2内にインストールされた生体情報演算プログラムを介して実行していくこととなる。即ち、ユーザは、電子機器2、又はセンサ5を操作し、電子機器2にインストールされている生体情報演算プログラムを通じて、脈波信号から生体情報を取得する。 The biometric information calculation system 1 to which the present invention is applied will be executed via a biometric information calculation program installed in the electronic device 2. That is, the user operates the electronic device 2 or the sensor 5 and acquires biometric information from the pulse wave signal through the biometric information calculation program installed in the electronic device 2.

図5は、電子機器2の生体情報演算プログラムを実現するためのシーケンスを示している。電子機器2は、脈波信号取得部60と、脈波信号取得部60に接続された第1抽出部61及び第2抽出部63と、第1抽出部61に接続された第1データ取得部62と、第2抽出部63に接続された第2データ取得部64と、第1データ取得部62及び第2データ取得部64とに接続された最適血糖値算出部65と、を備えている。 FIG. 5 shows a sequence for realizing the biometric information calculation program of the electronic device 2. The electronic device 2 includes a pulse wave signal acquisition unit 60, a first extraction unit 61 and a second extraction unit 63 connected to the pulse wave signal acquisition unit 60, and a first data acquisition unit connected to the first extraction unit 61. 62, a second data acquisition unit 64 connected to the second extraction unit 63, and an optimum blood glucose level calculation unit 65 connected to the first data acquisition unit 62 and the second data acquisition unit 64. ..

脈波信号取得部60は、公衆通信網3を介してセンサ5、サーバ4及び他の電子機器から送信された脈波信号を取得する。脈波信号取得部60は、取得した脈波信号を第1抽出部61及び第2抽出部63へ出力する。 The pulse wave signal acquisition unit 60 acquires a pulse wave signal transmitted from the sensor 5, the server 4, and other electronic devices via the public communication network 3. The pulse wave signal acquisition unit 60 outputs the acquired pulse wave signal to the first extraction unit 61 and the second extraction unit 63.

第1抽出部61は、第1抽出条件を参照し、脈波信号取得部60から入力された脈波信号に基づく第1評価データを抽出する。第1抽出部61は、抽出した第1評価データを第1データ取得部62へ出力する。 The first extraction unit 61 refers to the first extraction condition and extracts the first evaluation data based on the pulse wave signal input from the pulse wave signal acquisition unit 60. The first extraction unit 61 outputs the extracted first evaluation data to the first data acquisition unit 62.

第1データ取得部62は、第1抽出条件に紐づく第1処理条件を参照し、第1抽出部61から入力された第1評価データを処理し、第1データを取得する。第1データ取得部62は、取得した第1データを最適血糖値算出部65へ出力する。 The first data acquisition unit 62 refers to the first processing condition associated with the first extraction condition, processes the first evaluation data input from the first extraction unit 61, and acquires the first data. The first data acquisition unit 62 outputs the acquired first data to the optimum blood glucose level calculation unit 65.

第2抽出部63は、第2抽出条件を参照し、脈波信号取得部60から入力された脈波信号に基づく第2評価データを抽出する。第2抽出部63は、抽出した第2評価データを第2データ取得部64へ出力する。 The second extraction unit 63 refers to the second extraction condition and extracts the second evaluation data based on the pulse wave signal input from the pulse wave signal acquisition unit 60. The second extraction unit 63 outputs the extracted second evaluation data to the second data acquisition unit 64.

第2データ取得部64は、第2抽出条件に紐づく第2処理条件を参照し、第2抽出部63から入力された第2評価データを処理し、第2データを取得する。第2データ取得部は、取得した第2データを最適血糖値算出部65へ出力する。 The second data acquisition unit 64 refers to the second processing condition associated with the second extraction condition, processes the second evaluation data input from the second extraction unit 63, and acquires the second data. The second data acquisition unit outputs the acquired second data to the optimum blood glucose level calculation unit 65.

最適血糖値算出部65は、第1データ取得部62から入力された第1データと第2データ取得部64から入力された第2データとに基づき、最適値となる生体情報を算出する。 The optimum blood glucose level calculation unit 65 calculates biometric information having an optimum value based on the first data input from the first data acquisition unit 62 and the second data input from the second data acquisition unit 64.

また、最適血糖値算出部65は、電子機器2に必ずしも備えられているわけではなく、第1データおよび第2データを生体情報として出力してもよい。 Further, the optimum blood glucose level calculation unit 65 is not necessarily provided in the electronic device 2, and may output the first data and the second data as biological information.

図6は、第1抽出部61及び第1データ取得部62の具体的な構成例を示している。第1抽出部61は、フィルタ処理部610と、フィルタ処理部610に接続された微分部611と、フィルタ処理部610に接続されたピーク位置算出部614と、微分部611に接続された分割部612と、分割部612に接続された規格化部613と、ピーク位置算出部614に接続されたピーク間隔平均算出部615と、ピーク位置算出部614に接続されたピーク間隔プロット部616と、ピーク位置算出部614に接続されたフーリエ変換部617と、フーリエ変換部617に接続された最大周波数検出部618と、を備えている。 FIG. 6 shows a specific configuration example of the first extraction unit 61 and the first data acquisition unit 62. The first extraction unit 61 includes a filter processing unit 610, a differentiation unit 611 connected to the filter processing unit 610, a peak position calculation unit 614 connected to the filter processing unit 610, and a division unit connected to the differentiation unit 611. 612, a normalization unit 613 connected to the division unit 612, a peak interval average calculation unit 615 connected to the peak position calculation unit 614, a peak interval plot unit 616 connected to the peak position calculation unit 614, and a peak. It includes a Fourier transform unit 617 connected to the position calculation unit 614 and a maximum frequency detection unit 618 connected to the Fourier transform unit 617.

フィルタ処理部610は、取得した脈波信号にフィルタリング処理を施す。フィルタ処理部610は、フィルタリングに例えば0.5~5Hzのバンドパスフィルタを用いるが、この限りではない。また、フィルタ処理部610は、第1抽出条件を参照し、取得した脈波信号から第1評価データを抽出する抽出方法を決定する。フィルタ処理部610は、フィルタリング処理された脈波信号を決定された抽出方法に基づき、微分部611と、ピーク位置算出部614と、フーリエ変換部617のいずれか少なくとも一つに出力する。 The filter processing unit 610 performs filtering processing on the acquired pulse wave signal. The filter processing unit 610 uses, for example, a bandpass filter of 0.5 to 5 Hz for filtering, but the present invention is not limited to this. Further, the filter processing unit 610 refers to the first extraction condition and determines an extraction method for extracting the first evaluation data from the acquired pulse wave signal. The filter processing unit 610 outputs the filtered pulse wave signal to at least one of the differentiation unit 611, the peak position calculation unit 614, and the Fourier transform unit 617 based on the determined extraction method.

第1抽出部61は、一つの第1評価データを取得するために第1抽出部61に備えられた抽出方法の必ずしもすべてを使用するわけではなく、フィルタ処理部610によって決められた少なくとも一つの抽出方法で脈波信号から第1評価データを抽出する。 The first extraction unit 61 does not necessarily use all of the extraction methods provided in the first extraction unit 61 in order to acquire one first evaluation data, and at least one determined by the filtering unit 610. The first evaluation data is extracted from the pulse wave signal by the extraction method.

微分部611は、フィルタ処理部610から入力された脈波信号を微分する。微分部611は、フィルタ処理部610によって、微分処理が必要と判断された場合、入力された脈波信号に微分処理を行う。微分部611は、処理した脈波信号を分割部612に出力する。 The differentiation unit 611 differentiates the pulse wave signal input from the filter processing unit 610. When the filter processing unit 610 determines that the differentiation processing is necessary, the differentiation unit 611 performs the differentiation processing on the input pulse wave signal. The differentiation unit 611 outputs the processed pulse wave signal to the division unit 612.

分割部612は、微分部611から入力された複数の波形信号のそれぞれを、整数周期分の分割波形データに分割する。本実施形態では分割部612は、整数周期は1周期としているが、複数周期にしてもよい。分割部612は、分割波形データを規格化部613へ出力する。 The division unit 612 divides each of the plurality of waveform signals input from the differentiation unit 611 into divided waveform data for an integer period. In the present embodiment, the division unit 612 has one integer cycle, but may have a plurality of cycles. The division unit 612 outputs the division waveform data to the normalization unit 613.

規格化部613は、分割部612から入力された複数の分割波形信号の時間幅を統一するために規格化をし、複数の分割波形信号の平均となる平均波形信号を取得し、平均波形信号の振幅の最大値を1、最小値を0とした規格化を行う。規格化部613は、規格化された平均波形信号を回帰分析部620へ出力する。 The standardization unit 613 standardizes in order to unify the time width of the plurality of divided waveform signals input from the divided unit 612, acquires an average waveform signal that is the average of the plurality of divided waveform signals, and averages the waveform signal. The maximum value of the amplitude of is 1 and the minimum value is 0. The normalized unit 613 outputs the normalized average waveform signal to the regression analysis unit 620.

規格化部613は、分割波形信号の時間幅を統一するために分割部612から入力された複数の分割波形信号を一定の時間幅又は一定のサンプリング数でトリミングを行ってもよい。規格化部613は、時間幅を統一するための処理方法がフィルタ処理部610によって決められる。 The normalization unit 613 may trim a plurality of division waveform signals input from the division unit 612 with a constant time width or a constant sampling number in order to unify the time width of the division waveform signal. In the standardization unit 613, the processing method for unifying the time width is determined by the filter processing unit 610.

規格化部613は、平均波形信号を取得するとき、複数の分割波形信号を必要とするが、必要な分割波形信号の数はフィルタ処理部610によって決められる。 The normalization unit 613 requires a plurality of divided waveform signals when acquiring the average waveform signal, and the number of required divided waveform signals is determined by the filter processing unit 610.

ピーク位置算出部614は、フィルタ処理部610から入力された脈波信号のピーク位置と、隣り合うピーク同士の距離であるピーク間隔を算出する。ピーク位置算出部614は、抽出方法に基づき、算出したピーク間隔をピーク間隔平均算出部615と、ピーク間隔プロット部616と、フーリエ変換部617の少なくともいずれか一つへと出力する。 The peak position calculation unit 614 calculates the peak position of the pulse wave signal input from the filter processing unit 610 and the peak interval, which is the distance between adjacent peaks. The peak position calculation unit 614 outputs the calculated peak interval to at least one of the peak interval average calculation unit 615, the peak interval plot unit 616, and the Fourier transform unit 617 based on the extraction method.

