JP7081088B2 - Joint structure of electronic components - Google Patents

Joint structure of electronic components Download PDF

Info

Publication number
JP7081088B2
JP7081088B2 JP2017111674A JP2017111674A JP7081088B2 JP 7081088 B2 JP7081088 B2 JP 7081088B2 JP 2017111674 A JP2017111674 A JP 2017111674A JP 2017111674 A JP2017111674 A JP 2017111674A JP 7081088 B2 JP7081088 B2 JP 7081088B2
Authority
JP
Japan
Prior art keywords
bonding
joining
end wall
joint
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017111674A
Other languages
Japanese (ja)
Other versions
JP2018206990A (en
Inventor
康弘 粂
太輔 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2017111674A priority Critical patent/JP7081088B2/en
Publication of JP2018206990A publication Critical patent/JP2018206990A/en
Application granted granted Critical
Publication of JP7081088B2 publication Critical patent/JP7081088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、電子部品の接合構造に関する。 The present invention relates to a bonding structure of electronic components.

電子部品の接合構造として特許文献1には、半導体レーザ素子をサブマウント基板上に実装し、このサブマウント基板を、ヒートシンクの接合面に接合した技術が記載されている。具体的な構成としてヒートシンクの接合面が粗面として形成され、この粗面に対して導電材としてのAgペースト等を介して接合されている。 As a bonding structure for electronic components, Patent Document 1 describes a technique in which a semiconductor laser device is mounted on a submount substrate and the submount substrate is bonded to the bonding surface of a heat sink. As a specific configuration, the joint surface of the heat sink is formed as a rough surface, and is bonded to the rough surface via Ag paste or the like as a conductive material.

この特許文献1では、粗面として規則的に粗すことや粗面の溝の形成により熱放射や密着性を向上させることが記載され、粗面の断面形状として三角形、四角形、円弧形等が記載されている。 In Patent Document 1, it is described that heat radiation and adhesion are improved by regularly roughening the rough surface and forming grooves on the rough surface, and the cross-sectional shape of the rough surface is a triangle, a quadrangle, an arc shape, or the like. Is described.

また、特許文献2として、熱伝導基板の表面に絶縁膜を形成し、この絶縁膜に対し接合層を介して回路板を接合することにより絶縁放熱基板を構成する技術が記載されている。具体的な構成として熱伝導基板にアルミニウム等の熱伝導が良好な材料を用い、絶縁膜としてセラミックス材を用い、接合層として例えばチタンを含む銀ろうやハンダ等の接合材料が用いられる。 Further, Patent Document 2 describes a technique of forming an insulating heat-dissipating substrate by forming an insulating film on the surface of a heat conductive substrate and joining a circuit board to the insulating film via a bonding layer. As a specific configuration, a material having good thermal conductivity such as aluminum is used for the heat conductive substrate, a ceramic material is used as the insulating film, and a bonding material such as silver brazing or solder containing titanium is used as the bonding layer.

特に、この特許文献2では、絶縁膜のうち接合層側の表面に複数の凸部を形成することにより充分な接合強度を得ることが記載されている。 In particular, Patent Document 2 describes that sufficient bonding strength is obtained by forming a plurality of convex portions on the surface of the insulating film on the bonding layer side.

特開2005-223083号公報Japanese Unexamined Patent Publication No. 2005-223083 特開2011-222551号公報Japanese Unexamined Patent Publication No. 2011-22251

特許文献1の接合構造では、ヒートシンクに粗面が形成されるため、接合面積が増大し、ヒートシンクとサブマウント基板との接合強度の向上を見込める反面、熱衝撃による熱応力により接合界面の接合層に破壊や剥離を招くことが考えられた。 In the bonding structure of Patent Document 1, since a rough surface is formed on the heat sink, the bonding area is increased and the bonding strength between the heat sink and the submount substrate can be expected to be improved. It was thought that it would cause destruction or peeling.

また、特許文献2の接合構造では、絶縁層の複数の凸部が形成されるため、特許文献1と同様に接合面積が増大し、接合強度を向上させるものの、異種材料の界面での接合であるため熱応力の作用により亀裂が進展することも考えられた。 Further, in the bonding structure of Patent Document 2, since a plurality of convex portions of the insulating layer are formed, the bonding area is increased and the bonding strength is improved as in Patent Document 1, but the bonding at the interface between different materials is performed. Therefore, it was considered that cracks would grow due to the action of thermal stress.

つまり、特許文献1、2では、異なる物性値を持つ異種材料を接合した構造であるため、素子や回路に対する通電によって温度が上昇した場合には、熱膨張差による熱応力により接合界面に剥離や、亀裂を招くことが考えられる。 That is, in Patent Documents 1 and 2, since different materials having different physical property values are bonded to each other, when the temperature rises due to energization of an element or a circuit, thermal stress due to a difference in thermal expansion causes peeling to the bonding interface. , May cause cracks.

特に、Si素子よりも高温で駆動可能なSiC(シリコンカーバイト)やGaN(ガリウムナイトライド)等の採用により半導体装置の駆動温度が高まっており、前述したように、異種材料の熱膨張差による剥離や亀裂が顕著になることは容易に想像できる。 In particular, the drive temperature of semiconductor devices is increasing due to the adoption of SiC (silicon carbide), GaN (gallium nitride), etc., which can be driven at a higher temperature than Si elements, and as described above, due to the difference in thermal expansion of dissimilar materials. It is easy to imagine that peeling and cracking will be noticeable.

このような理由から、温度変化が大きくとも基材と半導体との接合密着性を高い状態に維持して良好な接合状態となる接合構造が求められる。 For this reason, there is a demand for a bonding structure in which the bonding adhesion between the base material and the semiconductor is maintained in a high state and a good bonding state is obtained even if the temperature change is large.

