JP7082003B2 - Method for concentrating formic acid solution and method for producing formic acid solution - Google Patents
Method for concentrating formic acid solution and method for producing formic acid solution Download PDFInfo
- Publication number
- JP7082003B2 JP7082003B2 JP2018139406A JP2018139406A JP7082003B2 JP 7082003 B2 JP7082003 B2 JP 7082003B2 JP 2018139406 A JP2018139406 A JP 2018139406A JP 2018139406 A JP2018139406 A JP 2018139406A JP 7082003 B2 JP7082003 B2 JP 7082003B2
- Authority
- JP
- Japan
- Prior art keywords
- formic acid
- exchange resin
- acid solution
- basic
- acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、ギ酸溶液の濃縮方法、及びギ酸溶液の製造方法に関する。 The present invention relates to a method for concentrating a formic acid solution and a method for producing a formic acid solution.
地球温暖化、化石燃料枯渇の問題などから、次世代エネルギーとして水素エネルギーに高い期待が寄せられている。水素エネルギー社会を実現するためには、水素の製造、貯蔵、利用の各技術が必要であるが、水素貯蔵には貯蔵、輸送、安全性、サイクル、コスト等の様々な課題がある。 Due to issues such as global warming and fossil fuel depletion, hydrogen energy is highly expected as a next-generation energy source. In order to realize a hydrogen energy society, each technology of hydrogen production, storage, and utilization is required, but hydrogen storage has various problems such as storage, transportation, safety, cycle, and cost.
水素貯蔵技術は、主に、圧縮水素での貯蔵、低温液体水素での貯蔵、水素貯蔵材料での貯蔵に分けられる。圧縮水素での貯蔵には35~70MPaの高圧が、液体水素での貯蔵には-253℃以下と非常に低い温度が必要とされ、コスト面、安全面で優れた水素貯蔵法とは言えない。
こうした背景により水素貯蔵材料として、水素貯蔵合金、有機ハイドライド、無機ハイドライド、有機金属錯体、多孔質炭素材料等の、各種材料の開発が検討されている。中でも有機ハイドライドは、取扱いの簡便さや、水素貯蔵密度が高く軽量であるといった利点を有し注目されている。
Hydrogen storage techniques are mainly divided into storage in compressed hydrogen, storage in cryogenic liquid hydrogen, and storage in hydrogen storage materials. Storage with compressed hydrogen requires a high pressure of 35 to 70 MPa, and storage with liquid hydrogen requires a very low temperature of -253 ° C or less, so it cannot be said to be an excellent hydrogen storage method in terms of cost and safety. ..
Against this background, the development of various materials such as hydrogen storage alloys, organic hydrides, inorganic hydrides, organic metal complexes, and porous carbon materials is being studied as hydrogen storage materials. Among them, organic hydride is attracting attention because of its advantages such as ease of handling, high hydrogen storage density, and light weight.
有機ハイドライドとしては、ベンゼン、トルエン、ビフェニル、ナフタレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素化合物が知られている。これらの炭化水素化合物は、体積貯蔵密度及び質量貯蔵密度が圧縮水素や水素吸蔵合金等と比べて高く、また、常温で液体であるため、輸送面でのメリットがあるが、危険物とされているものもあるため、取扱いに注意が必要である。また、脱水素化反応により水素を取り出す際にはエネルギーが必要となる。
そして、炭化水素化合物と同等の体積貯蔵密度及び質量貯蔵密度を有し、脱水素化反応に必要なエネルギーが炭化水素化合物よりも低く、より簡便な取扱いが可能な化合物として、ギ酸が検討されている。ギ酸を水素貯蔵材料として用いるには、輸送コストの削減のためギ酸溶液を濃縮することが必要である。
Hydrocarbon compounds such as benzene, toluene, biphenyl, naphthalene, cyclohexane, and methylcyclohexane are known as organic hydrides. These hydrocarbon compounds have higher volume storage density and mass storage density than compressed hydrogen and hydrogen storage alloys, and are liquid at room temperature, so they have advantages in terms of transportation, but they are regarded as dangerous substances. Some of them are available, so care must be taken when handling them. In addition, energy is required to extract hydrogen by the dehydrogenation reaction.
Then, formic acid has been studied as a compound which has the same volume storage density and mass storage density as the hydrocarbon compound, has a lower energy required for the dehydrogenation reaction than the hydrocarbon compound, and can be handled more easily. There is. In order to use formic acid as a hydrogen storage material, it is necessary to concentrate the formic acid solution in order to reduce the transportation cost.
一方、乳酸、コハク酸等の有機酸の濃縮の方法としては、有機酸を陰イオン交換樹脂に吸着して濃縮する方法が検討されている。例えば、特許文献1には、発酵により生産された有機酸を含む有機酸水性粗溶液を、II型強塩基性イオン交換樹脂と接触させて、有機酸イオンをII型強塩基性イオン交換樹脂に吸着させ、吸着された有機酸イオンを、鉱酸水溶液を含む溶離液によって溶出させる方法が記載されている。また、特許文献2には、有機酸を含有する被処理液を、強塩基性陰イオン交換樹脂を通過させて、有機酸を強塩基性陰イオン交換樹脂に吸着させ、水酸化ナトリウム水溶液を用いて、有機酸を溶出させ回収する有機酸の分離・回収方法が記載されている。
また、特許文献3にはギ酸メチルを加水分解してギ酸を得るギ酸の製造方法と、抽出と蒸留によりギ酸溶液を濃縮する方法が記載されている。
On the other hand, as a method for concentrating organic acids such as lactic acid and succinic acid, a method of adsorbing an organic acid on an anion exchange resin and concentrating it has been studied. For example, in Patent Document 1, an organic acid aqueous crude solution containing an organic acid produced by fermentation is brought into contact with a type II strongly basic ion exchange resin to convert an organic acid ion into a type II strongly basic ion exchange resin. A method of adsorbing and eluting the adsorbed organic acid ion with an eluent containing an aqueous mineral acid solution is described. Further, in Patent Document 2, a liquid to be treated containing an organic acid is passed through a strongly basic anion exchange resin, the organic acid is adsorbed on the strongly basic anion exchange resin, and an aqueous sodium hydroxide solution is used. The method for separating and recovering the organic acid by eluting and recovering the organic acid is described.
Further, Patent Document 3 describes a method for producing formic acid by hydrolyzing methyl formate to obtain formic acid, and a method for concentrating a formic acid solution by extraction and distillation.
