JP7082276B2 - Output device - Google Patents

Output device Download PDF

Info

Publication number
JP7082276B2
JP7082276B2 JP2017241689A JP2017241689A JP7082276B2 JP 7082276 B2 JP7082276 B2 JP 7082276B2 JP 2017241689 A JP2017241689 A JP 2017241689A JP 2017241689 A JP2017241689 A JP 2017241689A JP 7082276 B2 JP7082276 B2 JP 7082276B2
Authority
JP
Japan
Prior art keywords
secondary battery
charge transfer
transfer circuit
parallel
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241689A
Other languages
Japanese (ja)
Other versions
JP2019110660A (en
Inventor
耕一 山野上
忠司 円尾
亮太 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imasen Electric Industrial Co Ltd
Original Assignee
Imasen Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imasen Electric Industrial Co Ltd filed Critical Imasen Electric Industrial Co Ltd
Priority to JP2017241689A priority Critical patent/JP7082276B2/en
Priority to PCT/JP2018/044422 priority patent/WO2019124036A1/en
Publication of JP2019110660A publication Critical patent/JP2019110660A/en
Application granted granted Critical
Publication of JP7082276B2 publication Critical patent/JP7082276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、複数個の二次電池セルを直列に接続して成るバッテリから、複数個の一部の二次電池セルを直列に繋いで生じる電圧を出力する出力装置に関する。 The present invention relates to an output device that outputs a voltage generated by connecting a plurality of secondary battery cells in series from a battery formed by connecting a plurality of secondary battery cells in series.

特許文献1は、並列に接続された複数のDC/DCコンバータユニットを用い電圧を変換して電気式車両駆動用に用いる構成が開示されている。 Patent Document 1 discloses a configuration in which a plurality of DC / DC converter units connected in parallel are used to convert a voltage and used for driving an electric vehicle.

特開2008-253011号公報Japanese Unexamined Patent Publication No. 2008-253011

特許文献1では、電気式車両駆動用にDC/DCコンバータユニットを用い電圧を変換するため、車両電装品に大電力を供給する際にもDC/DCコンバータユニットの損失が大きいと考えられる。 In Patent Document 1, since the voltage is converted by using the DC / DC converter unit for driving the electric vehicle, it is considered that the loss of the DC / DC converter unit is large even when a large amount of electric power is supplied to the vehicle electrical components.

本発明の目的は、バッテリ電圧よりも低い電圧を低損失で供給できる出力装置を提供することにある。 An object of the present invention is to provide an output device capable of supplying a voltage lower than a battery voltage with a low loss.

本発明に係る出力装置は、複数個の二次電池セルを直列に接続して成るバッテリから、前記複数個の一部の二次電池セルを直列に繋いで生じる電圧を出力する。そして、前記直列接続する個数の切り替え可能な二次電池セルにそれぞれ設けられ、二次電池セル間で電荷を移送する直列電荷移送回路であって、前記二次電池セルに並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、前記二次電池セルに隣接する切り替え可能な二次電池セルに並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る直列電荷移送回路と、前記複数個を分割した2個以上の二次電池セルから成る二次電池セル群にそれぞれ設けられ、二次電池セル群間で電荷を移送する並列電荷移送回路であって、一方の二次電池セル群に並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、他方の二次電池セル群に並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る並列電荷移送回路と、を備え、前記並列電荷移送回路は多段に設けられ、前記一方の二次電池セル群と同電位になる二次電池セルに設けられた前記直列電荷移送回路が、前記一方の二次電池セル群の並列電荷移送回路と前記他方の二次電池セル群の並列電荷移送回路との間に接続されることを特徴とする。
The output device according to the present invention outputs a voltage generated by connecting a plurality of secondary battery cells in series from a battery formed by connecting a plurality of secondary battery cells in series. A series of charge transfer circuits provided in each of the number of switchable secondary battery cells connected in series to transfer charge between the secondary battery cells, and a pair connected in parallel to the secondary battery cells. From the switching element, and the capacitor connected between the pair of switching elements and between the pair of switching elements connected in parallel to the switchable secondary battery cell adjacent to the secondary battery cell. It is a parallel charge transfer circuit that is provided in a series charge transfer circuit and a secondary battery cell group consisting of two or more secondary battery cells divided into the plurality of cells, and transfers charge between the secondary battery cell groups. Between a pair of switching elements connected in parallel to one secondary battery cell group, the pair of switching elements, and a pair of switching elements connected in parallel to the other secondary battery cell group. The parallel charge transfer circuit is provided in multiple stages, and is provided in a secondary battery cell having the same potential as one of the secondary battery cell groups. The series charge transfer circuit is characterized in that it is connected between the parallel charge transfer circuit of the one secondary battery cell group and the parallel charge transfer circuit of the other secondary battery cell group.

本発明の出力装置は、バッテリの二次電池セルの一部の二次電池セルで生じる電圧を出力するため、DC/DCコンバータユニットでの降圧のための損失が生じない。ここで、一部の二次電池セルのみを出力させるため、二次電池セル間の容量バランスを保つための二次電池セル間で電荷を移送する直列電荷移送回路が設けられるが、直列電荷移送回路を構成するスイッチング素子での抵抗性損失が生じる。このため、個々の二次電池セルに設けられ個数の多い直列電荷移送回路に、二次電池セル群に設けられ個数の少ない並列電荷移送回路が接続される。個数の少ない並列電荷移送回路のスイッチング素子が接続されることで、バッテリから出力電圧を出力している二次電池セルまでのスイッチング素子の等価的な抵抗値が下がり、抵抗性損失が小さくなる。これにより、バッテリ電圧よりも低い電圧を低損失で供給することが可能となる。 Since the output device of the present invention outputs the voltage generated in the secondary battery cell of a part of the secondary battery cell of the battery, there is no loss due to the step-down in the DC / DC converter unit. Here, in order to output only a part of the secondary battery cells, a series charge transfer circuit for transferring charges between the secondary battery cells for maintaining the capacity balance between the secondary battery cells is provided, but the series charge transfer is provided. Resistance loss occurs in the switching elements that make up the circuit. Therefore, a small number of parallel charge transfer circuits provided in the secondary battery cell group are connected to a large number of series charge transfer circuits provided in each secondary battery cell. By connecting a small number of switching elements of the parallel charge transfer circuit, the equivalent resistance value of the switching element from the battery to the secondary battery cell outputting the output voltage is lowered, and the resistance loss is reduced. This makes it possible to supply a voltage lower than the battery voltage with low loss.

実施形態の出力装置の動作原理について示す説明図Explanatory drawing which shows the operation principle of the output device of embodiment 参考例の出力装置での損失について示す説明図Explanatory diagram showing loss in the output device of the reference example 第1実施形態に係る出力装置の電荷移送回路の回路図Circuit diagram of the charge transfer circuit of the output device according to the first embodiment 第1実施形態に係る出力装置の電圧調整回路の回路図Circuit diagram of the voltage adjustment circuit of the output device according to the first embodiment 第1実施形態に係る出力装置のバッテリ電圧と出力電圧を示す図The figure which shows the battery voltage and the output voltage of the output device which concerns on 1st Embodiment. 第1実施形態の係るバッテリモジュールの斜視図Perspective view of the battery module according to the first embodiment 第1実施形態の改変例に係る出力装置の電圧調整回路の回路図Circuit diagram of the voltage adjustment circuit of the output device according to the modified example of the first embodiment 第2実施形態に係る出力装置の電荷移送回路の回路図Circuit diagram of the charge transfer circuit of the output device according to the second embodiment 第3実施形態に係る出力装置の電荷移送回路の回路図Circuit diagram of the charge transfer circuit of the output device according to the third embodiment 第4実施形態に係る出力装置の電荷移送回路の回路図Circuit diagram of the charge transfer circuit of the output device according to the fourth embodiment