本発明の特徴は、基材の接合面と半導体との間に接合材を挟み込んで接合が行われると共に、前記接合面が滑らかに連なる凹部と凸部とを連続的に形成した表面形状であり、
前記凹部の最深位置から前記凸部の頂部に亘る領域の曲線のうち、前記接合面が形成される平面に直交する姿勢となる接線の接点と前記頂部との間であって、前記最深位置の応力拡大係数と等しい値となる位置に開口縁を有しており、
接合状態において前記接合材の接合範囲の外縁となる端壁の位置が、前記凹部の最深位置から前記接合材が存在する方向で、前記開口縁と前記最深位置との間の領域に設定されている点にある。
A feature of the present invention is a surface shape in which a bonding material is sandwiched between a bonding surface of a base material and a semiconductor to perform bonding, and concave portions and convex portions in which the bonding surfaces are smoothly connected are continuously formed. ,
Of the curve of the region extending from the deepest position of the concave portion to the top of the convex portion, between the contact point of the tangential line having a posture orthogonal to the plane on which the joint surface is formed and the top portion, the deepest position. It has an opening edge at a position equal to the stress intensity factor .
The position of the end wall, which is the outer edge of the joining range of the joining material in the joining state, is set in the region between the opening edge and the deepest position in the direction in which the joining material is present from the deepest position of the recess. There is a point.

このように、基材の接合面を凹部と凸部とを有する「うねり形状」とすることにより、基材と接合材との接触面積が拡大して接合密着性を向上すると同時に、剥離方向に対してアンカー効果を持つため亀裂や剥離を抑制し、界面の破壊も抑制できる。また、基材の表面を「うねり形状」とすることにより、例えば、図9に示すように第1物質Aと第2物質Bとの各々に対応する第1接合角θaと第2接合角θbとの角度を異ならせて界面における応力拡大係数を部分的に低下させることが可能となる。 In this way, by forming the joint surface of the base material into a "waviness shape" having concave portions and convex portions, the contact area between the base material and the joint material is expanded to improve the joint adhesion, and at the same time, in the peeling direction. On the other hand, since it has an anchor effect, cracks and peeling can be suppressed, and interface destruction can also be suppressed. Further, by making the surface of the base material "waviness", for example, as shown in FIG. 9, the first bonding angle θa and the second bonding angle θb corresponding to each of the first substance A and the second substance B are formed. It is possible to partially reduce the stress intensity factor at the interface by changing the angle with.

更に、接合材の端壁と基材との接触部位に亀裂を招きやすいものであるが、「うねり形状」の谷部に接合材の端壁を接触させるため、亀裂進展の駆動力を表す応力拡大係数の増大を抑制できる。このように谷部において接合部材の端壁の位置を設定することで応力拡大係数の増大が抑制され、しかも、端壁の位置の設定により応力拡大係数を所定の小さい値未満に維持することも可能であり、その根拠を以下に説明する。 Further, the contact portion between the end wall of the joint material and the base material is liable to cause a crack, but since the end wall of the joint material is brought into contact with the valley portion of the "waviness shape", the stress representing the driving force of the crack growth is exhibited. It is possible to suppress an increase in the expansion factor. By setting the position of the end wall of the joint member in the valley in this way, the increase in the stress intensity factor is suppressed, and moreover, the stress intensity factor can be maintained below a predetermined small value by setting the position of the end wall. It is possible, and the rationale is explained below.

図7に示すように基材2の接合面2Sに凹部2Saを形成し、これに連なる両側に凸部2Sbの一部を形成した「うねり形状」に設定した状態で、凹部2Saに対して接合材4が接合する際の端壁4Wの位置を複数設定した状態で、各々の設定位置の応力拡大係数をCAE解析によって算出し、この算出結果を図8のグラフに示す。 As shown in FIG. 7, a concave portion 2Sa is formed on the joint surface 2S of the base material 2, and a portion of the convex portion 2Sb is formed on both sides connected to the concave portion 2Sa. With a plurality of positions of the end wall 4W when the materials 4 are joined, the stress intensity factor of each set position is calculated by CAE analysis, and the calculation result is shown in the graph of FIG.

図8から理解できるように、端壁4Wの複数の設定位置に対応する応力拡大係数が異なり、凹部2Saの最深位置Px(図7の「14」の位置)で交わる位置では応力拡大係数が低減状態にある。この最深位置Pxを基準に端壁4Wの設定位置を接合材4の存在方向に変化させることで応力拡大係数が更に低下し、端壁4Wが凹部2Saの接線と一致する位置(図7で「21」の位置)で最小となる。 As can be understood from FIG. 8, the stress intensity factors corresponding to a plurality of set positions of the end wall 4W are different, and the stress intensity factor is reduced at the position where the recess 2Sa intersects at the deepest position Px (position of “14” in FIG. 7). It is in a state. By changing the set position of the end wall 4W in the existing direction of the joining material 4 with reference to this deepest position Px, the stress intensity factor is further lowered, and the position where the end wall 4W coincides with the tangent line of the recess 2Sa (in FIG. 7 “. It becomes the minimum at the position of "21").

また、接線位置Pyを超えて接合材4の存在方向(図7で左側)に端壁4Wの位置を設定した場合には、応力拡大係数の増加傾向が高まることが理解できる。図7、図8に示すように「21」と「28」との中間の中間位置Pmを開口縁としている。これにより、接合材4の接合範囲の外縁となる端壁4Wを、凹部2Saの最深位置Pxを基準に接合材4が存在する方向で、凹部2Saの開口縁より内側に配置することにより、応力拡大係数の増大を抑制できる。 Further, it can be understood that when the position of the end wall 4W is set in the existing direction of the joining material 4 (left side in FIG. 7) beyond the tangential position Py, the tendency of increasing the stress intensity factor increases. As shown in FIGS. 7 and 8, the intermediate position Pm between "21" and "28" is used as the opening edge. As a result, the end wall 4W, which is the outer edge of the joining range of the joining material 4, is placed inside the opening edge of the recess 2Sa in the direction in which the joining material 4 exists with respect to the deepest position Px of the recess 2Sa. It is possible to suppress an increase in the magnification factor.

これにより、基材の接合面の形状の設定と、この接合面の凹部における接合材の端壁の位置の設定により、温度変化が大きくとも基材と半導体との接合密着性を高い状態に維持し良好な接合状態となる接合構造が得られた。 As a result, by setting the shape of the joint surface of the base material and the position of the end wall of the joint material in the recess of the joint surface, the joint adhesion between the base material and the semiconductor is maintained high even if the temperature change is large. A joint structure was obtained in which a good joint state was obtained.