ギ酸を水素貯蔵材料として用いる場合、塩基性溶液中で、二酸化炭素と水素とを接触させる、又は二酸化炭素を電気化学的に還元する反応等によりギ酸を生成させる。しかし、反応が平衡により停止し、低濃度のギ酸溶液しか得られない。輸送コストの削減には、高濃度のギ酸溶液とすることが望ましく、本発明者らは、低濃度でギ酸を含む塩基性溶液を、低エネルギーで濃縮する必要があるという、新たな課題を見出した。 When formic acid is used as a hydrogen storage material, formic acid is produced by contacting carbon dioxide with hydrogen or electrochemically reducing carbon dioxide in a basic solution. However, the reaction is stopped due to equilibrium, and only a low concentration formic acid solution is obtained. In order to reduce the transportation cost, it is desirable to use a high-concentration formic acid solution, and the present inventors have found a new problem that a basic solution containing formic acid at a low concentration needs to be concentrated with low energy. rice field.
しかしながら、二酸化炭素と水素より生成した低濃度のギ酸溶液を、抽出と蒸留のみで濃縮するには多大なエネルギーを要する。
特許文献1及び2で得られる有機酸溶液は酸性であり、従来の技術においては、塩基性のギ酸溶液を、陰イオン交換樹脂に吸着して濃縮する方法については検討がされていない。
また、本発明者らの知見によれば、塩基性のギ酸溶液の濃縮に陰イオン交換樹脂を用いた場合、ギ酸の吸着量が少なく、その濃縮効率は満足できるものではないことがわかった。
However, it takes a lot of energy to concentrate a low-concentration formic acid solution generated from carbon dioxide and hydrogen only by extraction and distillation.
The organic acid solutions obtained in Patent Documents 1 and 2 are acidic, and in the prior art, a method of adsorbing a basic formic acid solution on an anion exchange resin and concentrating it has not been studied.
Further, according to the findings of the present inventors, it was found that when the anion exchange resin was used for concentrating the basic formic acid solution, the amount of adsorbed formic acid was small and the concentration efficiency was not satisfactory.
そこで、本発明は、ギ酸イオンを含む塩基性溶液を、高効率で濃縮し得るギ酸溶液の濃縮方法、及びギ酸溶液の製造方法を提供する。 Therefore, the present invention provides a method for concentrating a formic acid solution capable of concentrating a basic solution containing formic acid ions with high efficiency, and a method for producing a formic acid solution.
本発明者らは、ギ酸イオンを含む塩基性溶液を、高効率で濃縮することを目的として、鋭意検討を重ねた結果、ギ酸イオンを含む塩基性溶液を陽イオン交換樹脂と接触させて、ギ酸イオンを含む酸性溶液とすることが重要であることを見出し、本発明を完成するに至った。 As a result of diligent studies for the purpose of concentrating a basic solution containing formic acid ions with high efficiency, the present inventors have brought the basic solution containing foreate ions into contact with a cation exchange resin to form formic acid. We have found that it is important to use an acidic solution containing ions, and have completed the present invention.
即ち、本発明の一態様は、ギ酸イオンを含む塩基性溶液を陽イオン交換樹脂と接触させて、ギ酸イオンを含む酸性溶液を得る第一の工程、
上記酸性溶液を陰イオン交換樹脂と接触させて、ギ酸イオンを上記陰イオン交換樹脂に吸着させる第二の工程、
吸着された上記ギ酸イオンを、酸を含む溶離液によって上記陰イオン交換樹脂から溶出させる第三の工程、
を含むギ酸溶液の濃縮方法に関する。
That is, one aspect of the present invention is the first step of contacting a basic solution containing formic acid ions with a cation exchange resin to obtain an acidic solution containing formic acid ions.
The second step of bringing the acidic solution into contact with the anion exchange resin and adsorbing formic acid ions to the anion exchange resin,
A third step of eluting the adsorbed formic acid ion from the anion exchange resin with an eluent containing an acid.
The present invention relates to a method for concentrating a formic acid solution containing.
また、本発明の一態様は、上記ギ酸溶液の濃縮方法を含むギ酸溶液の製造方法に関する。 Further, one aspect of the present invention relates to a method for producing a formic acid solution, which comprises the method for concentrating the formic acid solution.
本発明の一態様において、上記ギ酸イオンを含む塩基性溶液の溶媒が水であることが好ましい。 In one aspect of the present invention, it is preferable that the solvent of the basic solution containing formic acid ions is water.
本発明の一態様において、上記第一の工程は、上記酸性溶液のpHが7.0未満であることが好ましい。 In one aspect of the present invention, in the first step, the pH of the acidic solution is preferably less than 7.0.
本発明の一態様において、上記陽イオン交換樹脂は強酸性陽イオン交換樹脂であってもよい。 In one aspect of the present invention, the cation exchange resin may be a strongly acidic cation exchange resin.
本発明によれば、ギ酸イオンを含む塩基性溶液を高効率で濃縮し得る、ギ酸溶液の濃縮方法、及びギ酸溶液の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for concentrating a formic acid solution and a method for producing a formic acid solution, which can concentrate a basic solution containing formic acid ions with high efficiency.
以下、本発明の実施形態について、詳細に説明する。
本発明の実施形態に係るギ酸溶液の濃縮方法は、
ギ酸イオンを含む塩基性溶液を陽イオン交換樹脂と接触させて、ギ酸イオンを含む酸性溶液を得る第一の工程、
上記酸性溶液を陰イオン交換樹脂と接触させて、ギ酸イオンを樹脂に吸着させる第二の工程、
吸着された上記ギ酸イオンを、酸を含む溶離液によって陰イオン交換樹脂から溶出させる第三の工程を含む。
Hereinafter, embodiments of the present invention will be described in detail.
The method for concentrating the formic acid solution according to the embodiment of the present invention is
The first step of contacting a basic solution containing formic acid ions with a cation exchange resin to obtain an acidic solution containing formic acid ions,
The second step of bringing the acidic solution into contact with the anion exchange resin to adsorb formic acid ions to the resin,
The third step is to elute the adsorbed formic acid ion from the anion exchange resin with an eluent containing an acid.
〔第一の工程〕
第一の工程は、ギ酸イオンを含む塩基性溶液を陽イオン交換樹脂と接触させて、ギ酸イオンを含む酸性溶液を得る工程である。この工程により、ギ酸イオンを含む塩基性溶液中に存在する金属イオン等の陽イオンが陽イオン交換樹脂に吸着され、水素イオンが陽イオン交換樹脂より放出されてギ酸イオンを含む酸性溶液(以下、酸性ギ酸溶液と称する場合がある)が得られる。
ここで、塩基性ギ酸溶液の酸性化するために、陽イオン交換樹脂を用いずに酸を用いると、ギ酸溶液が更に低濃度になるという問題がある。また、中和により発生する塩イオンにより、陰イオン交換樹脂へのギ酸イオンの吸着量が低下し、濃縮効率が悪化する。
[First step]
The first step is a step of contacting a basic solution containing formic acid ions with a cation exchange resin to obtain an acidic solution containing formic acid ions. By this step, cations such as metal ions existing in the basic solution containing formate ions are adsorbed on the cation exchange resin, hydrogen ions are released from the cation exchange resin, and an acidic solution containing formate ions (hereinafter, (Sometimes referred to as an acidic formic acid solution) is obtained.