ピーク間隔平均算出部615は、ピーク位置算出部614から入力されたピーク間隔の平均を算出し、ピーク間隔の平均値を測定器のサンプリングレートで割り、秒数に変換する。ピーク間隔平均算出部615は、秒数に変換した平均値を脈拍処理部621へ出力する。 The peak interval average calculation unit 615 calculates the average of the peak intervals input from the peak position calculation unit 614, divides the average value of the peak intervals by the sampling rate of the measuring instrument, and converts it into the number of seconds. The peak interval average calculation unit 615 outputs the average value converted into the number of seconds to the pulse processing unit 621.

ピーク間隔プロット部616は、ピーク位置算出部614から入力されたピーク間隔を横軸とし、上述したピーク間隔の隣のピーク間隔を縦軸としたグラフをプロットし、脈波のピーク間隔のポアンカレプロットを取得する。ピーク間隔プロット部616は、脈波のピーク間隔のポアンカレプロットをストレスプロット処理部622へ出力する。 The peak interval plotting unit 616 plots a graph in which the peak interval input from the peak position calculation unit 614 is used as the horizontal axis and the peak interval next to the above-mentioned peak interval is used as the vertical axis. To get. The peak interval plotting unit 616 outputs a Poincare plot of the peak interval of the pulse wave to the stress plot processing unit 622.

フーリエ変換部617は、ピーク位置算出部614からピーク間隔を入力された場合は、ピーク間隔を時系列データに変換したデータをフーリエ変換する。また、フーリエ変換部617は、フィルタ処理部610で処理された脈波信号を入力として、フーリエ変換を行ってもよい。フーリエ変換部617は、抽出方法に基づき、フーリエ変換した信号を最大周波数検出部618と、ストレスフーリエ処理部623の少なくともいずれか一つに出力する。 When the peak interval is input from the peak position calculation unit 614, the Fourier transform unit 617 Fourier transforms the data obtained by converting the peak interval into time series data. Further, the Fourier transform unit 617 may perform the Fourier transform by inputting the pulse wave signal processed by the filter processing unit 610. The Fourier transform unit 617 outputs the Fourier transformed signal to at least one of the maximum frequency detection unit 618 and the stress Fourier processing unit 623 based on the extraction method.

最大周波数検出部618は、フーリエ変換部617から入力された信号を0.15~0.35Hzの間で最大値を示す周波数である最大周波数を検出する。最大周波数検出部618は、検出した最大周波数を呼吸数処理部624へと出力する。 The maximum frequency detection unit 618 detects the maximum frequency, which is the frequency showing the maximum value between 0.15 and 0.35 Hz for the signal input from the Fourier transform unit 617. The maximum frequency detection unit 618 outputs the detected maximum frequency to the respiratory rate processing unit 624.

第1データ取得部62は、規格化部613に接続された回帰分析部620と、ピーク間隔平均算出部615に接続された脈拍処理部621と、ピーク間隔プロット部616に接続されたストレスプロット処理部622と、フーリエ変換部617に接続されたストレスフーリエ処理部623と、最大周波数検出部618に接続された呼吸数処理部624と、を備える。 The first data acquisition unit 62 includes a regression analysis unit 620 connected to the standardization unit 613, a pulse processing unit 621 connected to the peak interval average calculation unit 615, and a stress plot process connected to the peak interval plotting unit 616. It includes a unit 622, a stress Fourier processing unit 623 connected to the Fourier transform unit 617, and a respiratory rate processing unit 624 connected to the maximum frequency detection unit 618.

第1データ取得部62は、例えば処理の方法として、生体情報の実測値と予め取得された脈波信号との相関関係に基づいて構築された検量モデルを用いて、第1評価データから第1データを取得する。 The first data acquisition unit 62 uses, for example, as a processing method, a calibration model constructed based on the correlation between the actually measured value of the biological information and the pulse wave signal acquired in advance, and is the first from the first evaluation data. Get the data.

回帰分析部620は、規格化部613から入力された規格化された平均波形信号から、検量モデルに基づいて、第1データとして例えば血糖値、血圧、血中の酸素飽和度、血中二酸化炭素濃度などを取得する。 The regression analysis unit 620 uses, for example, blood glucose level, blood pressure, blood oxygen saturation, and blood carbon dioxide as the first data based on the calibration model from the standardized average waveform signal input from the standardization unit 613. Get the concentration etc.

回帰分析部620は、あらかじめ構築しておいた汎用的に利用できる検量モデル用いて、第1データ取得部62に記憶させて第1データを取得することもできる。 The regression analysis unit 620 can also acquire the first data by storing it in the first data acquisition unit 62 by using a calibration model that has been constructed in advance and can be used for general purposes.

脈拍処理部621は、ピーク間隔平均算出部615から入力されたピーク間隔の平均値をサンプリングレートで割り、秒数に変換する。脈拍処理部621は、60秒を算出した秒数で割り、一分当たりの脈拍数(bpm)を算出し、第1データとして脈拍数を取得する。 The pulse processing unit 621 divides the average value of the peak intervals input from the peak interval average calculation unit 615 by the sampling rate and converts it into the number of seconds. The pulse processing unit 621 divides 60 seconds by the calculated number of seconds, calculates the pulse rate per minute (bpm), and acquires the pulse rate as the first data.

ストレスプロット処理部622は、ピーク間隔プロット部616から入力されたポアンカレプロットから、第1データとして例えばストレス度を取得する。ストレスプロット処理部622は、ポアンカレプロットの分散値を計算し、分散値の大きさからストレス度を推定する。 The stress plot processing unit 622 acquires, for example, the stress degree as the first data from the Poincare plot input from the peak interval plot unit 616. The stress plot processing unit 622 calculates the variance value of the Poincare plot and estimates the stress degree from the magnitude of the variance value.

ストレスフーリエ処理部623は、フーリエ変換部617から入力された信号の積分比から、第1データとして例えばストレス度を取得する。具体的な方法として、ストレスフーリエ処理部623は、例えばフーリエ変換されたピーク間隔の時系列データから自己回帰モデル(autoregressive model)を用いて、PSD(power spectral density)を計算し、パワースペクトルの0.5Hzから0.15Hzまでの領域を高周波LF(Low Frequency)とし、0.15Hzから0.40Hzまでの領域を低周波HF(Hi Frequency)の強度をそれぞれ合計した積分値の比によってストレス度を決定する。 The stress Fourier processing unit 623 acquires, for example, the degree of stress as the first data from the integral ratio of the signal input from the Fourier transform unit 617. As a specific method, the stress Fourier processing unit 623 calculates PSD (power spectral density) from, for example, Fourier-transformed time-series data of peak intervals using an autoregressive model, and has a power spectrum of 0. The region from 0.5 Hz to 0.15 Hz is defined as high frequency LF (Low Frequency), and the region from 0.15 Hz to 0.40 Hz is the stress level by the ratio of the integrated values obtained by summing the intensities of low frequency HF (Hi Frequency). decide.

呼吸数処理部624は、最大周波数検出部618から入力された最大値を示す周波数に60秒をかけて一分あたりの呼吸数(bpm)に換算し、第1データとして呼吸数を取得する。 The respiratory rate processing unit 624 takes 60 seconds to convert the frequency indicating the maximum value input from the maximum frequency detection unit 618 into the respiratory rate (bpm) per minute, and acquires the respiratory rate as the first data.

図7は、第2抽出部63及び第2データ取得部64の具体的な構成例を示している。第2抽出部63は、フィルタ処理部630と、フィルタ処理部630に接続された微分部631と、フィルタ処理部630に接続されたピーク位置算出部634と、微分部631に接続された分割部632と、分割部632に接続された規格化部633と、ピーク位置算出部634に接続されたピーク間隔平均算出部635と、ピーク位置算出部634に接続されたピーク間隔プロット部636と、ピーク位置算出部634に接続されたフーリエ変換部637と、フーリエ変換部637に接続された最大周波数検出部638と、を備える。第2抽出部63は、第1抽出部61と同じもので構成されているが、第1抽出部61において、第1抽出条件を参照していたものが、第2抽出部63の場合は、第1抽出条件ではなく、第2抽出条件を参照している。 FIG. 7 shows a specific configuration example of the second extraction unit 63 and the second data acquisition unit 64. The second extraction unit 63 includes a filter processing unit 630, a differentiation unit 631 connected to the filter processing unit 630, a peak position calculation unit 634 connected to the filter processing unit 630, and a division unit connected to the differentiation unit 631. 632, a standardization unit 633 connected to the division unit 632, a peak interval average calculation unit 635 connected to the peak position calculation unit 634, a peak interval plot unit 636 connected to the peak position calculation unit 634, and a peak. It includes a Fourier transform unit 637 connected to the position calculation unit 634 and a maximum frequency detection unit 638 connected to the Fourier transform unit 637. The second extraction unit 63 is configured to be the same as the first extraction unit 61, but when the first extraction unit 61 refers to the first extraction condition, the second extraction unit 63 is the case. The second extraction condition is referred to instead of the first extraction condition.

フィルタ処理部630は、取得した脈波信号にフィルタリング処理を施す。フィルタ処理部630は、フィルタリングに例えば0.5~5Hzのバンドパスフィルタを用いるが、この限りではない。また、フィルタ処理部630は、第2抽出条件を参照し、取得した脈波信号から第1評価データを抽出する方法を決定する。フィルタ処理部630は、フィルタリング処理された脈波信号を決定された抽出方法に基づき、微分部631と、ピーク位置算出部634と、フーリエ変換部637のいずれか少なくとも一つに出力する。 The filter processing unit 630 performs filtering processing on the acquired pulse wave signal. The filter processing unit 630 uses, for example, a bandpass filter of 0.5 to 5 Hz for filtering, but the present invention is not limited to this. Further, the filter processing unit 630 refers to the second extraction condition and determines a method for extracting the first evaluation data from the acquired pulse wave signal. The filter processing unit 630 outputs the filtered pulse wave signal to at least one of the differentiation unit 631, the peak position calculation unit 634, and the Fourier transform unit 637 based on the determined extraction method.

第2抽出部63は、一つの第2評価データを取得するために第2抽出部63に備えられた抽出方法を必ずしもすべて使用するわけではなく、フィルタ処理部630によって決められた少なくとも一つの抽出方法で脈波信号から第2評価データを抽出する。 The second extraction unit 63 does not necessarily use all the extraction methods provided in the second extraction unit 63 in order to acquire one second evaluation data, and the second extraction unit 63 does not necessarily use all the extraction methods provided in the second extraction unit 63, but at least one extraction determined by the filter processing unit 630. The second evaluation data is extracted from the pulse wave signal by the method.