他の構成として、前記曲線に接する接線の姿勢が、前記接合面が形成される平面に直交する姿勢となる位置に前記端壁を配置しても良い。 As another configuration, the end wall may be arranged at a position where the posture of the tangent line tangent to the curve is orthogonal to the plane on which the joint surface is formed.

このように接合面が形成される平面に対して直交する姿勢の接線の位置に端壁を配置することにより、例えば、平面に対して直交する方向、つまり、基材から接合材を分離させる方向に応力が作用する場合にも、この応力の集中を回避して基材と接合材との接合状態を最も良好に維持する。 By arranging the end wall at the position of the tangent line in the posture orthogonal to the plane on which the joint surface is formed in this way, for example, the direction orthogonal to the plane, that is, the direction in which the joint material is separated from the base material. Even when stress acts on the substrate, the concentration of the stress is avoided and the bonding state between the base material and the bonding material is maintained in the best condition.

電子部品の拡大断面図である。It is an enlarged sectional view of an electronic component. 接合材の端壁を凹部の最深位置に設定した接合構造の断面図である。It is sectional drawing of the joint structure which set the end wall of a joint material at the deepest position of a recess. 接合材の端壁を凹部の接線位置に設定した接合構造の断面図である。It is sectional drawing of the joint structure which set the end wall of a joint material at the tangential position of a recess. 平坦な界面で接合した接合構造の断面および亀裂が発生した接合構造の断面図である。It is sectional drawing of the joint structure which joined at the flat interface, and the sectional view of the joint structure where a crack occurred. 「うねり形状」となる界面で接合した接合構造の断面および亀裂が発生した接合構造の断面図である。It is sectional drawing of the joint structure joined at the interface which becomes "waviness shape", and the sectional view of the joint structure where a crack occurred. 2種の接合構造の亀裂距離に対する応力拡大係数を示すチャートである。It is a chart which shows the stress intensity factor with respect to the crack distance of two kinds of joint structures. 基材の凹部に対する接合材の端壁の複数の設定位置を示す図である。It is a figure which shows the plurality of setting positions of the end wall of a joint material with respect to the recess of a base material. 凹部に対する端壁の設定位置毎の応力拡大変数をグラフ化した図である。It is the figure which graphed the stress intensity factor for each set position of the end wall with respect to a recess. 接合構造の複数の形態に対する応力集中を説明する断面図である。It is sectional drawing explaining the stress concentration with respect to a plurality of forms of a joint structure. 別実施形態(a)の接合構造の断面図である。It is sectional drawing of the joint structure of another embodiment (a).

以下、本発明の実施形態を図面に基づいて説明する。
〔電子部品〕
図1に示すように、絶縁基板1の表面に導体の回路パターンで成る基材2と、導体の端子パターンで成る端子材3とが形成されると共に、基材2の表面の接合面2Sに対し接合材4を介しダイボンディングの技術により半導体5を支持し、この半導体5と端子材3とをボンディングワイヤ6で接合することにより電子部品が構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Electronic components]
As shown in FIG. 1, a base material 2 having a circuit pattern of a conductor and a terminal material 3 having a terminal pattern of a conductor are formed on the surface of the insulating substrate 1, and the bonding surface 2S on the surface of the base material 2 is formed. On the other hand, the semiconductor 5 is supported by the die bonding technique via the bonding material 4, and the semiconductor 5 and the terminal material 3 are bonded by the bonding wire 6 to form an electronic component.

同図には電子部品の一例としてIGBTやパワートランジスタ等のパワーモジュールを示しており、ダイボンディングが行われる部位では、基材2の表面の接合面2Sに対して接合材4を介して半導体5を接合した接合構造が形成される。また、絶縁基板1をヒートシンク7に備えることで放熱を実現している。 The figure shows a power module such as an IGBT or a power transistor as an example of an electronic component. At the site where die bonding is performed, the semiconductor 5 is interposed at the bonding surface 2S on the surface of the base material 2 via the bonding material 4. A joint structure is formed by joining the two. Further, heat dissipation is realized by providing the insulating substrate 1 in the heat sink 7.

〔接合構造〕
この実施形態の接合構造では、接合材4としてAgペーストを用いており、基材2と接合材4との間に亀裂や剥離を抑制するように構成されている。尚、接合材4としてのAgペーストの膜が半導体5の底面5a(図2で下側の面)に形成された状態で基材2に貼り付ける形態で接合される。この後に、熱処理によりAgペーストの硬化が図れる。
[Joining structure]
In the joining structure of this embodiment, Ag paste is used as the joining material 4, and it is configured to suppress cracks and peeling between the base material 2 and the joining material 4. It should be noted that the Ag paste film as the bonding material 4 is bonded to the base material 2 in a state of being formed on the bottom surface 5a (lower surface in FIG. 2) of the semiconductor 5. After this, the Ag paste can be cured by heat treatment.

図2に示すように、接合面2Sの表面にミクロンオーダとなる溝幅の多数の溝を平行姿勢で形成することにより、接合面2Sに対して凹部2Sa(谷部)と凸部2Sb(山部)とが交互に滑らかに連続する「うねり形状」が形成されている。このような接合面2Sにおいて接合材4の外縁となる端壁4Wの位置を、同図に示すように凹部2Saの最深位置Pxに設定することにより、接合材4と基材2との間に亀裂や剥離が抑制される。 As shown in FIG. 2, by forming a large number of grooves having a groove width on the surface of the joint surface 2S in a parallel posture, the concave portion 2Sa (valley) and the convex portion 2Sb (mountain) are formed with respect to the joint surface 2S. A "waviness shape" is formed in which the parts) are alternately and smoothly continuous. By setting the position of the end wall 4W, which is the outer edge of the joining material 4 on the joining surface 2S, to the deepest position Px of the recess 2Sa as shown in the figure, the space between the joining material 4 and the base material 2 is set. Cracks and peeling are suppressed.