Here, if an acid is used without using a cation exchange resin in order to acidify the basic formic acid solution, there is a problem that the formic acid solution has a lower concentration. In addition, the salt ions generated by neutralization reduce the amount of formic acid ions adsorbed on the anion exchange resin, and the concentration efficiency deteriorates.
塩基性ギ酸溶液におけるギ酸濃度は、イオン交換樹脂を使用する観点から、30質量%以下が好ましく、10質量%以下がより好ましい。塩基性ギ酸溶液におけるギ酸濃度の下限値としては、特に限定はないが、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。 The formic acid concentration in the basic formic acid solution is preferably 30% by mass or less, more preferably 10% by mass or less, from the viewpoint of using an ion exchange resin. The lower limit of the formic acid concentration in the basic formic acid solution is not particularly limited, but is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more.
塩基性ギ酸溶液の溶媒としては、塩基性ギ酸溶液が均一であればよく、特に制限は無いが、水、メタノール、エタノール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、ベンゼン、トルエン、及びこれらの混合溶媒等が挙げられ、水を含むことが好ましく、水であることがより好ましい。
塩基性ギ酸溶液中には、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム、水酸化カリウム、水酸化ナトリウム、ジアザビシクロウンデセン、又はトリエチルアミン等を含有することが好ましく、炭酸水素ナトリウム、炭酸水素カリウムを含有することがより好ましい。
塩基性ギ酸溶液のpHとしては、8.0より大きいことが好ましく、8.5以上がより好ましい。また、塩基性溶液のpHは、酸性化効率化の観点から、12以下が好ましく、11以下がより好ましい。
The solvent of the basic formic acid solution may be uniform as long as the basic formic acid solution is uniform, and is not particularly limited, but water, methanol, ethanol, N, N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran, benzene, toluene, and these are used. Examples thereof include water, and more preferably water.
The basic formic acid solution preferably contains lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, cesium hydrogen carbonate, potassium hydroxide, sodium hydroxide, diazabicycloundecene, triethylamine and the like, and hydrogen carbonate. It is more preferable to contain sodium and potassium hydrogen carbonate.
The pH of the basic formic acid solution is preferably greater than 8.0, more preferably 8.5 or higher. The pH of the basic solution is preferably 12 or less, more preferably 11 or less, from the viewpoint of improving acidification efficiency.
塩基性ギ酸溶液を陽イオン交換樹脂に接触させる方式に特に制限は無く、陽イオン交換樹脂をカラムに充填して塩基性ギ酸溶液を通液するカラム式でも、陽イオン交換樹脂を塩基性ギ酸溶液中に分散させて攪拌するバッチ式でもよい。好ましくは、連続して行えるカラム式の方法で行う。 There is no particular limitation on the method of contacting the basic formic acid solution with the cation exchange resin, and even in the column method in which the cation exchange resin is filled in the column and the basic formic acid solution is passed through, the cation exchange resin is used as the basic formic acid solution. A batch type may be used in which the mixture is dispersed and stirred. Preferably, it is carried out by a continuous column method.
カラム式を用いる場合、カラムに塩基性ギ酸溶液を接触させる条件としては、例えば、製造効率の観点から、空塔速度(SV)=0.1hr-1以上、より好ましくは0.2hr-1以上、更に好ましくは、0.5hr-1以上を挙げることができる。また、十分に酸性化を行う観点から、好ましくは空塔速度(SV)=50hr-1以下、より好ましくは10hr-1以下、更に好ましくは、8hr-1以下を挙げることができる。
塩基性ギ酸溶液は、陽イオン交換樹脂の総イオン交換容量に対して、塩基性ギ酸溶液中の陽イオンの量が0.01~1倍量となる量を通液することにより行うことが好ましい。また、カラムからの流出液中のpHをモニタしながら、酸性化を確認することが好ましい。
When the column formula is used, as conditions for bringing the basic formic acid solution into contact with the column, for example, from the viewpoint of production efficiency, the superficial velocity (SV) = 0.1 hr -1 or more, more preferably 0.2 hr -1 or more. , More preferably, 0.5 hr -1 or more can be mentioned. Further, from the viewpoint of sufficient acidification, the superficial velocity (SV) = 50 hr -1 or less, more preferably 10 hr -1 or less, still more preferably 8 hr -1 or less.
The basic formic acid solution is preferably carried out by passing an amount such that the amount of cations in the basic formic acid solution is 0.01 to 1 times the total ion exchange capacity of the cation exchange resin. .. Further, it is preferable to confirm acidification while monitoring the pH in the effluent from the column.
また、バッチ式を用いる場合には、塩基性ギ酸溶液に陽イオン交換樹脂を加えた後、一定時間撹拌後、陽イオン交換樹脂を取り除く方法が例示できる。
塩基性ギ酸溶液に陽イオン交換樹脂を接触させる時間としては、十分に酸性化を行う観点から、10分以上が好ましく、20分以上がより好ましい。また、製造効率の観点から、5時間以下が好ましく、2時間以下がより好ましい。
陽イオン交換樹脂の総イオン交換容量と、塩基性ギ酸溶液の陽イオン量との比率は、塩基性ギ酸溶液中の陽イオン量に対し、陽イオン交換樹脂の総イオン交換容量を、好ましくは1倍以上、より好ましくは5倍以上、更に好ましくは10倍以上を例示することができる。
Further, when the batch method is used, a method of adding the cation exchange resin to the basic formic acid solution, stirring for a certain period of time, and then removing the cation exchange resin can be exemplified.
The time for contacting the cation exchange resin with the basic formic acid solution is preferably 10 minutes or longer, more preferably 20 minutes or longer, from the viewpoint of sufficient acidification. Further, from the viewpoint of production efficiency, 5 hours or less is preferable, and 2 hours or less is more preferable.
The ratio of the total ion exchange capacity of the cation exchange resin to the amount of cations in the basic formic acid solution is such that the total ion exchange capacity of the cation exchange resin is preferably 1 with respect to the amount of cations in the basic formic acid solution. It can be exemplified by a factor of 2 or more, more preferably 5 times or more, still more preferably 10 times or more.