微分部631は、フィルタ処理部630から入力された脈波信号を微分する。微分部631は、フィルタ処理部630によって、微分処理が必要と判断された場合、入力された脈波信号に微分処理を行う。微分部631は、微分処理した脈波信号を分割部632に出力する。 The differentiation unit 631 differentiates the pulse wave signal input from the filter processing unit 630. When the filter processing unit 630 determines that the differentiation processing is necessary, the differentiation unit 631 performs the differentiation processing on the input pulse wave signal. The differentiation unit 631 outputs the differentially processed pulse wave signal to the division unit 632.

分割部632は、微分部631から入力された複数の波形信号のそれぞれを、整数周期分の分割波形データに分割する。本実施形態では分割部632は、整数周期は1周期としているが、複数周期にしてもよい。分割部632は、分割波形データを規格化部633へ出力する。 The division unit 632 divides each of the plurality of waveform signals input from the differentiation unit 631 into divided waveform data for an integer period. In the present embodiment, the division unit 632 has one integer cycle, but may have a plurality of cycles. The division unit 632 outputs the division waveform data to the normalization unit 633.

規格化部633は、分割部632から入力された複数の分割波形信号の時間幅を統一するために規格化をし、複数の分割波形信号の平均となる平均波形信号を取得し、平均波形信号の振幅の最大値を1、最小値を0とした規格化を行う。規格化部633は、規格化された平均波形信号を回帰分析部640へ出力する。 The standardization unit 633 standardizes in order to unify the time width of the plurality of divided waveform signals input from the divided unit 632, acquires an average waveform signal that is the average of the plurality of divided waveform signals, and averages the waveform signal. The maximum value of the amplitude of is 1 and the minimum value is 0. The normalized unit 633 outputs the normalized average waveform signal to the regression analysis unit 640.

規格化部633は、分割波形信号の時間幅を統一するために分割部632から入力された複数の分割波形信号を一定の時間幅又は一定のサンプリング数でトリミングを行ってもよい。規格化部633は、時間幅を統一するための処理方法がフィルタ処理部630によって決められる。 The normalization unit 633 may trim a plurality of divided waveform signals input from the divided unit 632 with a fixed time width or a fixed number of samplings in order to unify the time width of the divided waveform signal. In the standardization unit 633, the processing method for unifying the time width is determined by the filter processing unit 630.

規格化部633は、平均波形信号を取得するとき、複数の分割波形信号を必要とするが、必要な分割波形信号の数はフィルタ処理部630によって決められる。 The normalization unit 633 requires a plurality of divided waveform signals when acquiring the average waveform signal, and the number of required divided waveform signals is determined by the filter processing unit 630.

ピーク位置算出部634は、フィルタ処理部630から入力された脈波信号のピーク位置と、隣り合うピーク同士の距離であるピーク間隔を算出する。ピーク位置算出部634は、抽出方法に基づき、算出したピーク間隔をピーク間隔平均算出部635と、ピーク間隔プロット部636と、フーリエ変換部637の少なくともいずれか一つへと出力する。 The peak position calculation unit 634 calculates the peak position of the pulse wave signal input from the filter processing unit 630 and the peak interval which is the distance between adjacent peaks. The peak position calculation unit 634 outputs the calculated peak interval to at least one of the peak interval average calculation unit 635, the peak interval plot unit 636, and the Fourier transform unit 637 based on the extraction method.

ピーク間隔平均算出部635は、ピーク位置算出部634から入力されたピーク間隔の平均を算出し、ピーク間隔の平均値を測定器のサンプリングレートで割り、秒数に変換する。ピーク間隔平均算出部635は、秒数に変換した平均値を脈拍処理部641へ出力する。 The peak interval average calculation unit 635 calculates the average of the peak intervals input from the peak position calculation unit 634, divides the average value of the peak intervals by the sampling rate of the measuring instrument, and converts it into the number of seconds. The peak interval average calculation unit 635 outputs the average value converted into the number of seconds to the pulse processing unit 641.

ピーク間隔プロット部636は、ピーク位置算出部634から入力されたピーク間隔を横軸とし、上述したピーク間隔の隣のピーク間隔を縦軸としたグラフをプロットし、脈波のピーク間隔のポアンカレプロットを取得する。ピーク間隔プロット部636は、脈波のピーク間隔のポアンカレプロットをストレスプロット処理部642へ出力する。 The peak interval plotting unit 636 plots a graph with the peak interval input from the peak position calculation unit 634 as the horizontal axis and the peak interval next to the above-mentioned peak interval as the vertical axis, and Poincare plot of the peak interval of the pulse wave. To get. The peak interval plotting unit 636 outputs the Poincare plot of the peak interval of the pulse wave to the stress plot processing unit 642.

フーリエ変換部637は、ピーク位置算出部634からピーク間隔を入力された場合は、ピーク間隔を時系列データに変換したデータをフーリエ変換する。また、フーリエ変換部637は、フィルタ処理部630で処理された脈波信号を入力として、フーリエ変換を行ってもよい。フーリエ変換部637は、抽出方法に基づき、フーリエ変換した信号を最大周波数検出部638と、ストレスフーリエ処理部643の少なくともいずれか一つに出力する。 When the peak interval is input from the peak position calculation unit 634, the Fourier transform unit 637 Fourier transforms the data obtained by converting the peak interval into time series data. Further, the Fourier transform unit 637 may perform the Fourier transform by inputting the pulse wave signal processed by the filter processing unit 630. The Fourier transform unit 637 outputs the Fourier transformed signal to at least one of the maximum frequency detection unit 638 and the stress Fourier processing unit 643 based on the extraction method.

最大周波数検出部638は、フーリエ変換部637から入力された信号を0.15~0.35Hzの間で最大値を示す周波数である最大周波数を検出する。最大周波数検出部638は、検出した最大周波数を呼吸数処理部644へと出力する。 The maximum frequency detection unit 638 detects the maximum frequency, which is the frequency showing the maximum value between 0.15 and 0.35 Hz for the signal input from the Fourier transform unit 637. The maximum frequency detection unit 638 outputs the detected maximum frequency to the respiratory rate processing unit 644.

第2データ取得部64は、規格化部633に接続された回帰分析部640と、ピーク間隔平均算出部635に接続された脈拍処理部641と、ピーク間隔プロット部636でプロットしたグラフからストレス度を取得するストレスプロット処理部642と、フーリエ変換部637に接続されたストレスフーリエ処理部643と、最大周波数検出部638に接続された呼吸数処理部644と、を備える。 The second data acquisition unit 64 is the stress level from the graph plotted by the regression analysis unit 640 connected to the standardization unit 633, the pulse processing unit 641 connected to the peak interval average calculation unit 635, and the peak interval plotting unit 636. The stress plot processing unit 642, the stress Fourier processing unit 643 connected to the Fourier transform unit 637, and the respiratory rate processing unit 644 connected to the maximum frequency detection unit 638 are provided.

第2データ取得部64は、第2抽出条件に紐づく第2処理条件を参照し、第2抽出部63によって抽出された第2評価データを処理し、第2データを取得する。 The second data acquisition unit 64 refers to the second processing condition associated with the second extraction condition, processes the second evaluation data extracted by the second extraction unit 63, and acquires the second data.

第2データ取得部64は、例えば処理の方法として、生体情報の実測値と予め取得された脈波信号との相関関係に基づいて構築された検量モデルを用いて構築し、第2評価データから第2データを取得する。 The second data acquisition unit 64 is constructed using, for example, as a processing method, a calibration model constructed based on the correlation between the measured value of the biological information and the pulse wave signal acquired in advance, and is constructed from the second evaluation data. Acquire the second data.

回帰分析部640は、規格化部633から入力された規格化された平均波形信号から、検量モデルに基づいて、第2データとして例えば血糖値、血圧、血中の酸素飽和度、血中二酸化炭素濃度などを取得する。 The regression analysis unit 640 uses, for example, blood glucose level, blood pressure, blood oxygen saturation, and blood carbon dioxide as second data based on the calibration model from the standardized average waveform signal input from the standardization unit 633. Get the concentration etc.

回帰分析部640は、あらかじめ構築しておいた汎用的に利用できる検量モデルを汎用データとして、第2データ取得部64に記憶させて第2データを取得することもできる。 The regression analysis unit 640 can also acquire the second data by storing the calibration model that has been constructed in advance and can be used for general purposes as general-purpose data in the second data acquisition unit 64.

脈拍処理部641は、ピーク間隔平均算出部635から入力されたピーク間隔の平均値をサンプリングレートで割り、秒数に変換する。脈拍処理部641は、60秒を算出した秒数で割り、一分当たりの脈拍数(bpm)を算出し、第2データとして脈拍数を取得する。 The pulse processing unit 641 divides the average value of the peak intervals input from the peak interval average calculation unit 635 by the sampling rate and converts it into the number of seconds. The pulse processing unit 641 divides 60 seconds by the calculated number of seconds, calculates the pulse rate per minute (bpm), and acquires the pulse rate as the second data.

ストレスプロット処理部642は、ピーク間隔プロット部636から入力されたポアンカレプロットから、第2データとして例えばストレス度を取得する。ストレスプロット処理部642は、ポアンカレプロットの分散値を計算し、分散値の大きさからストレス度を推定する。 The stress plot processing unit 642 acquires, for example, the stress degree as second data from the Poincare plot input from the peak interval plot unit 636. The stress plot processing unit 642 calculates the variance value of the Poincare plot and estimates the stress degree from the magnitude of the variance value.

ストレスフーリエ処理部643は、フーリエ変換部637から入力された信号の積分比から、第2データとして例えばストレス度を取得する。 The stress Fourier processing unit 643 acquires, for example, the degree of stress as second data from the integral ratio of the signal input from the Fourier transform unit 637.

呼吸数処理部644は、最大周波数検出部638から入力された最大値を示す周波数に60秒をかけて一分あたりの呼吸数(bpm)に換算し、第2データとして呼吸数を取得する。 The respiratory rate processing unit 644 takes 60 seconds to convert the frequency indicating the maximum value input from the maximum frequency detection unit 638 into the respiratory rate (bpm) per minute, and acquires the respiratory rate as the second data.

生体情報演算システム1によって取得される第1データ及び第2データは、例えば血圧、血糖値、血中の酸素飽和度、血中二酸化炭素濃度、脈拍数、呼吸数、ストレス度、血管年齢、糖尿病の程度などのうち少なくとも一つを含める。 The first data and the second data acquired by the biological information calculation system 1 include, for example, blood pressure, blood glucose level, blood oxygen saturation, blood carbon dioxide concentration, pulse rate, respiratory rate, stress level, blood vessel age, and diabetes. Include at least one of the degree of.

次に、本実施形態における生体情報演算システム1の一例について説明する。図8は、本実施形態における生体情報演算システム1の一例を示すフローチャートである。 Next, an example of the biometric information calculation system 1 in the present embodiment will be described. FIG. 8 is a flowchart showing an example of the biological information calculation system 1 in the present embodiment.