実施形態の出力装置の動作原理について、図1を参照して説明する。
ここでは、4個のLi-ionセルCellA、CellB、CellC、CellDからなるバッテリB5が示される。バッテリB5には、過充電が発火原因となるLi-ionセルの電圧を均一にするためのキャパシタースイッチング方式の電荷移送回路E5が取り付けられている。電荷移送回路E5は、個々のセルに並列に接続された一対のスイッチング素子と、一対のスイッチング素子の間と、当該セルに隣接するセルに並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る。即ち、セルCellAと並列に一対のスイッチング素子(MSOFET)であるMOS1、MOS2が接続され、セルCellBと並列に一対のMOS3、MOS4が接続され、セルCellCと並列に一対のMOS5、MOS6が接続され、セルCellDと並列に一対のMOS7、MOS8が接続される。セルCellAに並列なMOS1、MOS2との間と、セルCellBに並列なMOS1、MOS2との間にコンデンサCrαが接続されている。セルCellBに並列なMOS3、MOS4との間と、セルCellCに並列なMOS5、MOS6との間にコンデンサCrβが接続されている。セルCellCに並列なMOS5、MOS6との間と、セルCellDに並列なMOS7、MOS8との間にコンデンサCrγが接続されている。
The operating principle of the output device of the embodiment will be described with reference to FIG.
Here, a battery B5 composed of four Li-ion cells CellA, CellB, CellC, and CellD is shown. The battery B5 is equipped with a capacitor switching type charge transfer circuit E5 for making the voltage of the Li-ion cell, which causes ignition due to overcharging, uniform. The charge transfer circuit E5 is connected between a pair of switching elements connected in parallel to each cell, between a pair of switching elements, and between a pair of switching elements connected in parallel to a cell adjacent to the cell. It consists of a capacitor and a capacitor. That is, a pair of switching elements (MSOFETs) MOS1 and MOS2 are connected in parallel with the cell CellA, a pair of MOS3 and MOS4 are connected in parallel with the cell CellB, and a pair of MOS5 and MOS6 are connected in parallel with the cell CellC. , A pair of MOS7 and MOS8 are connected in parallel with the cell CellD. A capacitor Crα is connected between MOS1 and MOS2 parallel to cell CellA and between MOS1 and MOS2 parallel to cell CellB. A capacitor Crβ is connected between MOS3 and MOS4 parallel to cell CellB and between MOS5 and MOS6 parallel to cell CellC. A capacitor Crγ is connected between MOS5 and MOS6 parallel to cell CellC and between MOS7 and MOS8 parallel to cell CellD.

コンデンサCrαは、セルCellAとセルCellBとの間を、所定デューティ(例えば、30%-50%)で駆動されるMOS1、MOS2、MOS3、MOS4のスイッチング(ON/OFF)により交互に接続される。このとき、セルCellAとセルCellBとの間に電位差があれば、電位の高いセルからコンデンサ、コンデンサから電位の低いセルに電荷が移動して電位差が無いように均一化される。ここで、コンデンサCrαが切り替わる前後でセルCellAの電圧VcaとセルCellBの電圧Vcbはほぼ同じ値なので(コンデンサCrα電圧Vcr=Vca=Vcb)、MOS1、MOS2、MOS3、MOS4は電位差がほとんど無い状態で作動し、スイッチングロスがほとんど発生しない。即ち、電荷移送回路E5は高効率である。同様にして、セルCellBとセルCellCとが電位差が無いように調整され、セルCellCとセルCellDとが電位差が無いように調整され、全てのセルCellA、CellB、CellC、CellDの電位が均一となる。なお、ここでは、スイッチング素子としてMSOFETを用いたが、スイッチング素子としては、MSOFET以外にも、FET、トランジスタ、サイリスタ等種々のスイッチング素子を用いることができる。 The capacitors Crα are alternately connected between the cell Cell A and the cell Cell B by switching (ON / OFF) of MOS1, MOS2, MOS3, and MOS4 driven by a predetermined duty (for example, 30% -50%). At this time, if there is a potential difference between the cell Cell A and the cell Cell B, the electric charge moves from the cell having a high potential to the capacitor and from the capacitor to the cell having a low potential, and is made uniform so that there is no potential difference. Here, since the voltage Vca of the cell Cell A and the voltage Vcb of the cell Cell B are almost the same value before and after the capacitor Crα is switched (capacitor Crα voltage Vcr = Vca = Vcb), the MOS1, MOS2, MOS3, and MOS4 have almost no potential difference. It operates and causes almost no switching loss. That is, the charge transfer circuit E5 is highly efficient. Similarly, the cell Cell B and the cell Cell C are adjusted so that there is no potential difference, the cell Cell C and the cell Cell D are adjusted so that there is no potential difference, and the potentials of all the cells Cell A, Cell B, Cell C, and Cell D become uniform. .. Although the MSOFET is used as the switching element here, various switching elements such as FETs, transistors, and thyristors can be used as the switching element in addition to the MSOFET.

[参考例]
図2に示される参考例では、18個のセルから成る48Vのバッテリの一部セルから12Vの電圧を出力し、上述した電荷移送回路E5のみでセル間の電圧の均一化を図った場合を示している。下方(低電圧側)のセルC1,図示しないC2、C3、C4、C5等が負荷に接続される。この場合、等価的にn個(n=負荷に接続されないセル数の2倍)の直列に接続されたMOS(MOS1~MOSn)が電流経路となるので、n個のMOSのON抵抗を経由することとなって、抵抗性損失が増大する。
ここで、損失Lossは、流れる電流をI、各MOSのON抵抗をRmosとすると次式で表される:
Loss=I×(Rmos1+Rmos2+・・・・Rmosn)
[Reference example]
In the reference example shown in FIG. 2, a case where a voltage of 12 V is output from a part of a 48 V battery consisting of 18 cells and the voltage is made uniform between the cells only by the charge transfer circuit E5 described above is used. Shows. Lower (low voltage side) cells C1, C2, C3, C4, C5 and the like (not shown) are connected to the load. In this case, since n MOSs (MOS1 to MOSn) connected in series equivalently (n = twice the number of cells not connected to the load) serve as the current path, they pass through the ON resistance of n MOSs. As a result, the resistance loss increases.
Here, the loss loss is expressed by the following equation, where I is the flowing current and Rmos is the ON resistance of each MOS.
Loss = I 2 × (Rmos1 + Rmos2 + ... Rmosn)

[第1実施形態]
図3は、第1実施形態に係る出力装置の電荷移送回路E1A、E1Bを示しをている。
第1実施形態では、18個のLi-ionセルC1~C18からなるバッテリB1が示される。バッテリB1は48Vを出力し、ハイブリッドカーの駆動モータ用電源として用いられている。第1実施形態の出力装置は、48VのバッテリB1から12Vを取り出し、前照灯、ワイパー等の12V電装品へ供給する。セルC1~C18は、C1、C2、C3の3個のセルから成る第1セル群b1と、C4、C5、C6,C7、C8、C9の6個のセルからなる第2セル群b2と、C10、C11、C12の3個のセルから成る第3セル群b3と、C13、C14、C15,C16、C17、C18の6個のセルからなる第4セル群b4とに分けられている。
[First Embodiment]
FIG. 3 shows the charge transfer circuits E1A and E1B of the output device according to the first embodiment.
In the first embodiment, the battery B1 composed of 18 Li-ion cells C1 to C18 is shown. The battery B1 outputs 48V and is used as a power source for a drive motor of a hybrid car. The output device of the first embodiment takes out 12V from the 48V battery B1 and supplies it to 12V electrical components such as headlights and wipers. Cells C1 to C18 include a first cell group b1 consisting of three cells C1, C2, and C3, and a second cell group b2 consisting of six cells C4, C5, C6, C7, C8, and C9. It is divided into a third cell group b3 consisting of three cells C10, C11 and C12, and a fourth cell group b4 consisting of six cells C13, C14, C15, C16, C17 and C18.