亀裂や剥離を一層良好に抑制するためには、端壁4Wの位置を、最深位置Pxより内側(接合材4が存在する側)で、端壁4Wが凹部2Saと凸部2Sbとの境界における接線が図3のように垂直となる接線位置Pyに設定することが理想である。このように端壁4Wを接線位置Pyに設定することにより、後述するように応力拡大係数が最小となる。 In order to suppress cracks and peeling more satisfactorily, the position of the end wall 4W is inside the deepest position Px (the side where the joining material 4 is present), and the end wall 4W is at the boundary between the concave portion 2Sa and the convex portion 2Sb. Ideally, it should be set at the tangent position Py where the tangent line is vertical as shown in FIG. By setting the end wall 4W at the tangential position Py in this way, the stress intensity factor becomes the minimum as described later.

尚、この実施形態の電子部品は姿勢を考慮せずに使用されるものであるが、この実施形態では、図2、図3に示すように半導体5のうち基材2に対向する面を底面5aと称しており、これらの図に従って上下方向と、水平方向とを説明し、接合材4の端壁4Wが形成される方向を垂直方向と称している。 The electronic components of this embodiment are used without considering the posture, but in this embodiment, as shown in FIGS. 2 and 3, the surface of the semiconductor 5 facing the base material 2 is the bottom surface. It is referred to as 5a, and the vertical direction and the horizontal direction are described according to these figures, and the direction in which the end wall 4W of the joining material 4 is formed is referred to as the vertical direction.

また、「うねり形状」を作り出すために、基材2の表面を超短パルスレーザ加工(フェムト秒レーザ加工や、ピコ秒レーザ加工)が行われる。更に、接合材4としては、ハンダ材、ナノ粒子接合材、ロウ付け材、接着剤を使用できる。 Further, in order to create a "waviness shape", the surface of the base material 2 is subjected to ultrashort pulse laser processing (femtosecond laser processing or picosecond laser processing). Further, as the bonding material 4, a solder material, a nanoparticle bonding material, a brazing material, and an adhesive can be used.

この実施形態では、「うねり形状」の一例として、図3に示すように隣合う凸部2Sbの間隔Tを100μm程度に設定し、凸部2Sbの頂部から凹部2Saの底部までの距離Hを50μm程度に設定している。特に、接合面2Sは、凹部2Saが上向きに開放する半円状であり、凸部2Sbが上向きに凸で凹部2Saと等しい曲率半径の半円状となる。これらを滑らかに連ねることで「うねり形状」が作り出される。尚、この「うねり形状」では、隣合う凹部2Sa同士も間隔Tで配置される。 In this embodiment, as an example of the “waviness shape”, as shown in FIG. 3, the distance T between adjacent convex portions 2Sb is set to about 100 μm, and the distance H from the top of the convex portion 2Sb to the bottom of the concave portion 2Sa is 50 μm. It is set to a degree. In particular, the joint surface 2S has a semicircular shape in which the concave portion 2Sa opens upward, and the convex portion 2Sb has a semicircular shape in which the convex portion 2Sb is convex upward and has a radius of curvature equal to that of the concave portion 2Sa. By smoothly connecting these, a "swell shape" is created. In this "waviness shape", adjacent recesses 2Sa are also arranged at intervals T.

このような接合面2Sの断面形状から、間隔Tの中央位置(T/2の位置)が最深位置Pxとなり、この最深位置Pxから接合材4が存在する方向で間隔Tの1/4の位置が接線位置Pyとなる。尚、この接線位置Pyでは、上下方向の中間位置(距離Hの半分(H/2))に接合材4の端壁4Wの下端部分が接触する。 From the cross-sectional shape of the joint surface 2S, the central position (position of T / 2) of the interval T is the deepest position Px, and the position of 1/4 of the interval T in the direction in which the joint material 4 exists from this deepest position Px. Is the tangent position Py. At this tangential position Py, the lower end portion of the end wall 4W of the joining material 4 comes into contact with the intermediate position in the vertical direction (half the distance H (H / 2)).

凹部2Saと凸部2Sbとは半円状に限るものではなく、これらが、例えば、放物線等の2次曲線や楕円の一部等の形状であっても良い。更に、この接合面2Sとして正弦波形状を除外するものではない。尚、本実施形態の凹部2Saや凸部2Sbと異なる「うねり形状」となる接合面2Sでは、接線位置Pyの位置を特定できないこともある。 The concave portion 2Sa and the convex portion 2Sb are not limited to a semicircular shape, and may have a shape such as a quadratic curve such as a parabola or a part of an ellipse. Further, the sinusoidal shape is not excluded as the joint surface 2S. It should be noted that the position of the tangent position Py may not be specified on the joint surface 2S having a "waviness shape" different from that of the concave portion 2Sa and the convex portion 2Sb of the present embodiment.

また、基材2に半導体5を固定する場合には、半導体5の底面5aに接合材4の膜を形成しておき、ダイボンディング装置により基材2の凹部2Saと、接合材4の端壁4Wとの位置関係をカメラで拡大して撮影し、この撮影画像から各々の位置関係を装置が確認する状態で半導体5を接合面2Sにセットする作動が行われる。ダイボンディング装置は、高精度での位置決めが可能であるため、前述したように接合材4の端壁4Wを接線位置Pyにセットする作動も容易に行われる。 When the semiconductor 5 is fixed to the base material 2, a film of the bonding material 4 is formed on the bottom surface 5a of the semiconductor 5, and the recess 2Sa of the base material 2 and the end wall of the bonding material 4 are used by a die bonding device. An operation is performed in which the positional relationship with 4W is magnified by a camera and photographed, and the semiconductor 5 is set on the joint surface 2S in a state where the apparatus confirms each positional relationship from the photographed image. Since the die bonding apparatus can be positioned with high accuracy, the operation of setting the end wall 4W of the joining material 4 at the tangential position Py is easily performed as described above.