陽イオン交換樹脂としては、スルホン酸基等の強酸基を有する強酸性陽イオン交換樹脂や、カルボキシル基、ホスホン酸基、ホスフィン酸基等の弱酸基を有する弱酸性陽イオン交換樹脂等が挙げられる。
強酸性陽イオン交換樹脂としては、例えば、デュオライト(登録商標)C20JH、C255LFH、C26TRH(以上住友ケムテックス社製)、ダイヤイオン(登録商標)SK1B、SK104、SK110、PK208、PK212、PK216(以上、三菱化学社製)等が挙げられる。
弱酸性陽イオン交換樹脂としては、例えば、ダイヤイオン(登録商標)WK10、WK11、WK100、WK40L(以上、三菱化学社製)が挙げられる。
中でも、陽イオン交換樹脂としては、陽イオンの吸着能力が高い点から強酸性陽イオン交換樹脂であることが好ましい。
第一の工程により得られる酸性ギ酸溶液のpHは、最終的に得られるギ酸溶液の濃縮効果をより高くする観点から、7.0未満が好ましく、6.0以下がより好ましく、5.0以下が更に好ましく、4.0以下が特に好ましい。また、酸性ギ酸溶液のpHは、塩基性陰イオン交換樹脂によるギ酸イオン交換効率の観点から、1.0以上が好ましく、2.0以上がより好ましく、3.0以上が更に好ましい。pHは、陽イオン交換樹脂の種類、使用量、接触条件等により調整が可能である。
Examples of the cation exchange resin include a strong acid cation exchange resin having a strong acid group such as a sulfonic acid group, a weak acid cation exchange resin having a weak acid group such as a carboxyl group, a phosphonic acid group and a phosphinic acid group, and the like. ..
Examples of the strongly acidic cation exchange resin include Duolite (registered trademark) C20JH, C255LFH, C26TRH (manufactured by Sumitomo Chemtex Corporation), Diaion (registered trademark) SK1B, SK104, SK110, PK208, PK212, PK216 (or more, Mitsubishi Chemical Corporation) and the like.
Examples of the weakly acidic cation exchange resin include Diaion (registered trademark) WK10, WK11, WK100 and WK40L (all manufactured by Mitsubishi Chemical Corporation).
Among them, the cation exchange resin is preferably a strongly acidic cation exchange resin because of its high cation adsorption capacity.
The pH of the acidic formic acid solution obtained in the first step is preferably less than 7.0, more preferably 6.0 or less, and more preferably 5.0 or less, from the viewpoint of increasing the effect of concentrating the finally obtained formic acid solution. Is more preferable, and 4.0 or less is particularly preferable. The pH of the acidic formic acid solution is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 3.0 or more, from the viewpoint of the formic acid ion exchange efficiency of the basic anion exchange resin. The pH can be adjusted by the type of cation exchange resin, the amount used, the contact conditions, and the like.
陽イオン交換樹脂の粒径は、好ましくは0.1mm以上、より好ましくは0.2mm以上であり、特に好ましくは0.3mm以上である。また、陽イオン交換樹脂の粒径は、好ましくは2mm以下、より好ましくは1.5mm以下であり、特に好ましくは1.2mm以下である。 The particle size of the cation exchange resin is preferably 0.1 mm or more, more preferably 0.2 mm or more, and particularly preferably 0.3 mm or more. The particle size of the cation exchange resin is preferably 2 mm or less, more preferably 1.5 mm or less, and particularly preferably 1.2 mm or less.
〔第二の工程〕
第二の工程は、酸性ギ酸溶液を陰イオン交換樹脂と接触させて、ギ酸イオンを樹脂に吸着させる工程である。この工程により、酸性ギ酸溶液中に存在するギ酸イオンが、陰イオン交換樹脂に吸着される。また、陰イオン交換樹脂より水酸化物イオンが放出される。
[Second step]
The second step is a step of bringing an acidic formic acid solution into contact with an anion exchange resin to adsorb formic acid ions to the resin. By this step, formic acid ions existing in the acidic formic acid solution are adsorbed on the anion exchange resin. In addition, hydroxide ions are released from the anion exchange resin.
酸性ギ酸溶液を陰イオン交換樹脂に接触させる方式に特に制限は無く、陰イオン交換樹脂をカラムに充填して、酸性ギ酸溶液を通液するカラム式であっても、陰イオン交換樹脂を酸性ギ酸溶液中に分散させて、攪拌するバッチ式のいずれで行ってもよい。好ましくは、連続して行えるカラム式の方法で行う。 There is no particular limitation on the method of contacting the acidic formic acid solution with the anion exchange resin, and even in the column type in which the anion exchange resin is filled in the column and the acidic formic acid solution is passed through the column, the anion exchange resin is used as the acidic formic acid. It may be dispersed in a solution and stirred by either batch type. Preferably, it is carried out by a continuous column method.
カラム式を用いる場合、カラムに酸性ギ酸溶液を接触させる条件としては、例えば、製造効率の観点から、空塔速度(SV)=0.1hr-1以上、より好ましくは0.2hr-1以上、更に好ましくは0.5hr-1以上を挙げることができる。また、ギ酸イオンを十分に吸着させる観点から、好ましくは空塔速度(SV)=50hr-1以下、より好ましくは10hr-1以下、更に好ましくは8hr-1以下を挙げることができる。
酸性ギ酸溶液は、陰イオン交換樹脂の総イオン交換容量に対して、酸性ギ酸溶液中のギ酸イオンの量が0.01~1倍となる量を通液することにより行うことが好ましい。また、ギ酸の吸着は、HPLC(高速液体クロマトグラフィー(high performance liquid chromatography))等によって、カラムからの流出液中のギ酸濃度を、モニタすることにより、確認することが好ましい。
When the column type is used, the conditions for bringing the acidic formic acid solution into contact with the column are, for example, from the viewpoint of production efficiency, superficial velocity (SV) = 0.1 hr -1 or more, more preferably 0.2 hr -1 or more. More preferably, 0.5 hr -1 or more can be mentioned. Further, from the viewpoint of sufficiently adsorbing formic acid ions, the superficial velocity (SV) = 50 hr -1 or less, more preferably 10 hr -1 or less, still more preferably 8 hr -1 or less.
The acidic formic acid solution is preferably carried out by passing an amount such that the amount of formic acid ions in the acidic formic acid solution is 0.01 to 1 times the total ion exchange capacity of the anion exchange resin. Further, the adsorption of formic acid is preferably confirmed by monitoring the concentration of formic acid in the effluent from the column by HPLC (high performance liquid chromatography) or the like.
また、バッチ式を用いる場合には、酸性ギ酸溶液に陰イオン交換樹脂を加えた後、一定時間撹拌後、陰イオン交換樹脂を取り除く方法が挙げられる。
酸性ギ酸溶液に陰イオン交換樹脂を接触させる時間としては、十分に酸性化を行う観点から、10分以上が好ましく、20分以上がより好ましい。また、接触時間は、製造効率の観点から、5時間以下が好ましく、2時間以下がより好ましい。
陰イオン交換樹脂の総イオン交換容量と酸性ギ酸溶液のギ酸イオンとの比率は、酸性ギ酸溶液中のギ酸イオン量に対し、陰イオン交換樹脂の総イオン交換容量を好ましくは1倍以上、より好ましくは5倍以上、さらに好ましくは10倍以上を例示することができる。
When the batch method is used, a method of adding an anion exchange resin to an acidic formic acid solution, stirring for a certain period of time, and then removing the anion exchange resin can be mentioned.