バッテリB1は、図示しないオルタネータによって充電される。オルタネータは、車両電装品に必要な電力を供給するため、図示しないエンジンによって駆動されるとともに、車両減速時には駆動系を介して減速時の運動エネルギーを回生して、バッテリB1を充填するが如く作用する。また、バッテリB1は、図示しない車載されたモータ、インバータ等からなる電気駆動制御システムへ電力を供給して、エンジンの駆動トルクをアシストするように作用する。これによって、車両の加速時には、上記減速時に回生したエネルギーを再利用して走行できるから車両の走行燃費向上を図ることが可能になる。 Battery B1 is charged by an alternator (not shown). The alternator is driven by an engine (not shown) to supply the electric power required for the vehicle electrical components, and at the time of vehicle deceleration, it regenerates the kinetic energy at the time of deceleration via the drive system and acts as if the battery B1 is filled. do. Further, the battery B1 acts to assist the drive torque of the engine by supplying electric power to an electric drive control system including an in-vehicle motor, an inverter, etc. (not shown). As a result, when the vehicle is accelerating, the energy regenerated during the deceleration can be reused for traveling, so that the traveling fuel efficiency of the vehicle can be improved.

図4は、出力装置の電圧調整回路20を示している。電圧調整回路20は、一部の二次電池セル中で直列接続する個数を所定範囲で切り替え可能にする。即ち、電圧調整回路20は、セルC1、C2、C3の3個のセルから成る第1セル群b1の電圧を出力するためのスイッチ(FET等のスイッチング素子)SW3(8V)と、セルC4の電圧を出力するためのスイッチSW4(10.6V)と、セルC5の電圧を出力するためのスイッチSW5(13.3V)と、セルC6の電圧を出力するためのスイッチSW6(16V)と、セルC7の電圧を出力するためのスイッチSW7(18.7V)と、セルC8の電圧を出力するためのスイッチSW8(21V)と、セルC9の電圧を出力するためのスイッチSW9(24V)と、を備える。ここで、Li-ionバッテリB1は、電池容量によって36V-54Vまで変化する。このバッテリB1の電圧の変化に対して、14V付近の電圧を出力するように、電圧調整回路20はスイッチを切り替える。 FIG. 4 shows the voltage adjusting circuit 20 of the output device. The voltage adjustment circuit 20 makes it possible to switch the number of units connected in series in some of the secondary battery cells within a predetermined range. That is, the voltage adjustment circuit 20 includes a switch (switching element such as FET) SW3 (8V) for outputting the voltage of the first cell group b1 composed of three cells C1, C2, and C3, and the cell C4. Switch SW4 (10.6V) for outputting voltage, switch SW5 (13.3V) for outputting voltage of cell C5, switch SW6 (16V) for outputting voltage of cell C6, and cell. A switch SW7 (18.7V) for outputting the voltage of C7, a switch SW8 (21V) for outputting the voltage of the cell C8, and a switch SW9 (24V) for outputting the voltage of the cell C9. Be prepared. Here, the Li-ion battery B1 changes from 36V to 54V depending on the battery capacity. The voltage adjustment circuit 20 switches the switch so as to output a voltage of about 14 V in response to the change in the voltage of the battery B1.

図3中に示す電荷移送回路E1A、E1Bは、C1、C2、C3の第1セル群b1と、C4、C5、C6,C7、C8、C9の6個のセルからなる第2セル群b2とから電力供給を行うので全セルでの電圧を均一にするためと、電荷移送回路E1A、E1B内での電力損失を低減するために設けられている。 The charge transfer circuits E1A and E1B shown in FIG. 3 include a first cell group b1 of C1, C2 and C3 and a second cell group b2 consisting of six cells C4, C5, C6, C7, C8 and C9. Since power is supplied from the cell, it is provided to make the voltage uniform in all cells and to reduce the power loss in the charge transfer circuits E1A and E1B.

電荷移送回路E1Aは、C1-C18の18個のセルを2分割したセルC1-C9からなる二次電池セル群と、セルC10-C18からなる二次電池セル群との間で電荷を移送する2分割並列電荷移送回路E1/2を備える。2分割並列電荷移送回路E1/2は、セルC1-C9からなる二次電池セル群に並列に接続された一対のスイッチング素子M/21、M/22と、セルC10-C18からなる二次電池セル群に並列に接続された一対のスイッチング素子M/23、M/24と、スイッチング素子M/21、M/22との間とスイッチング素子M/23、M/24との間に設けられたコンデンサCとから成る。 The charge transfer circuit E1A transfers charge between a secondary battery cell group consisting of cells C1-C9 obtained by dividing 18 cells of C1-C18 into two and a secondary battery cell group consisting of cells C10-C18. A two-part parallel charge transfer circuit E1 / 2 is provided. The two-part parallel charge transfer circuit E1 / 2 is a secondary battery composed of a pair of switching elements M / 21, M / 22 and cells C10-C18 connected in parallel to a secondary battery cell group consisting of cells C1-C9. It is provided between a pair of switching elements M / 23, M / 24 connected in parallel to the cell group, between the switching elements M / 21, M / 22, and between the switching elements M / 23, M / 24. It consists of a capacitor C.

電荷移送回路E1Aは、C1-C18の18個のセル3を分割したセルC1-C6からなる二次電池セル群と、セルC7-C12からなる二次電池セル群と、セルC13-C18からなる二次電池セル群との間で電荷を移送する3分割並列電荷移送回路E1/3を備える。3分割並列電荷移送回路E1/3は、セルC1-C6からなる二次電池セル群に並列に接続された一対のスイッチング素子M/31、M/32と、セルC7-C12からなる二次電池セル群に並列に接続された一対のスイッチング素子M/33、M/34と、セルC13-C18からなる二次電池セル群に並列に接続された一対のスイッチング素子M/35、M/36と、スイッチング素子M/31、M/32との間とスイッチング素子M/33、M/34との間に設けられたコンデンサCと、スイッチング素子M/33、M/34との間とスイッチング素子M/35、M/36との間に設けられたコンデンサCと、から成る。 The charge transfer circuit E1A includes a secondary battery cell group consisting of cells C1-C6 obtained by dividing 18 cells 3 of C1-C18, a secondary battery cell group consisting of cells C7-C12, and cells C13-C18. It is provided with a 3-split parallel charge transfer circuit E1 / 3 that transfers charges to and from a group of secondary battery cells. The 3-split parallel charge transfer circuit E1 / 3 is a secondary battery composed of a pair of switching elements M / 31, M / 32 and cells C7-C12 connected in parallel to a secondary battery cell group consisting of cells C1-C6. A pair of switching elements M / 33, M / 34 connected in parallel to the cell group, and a pair of switching elements M / 35, M / 36 connected in parallel to the secondary battery cell group consisting of cells C13-C18. , The capacitor C provided between the switching elements M / 31, M / 32 and the switching elements M / 33, M / 34, and between the switching elements M / 33, M / 34 and the switching element M. It is composed of a capacitor C provided between / 35 and M / 36.

電荷移送回路E1Aは、C1-C9の9個のセル3を分割したセルC1-C3からなる二次電池セル群と、セルC4-C6からなる二次電池セル群と、セルC7-C9からなる二次電池セル群との間で電荷を移送する6分割並列電荷移送回路E1/6を備える。6分割並列電荷移送回路E1/6は、セルC1-C3からなる二次電池セル群に並列に接続された一対のスイッチング素子M/61、M/62と、セルC4-C6からなる二次電池セル群に並列に接続された一対のスイッチング素子M/63、M/64と、セルC7-C9からなる二次電池セル群に並列に接続された一対のスイッチング素子M/65、M/66と、スイッチング素子M/61、M/62との間とスイッチング素子M/63、M/64との間に設けられたコンデンサCと、スイッチング素子M/63、M/64との間とスイッチング素子M/65、M/66との間に設けられたコンデンサCと、から成る。6分割並列電荷移送回路E1/6は、全セルC1-C18内で2分割し、電圧を出力するセルC1-C9を3分割したそれぞれにスイッチング素子及びコンデンサからなる電荷移送回路を設ける。 The charge transfer circuit E1A includes a secondary battery cell group consisting of cells C1-C3 obtained by dividing nine cells 3 of C1-C9, a secondary battery cell group consisting of cells C4-C6, and cells C7-C9. It is provided with a 6-segment parallel charge transfer circuit E1 / 6 that transfers charges to and from a group of secondary battery cells. The 6-segment parallel charge transfer circuit E1 / 6 is a secondary battery composed of a pair of switching elements M / 61 and M / 62 connected in parallel to a secondary battery cell group consisting of cells C1-C3 and cells C4-C6. A pair of switching elements M / 63, M / 64 connected in parallel to the cell group, and a pair of switching elements M / 65, M / 66 connected in parallel to the secondary battery cell group consisting of cells C7-C9. , The capacitor C provided between the switching elements M / 61 and M / 62 and between the switching elements M / 63 and M / 64, and between the switching elements M / 63 and M / 64 and the switching element M. It is composed of a capacitor C provided between / 65 and M / 66. The 6-division parallel charge transfer circuit E1 / 6 is divided into two in all cells C1-C18, and a charge transfer circuit composed of a switching element and a capacitor is provided in each of the cells C1-C9 for outputting voltage.