〔亀裂や剥離が抑制される理由〕
図4には、基材2の平坦な接合面2Sに接合材4を介して半導体5を接合した接合構造を左部に示し、応力が剥離方向(図4では上下方向)に応力が作用し、亀裂距離Dだけ亀裂が進展した状態を右部に示している。また、図5には滑らかに連なる凹部2Saと凸部2Sbとが連続的に形成された「うねり形状」の接合面2Sに接合材4を介して半導体5を接合した接合構造を左部に示し、応力が剥離方向に力が作用し、亀裂距離Dだけ亀裂が進展した状態を右部に示している。
[Reason for suppressing cracks and peeling]
FIG. 4 shows a bonding structure in which the semiconductor 5 is bonded to the flat bonding surface 2S of the base material 2 via the bonding material 4 on the left side, and stress acts in the peeling direction (vertical direction in FIG. 4). The state in which the crack has grown by the crack distance D is shown on the right side. Further, FIG. 5 shows a joining structure in which the semiconductor 5 is joined via the joining material 4 to the joining surface 2S having a “waviness shape” in which the concave portion 2Sa and the convex portion 2Sb which are smoothly connected are continuously formed. The right part shows a state in which the stress acts in the peeling direction and the crack grows by the crack distance D.

この2種の接合構造において、応力によって接合材4と接合面2Sとの界面に亀裂が発生した際の応力拡大係数をCAE解析により算出しており、その算出結果を図6のチャートに示している。図6では、亀裂距離Dの進展方向を横軸に取り、亀裂が進展する際の応力拡大係数を縦軸に取っている。 In these two types of joint structures, the stress intensity factor when a crack occurs at the interface between the joint material 4 and the joint surface 2S due to stress is calculated by CAE analysis, and the calculation result is shown in the chart of FIG. There is. In FIG. 6, the growth direction of the crack distance D is taken on the horizontal axis, and the stress intensity factor when the crack grows is taken on the vertical axis.

このチャートにおいて、接合面2Sが平坦である場合、亀裂距離Dが進展(増大)する場合に応力拡大係数は進展と共に緩やかに上昇する傾向の第1グラフFのように変化する。これに対して接合面2Sが「うねり形状」である場合、亀裂距離Dが進展する場合、応力拡大係数は大きく変動する第2グラフUのように変化する。同図には、凹部2Saと凸部2Sbとが連続的に形成される「うねり形状」を破線のパターンCとして示しており、第2グラフUはパターンCに対応して変化する。 In this chart, when the joint surface 2S is flat, the stress intensity factor changes as shown in the first graph F, which tends to gradually increase with the progress when the crack distance D grows (increases). On the other hand, when the joint surface 2S has a “waviness shape”, the stress intensity factor changes greatly as shown in the second graph U when the crack distance D grows. In the figure, the “waviness shape” in which the concave portion 2Sa and the convex portion 2Sb are continuously formed is shown as the pattern C of the broken line, and the second graph U changes corresponding to the pattern C.

同図から理解できるように、第2グラフUでは、横軸方向で「うねり形状」のうち凹部2Saに対応する位置において、応力拡大係数が大きく低下する。この位置の応力拡大係数は、第1グラフFで示される応力拡大係数より小さいため、接合面2Sの凹部2Saの位置に接合材4の端壁4Wを存在させることで亀裂を抑制できるものと推定できる。 As can be understood from the figure, in the second graph U, the stress intensity factor greatly decreases at the position corresponding to the recess 2Sa in the “waviness shape” in the horizontal axis direction. Since the stress intensity factor at this position is smaller than the stress intensity factor shown in the first graph F, it is presumed that cracks can be suppressed by allowing the end wall 4W of the joining material 4 to exist at the position of the recess 2Sa of the joining surface 2S. can.

このような推定から図7に示すように基材2の接合面2Sに凹部2Saを形成し、これに連なる両側に凸部2Sbの一部を形成した「うねり形状」に設定し、凹部2Saに対して接合材4が接合する際の端壁4Wの位置を複数箇所設定し、各々の設定位置の応力拡大係数をCAE解析により算出した。 From such an estimation, as shown in FIG. 7, a concave portion 2Sa is formed on the joint surface 2S of the base material 2, and a portion of the convex portion 2Sb is formed on both sides connected to the concave portion 2Sa. On the other hand, the positions of the end wall 4W when the joining material 4 was joined were set at a plurality of places, and the stress intensity factor at each set position was calculated by CAE analysis.

つまり、このCAE解析では、水平方向で端壁4Wの位置を図7において0~28に示す位置の各々に設定した状態の応力拡大係数を算出しており、この算出結果を図8において第3グラフGとして示している。図8では横軸に端壁4Wの位置を取り、縦軸に応力拡大係数を取っている。 That is, in this CAE analysis, the stress intensity factor in the state where the position of the end wall 4W is set at each of the positions shown in FIGS. 0 to 28 in the horizontal direction is calculated, and the calculation result is obtained in FIG. It is shown as graph G. In FIG. 8, the position of the end wall 4W is taken on the horizontal axis, and the stress intensity factor is taken on the vertical axis.

図8の第3グラフGにおいて「14」で示す位置(図7でも同様に「14」の位置)が凹部2Saの幅方向の中央の最深位置Pxであり、この最深位置Pxから接合材4の存在方向(図7で左側)で「21」で示す位置(図7でも同様に「21」の位置)に端壁4Wを配置することで応力拡大係数が低い値を維持する。 The position indicated by “14” in the third graph G of FIG. 8 (the position of “14” in FIG. 7 as well) is the central deepest position Px in the width direction of the recess 2Sa, and the deepest position Px is the position of the bonding material 4. By arranging the end wall 4W at the position indicated by "21" in the existing direction (left side in FIG. 7) (similarly at the position of "21" in FIG. 7), the stress intensity factor is maintained at a low value.

この「21」の位置が接線位置Pyであり、この接線位置Pyを超えて接合材4の存在方向(図7で左側)に端壁4Wを配置した場合には、応力拡大係数の増加傾向が増大することが理解できる。また、この実施形態では「21」と「28」との中間の中間位置Pmと、「7」と「0」との中間の中間位置Pnとを開口縁としている。 The position of this "21" is the tangent position Py, and when the end wall 4W is arranged in the existing direction of the joining material 4 (left side in FIG. 7) beyond this tangent position Py, the stress intensity factor tends to increase. It can be understood that it will increase. Further, in this embodiment, the intermediate position Pm between "21" and "28" and the intermediate position Pn between "7" and "0" are used as an opening edge.