The time for contacting the anion exchange resin with the acidic formic acid solution is preferably 10 minutes or longer, more preferably 20 minutes or longer, from the viewpoint of sufficient acidification. Further, the contact time is preferably 5 hours or less, more preferably 2 hours or less, from the viewpoint of manufacturing efficiency.
The ratio of the total ion exchange capacity of the anion exchange resin to the formate ion of the acidic formic acid solution is preferably 1 times or more, more preferably 1 time or more, the total ion exchange capacity of the anion exchange resin with respect to the amount of formate ions in the acidic formic acid solution. Can be exemplified by 5 times or more, more preferably 10 times or more.
陰イオン交換樹脂としては、I型強塩基性イオン交換樹脂、II型強塩基性イオン交換樹脂、弱塩基性イオン交換樹脂等を用いることができる。
I型強塩基性イオン交換樹脂は、トリメチルアンモニウム基を有する強塩基性イオン交換樹脂であり、例えば、ダイヤイオンSA10A、ダイヤイオンSA12A、ダイヤイオンSA11A、ダイヤイオンNSA100(いずれも三菱化学社製)、デュオライトUP5000、デュオライトA113LF、デュオライトA109D、デュオライトA161JCL(住化ケムテックス社製)等が挙げられる。
As the anion exchange resin, a type I strongly basic ion exchange resin, a type II strongly basic ion exchange resin, a weakly basic ion exchange resin and the like can be used.
The type I strongly basic ion exchange resin is a strongly basic ion exchange resin having a trimethylammonium group, and is, for example, Diaion SA10A, Diaion SA12A, Diaion SA11A, Diaion NSA100 (all manufactured by Mitsubishi Chemical Corporation). Examples thereof include Duolite UP5000, Duolite A113LF, Duolite A109D, Duolite A161JCL (manufactured by Sumika Chemtex Co., Ltd.) and the like.
II型強塩基性イオン交換樹脂は、メチルエタノールアンモニウム基等を有する強塩基性イオン交換樹脂であり、例えば、架橋共重合体としてスチレン/ジビニルベンゼン樹脂母体に、アルキレン基を介して結合された-N+(CH3)2C2H4OH基を有するもの等が挙げられる。
II型強塩基性イオン交換樹脂としては、例えばダイヤイオンSA20A、ダイヤイオンPA408、ダイヤイオンPA412、ダイヤイオンPA418(いずれも三菱化学社製)、ダウエックスマラソンA2、アンバーライトIRA410J、アンバーライトIRA411、アンバーライトIRA910CT(いずれもダウエックス社製)、ピュロライトA200,ピュロライトA300,ピュロライトA510(いずれもピュロライト社製),レバチットM610、レバチットMP600(いずれもランクセス社製)、デュオライトA116(住化ケムテックス社製)等を使用することができる。
The type II strongly basic ion exchange resin is a strongly basic ion exchange resin having a methylethanolammonium group or the like, and is, for example, bonded to a styrene / divinylbenzene resin matrix as a crosslinked copolymer via an alkylene group. N + (CH 3 ) 2 C 2 H 4 Those having an OH group and the like can be mentioned.
Examples of the type II strong basic ion exchange resin include Diaion SA20A, Diaion PA408, Diaion PA412, Diaion PA418 (all manufactured by Mitsubishi Chemical Corporation), Dawex Marathon A2, Amberlite IRA410J, Amberlite IRA411, and Amber. Light IRA910CT (all manufactured by Dawex), Purolite A200, Purolite A300, Purolite A510 (all manufactured by Purolite), Rebatit M610, Rebatit MP600 (all manufactured by LANXESS), Duolite A116 (manufactured by Sumika Chemtex) Etc. can be used.
弱塩基性イオン交換樹脂としては、弱塩基性アニオン交換基を有するイオン交換樹脂であり、弱塩基性アニオン交換基としては、1~3級アミノ基等が挙げられる。弱塩基性イオン交換樹脂としては、例えば、デュオライトA375LF(住化ケムテックス社製)、ダイヤイオンWA10、WA11(三菱化学社製)、アンバーライトIRA67(オルガノ社製)等を使用することができる。 Examples of the weakly basic ion exchange resin are ion exchange resins having a weakly basic anion exchange group, and examples of the weakly basic anion exchange group include 1st to 3rd grade amino groups. As the weakly basic ion exchange resin, for example, Duolite A375LF (manufactured by Sumika Chemtex Co., Ltd.), Diaion WA10, WA11 (manufactured by Mitsubishi Chemical Corporation), Amberlite IRA67 (manufactured by Organo Corporation) and the like can be used.
陰イオン交換樹脂として、I型強塩基性イオン交換樹脂、II型強塩基性イオン交換樹脂、又は弱塩基性イオン交換樹脂を用いた場合、ギ酸イオンの吸着力、及びギ酸の第三の工程における溶出効率にそれぞれ大きな差異は無い。しかし、I型強塩基性イオン交換樹脂、及びII型強塩基性イオン交換樹脂は陰イオンが樹脂に強く吸着するため、第三の工程を経た後の陰イオン交換樹脂の再生に多量の再生液が必要となる点から、弱酸性イオン交換樹脂を用いることが好ましい。 When a type I strongly basic ion exchange resin, a type II strongly basic ion exchange resin, or a weakly basic ion exchange resin is used as the anion exchange resin, the adsorptive power of formic acid ions and the third step of formic acid There is no big difference in elution efficiency. However, since anions are strongly adsorbed on the type I strongly basic ion exchange resin and the type II strongly basic ion exchange resin, a large amount of regenerated liquid is used for the regeneration of the anion exchange resin after the third step. Therefore, it is preferable to use a weakly acidic ion exchange resin.
陰イオン交換樹脂の粒径は、好ましくは0.1mm以上、より好ましくは0.2mm以上であり、特に好ましくは0.3mm以上である。また、陽イオン交換樹脂の粒径は、好ましくは2mm以下、より好ましくは1.5mm以下であり、特に好ましくは1.2mm以下である。 The particle size of the anion exchange resin is preferably 0.1 mm or more, more preferably 0.2 mm or more, and particularly preferably 0.3 mm or more. The particle size of the cation exchange resin is preferably 2 mm or less, more preferably 1.5 mm or less, and particularly preferably 1.2 mm or less.