直列接続する個数の切り替え可能なセルC4-C9には、それぞれセル間で電荷を移送する直列電荷移送回路E-4~E-9が取り付けられている。即ち、セルC4に設けられる直列電荷移送回路E-4は、セルC4に並列に接続されたスイッチング素子M1、M2と、スイッチング素子M1、M2間とスイッチング素子M3、M4間とに設けられたコンデンサCから成る。セルC5に設けられる直列電荷移送回路E-5は、セルC5に並列に接続されたスイッチング素子M3、M4と、スイッチング素子M1、M2間とスイッチング素子M3、M4間とに設けられたコンデンサCと、スイッチング素子M3、M4間とスイッチング素子M5、M6間とに設けられたコンデンサCとから成る。セルC6に設けられる直列電荷移送回路E-6は、セルC6に並列に接続されたスイッチング素子M5、M6と、スイッチング素子M3、M4間とスイッチング素子M5、M6間とに設けられたコンデンサCと、スイッチング素子M5、M6間とスイッチング素子M7、M8間とに設けられたコンデンサCとから成る。セルC7に設けられる直列電荷移送回路E-7は、セルC7に並列に接続されたスイッチング素子M7、M8と、スイッチング素子M5、M6間とスイッチング素子M7、M8間とに設けられたコンデンサCと、スイッチング素子M7、M8間とスイッチング素子M9、M10間とに設けられたコンデンサCとから成る。セルC8に設けられる直列電荷移送回路E-8は、セルC8に並列に接続されたスイッチング素子M9、M10と、スイッチング素子M7、M8間とスイッチング素子M9、M10間とに設けられたコンデンサCと、スイッチング素子M9、M10間とスイッチング素子M11、M12間とに設けられたコンデンサCとから成る。セルC9に設けられる直列電荷移送回路E-9は、セルC9に並列に接続されたスイッチング素子M11、M12と、スイッチング素子M9、M10間とスイッチング素子M11、M12間とに設けられたコンデンサCとから成る。2分割並列電荷移送回路E1/2の中点MDは、48Vを2分割した電圧、24Vを出力し中点MDと同電位となるセルC9に接続されると共に、該セルC9に設けられる直列電荷移送回路E-9に接続される。 A series charge transfer circuit E-4 to E-9 for transferring charges between cells is attached to each of the number of switchable cells C4-C9 connected in series. That is, the series charge transfer circuit E-4 provided in the cell C4 is a capacitor provided between the switching elements M1 and M2 connected in parallel to the cell C4, between the switching elements M1 and M2, and between the switching elements M3 and M4. It consists of C. The series charge transfer circuit E-5 provided in the cell C5 includes switching elements M3 and M4 connected in parallel to the cell C5, and capacitors C provided between the switching elements M1 and M2 and between the switching elements M3 and M4. It is composed of a capacitor C provided between the switching elements M3 and M4 and between the switching elements M5 and M6. The series charge transfer circuit E-6 provided in the cell C6 includes switching elements M5 and M6 connected in parallel to the cell C6, and capacitors C provided between the switching elements M3 and M4 and between the switching elements M5 and M6. It is composed of a capacitor C provided between the switching elements M5 and M6 and between the switching elements M7 and M8. The series charge transfer circuit E-7 provided in the cell C7 includes switching elements M7 and M8 connected in parallel to the cell C7, and capacitors C provided between the switching elements M5 and M6 and between the switching elements M7 and M8. It is composed of a capacitor C provided between the switching elements M7 and M8 and between the switching elements M9 and M10. The series charge transfer circuit E-8 provided in the cell C8 includes switching elements M9 and M10 connected in parallel to the cell C8, and capacitors C provided between the switching elements M7 and M8 and between the switching elements M9 and M10. It is composed of a capacitor C provided between the switching elements M9 and M10 and between the switching elements M11 and M12. The series charge transfer circuit E-9 provided in the cell C9 includes switching elements M11 and M12 connected in parallel to the cell C9, and capacitors C provided between the switching elements M9 and M10 and between the switching elements M11 and M12. Consists of. The midpoint MD of the two-divided parallel charge transfer circuit E1 / 2 is connected to a cell C9 that outputs a voltage obtained by dividing 48V into two, 24V, and has the same potential as the midpoint MD, and is provided with a series charge in the cell C9. It is connected to the transfer circuit E-9.

電荷移送回路E1Bの回路構成は、図3中に示される電荷移送回路E1Aと同じであり、バッテリに対して対称に配置され、反転作動される。 The circuit configuration of the charge transfer circuit E1B is the same as that of the charge transfer circuit E1A shown in FIG. 3, and is arranged symmetrically with respect to the battery and is inverted.

図3中に示されるように、セルC4からの電圧が出力される際に、電荷移送回路E1A内の電流経路は3種存在する。
経路I1:セルC18端子→2分割並列電荷移送回路E1/2内のスイッチング素子M/24,M/23→セルC9の直列電荷移送回路E-9(スイッチング素子M12、M11)→セルC8の直列電荷移送回路E-8(スイッチング素子M10、M9)→セルC7の直列電荷移送回路E-7(スイッチング素子M8、M7)→セルC6の直列電荷移送回路E-6(スイッチング素子M6、M5)→セルC5の直列電荷移送回路E-5(スイッチング素子M4、M3)→セルC4端子
As shown in FIG. 3, when the voltage from the cell C4 is output, there are three types of current paths in the charge transfer circuit E1A.
Path I1: Cell C18 terminal → Switching elements M / 24, M / 23 in the 2-split parallel charge transfer circuit E1 / 2 → Series charge transfer circuit E-9 (switching elements M12, M11) in cell C9 → Series of cell C8 Charge transfer circuit E-8 (switching elements M10, M9) → Series charge transfer circuit E-7 (switching elements M8, M7) in cell C7 → Series charge transfer circuit E-6 (switching elements M6, M5) in cell C6 → Series charge transfer circuit E-5 in cell C5 (switching elements M4, M3) → Cell C4 terminal

経路I2:セルC18端子→2分割並列電荷移送回路E1/2内のスイッチング素子M/24,M/23→6分割並列電荷移送回路E1/6内のスイッチング素子M/66、M/65→セルC6の直列電荷移送回路E-6(スイッチング素子M6、M5)→セルC5の直列電荷移送回路E-5(スイッチング素子M4、M3)→セルC4端子 Path I2: Cell C18 terminal → Switching element M / 24, M / 23 in 2-split parallel charge transfer circuit E1 / 2 → Switching element M / 66, M / 65 in 6-split parallel charge transfer circuit E1 / 6 → Cell Series charge transfer circuit E-6 of C6 (switching elements M6, M5) → Series charge transfer circuit E-5 of cell C5 (switching elements M4, M3) → Cell C4 terminal

経路I3:セルC18端子→3分割並列電荷移送回路E1/3内のスイッチング素子M/36,M/35、M/34、M33→セルC6の直列電荷移送回路E-6(スイッチング素子M6、M5)→セルC5の直列電荷移送回路E-5(スイッチング素子M4、M3)→セルC4端子 Path I3: Cell C18 terminal → Switching element M / 36, M / 35, M / 34 in 3 division parallel charge transfer circuit E1 / 3, M33 → Series charge transfer circuit E-6 (switching element M6, M5) in cell C6 ) → Series charge transfer circuit E-5 (switching elements M4, M3) of cell C5 → Cell C4 terminal

更に、電荷移送回路E1B内に上述した経路I1、I2、I3が形成される。
第1実施形態では、多段に並列電荷移送回路(2分割並列電荷移送回路E1/2、3分割並列電荷移送回路E1/3、6分割並列電荷移送回路E1/6)が形成されることで、スイッチング素子の並列化が図られている。これによって、スイッチング素子による等価抵抗値が低下し、低スイッチング抵抗損失となり、高効率が実現できる。
Further, the above-mentioned paths I1, I2, and I3 are formed in the charge transfer circuit E1B.
In the first embodiment, a parallel charge transfer circuit (2-division parallel charge transfer circuit E1 / 2, 3-division parallel charge transfer circuit E1 / 3, 6-division parallel charge transfer circuit E1 / 6) is formed in multiple stages. The switching elements are parallelized. As a result, the equivalent resistance value due to the switching element decreases, low switching resistance loss occurs, and high efficiency can be realized.

即ち、図2を参照して上述したように、18個のセルで、第1実施形態と同様に、セルC4で電圧を出力した場合、等価抵抗値は、セルC18に並列なMOS1、MOS2、セルC17に並列ないMOS3、MOS4・・・セルC5に並列なMOSnまでの直列接続になる。これに対して、第1実施形態では、MOSが直並列に多段に接続されることで、等価抵抗値が低減される。 That is, as described above with reference to FIG. 2, when the voltage is output from the cell C4 in the 18 cells as in the first embodiment, the equivalent resistance values are the MOS1 and MOS2 parallel to the cell C18. MOS3, MOS4 that are not parallel to cell C17 ... The MOSn that is parallel to cell C5 is connected in series. On the other hand, in the first embodiment, the equivalent resistance value is reduced by connecting the MOSs in multiple stages in series and parallel.

シミュレーションの結果、第1実施形態の出力装置の効率は使用セル数等で変化し、97.19%から98.38%であったが、平均して97.5%であった。即ち、2.5%の損失であり、48VをDC-CDコンバータで降圧した場合の5%と比較して半減させることができた。 As a result of the simulation, the efficiency of the output device of the first embodiment changed depending on the number of cells used and the like, and was 97.19% to 98.38%, but the average was 97.5%. That is, the loss was 2.5%, and it was possible to halve the loss of 48V as compared with 5% when the voltage was stepped down by the DC-CD converter.

図5は、第1実施形態に係る出力装置のバッテリ電圧V(in)と出力電圧V(out)を示す図である。
ここで、Li-ionバッテリB1のバッテリ電圧V(in)は、電池容量によって36V-54Vの範囲で変化する。このバッテリB1の電圧の変化に対して、図4を参照して上述した電圧調整回路20は、14V付近の出力電圧を維持するように、スイッチSW3~SW9を切り替える。なお、スイッチ切り替え時の電圧変化幅は、バッテリB1の電圧が最高の54Vの際に最も大きくなり、約3Vとなる。
FIG. 5 is a diagram showing a battery voltage V (in) and an output voltage V (out) of the output device according to the first embodiment.
Here, the battery voltage V (in) of the Li-ion battery B1 changes in the range of 36V-54V depending on the battery capacity. With respect to the change in the voltage of the battery B1, the voltage adjusting circuit 20 described above with reference to FIG. 4 switches the switches SW3 to SW9 so as to maintain the output voltage in the vicinity of 14V. The voltage change width at the time of switching is the largest when the voltage of the battery B1 is 54V, which is the highest, and becomes about 3V.

図6は、第1実施形態に係るバッテリモジュールの斜視図である。
ハイブリッド車両に搭載されるバッテリモジュール30は、48ボルトのLi-ionバッテリB1と、図3中に示された電荷移送回路E1A、E1B、及び、図4中に示された電圧調整回路20を備える出力装置40とを収容するケーシング36と、ケーシング36に被せられるアルミダイキャストケース32から成る。出力装置40は低損出で発熱量が小さいのでバッテリB1と同一のバッテリモジュール30に収容することができる。更に、出力装置40をバッテリB1に近くに配置することで、バッテリまでのケーブル損失を低減することができる。ここで、アルミダイキャストケースには放熱用のフィンを設けることが望ましい。
FIG. 6 is a perspective view of the battery module according to the first embodiment.
The battery module 30 mounted on the hybrid vehicle includes a 48 volt Li-ion battery B1, charge transfer circuits E1A and E1B shown in FIG. 3, and a voltage regulating circuit 20 shown in FIG. It is composed of a casing 36 that houses the output device 40 and an aluminum die-cast case 32 that covers the casing 36. Since the output device 40 has low loss and a small amount of heat generation, it can be accommodated in the same battery module 30 as the battery B1. Further, by arranging the output device 40 close to the battery B1, the cable loss to the battery can be reduced. Here, it is desirable that the aluminum die-cast case is provided with fins for heat dissipation.

ここで、バッテリの各セルには、セルバランスを取るため全セルにそれぞれ直列電荷移送回路を設けることもできる。また、直列電荷移送回路の設けられないセルに、特開2016-12510に示される電圧均一化装置に接続して個々のセルで抵抗へ放電してセルバランスを取ることもできる。 Here, each cell of the battery may be provided with a series charge transfer circuit in each cell in order to balance the cells. Further, it is also possible to connect a cell to which a series charge transfer circuit is not provided to a voltage homogenizing device shown in Japanese Patent Application Laid-Open No. 2016-12510 and discharge the cells to a resistor in each cell to balance the cells.

図7は、第1実施形態の改変例に係る出力装置の電圧調整回路120の回路図である。
第1実施形態の改変例の電圧調整回路は高い電圧精度を備える。
電圧調整回路120は、セルC3の電圧を出力するためのスイッチSW3(8V)と、セルC4の電圧を出力するためのスイッチSW4(10.6V)と、セルC5の電圧を出力するためのスイッチSW5(13.3V)と、セルC6の電圧を出力するためのスイッチSW6(16V)と、セルC7の電圧を出力するためのスイッチSW7(18.7V)と、セルC8の電圧を出力するためのスイッチSW8(21V)と、セルC9の電圧を出力するためのスイッチSW9(24V)とに、該スイッチをデューティ駆動するDutyコントロール122が設けられている。更に、デューティ駆動された電圧を平滑化するための平滑回路を構成するインダクタンスLとコンデンサCとが設けられている。
FIG. 7 is a circuit diagram of the voltage adjusting circuit 120 of the output device according to the modified example of the first embodiment.
The voltage adjustment circuit of the modified example of the first embodiment has high voltage accuracy.
The voltage adjustment circuit 120 includes a switch SW3 (8V) for outputting the voltage of the cell C3, a switch SW4 (10.6V) for outputting the voltage of the cell C4, and a switch for outputting the voltage of the cell C5. SW5 (13.3V), switch SW6 (16V) for outputting the voltage of cell C6, switch SW7 (18.7V) for outputting the voltage of cell C7, and switch for outputting the voltage of cell C8. The switch SW8 (21V) and the switch SW9 (24V) for outputting the voltage of the cell C9 are provided with a duty control 122 for duty driving the switch. Further, an inductance L and a capacitor C constituting a smoothing circuit for smoothing the duty-driven voltage are provided.

例えば、セルC4の10.6Vの電圧と、セル5の13.3Vの電圧とが、スイッチSW4とスイッチSW5とでデューティ駆動され、12Vの電圧が生成され、L-C平滑回路で平滑化されて出力される。この場合、スイッチSW5に加わる電圧は、セルC5の1セル分(2.7V)である。このため、全セルの合計電圧48Vをスイッチングして降圧するDC-DCコンバンターのスイッチング損失と比較すると、1/セル数=1/18となって低損失となる。 For example, the voltage of 10.6V in the cell C4 and the voltage of 13.3V in the cell 5 are duty-driven by the switch SW4 and the switch SW5, a voltage of 12V is generated, and the voltage is smoothed by the LC smoothing circuit. Is output. In this case, the voltage applied to the switch SW5 is one cell (2.7V) of the cell C5. Therefore, when compared with the switching loss of the DC-DC converter that switches and steps down the total voltage of 48 V of all cells, 1 / number of cells = 1/18, which is a low loss.

[第2実施形態]
図8は、第2実施形態に係る出力装置の電荷移送回路E2A、E2Bを示している。
第2実施形態では、セルC1-C100から構成される100個のLi-ionセルからなるバッテリB2が用いられる。バッテリB2は、直列接続する個数の切り替え可能なセルC4-C9を含む。バッテリB2は260Vを出力し、ハイブリッドカーの駆動モータ用電源として用いられている。
[Second Embodiment]
FIG. 8 shows the charge transfer circuits E2A and E2B of the output device according to the second embodiment.
In the second embodiment, the battery B2 composed of 100 Li-ion cells composed of cells C1-C100 is used. Battery B2 includes a number of switchable cells C4-C9 connected in series. The battery B2 outputs 260 V and is used as a power source for a drive motor of a hybrid car.

電荷移送回路E2Aは、100個のセルを2分割した一方の50個のセルからなる二次電池セル群(切り替え可能なセルC4-C9を含む側)と、他方の50個のセルからなる二次電池セル群との間で電荷を移送する2分割並列電荷移送回路E1/2を備える。また、電荷移送回路E2Aは、一方の50個のセルからなる二次電池セル群(切り替え可能なセルC4-C9を含む側)は、50個のセルを2分割した一方の25個のセルからなる二次電池セル群(切り替え可能なセルC4-C9を含む側)と、他方の25個のセルからなる二次電池セル群との間で電荷を移送する第2の2分割並列電荷移送回路E2.1/2を備える。更に、電荷移送回路E2Aは、一方の25個のセルからなる二次電池セル群は、5分割された各5個のセルからなる二次電池セル群の間で電荷を移送する5分割並列電荷移送回路E1/5を備える。 The charge transfer circuit E2A consists of a secondary battery cell group (the side including the switchable cells C4-C9) consisting of one of the 50 cells obtained by dividing 100 cells into two, and a second consisting of the other 50 cells. It is provided with a two-part parallel charge transfer circuit E1 / 2 that transfers charges to and from the next battery cell group. Further, in the charge transfer circuit E2A, the secondary battery cell group consisting of one 50 cell (the side including the switchable cells C4-C9) is composed of 25 cells obtained by dividing 50 cells into two. A second two-part parallel charge transfer circuit that transfers charge between the secondary battery cell group (the side containing the switchable cells C4-C9) and the secondary battery cell group consisting of the other 25 cells. Equipped with E2.1 / 2. Further, in the charge transfer circuit E2A, the secondary battery cell group consisting of one of the 25 cells transfers charge between the secondary battery cell groups consisting of 5 divided cells, respectively. A transfer circuit E1 / 5 is provided.

直列接続する個数の切り替え可能なセルC4-C9を含む、上記5分割された各5個のセルからなるセルC1-C10には、それぞれセル間で電荷を移送する直列電荷移送回路E-1~E-10が取り付けられている。電荷移送回路E2Bの回路構成は、図中に示される電荷移送回路E2Aと同じであり、バッテリB2に対して対称に配置され、反転作動される。 Series charge transfer circuits E-1 to transfer charge between cells to cells C1-C10 consisting of each of the five divided cells, including the number of switchable cells C4-C9 connected in series. E-10 is attached. The circuit configuration of the charge transfer circuit E2B is the same as that of the charge transfer circuit E2A shown in the figure, and the charge transfer circuit E2B is arranged symmetrically with respect to the battery B2 and is inverted.

第2実施形態の出力装置は、電荷移送回路E2A、E2Bが、2分割並列電荷移送回路E1/2、第2の2分割並列電荷移送回路E2.1/2、5分割並列電荷移送回路E1/5、直列電荷移送回路E-1~E-10を構成するMOSが直並列に多段に接続されることで、等価抵抗値が低減される。 In the output device of the second embodiment, the charge transfer circuits E2A and E2B have a two-part parallel charge transfer circuit E1 / 2, a second two-part parallel charge transfer circuit E2.1 / 2, and a five-part parallel charge transfer circuit E1 /. 5. The equivalent resistance value is reduced by connecting the MOSs constituting the series charge transfer circuits E-1 to E-10 in multiple stages in series and parallel.

[第3実施形態]
図9は、第3実施形態に係る出力装置の電荷移送回路E3A、E3Bを示している。
第3実施形態では、4個のセルC1-C4から構成されるバッテリB3が用いられる。電荷移送回路E3Aは、4個のセルを2分割した一方の2個のセルからなる二次電池セル群と、他方の2個のセルからなる二次電池セル群との間で電荷を移送する2分割並列電荷移送回路E1/2を備える。また、直列接続する個数の切り替え可能なセルC1-C4の各セルC1-C4には、それぞれセル間で電荷を移送する直列電荷移送回路E-1~E-4が取り付けられている。電荷移送回路E3Bの回路構成は、図中に示される電荷移送回路E3Aと同じであり、バッテリB3に対して対称に配置され、反転作動される。
[Third Embodiment]
FIG. 9 shows the charge transfer circuits E3A and E3B of the output device according to the third embodiment.
In the third embodiment, the battery B3 composed of four cells C1-C4 is used. The charge transfer circuit E3A transfers charge between a secondary battery cell group consisting of two cells obtained by dividing four cells into two and a secondary battery cell group consisting of the other two cells. A two-part parallel charge transfer circuit E1 / 2 is provided. Further, series charge transfer circuits E-1 to E-4 for transferring charges between the cells are attached to each of the cells C1-C4 of the cells C1-C4 in which the number of cells connected in series can be switched. The circuit configuration of the charge transfer circuit E3B is the same as that of the charge transfer circuit E3A shown in the figure, and the charge transfer circuit E3B is arranged symmetrically with respect to the battery B3 and is inverted.

[第4実施形態]
図10は、第4実施形態に係る出力装置の電荷移送回路E4A、E4Bを示している。第4実施形態では、9個のセルC1-C9から構成されるバッテリB4が用いられる。電荷移送回路E4Aは、9個のセルを3分割した3個のセルからなる各二次電池セル群の間で電荷を移送する3分割並列電荷移送回路E1/3を備える。また、直列接続する個数の切り替え可能な各セルC4-C9には、それぞれセル間で電荷を移送する直列電荷移送回路E-4~E-9が取り付けられている。電荷移送回路E4Bの回路構成は、図中に示される電荷移送回路E4Aと同じであり、バッテリB4に対して対称に配置され、反転作動される。
[Fourth Embodiment]
FIG. 10 shows the charge transfer circuits E4A and E4B of the output device according to the fourth embodiment. In the fourth embodiment, the battery B4 composed of nine cells C1-C9 is used. The charge transfer circuit E4A includes a three-division parallel charge transfer circuit E1 / 3 that transfers charges between each secondary battery cell group consisting of three cells obtained by dividing nine cells into three. Further, a series charge transfer circuit E-4 to E-9 for transferring charges between cells is attached to each of the switchable cells C4-C9 in which the number of cells connected in series is switchable. The circuit configuration of the charge transfer circuit E4B is the same as that of the charge transfer circuit E4A shown in the figure, and is arranged symmetrically with respect to the battery B4 and is inverted.