特に、「21」と「28」との中間の中間位置Pmとなる開口縁は、図8に示すように第3グラフGにおいて「14」で示す応力拡大係数が等しい値となる位置となる。「7」と「0」との中間の中間位置Pnとなる開口縁は、図7に示すように上下方向で「21」と「28」との中間の中間位置Pmと同じ高さの位置となる。 In particular, the opening edge at the intermediate position Pm between "21" and "28" is a position where the stress intensity factor shown by "14" in the third graph G becomes the same value as shown in FIG. The opening edge, which is the intermediate position Pn between "7" and "0", is located at the same height as the intermediate position Pm between "21" and "28" in the vertical direction as shown in FIG. Become.

このような理由から、接合材4の接合範囲の外縁となる端壁4Wが、凹部2Saの最深位置Pxから接合材4が存在する方向で凹部2Saの開口縁(中間位置Pm)より内側に配置することにより、応力拡大係数の増大を抑制し、亀裂や剥離を良好に抑制するのである。 For this reason, the end wall 4W, which is the outer edge of the joining range of the joining material 4, is arranged inside the opening edge (intermediate position Pm) of the recess 2Sa in the direction in which the joining material 4 exists from the deepest position Px of the recess 2Sa. By doing so, the increase in the stress intensity factor is suppressed, and cracks and peeling are satisfactorily suppressed.

尚、凹部2Saの幅方向の中央の最深位置Pxは、間隔Tを正確に2分割した中央の位置に限定されるものでなく、僅かな誤差の範囲を含むものである。これと同様に凹部2Saの開口縁の位置は、前述した一方の中間位置Pmと他方の中間位置Pnとに限定されるものではない。 The deepest position Px at the center of the recess 2Sa in the width direction is not limited to the center position where the interval T is accurately divided into two, and includes a slight error range. Similarly, the position of the opening edge of the recess 2Sa is not limited to the above-mentioned one intermediate position Pm and the other intermediate position Pn.

〔補足説明〕
このように基材2と接合材4との界面において亀裂が発生する際の応力の作用について考えるために、図9の左端に示すように第1物質Aと、第2物質Bとを平坦な界面で接合し、第1物質Aと第2物質Bとに外壁を界面に直交する姿勢で形成し、界面が露出する位置を交点Qと想定する。また、この想定において交点Qを中心として界面から第1物質Aの外壁面までの角度を第1接合角θaとし、交点Qを中心として界面から第2物質Bの外壁面までの角度を第2接合角θbとする。
〔supplementary explanation〕
In order to consider the action of stress when cracks occur at the interface between the base material 2 and the bonding material 4, the first substance A and the second substance B are flat as shown at the left end of FIG. It is assumed that the outer wall is formed at the interface between the first substance A and the second substance B in a posture orthogonal to the interface, and the position where the interface is exposed is the intersection Q. Further, in this assumption, the angle from the interface to the outer wall surface of the first substance A around the intersection Q is set as the first junction angle θa, and the angle from the interface to the outer wall surface of the second substance B centered on the intersection Q is the second. The joint angle is θb.

このように第1接合角θaと第2接合角θbとが等しい角度である場合に交点Qに対して非常に大きい応力集中が発生する。この応力集中の応力場は、特異応力場と呼ばれ、弾性解析を行うと、応力と歪とが無限大となり交点Qが破壊の起点になる。 As described above, when the first joint angle θa and the second joint angle θb are equal to each other, a very large stress concentration occurs with respect to the intersection Q. The stress field of this stress concentration is called a singular stress field, and when elastic analysis is performed, the stress and strain become infinite and the intersection Q becomes the starting point of fracture.

これに対して、図9の中央と右端とに示すように界面の姿勢の設定や、外壁の姿勢の設定により、第1接合角θaと第2接合角θbとを異ならせたものでは、応力特異場が消失し、応力集中が緩和される結果、交点Qは破壊の起点とはならない。 On the other hand, as shown in the center and the right end of FIG. 9, when the first joint angle θa and the second joint angle θb are different due to the setting of the posture of the interface and the setting of the posture of the outer wall, the stress is stressed. As a result of the disappearance of the singular field and the relaxation of stress concentration, the intersection Q does not become the starting point of fracture.

この補足説明から、凹部2Saを形成することにより接合面2Sと接合材4との界面を湾曲させることになる。その結果、例えば、図2に示すように接合材4の端壁4Wが凹部2Saの最深位置Pxに設定された場合でも、接合材4の端壁4Wが凹部2Saに接する位置(この補足説明での交点Qに対応する位置)に対する応力集中を緩和できる。 From this supplementary explanation, the interface between the joint surface 2S and the joint material 4 is curved by forming the concave portion 2Sa. As a result, for example, even when the end wall 4W of the joining material 4 is set at the deepest position Px of the recess 2Sa as shown in FIG. 2, the position where the end wall 4W of the joining material 4 is in contact with the recess 2Sa (in this supplementary explanation). The stress concentration can be relaxed at the position corresponding to the intersection Q of.

更に、凹部2Saにおいて最深位置Px(図2を参照)から接線位置Py(図3を参照)に亘る領域の何れかの位置に接合材4の端壁4Wを設定した場合には、補足説明の第1接合角θaと第2接合角θbとを異ならせることになるため、接合材4の端壁4Wが凹部2Saに接する位置(この補足説明での交点Qに対応する位置)に対する応力集中を緩和できる。 Further, when the end wall 4W of the joining material 4 is set at any position in the region extending from the deepest position Px (see FIG. 2) to the tangential position Py (see FIG. 3) in the recess 2Sa, the supplementary explanation will be given. Since the first joint angle θa and the second joint angle θb are different, stress concentration is applied to the position where the end wall 4W of the joint material 4 is in contact with the recess 2Sa (the position corresponding to the intersection Q in this supplementary explanation). Can be relaxed.

〔実施形態の作用効果〕
このように接合面2Sの表面形状を「うねり形状」とすると共に、接合材4の端壁4Wの位置を凹部2Sa(谷部)に設定することにより、例えば、基材2と接合材4との熱膨張率の差が大きいものであり、温度変化が大きく変化する場合でも、亀裂や剥離を抑制して良好な接合状態を維持する。
[Action and effect of the embodiment]
By setting the surface shape of the joint surface 2S to the "waviness shape" and setting the position of the end wall 4W of the joint material 4 in the recess 2Sa (valley) in this way, for example, the base material 2 and the joint material 4 can be combined with each other. The difference in the coefficient of thermal expansion is large, and even when the temperature change changes significantly, cracks and peeling are suppressed to maintain a good bonding state.

つまり、基材2の接合面2Sを凹部2Saと凸部2Sbとを有する「うねり形状」とすることにより、基材2と接合材4との接触面積が拡大して接合密着性を向上すると同時に、剥離方向に対してアンカー効果を持つため、亀裂や剥離を抑制し、界面の破壊も抑制できることになる。 That is, by forming the joint surface 2S of the base material 2 into a "waviness shape" having the concave portion 2Sa and the convex portion 2Sb, the contact area between the base material 2 and the bonding material 4 is expanded and the bonding adhesion is improved at the same time. Since it has an anchor effect in the peeling direction, cracks and peeling can be suppressed, and interface destruction can also be suppressed.

また、凹部2Saに対する接合材4の端壁4Wの位置は、接線位置Pyに設定されることが理想であるが、端壁4Wを、最深位置Pxを基準に接合材4が存在する方向に変位するように位置関係を設定することで良好な接合状態を維持できるため、凹部2Saの最深位置Pxを基準にして最適な位置に接合材4の端壁4Wの位置に設定しなくて済み、接合のための位置合わせを容易にする。 Ideally, the position of the end wall 4W of the joining material 4 with respect to the recess 2Sa is set to the tangential position Py, but the end wall 4W is displaced in the direction in which the joining material 4 exists with reference to the deepest position Px. Since a good joining state can be maintained by setting the positional relationship so as to be performed, it is not necessary to set the end wall 4W of the joining material 4 at the optimum position based on the deepest position Px of the recess 2Sa, and the joining is performed. Facilitates alignment for.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another Embodiment]
The present invention may be configured as follows in addition to the above-described embodiments (those having the same functions as those of the embodiments are designated by the same numbers and reference numerals as those of the embodiments).

(a)図10に示すように、接合面2Sの凹部2Saと凸部2Sbとの基本的な形状を実施形態で説明したものと同様に設定すると共に、これらの表面に小径の凹状部2Sdとして多数の溝を形成する。これにより、接合面2Sに対する接合材4の一部を凹状部2Sdに入り込ませて接着性能を向上させ、亀裂や剥離の抑制が一層良好に行われる。 (A) As shown in FIG. 10, the basic shapes of the concave portion 2Sa and the convex portion 2Sb of the joint surface 2S are set in the same manner as those described in the embodiment, and the concave portions 2Sd having a small diameter are formed on these surfaces. Form a large number of grooves. As a result, a part of the bonding material 4 with respect to the bonding surface 2S is made to penetrate into the concave portion 2Sd to improve the adhesive performance, and cracks and peeling are further suppressed.

この別実施形態(a)の変形例として、凹状部2Sdに代えて、接合面2Sの凹部2Saと凸部2Sbとの表面に多数の独立したディンプルを形成することや、溝として形成される多数の凹状部2Sdと、多数のディンプルとを組み合わせても良い。 As a modification of this other embodiment (a), instead of the concave portion 2Sd, a large number of independent dimples are formed on the surface of the concave portion 2Sa and the convex portion 2Sb of the joint surface 2S, or a large number of grooves are formed. The concave portion 2Sd of the above may be combined with a large number of dimples.

(b)実施形態ではダイボンディングの接合構造を説明しているが、例えば、電子部品の一部を基材としての基板やヒートシンク等に接着するための接合構造に適用しても良い。 (B) Although the die bonding bonding structure is described in the embodiment, for example, it may be applied to a bonding structure for adhering a part of an electronic component to a substrate or a heat sink as a base material.

(c)実施形態では、接合材4の一方の端壁4Wについて亀裂や剥離を抑制することを説明したが、接合材4は、例えば、図2、図3において横方向の両端に端壁4Wが形成されるものであるため、両端位置の端壁4Wが共に、亀裂や剥離が抑制される位置に設定されるように、半導体5の横方向の寸法を設定しても良い。 (C) In the embodiment, it has been described that cracks and peeling are suppressed for one end wall 4W of the joining material 4, but the joining material 4 has, for example, end walls 4W at both ends in the lateral direction in FIGS. 2 and 3. Therefore, the lateral dimensions of the semiconductor 5 may be set so that the end walls 4W at both end positions are both set at positions where cracks and peeling are suppressed.

この別実施形態(c)では、半導体5の底面5aの横方向での寸法と、同じ方向での接合材4の寸法とが等しいと想定したものであり、半導体5の底面5aの横方向での寸法を、図2、図3に示す間隔Tの整数倍に設定することにより、例えば、一方の端壁4Wを最深位置Pxに設定するだけで、他方の端壁4Wの位置も最深位置Pxに設定できる。 In this alternative embodiment (c), it is assumed that the lateral dimension of the bottom surface 5a of the semiconductor 5 and the dimension of the bonding material 4 in the same direction are equal to each other, and the lateral dimension of the bottom surface 5a of the semiconductor 5 is assumed. By setting the dimension of 1 to an integral multiple of the interval T shown in FIGS. 2 and 3, for example, only one end wall 4W is set to the deepest position Px, and the position of the other end wall 4W is also set to the deepest position Px. Can be set to.

本発明は、電子部品の接合構造に利用することができる。 The present invention can be used for a joining structure of electronic components.

2 基材
2S 接合面
2Sa 凹部
2Sb 凸部
4 接合材
4W 端壁
5 半導体
Px 最深位置
2 Base material 2S Joint surface 2Sa Concave 2Sb Convex 4 Joint material 4W End wall 5 Semiconductor Px Deepest position

Claims (3)

基材の接合面と半導体との間に接合材を挟み込んで接合が行われると共に、前記接合面が滑らかに連なる凹部と凸部とを連続的に形成した表面形状であり、
前記凹部の最深位置から前記凸部の頂部に亘る領域の曲線のうち、前記接合面が形成される平面に直交する姿勢となる接線の接点と前記頂部との間であって、前記最深位置の応力拡大係数と等しい値となる位置に開口縁を有しており、
接合状態において前記接合材の接合範囲の外縁となる端壁の位置が、前記凹部の最深位置から前記接合材が存在する方向で、前記開口縁と前記最深位置との間の領域に設定されている電子部品の接合構造。
It is a surface shape in which a bonding material is sandwiched between a bonding surface of a base material and a semiconductor to perform bonding, and concave portions and convex portions in which the bonding surfaces are smoothly connected are continuously formed.
Of the curve of the region extending from the deepest position of the concave portion to the top of the convex portion, between the contact point of the tangential line having a posture orthogonal to the plane on which the joint surface is formed and the top portion, the deepest position. It has an opening edge at a position equal to the stress intensity factor .
The position of the end wall, which is the outer edge of the joining range of the joining material in the joining state, is set in the region between the opening edge and the deepest position in the direction in which the joining material is present from the deepest position of the recess. Joining structure of electronic components.
前記曲線に接する接線の姿勢が、前記接合面が形成される平面に直交する姿勢となる位置に前記端壁を配置している請求項1に記載の電子部品の接合構造。 The joint structure for electronic components according to claim 1, wherein the end wall is arranged at a position where the posture of the tangent line in contact with the curve is orthogonal to the plane on which the joint surface is formed. 基材の接合面と半導体との間に接合材を挟み込んで接合が行われると共に、前記接合面が滑らかに連なる凹部と凸部とを連続的に形成した表面形状であり、
接合状態において前記接合材の接合範囲の外縁となる端壁の位置が、前記凹部の最深位置から前記接合材が存在する方向で、前記凹部における前記最深位置の応力拡大係数と等しい値となる位置である開口縁と前記最深位置との間の領域に設定され、
前記接合面の前記凹部と前記凸部とを結ぶ曲線を想定した場合に、この曲線に接する接線の姿勢が、前記接合面が形成される平面に直交する姿勢となる位置に前記端壁を配置している電子部品の接合構造。
It is a surface shape in which a bonding material is sandwiched between a bonding surface of a base material and a semiconductor to perform bonding, and concave portions and convex portions in which the bonding surfaces are smoothly connected are continuously formed.
A position where the position of the end wall, which is the outer edge of the joining range of the joining material in the joining state, is equal to the stress intensity factor at the deepest position in the recess in the direction in which the joining material is present from the deepest position of the recess. Is set in the area between the opening edge and the deepest position, which is
Assuming a curve connecting the concave portion and the convex portion of the joint surface, the end wall is arranged at a position where the posture of the tangent line in contact with the curve is orthogonal to the plane on which the joint surface is formed. Joining structure of electronic parts.
JP2017111674A 2017-06-06 2017-06-06 Joint structure of electronic components Active JP7081088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111674A JP7081088B2 (en) 2017-06-06 2017-06-06 Joint structure of electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111674A JP7081088B2 (en) 2017-06-06 2017-06-06 Joint structure of electronic components

Publications (2)

Publication Number Publication Date
JP2018206990A JP2018206990A (en) 2018-12-27
JP7081088B2 true JP7081088B2 (en) 2022-06-07

Family

ID=64957509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111674A Active JP7081088B2 (en) 2017-06-06 2017-06-06 Joint structure of electronic components

Country Status (1)

Country Link
JP (1) JP7081088B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165990A (en) 2009-01-19 2010-07-29 Mitsubishi Electric Corp Semiconductor device, and method for manufacturing the same
JP3170627U (en) 2011-06-02 2011-09-22 坤遠科技股▲ふん▼有限公司 Semiconductor package structure
JP2013135153A (en) 2011-12-27 2013-07-08 Aisin Seiki Co Ltd Semiconductor device
JP2015002272A (en) 2013-06-15 2015-01-05 京セラ株式会社 Heat dissipation member, electronic device, and image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010165990A (en) 2009-01-19 2010-07-29 Mitsubishi Electric Corp Semiconductor device, and method for manufacturing the same
JP3170627U (en) 2011-06-02 2011-09-22 坤遠科技股▲ふん▼有限公司 Semiconductor package structure
JP2013135153A (en) 2011-12-27 2013-07-08 Aisin Seiki Co Ltd Semiconductor device
JP2015002272A (en) 2013-06-15 2015-01-05 京セラ株式会社 Heat dissipation member, electronic device, and image forming device

Also Published As

Publication number Publication date
JP2018206990A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US11488886B2 (en) Semiconductor device
JP5729468B2 (en) Semiconductor device
JP6433590B2 (en) Power semiconductor device manufacturing method and power semiconductor device
JP2015128194A (en) Semiconductor device
US20180331014A1 (en) Heat dissipation assembly
US10522482B2 (en) Semiconductor device manufacturing method comprising bonding an electrode terminal to a conductive pattern on an insulating substrate using ultrasonic bonding
JP4495916B2 (en) Manufacturing method of semiconductor chip
WO2018173921A1 (en) Ceramic metal circuit board and semiconductor device using same
JP2009009957A (en) Semiconductor device
JP5916651B2 (en) Method for manufacturing power semiconductor device
JP7081088B2 (en) Joint structure of electronic components
JP6395530B2 (en) Semiconductor device
JP2019016686A (en) Semiconductor module
JP6805743B2 (en) Insulated substrate
JP5256177B2 (en) Semiconductor package
JP7331636B2 (en) semiconductor package
JP2020064925A (en) Semiconductor device and manufacturing method of semiconductor device
JP5674537B2 (en) Electrical component module
JP7292977B2 (en) Wiring substrates, electronic devices and electronic modules
JP5256159B2 (en) Semiconductor package
JP5522867B2 (en) Semiconductor package
CN113053833A (en) Semiconductor device and manufacturing method thereof
JP2010251457A (en) Semiconductor device and method of manufacturing the same
JP2005203625A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7081088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150