〔第三の工程〕
第三の工程は、吸着されたギ酸イオンを、酸性の溶離液によって陰イオン交換樹脂から溶出させる工程である。
酸性の溶離液としては、酸を含む溶離液であることが好ましく、酸を含む水溶液が好ましい。酸としては、例えば、塩酸、硝酸、硫酸等が挙げられる。溶離液に用いる水としては、脱イオン水、蒸留水、純水のいずれであってもよい。また、ギ酸の溶出を補助する目的で、アセトニトリル、メタノール、テトラヒドロフランなどの有機溶媒を一部含んでいてもよい。これら有機溶媒の含有量としては、好ましくは溶離液中に45質量%以下、より好ましくは30質量%以下である。有機溶媒の含有量の下限値に特に限定はなく、実質的に0質量%以上である。
酸性の溶離液の酸の濃度は、ギ酸の高濃度回収の観点から、好ましくは1N以上、より好ましくは2N以上である。また、ギ酸溶出効率の観点から、好ましくは12N以下、より好ましくは10N以下である。
酸性の溶離液は、蒸留等で除去し易い点で塩酸水溶液が好ましい。酸性の溶離液として塩酸水溶液を用いる場合、ギ酸の高濃度回収の観点から、5質量%以上が好ましく、10質量%以上がより好ましい。また、ギ酸溶出効率の観点から、40質量%以下が好ましく、36質量%以下がより好ましい。
[Third step]
The third step is to elute the adsorbed formic acid ions from the anion exchange resin with an acidic eluent.
As the acidic eluent, an eluent containing an acid is preferable, and an aqueous solution containing an acid is preferable. Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid and the like. The water used for the eluent may be deionized water, distilled water, or pure water. Further, for the purpose of assisting the elution of formic acid, a part of an organic solvent such as acetonitrile, methanol or tetrahydrofuran may be contained. The content of these organic solvents is preferably 45% by mass or less, more preferably 30% by mass or less in the eluent. The lower limit of the content of the organic solvent is not particularly limited, and is substantially 0% by mass or more.
The acid concentration of the acidic eluent is preferably 1N or more, more preferably 2N or more, from the viewpoint of recovering a high concentration of formic acid. Further, from the viewpoint of formic acid elution efficiency, it is preferably 12 N or less, more preferably 10 N or less.
The acidic eluent is preferably an aqueous hydrochloric acid solution because it can be easily removed by distillation or the like. When an aqueous hydrochloric acid solution is used as the acidic eluent, 5% by mass or more is preferable, and 10% by mass or more is more preferable, from the viewpoint of recovering a high concentration of formic acid. Further, from the viewpoint of formic acid elution efficiency, 40% by mass or less is preferable, and 36% by mass or less is more preferable.
カラム溶出液を分取して、酵素センサー、イオンクロマトグラフィー、分光光度計等の分析手段で、溶出成分をモニタしながら、濃縮されたギ酸溶液を回収することができる。
溶出液中のギ酸濃度(mol/L)は、塩基性ギ酸溶液中のギ酸濃度(mol/L)の1.5倍以上が好ましく、2倍以上がより好ましく、3倍以上が更に好ましい。
塩基性ギ酸溶液中のギ酸濃度が低ければ、濃縮率は高くなる。最終的に、本発明の実施形態におけるギ酸溶液は、好ましくは5質量%以上、より好ましくは7質量%以上の濃度で回収できる。
The column eluate can be separated and the concentrated formic acid solution can be recovered while monitoring the eluate components by analytical means such as an enzyme sensor, ion chromatography, and a spectrophotometer.
The formic acid concentration (mol / L) in the eluent is preferably 1.5 times or more, more preferably 2 times or more, still more preferably 3 times or more the formic acid concentration (mol / L) in the basic formic acid solution.
The lower the concentration of formic acid in the basic formic acid solution, the higher the concentration. Finally, the formic acid solution according to the embodiment of the present invention can be recovered at a concentration of preferably 5% by mass or more, more preferably 7% by mass or more.
本実施形態の方法によれば、塩基性ギ酸溶液を陰イオン交換樹脂と接触させて、ギ酸イオンを樹脂に吸着、及び溶出させるよりも、はるかに効率良くギ酸溶液を濃縮することができる。また、溶出液として得られたギ酸溶液を、定法に従いさらに減圧蒸留等に付することによって、水、鉱酸及び有機溶剤等を除去し、目的とするギ酸の高濃度溶液を高い回収率で得ることができる。 According to the method of the present embodiment, the formic acid solution can be concentrated much more efficiently than contacting the basic formic acid solution with the anion exchange resin to adsorb and elute the formic acid ions on the resin. Further, the formic acid solution obtained as the eluent is further subjected to vacuum distillation or the like according to a conventional method to remove water, mineral acid, organic solvent and the like, and a high-concentration solution of the target formic acid is obtained with a high recovery rate. be able to.
以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.
〔実施例1〕
下記のとおり塩基性ギ酸溶液の濃縮を行った。
[Example 1]
The basic formic acid solution was concentrated as follows.
<第一の工程>
炭酸水素ナトリウム(和光純薬製)67.2gに水を加え1Lとし、攪拌し、0.8mol/L炭酸水素ナトリウム水溶液を得た。純度98%ギ酸(和光純薬製)2.55gに97.45gの0.8mol/L炭酸水素ナトリウム水溶液を加え、攪拌し、2.5質量%のギ酸を含んだ塩基性ギ酸溶液を得た(pH9.1)。上記で得られた塩基性ギ酸溶液10gを、強酸性陽イオン交換樹脂(デュオライトC20JH、住化ケムテックス社製)10gと混合して酸性化した後、濾別して酸性ギ酸溶液を得た。得られた酸性ギ酸溶液のpHを自動滴定装置 COM-1750S(平沼産業製)により測定したところ3.4であった。
<First step>
Water was added to 67.2 g of sodium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) to make 1 L, and the mixture was stirred to obtain a 0.8 mol / L sodium hydrogen carbonate aqueous solution. 97.45 g of 0.8 mol / L sodium hydrogen carbonate aqueous solution was added to 2.55 g of 98% pure formic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and stirred to obtain a basic formic acid solution containing 2.5% by mass of formic acid. (PH 9.1). 10 g of the basic formic acid solution obtained above was mixed with 10 g of a strongly acidic cation exchange resin (Duolite C20JH, manufactured by Sumika Chemtex Co., Ltd.) and acidified, and then filtered to obtain an acidic formic acid solution. The pH of the obtained acidic formic acid solution was measured by the automatic titrator COM-1750S (manufactured by Hiranuma Sangyo) and found to be 3.4.