上述した実施形態の構成で、目標出力電圧が決まれば、対応する出力段位に限定して並列MOS数を増やし、不要部分のMOSを削減することで、更なる効率向上を図ることができる。ここで、出力装置を車両用に適用した例を挙げたが、本発明の出力装置は、バッテリを電源とする船舶、航空機、電動土木機械、電動工具、電子機器等、種々の機器に適用可能である。 If the target output voltage is determined by the configuration of the above-described embodiment, the efficiency can be further improved by increasing the number of parallel MOSs by limiting to the corresponding output stages and reducing the MOSs of unnecessary parts. Here, an example in which the output device is applied to a vehicle has been given, but the output device of the present invention can be applied to various devices such as ships, aircrafts, electric civil engineering machines, electric tools, electronic devices, etc., which are powered by a battery. Is.

E1A、E1B 電荷移送回路
20 電圧調整回路
B1 バッテリ
C コンデンサ
C1、C2、C3 セル
E1/2 2分割並列電荷移送回路
E1/3 3分割並列電荷移送回路
E1/6 6分割並列電荷移送回路
E-4 直列電荷移送回路
M/21 スイッチング素子
SW3 スイッチ
E1A, E1B Charge transfer circuit 20 Voltage adjustment circuit B1 Battery C Condenser C1, C2, C3 Cell E1 / 2 2-split parallel charge transfer circuit E1 / 3 3-split parallel charge transfer circuit E1 / 6 6-split parallel charge transfer circuit E-4 Series charge transfer circuit M / 21 switching element SW3 switch

Claims (10)

複数個の二次電池セルを直列に接続して成るバッテリから、前記複数個の一部の二次電池セルを直列に繋いで生じる電圧を出力する出力装置であって、
前記直列接続する個数の切り替え可能な二次電池セルにそれぞれ設けられ、二次電池セル間で電荷を移送する直列電荷移送回路であって、前記二次電池セルに並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、前記二次電池セルに隣接する切り替え可能な二次電池セルに並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る直列電荷移送回路と、
前記複数個を分割した2個以上の二次電池セルから成る二次電池セル群にそれぞれ設けられ、二次電池セル群間で電荷を移送する並列電荷移送回路であって、一方の二次電池セル群に並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、他方の二次電池セル群に並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る並列電荷移送回路と、を備え、
前記並列電荷移送回路は多段に設けられ、
前記一方の二次電池セル群と同電位になる二次電池セルに設けられた前記直列電荷移送回路が、前記一方の二次電池セル群の並列電荷移送回路と前記他方の二次電池セル群の並列電荷移送回路との間に接続されることを特徴とする出力装置。
An output device that outputs a voltage generated by connecting a plurality of secondary battery cells in series from a battery formed by connecting a plurality of secondary battery cells in series.
A series charge transfer circuit provided in each of the number of switchable secondary battery cells connected in series to transfer charge between the secondary battery cells, and a pair of switching connected in parallel to the secondary battery cells. A series consisting of an element and a capacitor connected between the pair of switching elements and between a pair of switching elements connected in parallel to a switchable secondary battery cell adjacent to the secondary battery cell. Charge transfer circuit and
It is a parallel charge transfer circuit that is provided in each of the secondary battery cell groups composed of two or more secondary battery cells divided into the plurality of parts and transfers charge between the secondary battery cell groups, and is one of the secondary batteries. A pair of switching elements connected in parallel to the cell group, a capacitor connected between the pair of switching elements, and a pair of switching elements connected in parallel to the other secondary battery cell group. Equipped with a parallel charge transfer circuit consisting of
The parallel charge transfer circuit is provided in multiple stages.
The series charge transfer circuit provided in the secondary battery cell having the same potential as the one secondary battery cell group is the parallel charge transfer circuit of the one secondary battery cell group and the other secondary battery cell group. An output device characterized by being connected to and from a parallel charge transfer circuit.
複数個の二次電池セルを直列に接続して成るバッテリから、前記複数個の一部の二次電池セルを直列に繋いで生じる電圧を出力する出力装置であって、
前記直列接続する個数の切り替え可能な二次電池セルにそれぞれ設けられ、二次電池セル間で電荷を移送する直列電荷移送回路であって、前記二次電池セルに並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、前記二次電池セルに隣接する切り替え可能な二次電池セルに並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る直列電荷移送回路と、
前記複数個を分割した2個以上の二次電池セルから成る二次電池セル群にそれぞれ設けられ、二次電池セル群間で電荷を移送する並列電荷移送回路であって、一方の二次電池セル群に並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、他方の二次電池セル群に並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る並列電荷移送回路と、を備え、
前記一方の二次電池セル群と同電位になる二次電池セルに設けられた前記直列電荷移送回路が、前記一方の二次電池セル群の並列電荷移送回路と前記他方の二次電池セル群の並列電荷移送回路との間に接続される出力装置であって、
前記複数個は2で割り切れ、
前記複数個を2分割した二次電池セル群のそれぞれに前記並列電荷移送回路が設けられ
前記複数個を2分割した二次電池セル群の一方には前記直列電荷移送回路が設けられ、他方には前記直列電荷移送回路が設けられないことを特徴とする出力装置。
An output device that outputs a voltage generated by connecting a plurality of secondary battery cells in series from a battery formed by connecting a plurality of secondary battery cells in series.
A series charge transfer circuit provided in each of the number of switchable secondary battery cells connected in series to transfer charge between the secondary battery cells, and a pair of switching connected in parallel to the secondary battery cells. A series consisting of an element and a capacitor connected between the pair of switching elements and between a pair of switching elements connected in parallel to a switchable secondary battery cell adjacent to the secondary battery cell. Charge transfer circuit and
It is a parallel charge transfer circuit that is provided in each of the secondary battery cell groups composed of two or more secondary battery cells divided into the plurality of parts and transfers charge between the secondary battery cell groups, and is one of the secondary batteries. A pair of switching elements connected in parallel to the cell group, a capacitor connected between the pair of switching elements, and a pair of switching elements connected in parallel to the other secondary battery cell group. Equipped with a parallel charge transfer circuit consisting of
The series charge transfer circuit provided in the secondary battery cell having the same potential as the one secondary battery cell group is the parallel charge transfer circuit of the one secondary battery cell group and the other secondary battery cell group. It is an output device connected to the parallel charge transfer circuit of
The plurality are divisible by 2,
The parallel charge transfer circuit is provided in each of the secondary battery cell groups obtained by dividing the plurality of cells into two .
An output device characterized in that the series charge transfer circuit is provided on one side of the secondary battery cell group obtained by dividing the plurality of cells into two, and the series charge transfer circuit is not provided on the other side .
複数個の二次電池セルを直列に接続して成るバッテリから、前記複数個の一部の二次電池セルを直列に繋いで生じる電圧を出力する出力装置であって、
前記直列接続する個数の切り替え可能な二次電池セルにそれぞれ設けられ、二次電池セル間で電荷を移送する直列電荷移送回路であって、前記二次電池セルに並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、前記二次電池セルに隣接する切り替え可能な二次電池セルに並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る直列電荷移送回路と、
前記複数個を分割した2個以上の二次電池セルから成る二次電池セル群にそれぞれ設けられ、二次電池セル群間で電荷を移送する並列電荷移送回路であって、一方の二次電池セル群に並列に接続された一対のスイッチング素子と、前記一対のスイッチング素子の間と、他方の二次電池セル群に並列に接続された一対のスイッチング素子の間とに接続されたコンデンサと、から成る並列電荷移送回路と、を備え、
前記一方の二次電池セル群と同電位になる二次電池セルに設けられた前記直列電荷移送回路が、前記一方の二次電池セル群の並列電荷移送回路と前記他方の二次電池セル群の並列電荷移送回路との間に接続される出力装置であって、
前記複数個は3で割り切れ、
前記複数個を3分割した二次電池セル群のそれぞれに前記並列電荷移送回路が設けられ
前記複数個を3分割した二次電池セル群の何れかには前記直列電荷移送回路が設けられ、他方には前記直列電荷移送回路が設けられないことを特徴とする出力装置。
An output device that outputs a voltage generated by connecting a plurality of secondary battery cells in series from a battery formed by connecting a plurality of secondary battery cells in series.
A series charge transfer circuit provided in each of the number of switchable secondary battery cells connected in series to transfer charge between the secondary battery cells, and a pair of switching connected in parallel to the secondary battery cells. A series consisting of an element and a capacitor connected between the pair of switching elements and between a pair of switching elements connected in parallel to a switchable secondary battery cell adjacent to the secondary battery cell. Charge transfer circuit and
It is a parallel charge transfer circuit that is provided in each of the secondary battery cell groups composed of two or more secondary battery cells divided into the plurality of parts and transfers charge between the secondary battery cell groups, and is one of the secondary batteries. A pair of switching elements connected in parallel to the cell group, a capacitor connected between the pair of switching elements, and a pair of switching elements connected in parallel to the other secondary battery cell group. Equipped with a parallel charge transfer circuit consisting of
The series charge transfer circuit provided in the secondary battery cell having the same potential as the one secondary battery cell group is the parallel charge transfer circuit of the one secondary battery cell group and the other secondary battery cell group. It is an output device connected to the parallel charge transfer circuit of
The plurality are divisible by 3,
The parallel charge transfer circuit is provided in each of the secondary battery cell groups obtained by dividing the plurality of cells into three parts .
An output device characterized in that the series charge transfer circuit is provided in any one of the secondary battery cell groups obtained by dividing the plurality of cells into three, and the series charge transfer circuit is not provided in the other .
請求項1出力装置であって、
前記複数個は6で割り切れ、
前記複数個を2分割した二次電池セル群のそれぞれに前記並列電荷移送回路が設けられ、
前記複数個を3分割した二次電池セル群のそれぞれに前記並列電荷移送回路が設けられ、
前記複数個の一部の二次電池セルを含む側の前記2分割した二次電池セル群を3分割したそれぞれに前記並列電荷移送回路が設けられたことを特徴とする出力装置。
The output device according to claim 1.
The plurality are divisible by 6,
The parallel charge transfer circuit is provided in each of the secondary battery cell groups obtained by dividing the plurality of cells into two.
The parallel charge transfer circuit is provided in each of the secondary battery cell groups obtained by dividing the plurality of cells into three parts.
An output device characterized in that the parallel charge transfer circuit is provided in each of the two divided secondary battery cell groups on the side including the plurality of partial secondary battery cells divided into three.
請求項1の出力装置であって、
前記複数個は50で割り切れ、
前記複数個を2分割した二次電池セル群のそれぞれに前記並列電荷移送回路が設けられ、
前記複数個の一部の二次電池セルを含む側の前記2分割した二次電池セル群を5分割した二次電池セル群のそれぞれに前記並列電荷移送回路が設けられたことを特徴とする出力装置。
The output device according to claim 1.
The plurality are divisible by 50,
The parallel charge transfer circuit is provided in each of the secondary battery cell groups obtained by dividing the plurality of cells into two.
The parallel charge transfer circuit is provided in each of the secondary battery cell groups in which the two-divided secondary battery cell group on the side including the plurality of partial secondary battery cells is divided into five. Output device.
請求項1~請求項5のいずれか1の出力装置であって、
前記一部の二次電池セル中で直列接続する個数を所定範囲で切り替え可能にする電圧調整回路を備えることを特徴とする出力装置。
The output device according to any one of claims 1 to 5 .
An output device including a voltage adjusting circuit capable of switching the number of serially connected batteries in a part of the secondary battery cells within a predetermined range.
請求項1~6のいずれか1の出力装置であって、
前記直列電荷移送回路と前記並列電荷移送回路と同一構造の直列電荷移送回路と並列電荷移送回路が更に一組、前記直列電荷移送回路と前記並列電荷移送回路と前記バッテリに対して対称に配置されたことを特徴とする出力装置。
The output device according to any one of claims 1 to 6.
A further set of a series charge transfer circuit, a series charge transfer circuit having the same structure as the parallel charge transfer circuit, and a parallel charge transfer circuit are arranged symmetrically with respect to the series charge transfer circuit, the parallel charge transfer circuit, and the battery. An output device characterized by the fact that.
請求項の出力装置であって、
前記電圧調整回路は、
特定の二次電池セルの出力電位と前記特定の二次電池セルよりも電圧の高くなる隣接する二次電池セルの出力電位とをデューティ駆動するスイッチング手段と、
前記スイッチング手段により構成された電位を平滑化する平滑手段と、を備えることを特徴とする出力装置。
The output device according to claim 6 .
The voltage adjustment circuit is
A switching means for duty-driving the output potential of a specific secondary battery cell and the output potential of an adjacent secondary battery cell whose voltage is higher than that of the specific secondary battery cell.
An output device comprising: a smoothing means for smoothing a potential configured by the switching means.
請求項1~8のいずれか1の出力装置であって、
前記バッテリは車両用であり、
前記二次電池セルはリチウムイオンセルであることを特徴とする出力装置。
The output device according to any one of claims 1 to 8.
The battery is for vehicles and
An output device characterized in that the secondary battery cell is a lithium ion cell.
請求項9の出力装置であって、
前記出力装置が前記バッテリと同一の金属筐体に収容されることを特徴とする出力装置。
The output device of claim 9.
An output device, characterized in that the output device is housed in the same metal housing as the battery.
JP2017241689A 2017-12-18 2017-12-18 Output device Active JP7082276B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017241689A JP7082276B2 (en) 2017-12-18 2017-12-18 Output device
PCT/JP2018/044422 WO2019124036A1 (en) 2017-12-18 2018-12-03 Output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241689A JP7082276B2 (en) 2017-12-18 2017-12-18 Output device