まず脈波信号取得ステップS10において、生体情報演算システム1は、取得部50が脈波信号を取得し、内部バス54を介して、通信I/F51へ脈波信号を出力する。またこの時、取得部50が取得した脈波信号の代わりに、生体情報演算システム1は、メモリ52に記録されていた脈波信号を、内部バス54を介して、通信I/F51へ脈波信号を出力してもよい。 First, in the pulse wave signal acquisition step S10, the biometric information calculation system 1 acquires the pulse wave signal by the acquisition unit 50 and outputs the pulse wave signal to the communication I / F 51 via the internal bus 54. Further, at this time, instead of the pulse wave signal acquired by the acquisition unit 50, the biometric information calculation system 1 transmits the pulse wave signal recorded in the memory 52 to the communication I / F 51 via the internal bus 54. A signal may be output.

脈波信号の具体的な取得方法として、FBGセンサを用いて測定する場合を例として説明する。 As a specific acquisition method of the pulse wave signal, a case of measuring using an FBG sensor will be described as an example.

FBGセンサは、1本の光ファイバ内に所定間隔をあけて回折格子構造を形成したである。本実施形態では、FBGセンサとして、センサ部分の長さ10mm、波長分解能±0.1pm、波長範囲1550±0.5nmのものを使用し、ファイバの直径は145μm、コア径10.5μmとした。しかし、これらの設定は、FBGセンサの一例であり、本発明においてはこの限りではない。このセンサを手首に取り付け、FBGセンサを皮膚に接触させた状態で測定をする。 The FBG sensor has a diffraction grating structure formed in one optical fiber at predetermined intervals. In the present embodiment, the FBG sensor has a sensor portion length of 10 mm, a wavelength resolution of ± 0.1 pm, and a wavelength range of 1550 ± 0.5 nm, and has a fiber diameter of 145 μm and a core diameter of 10.5 μm. However, these settings are examples of FBG sensors, and are not limited to this in the present invention. This sensor is attached to the wrist, and the measurement is performed with the FBG sensor in contact with the skin.

光ファイバに用いる光源として、波長範囲1525~1570nmのASE(Amplified Spontaneous Emission)光源を使用してもよい。光源からの出射光は、サーキュレータを介してFBGセンサに入射させる。FBGセンサからの反射光は、サーキュレータを介してマッハツェンダー干渉計に導き、マッハツェンダー干渉計からの出力光を、光検出器によって検知する。マッハツェンダー干渉計は、ビームスプリッタにより光路差のある2つの光路に分離し、再びビームスプリッタにより一つに重ね合わせて干渉光を作り出すためのものである。光路差をつけるため、本実施形態では一方の光ファイバの長さを長くしている。コヒーレント光は、光路差に応じて干渉縞が生じるから、干渉縞のパターンを測定することによって、FBGセンサに生じた歪の変化、すなわち脈波を検知することができる。 As the light source used for the optical fiber, an ASE (Amplified Spontaneous Emission) light source having a wavelength range of 1525 to 1570 nm may be used. The light emitted from the light source is incident on the FBG sensor via the circulator. The reflected light from the FBG sensor is guided to the Mach-Zehnder interferometer via the circulator, and the output light from the Mach-Zehnder interferometer is detected by the optical detector. The Mach-Zehnder interferometer is for splitting into two optical paths having optical path differences by a beam splitter and superimposing them on one again by a beam splitter to generate interferometric light. In this embodiment, the length of one of the optical fibers is increased in order to make an optical path difference. Since coherent light produces interference fringes according to the optical path difference, it is possible to detect a change in strain generated in the FBG sensor, that is, a pulse wave, by measuring the pattern of the interference fringes.

FBGセンサの歪み量を検出して、脈波の波形を検出するシステムである光ファイバセンサシステムは、FBGセンサに入射させる光源の他に、広い帯域のASE光源とする手段、サーキュレータ、マッハツェンダー干渉計、ビームスプリッタといった光学系や、光検出器が備える受光センサや、波長シフト量を解析する解析手段を含む。光ファイバセンサシステムは、使用するFBGセンサの特性に応じて光源や帯域光を選択して使用することができ、検波方法等の解析手段についても種々の方法を採用することができる。また、本発明は、光ファイバセンサシステムの機能や方式が限定されるものではない。 The optical fiber sensor system, which is a system that detects the amount of distortion of the FBG sensor and detects the waveform of the pulse wave, has a means for using a wide band ASE light source, a circulator, and Mach Zender interference in addition to the light source incident on the FBG sensor. It includes an optical system such as a meter and a beam splitter, a light receiving sensor provided in the optical detector, and an analysis means for analyzing the wavelength shift amount. The optical fiber sensor system can be used by selecting a light source or band light according to the characteristics of the FBG sensor to be used, and various methods can be adopted as analysis means such as a detection method. Further, the present invention is not limited to the functions and methods of the optical fiber sensor system.

これらの方法によって、取得部50が脈波信号を取得し、内部バス54を介して、通信I/F51へ脈波信号を出力する。 By these methods, the acquisition unit 50 acquires the pulse wave signal and outputs the pulse wave signal to the communication I / F 51 via the internal bus 54.

次に取得部50から脈波信号を入力された通信I/F51は、公衆通信網3を介して、脈波信号を脈波信号取得部60へ送信する。また、この時、取得部50が取得した脈波信号の代わりに、サーバ4に保存された脈波信号を脈波信号取得部60へ送信してもよい。 Next, the communication I / F 51 to which the pulse wave signal is input from the acquisition unit 50 transmits the pulse wave signal to the pulse wave signal acquisition unit 60 via the public communication network 3. Further, at this time, instead of the pulse wave signal acquired by the acquisition unit 50, the pulse wave signal stored in the server 4 may be transmitted to the pulse wave signal acquisition unit 60.

次に公衆通信網3を介して、脈波信号を送信された脈波信号取得部60は、脈波信号を第1抽出部61及び第2抽出部63へ出力する。 Next, the pulse wave signal acquisition unit 60, which has transmitted the pulse wave signal via the public communication network 3, outputs the pulse wave signal to the first extraction unit 61 and the second extraction unit 63.

次に第1抽出条件決定ステップS11において、第1抽出部61は、脈波信号取得部60から入力された脈波信号をフィルタ処理部610へ入力する。その後、フィルタ処理部610は入力された脈波信号に施す抽出方法を、第1抽出条件を参照して、決定する。 Next, in the first extraction condition determination step S11, the first extraction unit 61 inputs the pulse wave signal input from the pulse wave signal acquisition unit 60 to the filter processing unit 610. After that, the filter processing unit 610 determines the extraction method to be applied to the input pulse wave signal with reference to the first extraction condition.

フィルタ処理部610は、第1抽出条件の中から、取得した脈波信号の状態、取得したい生体情報、外部要因によって、第1抽出部61が脈波信号に施す抽出方法を決定する。外部要因は、例えばユーザの年齢や、性別や、病歴や、生活習慣や、投薬情報や、動脈硬化の程度や、健康状態や、遺伝情報などのユーザの情報、温度や、湿度などの環境情報などのうち少なくとも一つを含める。例えば、取得したい生体情報として、血糖値を取得したい場合、フィルタ処理部610は、脈波信号がフィルタ処理部610で処理を施された後、微分部611へと出力されるように第1抽出部61に命令をする。第1抽出条件は、脈波信号から第1評価データを抽出するための抽出方法の一覧を含めるデータ群である。第1抽出条件のデータ群は複数の抽出方法を含めてもよいし、予め決められた単一の抽出方法を含めていてもよい。 The filter processing unit 610 determines the extraction method applied to the pulse wave signal by the first extraction unit 61 according to the state of the acquired pulse wave signal, the biological information to be acquired, and external factors from the first extraction conditions. External factors include, for example, user's age, gender, medical history, lifestyle, medication information, degree of arteriosclerosis, health status, genetic information, and other user information, and environmental information such as temperature and humidity. Include at least one of such. For example, when it is desired to acquire the blood glucose level as the biological information to be acquired, the filter processing unit 610 first extracts the pulse wave signal so that it is output to the differentiation unit 611 after being processed by the filter processing unit 610. Give an order to unit 61. The first extraction condition is a data group including a list of extraction methods for extracting the first evaluation data from the pulse wave signal. The data group of the first extraction condition may include a plurality of extraction methods, or may include a single predetermined extraction method.

次に第1抽出ステップS12において、第1抽出部61は、脈波信号取得部60から入力された脈波信号から第1評価データを抽出する。第1評価データとは、第1データ取得部62で生体情報を取得するために第1抽出部61によって、脈波信号から抽出された波形データである。第1評価データは、例えば脈波信号が、フィルタリング処理、微分処理、規格化処理、及び平均化処理の少なくとも何れかによって1周期分等の波形に処理された波形データである。本実施形態では、例として血糖値を取得するための生体情報演算システム1を説明する。 Next, in the first extraction step S12, the first extraction unit 61 extracts the first evaluation data from the pulse wave signal input from the pulse wave signal acquisition unit 60. The first evaluation data is waveform data extracted from the pulse wave signal by the first extraction unit 61 in order to acquire biometric information by the first data acquisition unit 62. The first evaluation data is waveform data in which, for example, a pulse wave signal is processed into a waveform for one cycle or the like by at least one of filtering processing, differentiation processing, normalization processing, and averaging processing. In this embodiment, a biological information calculation system 1 for acquiring a blood glucose level will be described as an example.

まずフィルタ処理部610は、脈波信号取得部60から入力された脈波信号にフィルタリング処理を施した後、例えば血糖値を生体情報として取得する場合、第1抽出条件決定ステップS11で決定した抽出方法に基づいて、脈波信号を微分部611へと出力する。 First, the filter processing unit 610 performs filtering processing on the pulse wave signal input from the pulse wave signal acquisition unit 60, and then, for example, when acquiring the blood glucose level as biological information, the extraction determined in the first extraction condition determination step S11. Based on the method, the pulse wave signal is output to the differential unit 611.

次に微分部611は、フィルタ処理部610から入力された脈波信号に微分をするか、もしくはしないかを、第1抽出条件決定ステップS11で決定した抽出方法に基づいて判断し、処理を施した後、脈波信号を分割部612へと出力する。 Next, the differentiation unit 611 determines whether or not to differentiate the pulse wave signal input from the filter processing unit 610 based on the extraction method determined in the first extraction condition determination step S11, and performs processing. After that, the pulse wave signal is output to the division unit 612.

第1抽出条件決定ステップS11で決定した抽出方法に基づいて、微分部611が脈波信号を微分するかしないかを判断する理由は、脈波信号を微分するかしないかで得られる第1評価データの特徴に差が生じ、取得したい第1データによって、それに適した第1評価データを得るためである。また、「脈波信号を微分する」とは、脈波信号を加速度脈波として抽出することであり、「脈波信号を微分しない」とは、脈波信号を速度脈波として抽出することである。 The reason why the differentiation unit 611 determines whether or not to differentiate the pulse wave signal based on the extraction method determined in the first extraction condition determination step S11 is the first evaluation obtained by whether or not the pulse wave signal is differentiated. This is because there is a difference in the characteristics of the data, and the first evaluation data suitable for the first data to be acquired is obtained. Further, "differentiating the pulse wave signal" means extracting the pulse wave signal as an acceleration pulse wave, and "not differentiating the pulse wave signal" means extracting the pulse wave signal as a velocity pulse wave. be.

次に分割部612は、微分部611から入力された複数の波形信号のそれぞれを、平均化するために1周期分の分割波形データに分割する。その後、分割部612は、分割波形データを規格化部613へ出力する。 Next, the division unit 612 divides each of the plurality of waveform signals input from the differentiation unit 611 into divided waveform data for one cycle in order to average them. After that, the division unit 612 outputs the division waveform data to the normalization unit 613.

規格化部613は、分割部612から入力された複数の分割波形信号の時間幅を統一するために横軸の規格化をし、複数の分割波形信号の平均となる平均波形信号を取得し、平均波形信号の最大値を1、最小値を0とした縦軸の規格化を行う。この時、第1抽出部61は平均波形信号を第1評価データとして取得する。その後、規格化部613は、規格化された平均波形信号を第1データ取得部62へ出力する。 The standardization unit 613 standardizes the horizontal axis in order to unify the time width of the plurality of divided waveform signals input from the divided unit 612, and acquires an average waveform signal that is the average of the plurality of divided waveform signals. The vertical axis is standardized with the maximum value of the average waveform signal set to 1 and the minimum value set to 0. At this time, the first extraction unit 61 acquires the average waveform signal as the first evaluation data. After that, the standardized unit 613 outputs the standardized average waveform signal to the first data acquisition unit 62.

規格化部613で時間幅を統一するために横軸の規格化処理を行う理由は、脈波の終端側で差が大きく表れることから、この部分を削除し、脈波の本体部分を解析対象とするためである。また平均波形信号の最大値を1、最小値を0とした縦軸の規格化を行う理由は、FBGセンサを測定部位に取り付ける際の押しつけ圧力のばらつきや、測定時にFBGセンサが位置ずれすることによる測定データのばらつきを平均化するし、測定時のばらつきに起因するノイズを抑え、脈波信号と生体情報の実測値の相関関係の精度を向上させるためである。 The reason why the normalization process on the horizontal axis is performed in the normalization section 613 to unify the time width is that a large difference appears on the end side of the pulse wave, so this part is deleted and the main body part of the pulse wave is analyzed. This is because. The reason for standardizing the vertical axis with the maximum value of the average waveform signal set to 1 and the minimum value set to 0 is that the pressing pressure varies when the FBG sensor is attached to the measurement site and the position of the FBG sensor shifts during measurement. This is to average the variation of the measurement data due to the measurement, suppress the noise caused by the variation at the time of measurement, and improve the accuracy of the correlation between the pulse wave signal and the measured value of the biological information.

次に生体情報演算システム1は、第1データ取得ステップS13へ移行し、第1抽出条件に紐づく第1処理条件を参照し、第1抽出部61から入力された第1評価データを第1データ取得部62で処理し、第1データを取得する。 Next, the biometric information calculation system 1 proceeds to the first data acquisition step S13, refers to the first processing condition associated with the first extraction condition, and first uses the first evaluation data input from the first extraction unit 61. The data acquisition unit 62 processes and acquires the first data.

第1処理条件は、第1抽出部61から入力された第1評価データに、第1データ取得部62で施す処理の第1抽出条件に紐づけられた方法を含めるデータ群である。第1データ取得部62は第1処理条件の中から処理方法を決定する。第1処理条件のデータ群は複数の処理方法を含めてもよいし、予め決められた単一の処理方法を含めていてもよい。 The first processing condition is a data group including the method associated with the first extraction condition of the processing performed by the first data acquisition unit 62 in the first evaluation data input from the first extraction unit 61. The first data acquisition unit 62 determines the processing method from the first processing conditions. The data group of the first processing condition may include a plurality of processing methods, or may include a single predetermined processing method.

例えば、上述した抽出方法で取得した平均波形信号を第1評価データとして、第1データ取得部62で処理する場合、第1データ取得部62は、平均波形信号を回帰分析部620へ出力するように決定し、さらに回帰分析部620で平均波形信号に施す処理方法を決定する。 For example, when the average waveform signal acquired by the above-mentioned extraction method is processed by the first data acquisition unit 62 as the first evaluation data, the first data acquisition unit 62 outputs the average waveform signal to the regression analysis unit 620. Further, the regression analysis unit 620 determines the processing method to be applied to the average waveform signal.

第1抽出部61から平均波形信号を入力された回帰分析部620は、実測値と脈波信号の相関関係を示した検量モデルを用いて、平均波形信号から例えば血糖値を取得し、第1データとして出力する。 The regression analysis unit 620, in which the average waveform signal is input from the first extraction unit 61, acquires, for example, the blood glucose level from the average waveform signal by using a calibration model showing the correlation between the measured value and the pulse wave signal, and the first Output as data.

検量モデルは、予め測定された平均波形脈波を説明変数とし、生体情報の実測値を目的変数として、例えば回帰分析により解析し、その解析結果に基づいて構築されたものである。検量モデルは、あらかじめ構築しておいた汎用的に利用できる検量モデルを記憶部24に記憶させて、第1データを測定することもできる。検量モデルの構築は、例えば定期的にキャリブレーションする場合や、ユーザが変わったときに構築し直しするといった場合に必要になることがある。 The calibration model is constructed based on the analysis result, for example, by performing regression analysis using the measured average waveform pulse wave measured in advance as the explanatory variable and the measured value of the biological information as the objective variable. As the calibration model, a calibration model that has been constructed in advance and can be used for general purposes can be stored in the storage unit 24, and the first data can be measured. Building a calibration model may be necessary, for example, when calibrating on a regular basis or when rebuilding when the user changes.

検量モデルを構築するための回帰分析の方法として、例えばPLS回帰分析、クラス毎に主成分分析を行って主成分モデルとして検量モデルを得るSIMCA(Soft Independent Modeling of Class Analogy)法を利用した回帰分析、AIを用いたニューラルネットワークなどによる回帰分析方法などの少なくともひとつの方法を含める。 As a method of regression analysis for constructing a calibration model, for example, PLS regression analysis, regression analysis using the SIMCA (Soft Independent Modeling of Class Analogy) method for obtaining a calibration model as a principal component model by performing principal component analysis for each class. , Includes at least one method, such as a regression analysis method using a neural network using AI.

また、例えば血中二酸化炭素濃度などの異常値の値を観測しにくく、異常値のデータが集めにくい生体情報を推定する際に、回帰分析部620は第1抽出部61から入力された平均波形信号と、検量モデルとの乖離度から、生体情報の異常値を推定してもよい。 Further, when estimating biological information in which it is difficult to observe an abnormal value such as a blood carbon dioxide concentration and it is difficult to collect abnormal value data, the regression analysis unit 620 has an average waveform input from the first extraction unit 61. Outliers of biometric information may be estimated from the degree of discrepancy between the signal and the calibration model.

回帰分析部620は複数の検量モデルを有し、入力された平均波形データに対して、どの検量モデルを用いるかは、第1データ取得部62において第1処理条件を参照して決定した処理方法によって決定される。例えばフィルタ処理部610で、取得したい生体情報として、血糖値が選択された場合、第1データ取得部62は、第1抽出部61から入力された平均波形信号を回帰分析部620へ出力し、回帰分析部620で、予め測定された脈波の波形データを説明変数とし、血糖値の実測値を目的変数として、回帰分析により解析し、その解析結果に基づいて構築された検量モデルを用いて、入力された平均波形データから第1データを取得するように決定する。 The regression analysis unit 620 has a plurality of calibration models, and which calibration model is used for the input average waveform data is determined by the first data acquisition unit 62 with reference to the first processing condition. Determined by. For example, when the blood glucose level is selected as the biological information to be acquired by the filter processing unit 610, the first data acquisition unit 62 outputs the average waveform signal input from the first extraction unit 61 to the regression analysis unit 620. In the regression analysis unit 620, the waveform data of the pulse wave measured in advance is used as an explanatory variable, the measured value of the blood glucose level is used as the objective variable, and the analysis is performed by regression analysis, and the calibration model constructed based on the analysis result is used. , Determines to acquire the first data from the input average waveform data.

また、例えばフィルタ処理部610が、外部要因として、ユーザの年齢に基づいて、信号の抽出条件を決定した場合、第1データ取得部62は、第1抽出条件に紐付けられた第1処理条件を参照することで、第1抽出部61から入力された平均波形信号を回帰分析部620へ出力し、回帰分析部620で、予め測定された脈波の波形データを説明変数とし、ユーザの年齢に近いユーザの血糖値の実測値を目的変数として、回帰分析により解析し、その解析結果に基づいて構築された検量モデルを用いて、入力された平均波形データから第1データを取得するように決定する。これらによって、抽出方法に適した処理方法の決定が可能となる。 Further, for example, when the filter processing unit 610 determines the signal extraction condition as an external factor based on the age of the user, the first data acquisition unit 62 uses the first processing condition associated with the first extraction condition. By referring to, the average waveform signal input from the first extraction unit 61 is output to the regression analysis unit 620, and the waveform data of the pulse wave measured in advance by the regression analysis unit 620 is used as an explanatory variable, and the age of the user is used. Using the measured value of the user's blood glucose level close to that as the objective variable, analyze it by regression analysis, and use the calibration model constructed based on the analysis result to acquire the first data from the input average waveform data. decide. These make it possible to determine a processing method suitable for the extraction method.

次に第2抽出部63は、第2抽出条件決定ステップS14において、脈波信号取得部60から入力された脈波信号をフィルタ処理部630へ入力する。その後、フィルタ処理部630は入力された脈波信号に施す抽出方法を、第2抽出条件を参照して、決定する。 Next, in the second extraction condition determination step S14, the second extraction unit 63 inputs the pulse wave signal input from the pulse wave signal acquisition unit 60 to the filter processing unit 630. After that, the filter processing unit 630 determines the extraction method to be applied to the input pulse wave signal with reference to the second extraction condition.

第2抽出条件は、脈波信号から第2評価データを抽出するための抽出方法の一覧を含めるデータ群である。第2抽出条件のデータ群は複数の抽出方法を含めてもよいし、予め決められた単一の抽出方法を含めていてもよい。また、第2抽出条件は、第1抽出条件と同じものであってもよい。 The second extraction condition is a data group including a list of extraction methods for extracting the second evaluation data from the pulse wave signal. The data group of the second extraction condition may include a plurality of extraction methods, or may include a single predetermined extraction method. Further, the second extraction condition may be the same as the first extraction condition.

フィルタ処理部630は、第2抽出条件の中から、取得した脈波信号の状態、取得したい生体情報、外部要因によって、第2抽出部63が脈波信号に施す抽出方法を決定する。外部要因は、例えばユーザの年齢や、性別や、病歴や、生活習慣や、健康状態や、遺伝情報などのユーザの情報、温度や、湿度などの環境情報などのうち少なくとも一つを含める。また、フィルタ処理部630は、第1データ取得部62で取得した第1データの内容によって、第2抽出部63が脈波信号に施す抽出方法を決定してもよい。例えば、第1データ取得部62で取得した第1データの血糖値の精度が低い場合、フィルタ処理部630は、第1抽出部61で行わなかった抽出方法を決定する。また、例えば第1データとして血糖値を取得した場合、フィルタ処理部630は、血圧を第2データとして取得するために、規格化部633で、分割波形信号の時間幅を統一するために一定のサンプリング数でトリミングを行う抽出条件を決定してもよい。これによって、第1データの変化や特徴に合わせた第2データの取得が可能となり、高精度な評価結果をえることができる。また、フィルタ処理部630は、第1データ取得部62で取得した第1データの内容によって、第2データ取得部64が第2評価データに施す処理方法を決定してもよい。具体的な方法としては、後述する第2データ取得部64が、第1データ取得部62で取得した第1データの内容によって、第2評価データに施す処理方法を決定する方法と同様なものでもよい。 The filter processing unit 630 determines the extraction method applied to the pulse wave signal by the second extraction unit 63 according to the state of the acquired pulse wave signal, the biological information to be acquired, and an external factor from the second extraction conditions. The external factor includes, for example, at least one of the user's age, gender, medical history, lifestyle, health condition, user's information such as genetic information, and environmental information such as temperature and humidity. Further, the filter processing unit 630 may determine the extraction method to be applied to the pulse wave signal by the second extraction unit 63 according to the content of the first data acquired by the first data acquisition unit 62. For example, when the accuracy of the blood glucose level of the first data acquired by the first data acquisition unit 62 is low, the filter processing unit 630 determines an extraction method not performed by the first extraction unit 61. Further, for example, when the blood glucose level is acquired as the first data, the filter processing unit 630 is the standardization unit 633 in order to acquire the blood pressure as the second data, and is constant in order to unify the time width of the divided waveform signal. The extraction condition for trimming may be determined by the number of samplings. As a result, it becomes possible to acquire the second data according to the change and the feature of the first data, and it is possible to obtain a highly accurate evaluation result. Further, the filter processing unit 630 may determine the processing method to be applied to the second evaluation data by the second data acquisition unit 64 according to the content of the first data acquired by the first data acquisition unit 62. As a specific method, the method similar to the method in which the second data acquisition unit 64, which will be described later, determines the processing method to be applied to the second evaluation data based on the content of the first data acquired by the first data acquisition unit 62. good.

また、フィルタ処理部630は、第1データ取得部62で取得した第1評価データの抽出方法によって、第2抽出部63が脈波信号に施す抽出方法を決定してもよい。
例えば、第1評価データを取得するときに、微分部611で微分を行った場合、フィルタ処理部630は、微分部631で微分を行わないように決定する。これらによって、第1データの変化に伴い、最適な第2データを取得することが可能となる。
Further, the filter processing unit 630 may determine the extraction method to be applied to the pulse wave signal by the second extraction unit 63 according to the extraction method of the first evaluation data acquired by the first data acquisition unit 62.
For example, when the differentiation unit 611 performs the differentiation when the first evaluation data is acquired, the filter processing unit 630 determines that the differentiation unit 631 does not perform the differentiation. As a result, it becomes possible to acquire the optimum second data as the first data changes.

次に第2抽出部63は、第2抽出ステップS15において、脈波信号取得部60から入力された脈波信号から第2評価データを抽出する。第2評価データとは、第2データ取得部64で処理をするために第2抽出部63によって、脈波信号から抽出された波形データである。第2評価データは、例えば脈波信号が、フィルタリング処理、微分処理、規格化処理、及び平均化処理の少なくとも何れかによって1周期分等の波形に処理された波形データである。 Next, in the second extraction step S15, the second extraction unit 63 extracts the second evaluation data from the pulse wave signal input from the pulse wave signal acquisition unit 60. The second evaluation data is waveform data extracted from the pulse wave signal by the second extraction unit 63 for processing by the second data acquisition unit 64. The second evaluation data is waveform data in which, for example, a pulse wave signal is processed into a waveform for one cycle or the like by at least one of filtering processing, differentiation processing, normalization processing, and averaging processing.

まずフィルタ処理部630は、脈波信号取得部60から入力された脈波信号にフィルタリング処理を施した後、例えば血糖値を生体情報として取得する場合、第2抽出条件決定ステップS14で決定した抽出方法に基づいて、脈波信号を微分部631へと出力する。 First, the filter processing unit 630 performs filtering processing on the pulse wave signal input from the pulse wave signal acquisition unit 60, and then, for example, when acquiring the blood glucose level as biological information, the extraction determined in the second extraction condition determination step S14. Based on the method, the pulse wave signal is output to the differential unit 631.

次に微分部631は、フィルタ処理部630から入力された脈波信号に微分をするか、もしくはしないかを、第2抽出条件決定ステップS14で決定した抽出方法に基づいて判断し、処理を施した後、脈波信号を分割部632へと出力する。 Next, the differentiation unit 631 determines whether or not to differentiate the pulse wave signal input from the filter processing unit 630 based on the extraction method determined in the second extraction condition determination step S14, and performs processing. After that, the pulse wave signal is output to the division unit 632.

次に分割部632は、微分部631から入力された複数の波形信号のそれぞれを、1周期分の分割波形データに分割する。その後、分割部632は、分割波形データを規格化部633へ出力する。 Next, the division unit 632 divides each of the plurality of waveform signals input from the differentiation unit 631 into divided waveform data for one cycle. After that, the division unit 632 outputs the division waveform data to the normalization unit 633.

規格化部633は、分割部632から入力された複数の分割波形信号の時間幅を統一するために規格化をし、複数の分割波形信号の平均となる平均波形信号を取得し、平均波形信号の最大値を1、最小値を0とした規格化を行う。この時、第2抽出部63は平均波形信号を第2評価データとして取得する。その後、規格化部633は、規格化された平均波形信号を第2データ取得部64へ出力する。 The standardization unit 633 standardizes in order to unify the time width of the plurality of divided waveform signals input from the divided unit 632, acquires an average waveform signal that is the average of the plurality of divided waveform signals, and averages the waveform signal. Standardization is performed with the maximum value of 1 being 1 and the minimum value being 0. At this time, the second extraction unit 63 acquires the average waveform signal as the second evaluation data. After that, the standardized unit 633 outputs the standardized average waveform signal to the second data acquisition unit 64.

次に生体情報演算システム1は、第2データ取得ステップS16へ移行し、第2抽出条件に紐づく第2処理条件を参照し、第2抽出部63から入力された第2評価データを第2データ取得部64で処理し、第2データを取得する。 Next, the biometric information calculation system 1 proceeds to the second data acquisition step S16, refers to the second processing condition associated with the second extraction condition, and uses the second evaluation data input from the second extraction unit 63 as the second evaluation data. The data acquisition unit 64 processes and acquires the second data.

第2処理条件は、第2抽出部63から入力された第2評価データに、第2データ取得部64で施す処理の第2抽出条件に紐づけられた方法を含めるデータ群である。第2データ取得部64は第2処理条件の中から処理方法を決定する。第2処理条件のデータ群は複数の処理方法を含めてもよいし、予め決められた単一の処理方法を含めていてもよい。また、第2処理条件は、第1処理条件と同じものであってもよい。 The second processing condition is a data group including the method associated with the second extraction condition of the processing performed by the second data acquisition unit 64 in the second evaluation data input from the second extraction unit 63. The second data acquisition unit 64 determines the processing method from the second processing conditions. The data group of the second processing condition may include a plurality of processing methods, or may include a single predetermined processing method. Further, the second processing condition may be the same as the first processing condition.

また、第2データ取得部64は、第1データの処理方法に応じて、第2データ取得部64で施す第2評価データの処理方法を決定してもよい。例えば、若年層のユーザから測定した実測値と脈波信号の相関関係を示した検量モデルを用いて、平均波形信号から第1データを取得する処理方法を施した場合、第2データ取得部64は、上記の処理方法に応じて、よりユーザに適した検量モデルを用いて、平均波形信号から第2データを取得してもよい。これによって、異なる処理の方法で取得した複数の生体情報を取得することが可能となり、より多角的で高精度な評価が可能となる。 Further, the second data acquisition unit 64 may determine the processing method of the second evaluation data to be applied by the second data acquisition unit 64 according to the processing method of the first data. For example, when a processing method for acquiring the first data from the average waveform signal is applied using a calibration model showing the correlation between the measured value measured from a young user and the pulse wave signal, the second data acquisition unit 64 May acquire second data from the average waveform signal using a calibration model that is more suitable for the user, depending on the processing method described above. This makes it possible to acquire a plurality of biometric information acquired by different processing methods, and enables more multifaceted and highly accurate evaluation.

また、第2データ取得部64は、第2処理条件を参照し、第1データの内容に対応する処理方法を決定してもよい。例えば、第1データによって、ユーザが低血糖の傾向があることが判明した場合、第2データ取得部64は、第2データ取得部64で施す第2評価データの処理方法として、低血糖のユーザの血糖値の実測値と脈波信号の相関関係を示した検量モデルを用いて、血糖値を取得する処理方法を決定してもよい。取得できる血糖値の値には大きな誤差がある場合が想定されるため、第1データの内容から低血糖帯、通常血糖帯、高血糖帯、超高血糖帯に分類し、その血糖帯に合わせた検量モデルを用いることで第2データとして取得する血糖値の精度を大幅に向上することが可能となる。また、第1データの内容からユーザが糖尿病かどうかを判断し、その結果に合わせて第2データ取得部64で施す第2評価データの処理方法を決定してもよい。これらによって、第1データの変化に追従して、第2評価データの処理を決定することで、より高精度な評価が可能になる。 Further, the second data acquisition unit 64 may refer to the second processing condition and determine a processing method corresponding to the content of the first data. For example, when it is found from the first data that the user tends to have low blood glucose, the second data acquisition unit 64 uses the low blood glucose user as a method of processing the second evaluation data performed by the second data acquisition unit 64. The processing method for acquiring the blood glucose level may be determined by using a calibration model showing the correlation between the measured blood glucose level and the pulse wave signal. Since it is assumed that there is a large error in the blood glucose level that can be obtained, it is classified into hypoglycemic zone, normal blood glucose zone, hyperglycemic zone, and ultrahyperglycemic zone from the contents of the first data, and according to the blood glucose band. By using the calibration model, it is possible to greatly improve the accuracy of the blood glucose level acquired as the second data. Further, it may be determined from the content of the first data whether or not the user has diabetes, and the processing method of the second evaluation data to be applied by the second data acquisition unit 64 may be determined according to the result. As a result, more accurate evaluation becomes possible by deciding the processing of the second evaluation data according to the change of the first data.

処理方法は、例えば回帰分析部620で、平均波形信号から第1データを取得する処理で用いられる検量モデルの内容によっても分類することができる。例えば、若年層のユーザから測定した実測値と脈波信号の相関関係を示した検量モデルを用いて、平均波形信号から第1データを取得する処理方法と別の年代層のユーザから測定した実測値と脈波信号の相関関係を示した検量モデルを用いて、平均波形信号から第1データを取得する処理方法はそれぞれ異なる処理方法である。 The processing method can also be classified according to the content of the calibration model used in the processing of acquiring the first data from the average waveform signal, for example, in the regression analysis unit 620. For example, a processing method for acquiring the first data from the average waveform signal using a calibration model showing the correlation between the measured value measured from a young user and the pulse wave signal, and the measured value measured from a user in another age group. The processing methods for acquiring the first data from the average waveform signal using the calibration model showing the correlation between the pulse wave signal and the pulse wave signal are different processing methods.

また、第2データ取得部64は、第1評価データの分類パターンを参照して、第1評価データを分類した結果を第1データとし、上述した第1データを参照して、第2データ取得部64で施す第2評価データの処理方法を決定してもよい。これによって、例えば分類しやすい加速度脈波を用いて、信号の特徴を分類したうえで、誤検出を抑制できる速度脈波を用いた高精度な評価が可能となる。これによって、第1データの変化に追従して、よりユーザに適した第2評価データの処理を決定することが可能となる。 Further, the second data acquisition unit 64 refers to the classification pattern of the first evaluation data, sets the result of classifying the first evaluation data as the first data, and refers to the above-mentioned first data to acquire the second data. You may decide the processing method of the 2nd evaluation data to apply in part 64. This enables highly accurate evaluation using a velocity pulse wave that can suppress erroneous detection after classifying the characteristics of the signal using, for example, an acceleration pulse wave that is easy to classify. This makes it possible to follow changes in the first data and determine processing of the second evaluation data that is more suitable for the user.

分類パターンは、信号の波形の特徴に応じて、信号を2つ以上のグループに分類するための分類表のことである。 The classification pattern is a classification table for classifying signals into two or more groups according to the characteristics of the waveform of the signal.

図9は、加速度脈波の分類パターンの一例である。図9は、加速度脈波にはa~eの変曲点が存在し、加速度脈波における最大のピークをa点とし、a点から順に各変曲点をb点、c点、d点、e点とし、a点を1とし、最小値であるb点もしくはd点を0とした規格化を行い、各変曲点の値と、その差の大小関係により分類する方法で、脈波を7パターンに分類した図である。まず、変曲点の値がb<dの場合は、パターンAまたはBに分類する。b<dでさらにc≧0.5であればA、そうでなければBに分類する。次に変曲点の値がb≒dの場合、パターンCまたはDに分類する。b≒dでさらにc≒0の場合はパターンD、そうでなければパターンCに分類する。最後に、b>dの場合は、パターンE、F、Gのいずれかに分類できる。b>dでさらにb<cであればパターンEに、b≒cであればパターンF,b>cであればパターンGに分類する。 FIG. 9 is an example of the classification pattern of the acceleration pulse wave. In FIG. 9, inflection points a to e exist in the acceleration pulse wave, the maximum peak in the acceleration pulse wave is point a, and each inflection point is point b, point c, point d in order from point a. Normalization is performed with point e, point a as 1, and the minimum value b or d as 0, and the pulse wave is classified according to the value of each inflection point and the magnitude relationship of the difference. It is a figure classified into 7 patterns. First, when the value of the inflection point is b <d, it is classified into pattern A or B. If b <d and c ≧ 0.5, it is further classified as A, and if not, it is classified as B. Next, when the value of the inflection point is b≈d, it is classified into the pattern C or D. If b≈d and c≈0, it is classified into pattern D, and if not, it is classified into pattern C. Finally, if b> d, it can be classified into any of patterns E, F, and G. If b> d and b <c, it is classified into pattern E, if b≈c, it is classified into pattern F, and if b> c, it is classified into pattern G.

第1データ取得部62は、微分部611で脈波信号を微分した加速度脈波に基づいた第1評価データが入力された場合、第1評価データが、例えば図9のどのパターンに当てはまるかを判断し、分類パターンを決定する。例えば、入力された第1評価データの変曲点bが変曲点dより小さく、さらに変曲点c≧0.5であれば、パターンAを第1評価データの分類パターンとする。 When the first evaluation data based on the acceleration pulse wave obtained by differentiating the pulse wave signal by the differentiation unit 611 is input, the first data acquisition unit 62 determines which pattern of FIG. 9 the first evaluation data applies to, for example. Judge and determine the classification pattern. For example, if the inflection point b of the input first evaluation data is smaller than the inflection point d and the inflection point c ≧ 0.5, the pattern A is used as the classification pattern of the first evaluation data.

加速度脈波の分類ごとに、適した検量モデルが異なるので、第2データ取得部64は、第1評価データの分類パターンを参照して、第1評価データを分類した結果を第1データとし、上述した第1データを参照して、第2データ取得部64で施す第2評価データの処理の方法を決定することで、ユーザごとに適した処理方法を実現することができる。例えば、第1評価データがパターンAに分類された結果を第1データとするとき、第2データ取得部64は、回帰分析部640で、予め測定された脈波のパターンAの波形データを説明変数とし、生体情報の実測値を目的変数として、回帰分析により解析し、その解析結果に基づいて構築された検量モデルを用いて、入力された平均波形データから第2データを取得するように決定する。 Since the suitable calibration model differs depending on the classification of the acceleration pulse wave, the second data acquisition unit 64 refers to the classification pattern of the first evaluation data and uses the result of classifying the first evaluation data as the first data. By referring to the first data described above and determining the method of processing the second evaluation data to be applied by the second data acquisition unit 64, it is possible to realize a processing method suitable for each user. For example, when the result of the first evaluation data being classified into the pattern A is used as the first data, the second data acquisition unit 64 explains the waveform data of the pulse wave pattern A measured in advance by the regression analysis unit 640. It is decided to acquire the second data from the input average waveform data using the calibration model constructed based on the analysis result by performing regression analysis using the measured value of biological information as a variable and the objective variable. do.

図10は、速度脈波の分類パターンの一例である。図10は、速度脈波における最大のピークを1とし、最小値を0とした規格化を行い、最大のピーク以外にピークが見られたパターンをグループ1とし、最大のピーク以外にピークが見られなかったパターンをグループ2とした分類パターンである。これを上述したように用いることで、第1データ取得部62は、微分部611で脈波信号を微分しない速度脈波に基づいた第1評価データが入力された場合でも分類パターンを決定することができる。 FIG. 10 is an example of a classification pattern of velocity pulse waves. In FIG. 10, normalization is performed with the maximum peak in the velocity pulse wave being 1 and the minimum value being 0, and the pattern in which the peak is seen other than the maximum peak is group 1, and the peak is seen in other than the maximum peak. This is a classification pattern in which the patterns that were not obtained are group 2. By using this as described above, the first data acquisition unit 62 determines the classification pattern even when the first evaluation data based on the velocity pulse wave that does not differentiate the pulse wave signal is input by the differentiation unit 611. Can be done.

次に、最適血糖値算出ステップS17において、第1データ取得部62で取得した第1データと、第2データ取得部64で取得した第2データを最適血糖値算出部65へ入力し、第1データと第2データから最適な生体情報を取得する。例えば、第1データとして取得した血糖値を第1血糖値とし、第2データとして取得した血糖値を第2血糖値とし、第1血糖値と第2血糖値から最適血糖値を算出する。最適値となる生体情報の算出方法については、例えば第1データと第2データにそれぞれの測定精度に伴って重み付けを行い、重み付けに基づき、複数の第1データおよび複数の第2データから最適値となる生体情報を算出してもよい。また、他の例として、他センサ等によって取得された血糖値を参照値とし、参照値と第1データ及び第2データのプロットグラフを作成し二つのプロットグラフのうち、エラーグリッド上で良好な値を示すデータを出力する方法と、第1データと第2データをそれぞれ複数取得し、バラつきの小さいデータを出力する方法と、予め設定された許容範囲に、第1データと第2データが範囲内に含まれるかを評価し、含まれるデータを出力する方法などがあげられる。 Next, in the optimum blood glucose level calculation step S17, the first data acquired by the first data acquisition unit 62 and the second data acquired by the second data acquisition unit 64 are input to the optimum blood glucose level calculation unit 65, and the first Optimal biometric information is obtained from the data and the second data. For example, the blood glucose level acquired as the first data is defined as the first blood glucose level, the blood glucose level acquired as the second data is defined as the second blood glucose level, and the optimum blood glucose level is calculated from the first blood glucose level and the second blood glucose level. Regarding the method of calculating the biometric information that is the optimum value, for example, the first data and the second data are weighted according to the measurement accuracy of each, and the optimum value is obtained from a plurality of first data and a plurality of second data based on the weighting. You may calculate the biological information that becomes. Further, as another example, using the blood glucose level acquired by another sensor or the like as a reference value, a plot graph of the reference value and the first data and the second data is created, and of the two plot graphs, the one that is better on the error grid. A method of outputting data indicating a value, a method of acquiring a plurality of first data and a second data, and outputting data with a small variation, and a method of outputting the first data and the second data within a preset allowable range. There is a method of evaluating whether it is included in the data and outputting the included data.

1 生体情報演算システム
2 電子機器
3 公衆通信網
4 サーバ
5 センサ
16 出力I/F
20 ROM
21 RAM
22 CPU
23 操作部
24 記憶部
25 データ入出力部
26 内部バス
27 通信I/F
28 表示部
50 取得部
51 通信I/F
52 メモリ
53 命令部
54 内部バス
55 リストバンド
60 脈波信号取得部
61 第1抽出部
62 第1データ取得部
63 第2抽出部
64 第2データ取得部
65 最適血糖値算出部
610 フィルタ処理部
611 微分部
612 分割部
613 規格化部
614 ピーク位置算出部
615 ピーク間隔平均算出部
616 ピーク間隔プロット部
617 フーリエ変換部
618 最大周波数検出部
620 回帰分析部
621 脈拍処理部
622 ストレスプロット処理部
623 ストレスフーリエ処理部
624 呼吸数処理部
630 フィルタ処理部
631 微分部
632 分割部
633 規格化部
634 ピーク位置算出部
635 ピーク間隔平均算出部
636 ピーク間隔プロット部
637 フーリエ変換部
638 最大周波数検出部
640 回帰分析部
641 脈拍処理部
642 ストレスプロット処理部
643 ストレスフーリエ処理部
644 呼吸数処理部
S10 脈波信号取得ステップ
S11 第1抽出条件決定ステップ
S12 第1抽出ステップ
S13 第1データ取得ステップ
S14 第2抽出条件決定ステップ
S15 第2抽出ステップ
S16 第2データ取得ステップ
S17 最適血糖値算出ステップ
1 Biometric information calculation system 2 Electronic equipment 3 Public communication network 4 Server 5 Sensor 16 Output I / F
20 ROM
21 RAM
22 CPU
23 Operation unit 24 Storage unit 25 Data input / output unit 26 Internal bus 27 Communication I / F
28 Display unit 50 Acquisition unit 51 Communication I / F
52 Memory 53 Command unit 54 Internal bus 55 Wristband 60 Pulse wave signal acquisition unit 61 First extraction unit 62 First data acquisition unit 63 Second extraction unit 64 Second data acquisition unit 65 Optimal blood glucose level calculation unit 610 Filter processing unit 611 Differentiation unit 612 Division unit 613 Standardization unit 614 Peak position calculation unit 615 Peak interval average calculation unit 616 Peak interval plotting unit 617 Fourier transform unit 618 Maximum frequency detection unit 620 Regression analysis unit 621 Pulse processing unit 622 Stress plot processing unit 623 Stress Fourier Processing unit 624 Respiratory rate processing unit 630 Filter processing unit 631 Differentiation unit 632 Division unit 633 Standardization unit 634 Peak position calculation unit 635 Peak interval average calculation unit 636 Peak interval plotting unit 637 Fourier transform unit 638 Maximum frequency detection unit 640 Regression analysis unit 641 Pulse processing unit 642 Stress plot processing unit 643 Stress Fourier processing unit 644 Respiratory frequency processing unit S10 Pulse wave signal acquisition step S11 First extraction condition determination step S12 First extraction step S13 First data acquisition step S14 Second extraction condition determination step S15 Second extraction step S16 Second data acquisition step S17 Optimal blood glucose level calculation step

Claims (3)

速度脈波を脈波信号として取得する取得手段と、
第1抽出条件を参照し、前記取得手段によって取得された脈波信号に基づく第1評価データを抽出する第1抽出手段と、
前記第1抽出条件に紐づく第1処理条件を参照し、前記第1抽出手段によって抽出された第1評価データに対する第1血糖値を、第1データとして取得する第1データ取得手段と、
第2抽出条件を参照し、前記取得手段によって取得された脈波信号に基づく第2評価データを抽出する第2抽出手段と、
前記第2抽出条件に紐づく第2処理条件を参照し、前記第2抽出手段によって抽出された第2評価データに対する、前記第1データと異なる種類の生体情報からなる第2データを取得する第2データ取得手段と、
を備え、
前記第1評価データと、前記第2評価データとは、同一の前記脈波信号に基づいて抽出されること
を特徴とする生体情報演算システム。
An acquisition means for acquiring a velocity pulse wave as a pulse wave signal,
With reference to the first extraction condition, the first extraction means for extracting the first evaluation data based on the pulse wave signal acquired by the acquisition means, and the first extraction means.
A first data acquisition means for acquiring the first blood glucose level for the first evaluation data extracted by the first extraction means as the first data with reference to the first processing condition associated with the first extraction condition.
With reference to the second extraction condition, the second extraction means for extracting the second evaluation data based on the pulse wave signal acquired by the acquisition means, and the second extraction means.
With reference to the second processing condition associated with the second extraction condition, the second data consisting of biological information of a type different from the first data is acquired with respect to the second evaluation data extracted by the second extraction means. 2 Data acquisition means and
Equipped with
A biological information calculation system characterized in that the first evaluation data and the second evaluation data are extracted based on the same pulse wave signal.
前記第1抽出手段は、前記取得手段によって取得された脈波信号を微分しない前記第1抽出条件を参照し、
前記第2抽出手段は、前記取得手段によって取得された脈波信号を微分する前記第2抽出条件を参照すること
を特徴とする請求項1に記載の生体情報演算システム。
The first extraction means refers to the first extraction condition that does not differentiate the pulse wave signal acquired by the acquisition means.
The biometric information calculation system according to claim 1, wherein the second extraction means refers to the second extraction condition for differentiating the pulse wave signal acquired by the acquisition means.
前記第1データ取得手段は、予め取得された第1評価データと生体情報の実測値との相関関係に基づいて構築された第1検量モデルを用いて、前記第1抽出手段によって抽出された第1評価データに対する第1データを取得する第1回帰分析手段を有し、
前記第1回帰分析手段は、前記第1検量モデルを用いて、前記第1抽出手段によって抽出された第1評価データに対する第1血糖値を、前記第1データとして取得すること
を特徴とする請求項1又は2に記載の生体情報演算システム。
The first data acquisition means is the first extracted by the first extraction means using the first calibration model constructed based on the correlation between the first evaluation data acquired in advance and the measured value of the biological information. 1 Has a first regression analysis means for acquiring the first data for the evaluation data,
The first regression analysis means is characterized in that the first blood glucose level for the first evaluation data extracted by the first extraction means is acquired as the first data by using the first calibration model. Item 2. The biometric information calculation system according to Item 1 or 2.
JP2020206629A 2020-09-03 2020-12-14 Biological information calculation system Active JP7083185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020206629A JP7083185B2 (en) 2020-09-03 2020-12-14 Biological information calculation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148048A JP6851665B1 (en) 2020-09-03 2020-09-03 Biological information calculation system
JP2020206629A JP7083185B2 (en) 2020-09-03 2020-12-14 Biological information calculation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020148048A Division JP6851665B1 (en) 2020-09-03 2020-09-03 Biological information calculation system

Publications (2)

Publication Number Publication Date
JP2022042920A JP2022042920A (en) 2022-03-15
JP7083185B2 true JP7083185B2 (en) 2022-06-10

Family

ID=87654632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020206629A Active JP7083185B2 (en) 2020-09-03 2020-12-14 Biological information calculation system

Country Status (1)

Country Link
JP (1) JP7083185B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187993A (en) 2009-02-19 2010-09-02 Denso Corp Blood pressure measuring device and program as well as recording medium
JP2011217784A (en) 2010-04-05 2011-11-04 Seiko Epson Corp Measuring device and program
WO2016147795A1 (en) 2015-03-13 2016-09-22 国立大学法人信州大学 Non-invasive blood glucose level measurement method and non-invasive blood glucose level measurement device
WO2016167202A1 (en) 2015-04-17 2016-10-20 太陽誘電株式会社 Vibration waveform sensor and waveform analysis device
JP2017023472A (en) 2015-07-23 2017-02-02 国立大学法人 和歌山大学 Bio-information estimation device, bio-information estimation method, and computer program
WO2017187710A1 (en) 2016-04-28 2017-11-02 太陽誘電株式会社 Vibration waveform sensor and pulse wave detector
JP2019154774A (en) 2018-03-13 2019-09-19 株式会社東芝 Biometric measurement device and biometric measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295657A (en) * 1997-04-24 1998-11-10 Matsushita Electric Ind Co Ltd Blood pressure measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187993A (en) 2009-02-19 2010-09-02 Denso Corp Blood pressure measuring device and program as well as recording medium
JP2011217784A (en) 2010-04-05 2011-11-04 Seiko Epson Corp Measuring device and program
WO2016147795A1 (en) 2015-03-13 2016-09-22 国立大学法人信州大学 Non-invasive blood glucose level measurement method and non-invasive blood glucose level measurement device
WO2016167202A1 (en) 2015-04-17 2016-10-20 太陽誘電株式会社 Vibration waveform sensor and waveform analysis device
JP2017023472A (en) 2015-07-23 2017-02-02 国立大学法人 和歌山大学 Bio-information estimation device, bio-information estimation method, and computer program
WO2017187710A1 (en) 2016-04-28 2017-11-02 太陽誘電株式会社 Vibration waveform sensor and pulse wave detector
JP2019154774A (en) 2018-03-13 2019-09-19 株式会社東芝 Biometric measurement device and biometric measurement method

Also Published As

Publication number Publication date
JP2022042920A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
CN108113683B (en) Apparatus and method for estimating biological components
JP6544751B2 (en) Non-invasive blood sugar level measuring method and non-invasive blood sugar level measuring device
JP6525138B2 (en) Blood pressure measuring device
US20060224074A1 (en) Heartbeat measuring apparatus
WO2005110211A1 (en) Bioinformation detector
JP6899609B1 (en) Biometric information calculation system and server
JP7083185B2 (en) Biological information calculation system
US20190298190A1 (en) Pulse detection, measurement and analysis based health management system, method and apparatus
JP6851665B1 (en) Biological information calculation system
JP6851664B1 (en) Biological information calculation system
KR102547612B1 (en) A method for generating heart rate variability inforamtion related to an external object using a plurality filters and an electronic device thereof
TWI640297B (en) Non-invasive blood glucose measuring device, method, and system with identification function
WO2022050333A1 (en) Biometric information computing system, server, and data structure
WO2022050334A1 (en) Biological information calculation system
JP6845520B1 (en) Biological information calculation system
JP7083194B1 (en) Biological information calculation system
CN117045217B (en) Cuff-free blood pressure measurement method and related equipment thereof
JP7455191B2 (en) Biological abnormality detection device, biological abnormality detection method, and program
JP7083195B1 (en) Biological information calculation system
JP2010200911A (en) Apparatus for measuring blood component
Almeida et al. Validation of a waveform delineator device for cardiac studies: Repeatability and data mining analysis
JP2023153709A (en) Biological information operation system, server, and biological information operation method
CN116530942A (en) Monitoring device based on spectrum sensor
CN116157062A (en) Biological information calculation system
KR20230062852A (en) Biometric information operation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220524

R150 Certificate of patent or registration of utility model

Ref document number: 7083185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150