<第二の工程>
上記で得られた酸性ギ酸溶液5gを、強塩基性I型イオン交換樹脂(デュオライトUP5000、住化ケムテックス社製)1gと混合してギ酸を吸着させ濾別した。強塩基性I型イオン交換樹脂1gあたりのギ酸の吸着量は0.10g/g-Rであった。ギ酸の吸着量はHPLCにより、溶液中のギ酸濃度の変化を測定し、下記の式1により算出した。
(式1):
イオン交換樹脂1g当たりのギ酸吸着量(g)=[(A(質量%)-B(質量%))×C(g)]/D(g)
A:塩基性ギ酸溶液中のギ酸の濃度(質量%)
B:陰イオン交換後の酸性ギ酸溶液中のギ酸の濃度(質量%)
C:酸性ギ酸溶液の質量(g)
D:陰イオン交換樹脂の質量(g)
<Second step>
5 g of the acidic formic acid solution obtained above was mixed with 1 g of a strong basic type I ion exchange resin (Duolite UP5000, manufactured by Sumika Chemtex Co., Ltd.), and formic acid was adsorbed and filtered off. The amount of formic acid adsorbed per 1 g of the strong basic type I ion exchange resin was 0.10 g / g-R. The amount of formic acid adsorbed was calculated by the following formula 1 by measuring the change in formic acid concentration in the solution by HPLC.
(Equation 1):
Formic acid adsorption amount per 1 g of ion exchange resin (g) = [(A (mass%) -B (mass%)) x C (g)] / D (g)
A: Concentration of formic acid in basic formic acid solution (% by mass)
B: Concentration of formic acid (mass%) in acidic formic acid solution after anion exchange
C: Mass of acidic formic acid solution (g)
D: Mass of anion exchange resin (g)
また、HPLCは以下の条件により行った。定量用標準物質にはギ酸(和光純薬製)濃度が0.001~1質量%となるよう調製したギ酸水溶液を用いた。
装置:LC-MS2010EV(島津製作所製)
カラム:YMC-Triart C18(3.0mmΦ×15cm,平均粒径5μm,平均細孔径12nm)
カラム温度:37℃
移動相:A液 0.1%H3PO4:アセトニトリル=95:5(体積比),
B液 アセトニトリル
グラジエント条件:0~5分,B液0%(ホールド)→5~5.01分,B液0~95%(グラジエント)→5.01~10分,B液95%(ホールド)→10~10.01分,B液95~0%(グラジエント)→10.01~20分,B液0%(ホールド)
流速:0.425mL/min
検出:UV210nm
Moreover, HPLC was performed under the following conditions. As the standard substance for quantification, an aqueous solution of formic acid prepared so that the concentration of formic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was 0.001 to 1% by mass was used.
Equipment: LC-MS2010EV (manufactured by Shimadzu Corporation)
Column: YMC-Triart C18 (3.0 mmΦ × 15 cm, average particle size 5 μm, average pore diameter 12 nm)
Column temperature: 37 ° C
Mobile phase: Liquid A 0.1% H 3 PO 4 : Acetonitrile = 95: 5 (volume ratio),
Solution B acetonitrile gradient conditions: 0 to 5 minutes, solution B 0% (hold) → 5 to 5.01 minutes, solution B 0 to 95% (gradient) → 5.01 to 10 minutes, solution B 95% (hold) → 10 to 10.01 minutes, B liquid 95 to 0% (gradient) → 10.01 to 20 minutes, B liquid 0% (hold)
Flow velocity: 0.425 mL / min
Detection: UV210nm
<第三の工程>
濾別した強塩基性I型イオン交換樹脂を、20質量%塩酸水溶液0.5gと混合し、ギ酸イオンを溶出させて溶出液を得た。得られた溶出液中のギ酸濃度(抽出ギ酸濃度)をHPLCにて測定したところ、8質量%であった。
<Third step>
The filtered strong basic type I ion exchange resin was mixed with 0.5 g of a 20 mass% hydrochloric acid aqueous solution, and formic acid ions were eluted to obtain an eluate. The formic acid concentration (extracted formic acid concentration) in the obtained eluate was measured by HPLC and found to be 8% by mass.
〔実施例2〕
第二の工程における陰イオン交換樹脂を強塩基性II型イオン交換樹脂(ダイヤイオンUSA20A、三菱化学社製)に変更したこと以外は実施例1と同様に塩基性ギ酸溶液の濃縮を行った。結果を表1に示す。
[Example 2]
The basic formic acid solution was concentrated in the same manner as in Example 1 except that the anion exchange resin in the second step was changed to a strong basic type II ion exchange resin (Diaion USA20A, manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
〔実施例3〕
第二の工程における陰イオン交換樹脂を弱塩基性イオン交換樹脂(デュオライトA375LF、住化ケムテックス社製)に変更したこと以外は実施例1と同様に塩基性ギ酸溶液の濃縮を行った。結果を表1に示す。
[Example 3]
The basic formic acid solution was concentrated in the same manner as in Example 1 except that the anion exchange resin in the second step was changed to a weak basic ion exchange resin (Duolite A375LF, manufactured by Sumika Chemtex Co., Ltd.). The results are shown in Table 1.
〔実施例4〕
第一の工程における陽イオン交換樹脂を弱酸性イオン交換樹脂(ダイヤイオンWK40L、三菱化学社製)に変更したこと以外は実施例1と同様に塩基性ギ酸溶液の濃縮を行った。結果を表1に示す。
[Example 4]
The basic formic acid solution was concentrated in the same manner as in Example 1 except that the cation exchange resin in the first step was changed to a weakly acidic ion exchange resin (Diaion WK40L, manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
〔実施例5〕
第一の工程における陽イオン交換樹脂を弱酸性イオン交換樹脂(ダイヤイオンWK11、三菱化学社製)に変更したこと以外は実施例1と同様に塩基性ギ酸溶液の濃縮を行った。結果を表1に示す。
[Example 5]
The basic formic acid solution was concentrated in the same manner as in Example 1 except that the cation exchange resin in the first step was changed to a weakly acidic ion exchange resin (Diaion WK11, manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 1.
<比較例1>
第一の工程を行わなかったこと以外は実施例1と同様に塩基性ギ酸溶液の濃縮を行った。結果を表1に示す。
<Comparative Example 1>
The basic formic acid solution was concentrated in the same manner as in Example 1 except that the first step was not performed. The results are shown in Table 1.
<比較例2>
第一の工程において、陽イオン交換樹脂を用いず、塩基性ギ酸溶液10gと36%塩酸3gとを混合して酸性化し、酸性ギ酸溶液を得た以外は実施例1と同様に塩基性ギ酸溶液の濃縮を行った。結果を表1に示す。
<Comparative Example 2>
In the first step, the basic formic acid solution was the same as in Example 1 except that 10 g of the basic formic acid solution and 3 g of 36% hydrochloric acid were mixed and acidified to obtain an acidic formic acid solution without using a cation exchange resin. Was concentrated. The results are shown in Table 1.