Publications (2)

Publication Number Publication Date
JP2019110660A JP2019110660A (en) 2019-07-04
JP7082276B2 true JP7082276B2 (en) 2022-06-08

Family

ID=66994708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241689A Active JP7082276B2 (en) 2017-12-18 2017-12-18 Output device

Country Status (2)

Country Link
JP (1) JP7082276B2 (en)
WO (1) WO2019124036A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL276933A (en) * 2020-08-25 2022-03-01 Irp Nexus Group Ltd Advanced battery management system (bms) for charge equalization of serially connected electrical storage cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033237A (en) 2013-08-02 2015-02-16 住友電気工業株式会社 Power storage device, charging method and discharging method
JP2016211376A (en) 2015-04-28 2016-12-15 ダイハツ工業株式会社 Engine start control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033237A (en) 2013-08-02 2015-02-16 住友電気工業株式会社 Power storage device, charging method and discharging method
JP2016211376A (en) 2015-04-28 2016-12-15 ダイハツ工業株式会社 Engine start control device

Also Published As

Publication number Publication date
WO2019124036A1 (en) 2019-06-27
JP2019110660A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
EP3461679B1 (en) Electric vehicle
CN107000739B (en) Power-converting device
US20210044135A1 (en) System and method for charging using motor driving system
US7733039B2 (en) Electric vehicle system for charging and supplying electrical power
US10981462B2 (en) Power supply system for vehicle
JP6346887B2 (en) Battery charge balance
CN110356255B (en) Power conversion system for vehicle
CN102148525A (en) Power supply apparatus for vehicle
DE102014207390A1 (en) On-board network and method for operating a vehicle electrical system
JP7168912B2 (en) vehicle power system
DE102016215762A1 (en) Electric drive arrangement
JP2020198714A (en) Vehicle drive device
JP7082276B2 (en) Output device
JP2004056995A (en) Hybrid power supply system
Lai et al. A newly-designed multiport bidirectional power converter with battery/supercapacitor for hybrid electric/fuel-cell vehicle system
CN108136931B (en) Improved power supply device with multiple power sources
US20140252848A1 (en) Universal power supply system with load isolating and voltage enhance device
GB2565091A (en) Multiple output battery system with alternator architectures
US11025161B2 (en) Electric vehicle and charging apparatus thereof
JP3558159B2 (en) Electric vehicle power system
US20190044347A1 (en) Multiple output battery system
WO2019166592A1 (en) Charging system
EP4328066A1 (en) Vehicle power supply device
US20220271539A1 (en) Battery system
WO2018190020A1 (en) Combined power storage system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7082276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150