表1から分かるように、実施例1~5は、第一の工程で陽イオン交換樹脂を用いて酸性化したことにより、第二の工程における陰イオン交換樹脂へのギ酸の吸着量が多く、ギ酸濃縮効果が高い。
実施例1~3は、第一の工程で強酸性陽イオン交換樹脂を用いたため、実施例4、及び5と比較して酸性ギ酸溶液のpHが低く、第二の工程における陰イオン交換樹脂へのギ酸の吸着量が多く、ギ酸濃縮効果が高い。
比較例1は、陽イオン交換樹脂による第一の工程を実施しなかったため、実施例1~5に比べギ酸吸着量が少なく、ギ酸濃縮効果が低い。
比較例2は第一の工程に塩酸を用いたため、実施例1~5と比較して酸性ギ酸溶液のpHは2.4と低いものの、陰イオン交換樹脂へのギ酸の吸着量が少なく、ギ酸濃縮効果が低い結果となった。
As can be seen from Table 1, in Examples 1 to 5, the amount of formic acid adsorbed on the anion exchange resin in the second step was large due to the acidification using the cation exchange resin in the first step. High formic acid concentration effect.
In Examples 1 to 3, since the strongly acidic cation exchange resin was used in the first step, the pH of the acidic formic acid solution was lower than that in Examples 4 and 5, and the anion exchange resin in the second step was used. The amount of formic acid adsorbed is large, and the effect of concentrating formic acid is high.
In Comparative Example 1, since the first step using the cation exchange resin was not carried out, the amount of formic acid adsorbed was smaller than that of Examples 1 to 5, and the formic acid concentration effect was low.
Since hydrochloric acid was used in the first step in Comparative Example 2, the pH of the acidic formic acid solution was as low as 2.4 as compared with Examples 1 to 5, but the amount of formic acid adsorbed on the anion exchange resin was small, and formic acid was used. The result was that the concentration effect was low.
Claims (6)
前記酸性溶液を陰イオン交換樹脂と接触させて、ギ酸イオンを前記陰イオン交換樹脂に吸着させる第二の工程、
吸着された前記ギ酸イオンを、酸を含む溶離液によって前記陰イオン交換樹脂から溶出させる第三の工程、
を含むギ酸溶液の濃縮方法。 The first step of contacting a basic solution containing formic acid in an amount of 0.01% by mass or more and 30% by mass or less and having a pH of more than 8.0 with a cation exchange resin to obtain an acidic solution containing formic acid ions.
A second step of bringing the acidic solution into contact with the anion exchange resin to adsorb formic acid ions to the anion exchange resin.
A third step of eluting the adsorbed formic acid ion from the anion exchange resin with an eluent containing an acid.
A method for concentrating a formic acid solution containing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018139406A JP7082003B2 (en) | 2018-07-25 | 2018-07-25 | Method for concentrating formic acid solution and method for producing formic acid solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018139406A JP7082003B2 (en) | 2018-07-25 | 2018-07-25 | Method for concentrating formic acid solution and method for producing formic acid solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020015684A JP2020015684A (en) | 2020-01-30 |
JP7082003B2 true JP7082003B2 (en) | 2022-06-07 |
Family
ID=69580018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018139406A Active JP7082003B2 (en) | 2018-07-25 | 2018-07-25 | Method for concentrating formic acid solution and method for producing formic acid solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7082003B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113999109A (en) * | 2021-11-15 | 2022-02-01 | 聊城鲁西甲酸化工有限公司 | System and method for removing floccules in concentrated formic acid product |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003513945A (en) | 1999-11-09 | 2003-04-15 | ビーエーエスエフ アクチェンゲゼルシャフト | Formulation of formic acid |
JP2013193983A (en) | 2012-03-19 | 2013-09-30 | National Institute Of Advanced Industrial Science & Technology | Catalyst for hydrogenation of carbon dioxide or dehydrogenation of formic acid, and carbon dioxide hydrogenation method, formic acid dehydrogenation method, and hydrogen storage and production method using the catalyst |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2850421B2 (en) * | 1989-12-11 | 1999-01-27 | 住友化学工業株式会社 | Organic acid separation and recovery method |
-
2018
- 2018-07-25 JP JP2018139406A patent/JP7082003B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003513945A (en) | 1999-11-09 | 2003-04-15 | ビーエーエスエフ アクチェンゲゼルシャフト | Formulation of formic acid |
JP2013193983A (en) | 2012-03-19 | 2013-09-30 | National Institute Of Advanced Industrial Science & Technology | Catalyst for hydrogenation of carbon dioxide or dehydrogenation of formic acid, and carbon dioxide hydrogenation method, formic acid dehydrogenation method, and hydrogen storage and production method using the catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP2020015684A (en) | 2020-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud | |
Sugasaka et al. | Recovery of uranium from seawater | |
Galhoum et al. | Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd (III), Dy (III) and Yb (III)] | |
JP4374341B2 (en) | Boron separation and recovery | |
Zhang et al. | Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent | |
CA2955608C (en) | Ligand-assisted chromatography for metal ion separation | |
Tang et al. | Novel combined method of biosorption and chemical precipitation for recovery of Pb 2+ from wastewater | |
CN110743503B (en) | PCN metal organic framework and graphene oxide composite adsorption material and preparation method thereof | |
JP7082003B2 (en) | Method for concentrating formic acid solution and method for producing formic acid solution | |
JP2020193130A (en) | Method for producing lithium hydroxide | |
Hsieh et al. | Novel vinylene-based covalent organic framework as a promising adsorbent for the rapid extraction of beta-agonists in meat samples | |
CN104841368B (en) | A kind of leacheate regrown material and its application | |
Kovtun et al. | Analysis of existing methods for improving the physical and chemical conditions of the ion exchange process in water treatment | |
JP5409213B2 (en) | Cation analysis | |
JP2009090256A (en) | Method for treating waste liquid containing borate and alkali metal iodide salt and apparatus therefor | |
Chen et al. | Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater | |
KR101577433B1 (en) | Recovery method of ionic liquids in aqueous solution using membrane capacitive deionization | |
CN100417634C (en) | Method of separating and recovering fumaric acid and phthalic acid in fumaric acid preparation wastewater | |
CN113278039B (en) | Method for efficiently and continuously purifying beta-nicotinamide mononucleotide | |
WO2023040511A1 (en) | Lithium extraction method for alkaline solution | |
JP6134892B2 (en) | Method for producing silica / polymer composite type iminodiacetic acid chelate adsorbent, quantitative analysis method using silica / polymer composite type iminodiacetic acid chelate adsorbent, and method for recovering trace metal elements | |
WO2021119208A1 (en) | Hybrid thermal - chromatographic system for simultaneous mineral purification and desalination of saline waters | |
EP3389814B1 (en) | Method of treating a liquid using calcium alginate adsorbents | |
CN103864862A (en) | Pentose compound purifying method | |
CA3065823A1 (en) | Recovery of uranium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7082003 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |