JP7079863B2 - New benzoxazine compound - Google Patents

New benzoxazine compound Download PDF

Info

Publication number
JP7079863B2
JP7079863B2 JP2021002210A JP2021002210A JP7079863B2 JP 7079863 B2 JP7079863 B2 JP 7079863B2 JP 2021002210 A JP2021002210 A JP 2021002210A JP 2021002210 A JP2021002210 A JP 2021002210A JP 7079863 B2 JP7079863 B2 JP 7079863B2
Authority
JP
Japan
Prior art keywords
compound
reaction
benzoxazine
solvent
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021002210A
Other languages
Japanese (ja)
Other versions
JP2021059597A (en
Inventor
一仁 芦田
浩典 入野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Publication of JP2021059597A publication Critical patent/JP2021059597A/en
Application granted granted Critical
Publication of JP7079863B2 publication Critical patent/JP7079863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Description

本発明は、新規なベンゾオキサジン化合物に関する。詳しくは、中央にビス(オキシフェニル)骨格を有し、その両末端にm-フェニレン基を介して無置換のベンゾオキサジン環が結合する化合物であるベンゾオキサジン化合物に関する。 The present invention relates to novel benzoxazine compounds. More specifically, the present invention relates to a benzoxazine compound which has a bis (oxyphenyl) skeleton in the center and has an unsubstituted benzoxazine ring bonded to both ends thereof via an m-phenylene group.

ベンゾオキサジン化合物は、加熱することにより揮発性の副生物を生ずることなく、ベンゾオキサジン環が開環重合して硬化することから、耐熱性や、難燃性に優れた熱硬化性樹脂原料として知られている。
従来、このようなベンゾオキサジン化合物としては、いくつかの化合物が知られており、特に耐熱性、難燃性に優れた化合物として、例えば、ジフェニルメタン-4,4’-ジイル基の両端にベンゾオキサジン環を有するベンゾオキサジン化合物(特許文献1)、ジ(フェノキシフェニル)スルホンの両端にヒドロキシアルキル基により置換されているベンゾオキサジン環を有する化合物(特許文献2)、ジ(フェノキシフェニル)スルホンの両端にアルキル基等により置換されているベンゾオキサジン環を有する化合物(特許文献3)など、中心骨格に芳香族環を有するベンゾオキサジン化合物もいくつか知られている。
しかしながら、これらのベンゾオキサジン化合物から得られる樹脂は、耐熱性等の物性が未だ十分でなく、ベンゾオキサジン化合物のさらなる改善が求められている。
The benzoxazine compound is known as a thermosetting resin raw material having excellent heat resistance and flame retardancy because the benzoxazine ring is ring-opened and cured by ring-opening polymerization without producing volatile by-products by heating. Has been done.
Conventionally, several compounds are known as such benzoxazine compounds, and as a compound having particularly excellent heat resistance and flame retardancy, for example, benzoxazine at both ends of a diphenylmethane-4,4'-diyl group. A benzoxazine compound having a ring (Patent Document 1), a compound having a benzoxazine ring substituted with a hydroxyalkyl group at both ends of a di (phenoxyphenyl) sulfone (Patent Document 2), both ends of a di (phenoxyphenyl) sulfone. Some benzoxazine compounds having an aromatic ring in the central skeleton, such as a compound having a benzoxazine ring substituted with an alkyl group or the like (Patent Document 3), are also known.
However, the resins obtained from these benzoxazine compounds still do not have sufficient physical properties such as heat resistance, and further improvement of the benzoxazine compounds is required.

特開2004-352670号公報Japanese Unexamined Patent Publication No. 2004-352670 特開2011-111415号公報Japanese Unexamined Patent Publication No. 2011-11415 特表2014-503669号公報Japanese Patent Publication No. 2014-503669

本発明は、樹脂原料等とした場合に耐熱性等の性能が改良された、ベンゾオキサジン化合物を提供することを課題とする。 An object of the present invention is to provide a benzoxazine compound having improved performance such as heat resistance when used as a resin raw material.

本発明者は、上述の課題解決のために鋭意検討した結果、ベンゾオキサジン化合物の化学構造を、中央にビス(オキシフェニル)骨格を有し、その両末端にm-フェニレン基を介して無置換のベンゾオキサジン環が結合する化合物とすることにより、耐熱性に優れた樹脂を得ることができることを見出し、本発明を完成した。 As a result of diligent studies to solve the above-mentioned problems, the present inventor has a bis (oxyphenyl) skeleton in the center and does not replace the chemical structure of the benzoxazine compound via an m-phenylene group at both ends thereof. The present invention has been completed by finding that a resin having excellent heat resistance can be obtained by using a compound to which the benzoxazine ring of the above is bonded.

本発明は以下の通りである。
1.一般式(1)で表されるベンゾオキサジン化合物。

Figure 0007079863000001
(式中、Xはスルホニル基を示す。) The present invention is as follows.
1. 1. A benzoxazine compound represented by the general formula (1).
Figure 0007079863000001
(In the formula, X represents a sulfonyl group.)

本発明により、中央にビス(オキシフェニル)骨格を有し、その両末端にm-フェニレン基を介して無置換のベンゾオキサジン環が結合する新規ベンゾオキサジン化合物が提供される。この新規ベンゾオキサジン化合物は、従来知られているベンゾオキサジン化合物に比べて、樹脂原料とした場合、得られる樹脂は耐熱性、難燃性等に優れている。従って各種基材に塗布可能なワニス、ワニスを含浸させたプリプレグ、プリント回路基板、電子部品の封止剤、電気・電子成型部品、自動車部品、積層材、塗料、レジストインク等の樹脂原料として好適に用いることができる。 INDUSTRIAL APPLICABILITY The present invention provides a novel benzoxazine compound having a bis (oxyphenyl) skeleton in the center and having an unsubstituted benzoxazine ring bonded to both ends thereof via an m-phenylene group. Compared with the conventionally known benzoxazine compounds, this novel benzoxazine compound is excellent in heat resistance, flame retardancy, etc. when used as a resin raw material. Therefore, it is suitable as a resin raw material for varnishes that can be applied to various substrates, prepregs impregnated with varnishes, printed circuit boards, encapsulants for electronic parts, electric / electronic molded parts, automobile parts, laminated materials, paints, resist inks, etc. Can be used for.

本発明の、ベンゾオキサジン化合物は下記一般式(1)で表される。

Figure 0007079863000002
(式中、Xはスルホニル基を示す。)
前記一般式(1)において、式中Xがスルホニル基である化合物(以下、「化合物1」という。)の化学構造を下記に示す。
Figure 0007079863000003
The benzoxazine compound of the present invention is represented by the following general formula (1).
Figure 0007079863000002
(In the formula, X represents a sulfonyl group.)
In the general formula (1), the chemical structure of the compound in which X is a sulfonyl group (hereinafter referred to as “compound 1”) is shown below.
Figure 0007079863000003

本発明の前記一般式(1)で表されるベンゾオキサジン化合物の製造方法については、その製造における出発原料、製造方法については特に制限はなく、例えば、特開2006-335671号公報に記載のように、溶媒の存在下に一級アミン化合物とフェノール化合物及びホルマリン類を撹拌混合し、加温下に脱水縮合反応させる等のベンゾオキサジン化合物を製造するための公知の方法を任意に採用することができる。しかしながら、好ましくは、後述する一般式(2)で表されるジアミン化合物を出発原料とし、これと2-ヒドロキシベンズアルデヒドとを脱水縮合反応させてジイミン化合物とする工程(1)、
該ジイミン化合物を水素化反応させて第二級ジアミン化合物とする工程(2)、
該第二級ジアミン化合物をホルムアルデヒドと脱水縮合反応させて環化し、ベンゾオキサジン化合物とする工程(3)
を順次含む製造方法が好ましい。
前記3つの反応工程においては、各々の反応工程は別々に行ってもよく、また、連続して行っても良い。例えば、反応において得られた該工程の目的物を含む反応終了混合物から目的物を単離または精製した後、これを次工程の原料とし次工程の反応を順次行ってもよく、また得られた該工程の目的物を含む反応終了混合物をそのまま次工程の原料として次工程の反応を順次行ってもよい。
The method for producing the benzoxazine compound represented by the general formula (1) of the present invention is not particularly limited with respect to the starting material and the production method in the production thereof, and are described in, for example, JP-A-2006-335671. In addition, a known method for producing a benzoxazine compound, such as stirring and mixing a primary amine compound, a phenol compound and formalin in the presence of a solvent, and causing a dehydration condensation reaction under heating, can be arbitrarily adopted. .. However, preferably, a diamine compound represented by the general formula (2) described later is used as a starting material, and this is subjected to a dehydration condensation reaction with 2-hydroxybenzaldehyde to obtain a diimine compound (1).
Step (2) of hydrogenating the diamine compound to obtain a secondary diamine compound.
Step of dehydrating and condensing the secondary diamine compound with formaldehyde to cyclize it into a benzoxazine compound (3)
A production method containing sequentially is preferable.
In the above three reaction steps, each reaction step may be performed separately or continuously. For example, after the target product is isolated or purified from the reaction-terminated mixture containing the target product of the step obtained in the reaction, the target product may be used as a raw material for the next step and the reaction of the next step may be sequentially carried out. The reaction of the next step may be sequentially carried out by using the reaction-terminated mixture containing the target substance of the step as it is as a raw material of the next step.

以下に、工程(1)~工程(3)の製造方法について、各工程を反応式で例示する。
工程(1)

Figure 0007079863000004
工程(2)
Figure 0007079863000005
工程(3)
Figure 0007079863000006
Hereinafter, each step is exemplified by a reaction formula for the manufacturing methods of steps (1) to (3).
Process (1)
Figure 0007079863000004
Process (2)
Figure 0007079863000005
Process (3)
Figure 0007079863000006

本発明の上記一般式(1)で表されるベンゾオキサジン化合物の好ましい製造方法である、工程(1)~(3)を順次含む製造方法について、さらに詳細に述べる。
<工程(1)について>
工程(1)は、第一級ジアミン化合物を2-ヒドロキシベンズアルデヒドと脱水縮合反応させてジイミン化合物とする工程である。原料第一級ジアミン化合物は、本発明のベンゾオキサジン化合物に対応した、下記一般式(2)で表されるジアミン化合物である。

Figure 0007079863000007
(式中、Xはスルホニル基を示す。)
一般式(2)中の「X」がスルホニル基である化合物(以下、「化合物1A」という。)の化学構造を下記に示す。
Figure 0007079863000008
第一級ジアミンと2-ヒドロキシベンズアルデヒドとの脱水縮合反応において、原料の第一級ジアミンと2-ヒドロキシベンズアルデヒドとの添加モル比(2-ヒドロキシベンズアルデヒド/第一級ジアミン)は、少なくとも化学量論比以上であり、好ましくは、2/1~3/1の範囲である。 The production method including the steps (1) to (3), which is a preferable production method of the benzoxazine compound represented by the above general formula (1) of the present invention, will be described in more detail.
<About process (1)>
The step (1) is a step of dehydrating and condensing the primary diamine compound with 2-hydroxybenzaldehyde to obtain a diimine compound. The raw material primary diamine compound is a diamine compound represented by the following general formula (2) corresponding to the benzoxazine compound of the present invention.
Figure 0007079863000007
(In the formula, X represents a sulfonyl group.)
The chemical structure of the compound in which "X" in the general formula (2) is a sulfonyl group (hereinafter referred to as "Compound 1A") is shown below.
Figure 0007079863000008
In the dehydration condensation reaction between the primary diamine and 2-hydroxybenzaldehyde, the added molar ratio (2-hydroxybenzaldehyde / primary diamine) of the raw material primary diamine and 2-hydroxybenzaldehyde is at least the chemical quantitative ratio. The above is preferably in the range of 2/1 to 3/1.

反応は通常、溶媒の存在下に行われる。溶媒としては、反応を阻害しないものであれば特に制限はないが、酢酸エステル等の脂肪族エステル溶媒、1,4-ジオキサン、テトラヒドロフラン等の脂肪族エーテル溶媒、2-メトキシエタノール等のアルコール溶媒等が好ましく挙げられる。これらの溶媒は単独又は組み合わせて用いることができる。また、溶媒の使用量は反応に支障なければ特に制限はないが、通常、原料第一級ジアミンに対し5~10重量倍の範囲で用いられる。
反応温度は通常、室温~120℃の範囲である。反応圧力は常圧条件下で行ってもよく、また、加圧下でも、あるいは減圧下で行ってもよい。
反応を促進するための触媒は特に必要はない。
反応に際し、その態様については、原料、溶媒等の投入方法、反応方法等に制限はなく適宜選択することができる。例えば、第一級ジアミンと溶媒との混合溶液に、撹拌下、所定の温度で2-ヒドロキシベンズアルデヒド(サリチルアルデヒド)を滴下し、その後、その温度のままで反応を行う方法、あるいは、滴下終了後、さらに温度を上げて副生する水を溶媒により共沸させて系外に留出させながら反応する方法等が挙げられる。
このようにして得られた工程(1)の目的物を含む反応終了混合物は、反応終了後、目的物の結晶や固体が析出や沈殿していれば、そのまま、又は、冷却して反応液をろ過し、得られた結晶を乾燥して、該工程の目的物を得ることができる。また、反応終了時に目的物の結晶や固体が析出、沈殿していなければ、公知の方法に従い、反応終了混合物から目的物を取り出すことができる。例えば、反応終了混合物を多量の貧溶媒中に滴下するか、もしくは、貧溶媒を反応終了混合物に加えることにより目的物を析出、沈殿させることができる。得られた工程(1)の目的物は必要に応じて、再結晶を行い、純度を上げることができる。さらに、得られた工程(1)の目的物の単離物又は目的物を含む反応終了混合物は、工程(2)の原料として用いられる。ここで、工程(2)の原料としては、工程(1)の単離物を使用することが好ましい。
The reaction is usually carried out in the presence of a solvent. The solvent is not particularly limited as long as it does not inhibit the reaction, but is an aliphatic ester solvent such as acetate, an aliphatic ether solvent such as 1,4-dioxane and tetrahydrofuran, an alcohol solvent such as 2-methoxyethanol and the like. Is preferably mentioned. These solvents can be used alone or in combination. The amount of the solvent used is not particularly limited as long as it does not interfere with the reaction, but is usually used in the range of 5 to 10 times by weight with respect to the raw material primary diamine.
The reaction temperature is usually in the range of room temperature to 120 ° C. The reaction pressure may be carried out under normal pressure conditions, under pressure or under reduced pressure.
No particular catalyst is required to accelerate the reaction.
There are no restrictions on the method of adding raw materials, solvents, etc., the reaction method, and the like, and the reaction can be appropriately selected. For example, 2-hydroxybenzaldehyde (salitylaldehyde) is added dropwise to a mixed solution of a primary diamine and a solvent at a predetermined temperature under stirring, and then the reaction is carried out at that temperature, or after the addition is completed. Examples thereof include a method in which the temperature is further raised and water produced as a by-product is azeotropically boiled with a solvent to distill out of the system while reacting.
After the reaction is completed, if the crystals or solids of the target product are precipitated or precipitated, the reaction-terminated mixture containing the target product in the step (1) thus obtained can be used as it is or cooled to prepare the reaction solution. The desired product of the step can be obtained by filtering and drying the obtained crystals. Further, if the crystals or solid of the target product are not precipitated or precipitated at the end of the reaction, the target product can be taken out from the reaction end mixture according to a known method. For example, the target product can be precipitated and precipitated by dropping the reaction-terminated mixture into a large amount of the poor solvent or adding the poor solvent to the reaction-terminated mixture. The desired product of the obtained step (1) can be recrystallized as necessary to increase its purity. Further, the obtained isolated product of the target product of the step (1) or the reaction-terminated mixture containing the target product is used as a raw material of the step (2). Here, it is preferable to use the isolated product of the step (1) as the raw material of the step (2).

工程(1)において、「化合物1A」から得られる化合物(以下、「化合物1B」という。)の化学構造を下記に示す。

Figure 0007079863000009
The chemical structure of the compound obtained from "Compound 1A" (hereinafter referred to as "Compound 1B") in the step (1) is shown below.
Figure 0007079863000009

<工程(2)について>
工程(2)は、工程(1)で得られたジイミン化合物を水素化反応させて第二級ジアミン化合物とする工程である。
ジイミン化合物の水素化反応は、還元剤による還元反応が好ましく、還元剤としては、例えば特開2002-255908号公報等に記載のイミンを水素添加して第二級アミンにする公知のアルミニウムハイドライド系、ホウ素ハイドライド系、ケイ素ハイドライド系等の還元剤を用いることができる。好ましくは、ホウ素ハイドライド系であり、特に好ましくは水素化ホウ素ナトリウム、水素化ホウ素リチウムである。還元剤の使用量は、通常、原料ジイミン1モルに対し、2~4モル倍の量が好ましい。
還元反応は通常、アルコール溶媒の存在下に行われる。好ましいアルコール溶媒としては、メタノール、エタノール、イソプロパノール等の低級アルコールである。これらの溶媒は単独又は組み合わせて用いることができる。さらに、溶媒の使用量は、特に制限はないが、通常、原料ジイミンに対し、5~20重量倍の範囲が好ましい。
反応温度は、好ましくは室温~50℃の範囲である。
反応に際し、その態様については、原料、還元剤、溶媒等の投入方法、反応方法等に制限はなく適宜選択することができる。例えば、原料ジイミン、還元剤及び溶媒を一括して反応容器に入れた後、撹拌する、又は、原料ジイミン及び溶媒を反応容器に入れた後、撹拌下に還元剤を分割して添加する方法等が挙げられる。
<About process (2)>
The step (2) is a step of hydrogenating the diimine compound obtained in the step (1) to obtain a secondary diamine compound.
The hydrogenation reaction of the diimine compound is preferably a reduction reaction with a reducing agent, and the reducing agent is a known aluminum hydride system in which imine described in, for example, JP-A-2002-255908 is hydrogenated to form a secondary amine. , Boron hydride type, silicon hydride type and other reducing agents can be used. A boron hydride system is preferable, and sodium borohydride and lithium borohydride are particularly preferable. The amount of the reducing agent used is usually preferably 2 to 4 mol times as much as 1 mol of the raw material diimine.
The reduction reaction is usually carried out in the presence of an alcohol solvent. Preferred alcohol solvents are lower alcohols such as methanol, ethanol and isopropanol. These solvents can be used alone or in combination. Further, the amount of the solvent used is not particularly limited, but is usually preferably in the range of 5 to 20 times by weight with respect to the raw material diimine.
The reaction temperature is preferably in the range of room temperature to 50 ° C.
There are no restrictions on the mode of the reaction, the method of adding the raw material, the reducing agent, the solvent, etc., the reaction method, and the like, and the reaction can be appropriately selected. For example, a method in which the raw material diimine, the reducing agent and the solvent are put together in a reaction vessel and then stirred, or the raw material diimine and the solvent are put in a reaction vessel and then the reducing agent is divided and added under stirring. Can be mentioned.

このようにして得られた工程(2)の目的物を含む反応終了混合物は、反応終了後、目的物の結晶や固体が析出や沈殿していれば、そのまま、又は、冷却して反応液をろ過し、得られた結晶を乾燥して、該工程の目的物を得ることができる。また、反応終了時に目的物の結晶や固体が析出、沈殿していなければ、公知の方法に従い、反応終了混合物から目的物を取り出すことができる。例えば、反応終了混合物を多量の貧溶媒中に滴下するか、もしくは、貧溶媒を反応終了混合物に加えることにより目的物を析出、沈殿させることができる。
得られた工程(2)の目的物は必要に応じて、再結晶または水洗を行い、純度を上げることができる。得られた工程(2)の目的物の単離物又は目的物を含む反応終了混合物は、工程(3)の原料として用いられる。ここで、工程(3)の原料としては、工程(2)の単離物を使用することが好ましい。
After the reaction is completed, if the crystals or solids of the target product are precipitated or precipitated, the reaction-terminated mixture containing the target product in the step (2) thus obtained can be used as it is or cooled to prepare the reaction solution. The desired product of the step can be obtained by filtering and drying the obtained crystals. Further, if the crystals or solid of the target product are not precipitated or precipitated at the end of the reaction, the target product can be taken out from the reaction end mixture according to a known method. For example, the target substance can be precipitated and precipitated by dropping the reaction-terminated mixture into a large amount of the poor solvent or adding the poor solvent to the reaction-terminated mixture.
The object of the obtained step (2) can be recrystallized or washed with water as needed to increase its purity. The obtained isolated product of the target product in step (2) or the reaction-terminated mixture containing the target product is used as a raw material for step (3). Here, it is preferable to use the isolated product of the step (2) as the raw material of the step (3).

工程(2)において、「化合物1B」から得られる化合物(以下、「化合物1C」という。)の化学構造を下記に示す。

Figure 0007079863000010
The chemical structure of the compound obtained from "Compound 1B" (hereinafter referred to as "Compound 1C") in the step (2) is shown below.
Figure 0007079863000010

<工程(3)について>
工程(3)は、工程(2)で得られた 第二級ジアミン化合物をホルムアルデヒドと脱水縮合反応させて環化し、ベンゾオキサジン化合物とする工程である。
反応に用いられる原料ホルムアルデヒドとしては、ホルマリン(ホルムアルデヒド水溶液)またはパラホルムアルデヒドが挙げられる。原料第二級ジアミンとホルムアルデヒドとの添加モル比(ホルムアルデヒド/第二級ジアミン)は、少なくとも化学量論比以上であり、好ましくは2/1~3/1の範囲である。
反応は通常、溶媒の存在下に行われる。溶媒としては、反応を阻害しないものであれば特に制限はないが、好ましくはエタノール、n-プロパノール、2-メトキシエタノール等のアルコール溶媒、酢酸エチル、酢酸ブチル等の脂肪族エステル溶媒、ジエチルエーテル、ジオキサン等の脂肪族エーテル溶媒が挙げられる。
反応温度は好ましくは40~120℃の範囲である。
反応を促進するための触媒は特に必要はない。
反応に際し、その態様については、原料、溶媒等の投入方法、反応方法等に制限はなく適宜選択することができる。例えば、原料の第二級ジアミンと溶媒との混合溶液に、撹拌下、所定の温度でホルムアルデヒド水溶液を滴下し、その後、その温度のままで反応を行う方法、あるいは、ホルムアルデヒド水溶液滴下終了後、さらに昇温して副生する水を溶媒により共沸させて系外に留出させながら還流条件下において反応を行う方法等が挙げられる。
<About process (3)>
The step (3) is a step of cyclizing the secondary diamine compound obtained in the step (2) by dehydration condensation reaction with formaldehyde to obtain a benzoxazine compound.
Examples of the raw formaldehyde used in the reaction include formalin (aqueous formaldehyde solution) and paraformaldehyde. The added molar ratio (formaldehyde / secondary diamine) of the raw material secondary diamine to formaldehyde is at least the stoichiometric ratio or more, and is preferably in the range of 2/1 to 3/1.
The reaction is usually carried out in the presence of a solvent. The solvent is not particularly limited as long as it does not inhibit the reaction, but is preferably an alcohol solvent such as ethanol, n-propanol and 2-methoxyethanol, an aliphatic ester solvent such as ethyl acetate and butyl acetate, and diethyl ether. Examples thereof include an aliphatic ether solvent such as dioxane.
The reaction temperature is preferably in the range of 40 to 120 ° C.
No particular catalyst is required to accelerate the reaction.
There are no restrictions on the method of adding raw materials, solvents, etc., the reaction method, and the like, and the reaction can be appropriately selected. For example, a method in which an aqueous formaldehyde solution is added dropwise to a mixed solution of a secondary diamine as a raw material and a solvent at a predetermined temperature at a predetermined temperature, and then the reaction is carried out at that temperature, or after the addition of the aqueous formaldehyde solution is completed, further. Examples thereof include a method in which the reaction is carried out under reflux conditions while azeotropically boiling water produced as a by-product by raising the temperature with a solvent and distilling it out of the system.

このようにして得られた工程(3)の本発明のベンゾオキサジン化合物を含む反応終了混合物は、反応終了後、目的物の結晶や固体が析出や沈殿していれば、そのまま、又は、冷却して反応液をろ過し、得られた結晶を乾燥して、該工程の目的物を得ることができる。また、反応終了時に目的物の結晶や固体が析出、沈殿していなければ、公知の方法に従い、反応終了混合物から目的物を取り出すことができる。例えば、反応終了混合物を多量の貧溶媒中に滴下するか、もしくは、貧溶媒を反応終了混合物に加えることにより目的物を析出、沈殿させることができる。
得られた該工程の目的物は必要に応じて、公知の方法に従い、再結晶または水洗を行い高純度品とすることができる。
このように工程(3)において、「化合物1C」から「化合物1」が得られる。
After the reaction is completed, the reaction-terminated mixture containing the benzoxazine compound of the present invention obtained in the step (3) thus obtained is cooled as it is or cooled if crystals or solids of the target substance are precipitated or precipitated. The reaction solution is filtered, and the obtained crystals are dried to obtain the target product of the step. Further, if the crystals or solid of the target product are not precipitated or precipitated at the end of the reaction, the target product can be taken out from the reaction end mixture according to a known method. For example, the target product can be precipitated and precipitated by dropping the reaction-terminated mixture into a large amount of the poor solvent or adding the poor solvent to the reaction-terminated mixture.
The obtained target product of the step can be recrystallized or washed with water according to a known method to obtain a high-purity product, if necessary.
Thus, in step (3), "Compound 1" can be obtained from "Compound 1C".

得られたベンゾオキサジン化合物は、加熱することにより開環重合してベンゾキサジン樹脂を生成する。ベンゾオキサジン化合物を硬化させるにあたっては、基本的に硬化剤を必要としないものの、硬化には通常180℃~200℃程度の高い温度が必要である。硬化温度の低温化のために有機酸類、フェノール類等の公知の硬化促進剤を用いることもできる。 The obtained benzoxazine compound is subjected to ring-opening polymerization by heating to produce a benzoxazine resin. Although a curing agent is basically not required for curing the benzoxazine compound, a high temperature of about 180 ° C. to 200 ° C. is usually required for curing. Known curing accelerators such as organic acids and phenols can also be used to lower the curing temperature.

以下、実施例により、本発明をさらに具体的に説明する。
<実施例1>(ベンゾオキサジン化合物「化合物1」の合成及び該化合物の重合)
工程(1):ジイミン化合物「化合物1B」の合成
第一級ジアミン化合物 「化合物1A」180g、酢酸エチル900gを2リッター四つ口フラスコに仕込み、室温でサリチルアルデヒド112gを滴下した。滴下後、酢酸エチル還流下で21時間撹拌した結果、撹拌中に結晶が析出した。反応終了液を4℃まで冷却後、ろ過して、分離した結晶を乾燥して、純度99.7%(ゲルパーミエーションクロマトグラフィー分析法)のジイミン化合物「化合物1B」の結晶234gを得た。
収率 87.0%(「化合物1A」に対する収率)
融点 164℃(示差走査熱量測定法)
1H‐NMR(400MHz)測定(溶媒:CDCL3):6.93-7.14(m, 7H×2:b,c,e,f,g,i), 7.37-7.41(m, 3H×2:d,h,j), 7.91(d, 2H×2:a), 8.60(s, 1H×2:l), 12.94(s, 1H×2:k).

Figure 0007079863000011
工程(2):第二級ジアミン化合物「化合物1C」の合成
3リッター四つ口フラスコに工程(1)で得られたジイミン化合物「化合物1B」147g、エタノール1487gを仕込み、水素化ホウ素ナトリウム26.2gの粉末を2時間毎に3回に分けて室温で添加した。添加後、室温で22時間撹拌すると僅かに濁りのある黄色透明の溶液となった。この溶液を水1769gとエタノール282gとの混合液に滴下し生成した沈殿をろ別した。この沈殿を2463gの水に分散させ室温で3時間撹拌して、ろ別し、さらに1531gの水に分散し室温で3時間撹拌した後ろ別し、漏斗の上からろ液のpHが7になるまで水を掛けて洗浄した。
得られた粉体を乾燥して、純度93.7%(高速液体クロマトグラフィー分析法)の第二級ジアミン化合物「化合物1C」の粉末128gを得た。
収率 86.1%(ジイミン化合物「化合物1B」に対する収率)
1H‐NMR(400MHz)測定(溶媒:DMSO-d6):4.15(s, 2H×2:a), 6.21(ddd, 1H×2:b), 6.26(dd, 1H×2:c), 6.30(s, 1H×2:d), 6.48(ddd, 1H×2:e), 6.71(ddd, 1H×2:f), 6.78(dd, 1H×2:g), 7.02-7.13(m, 5H×2:h,i,j,k), 7.86(ddd, 2H×2:l).
Figure 0007079863000012
工程(3):ベンゾオキサジン化合物「化合物1」の合成
1リッター四つ口フラスコに工程(2)で合成した第二級ジアミン化合物「化合物1C」36g、酢酸エチル480gを仕込み、35%ホルマリン水溶液12gを40℃で滴下した。滴下終了後40℃で16.5時間撹拌すると、撹拌中に結晶が析出した。反応終了液を室温まで冷却した後、結晶をろ別し乾燥することにより、純度100%(ゲルパーミエーションクロマトグラフィー分析法)のベンゾオキサジン化合物「化合物1」の結晶31.5gを得た。
収率 84.4%(第二級ジアミン化合物「化合物1C」に対する収率)
融点 139℃(示差走査熱量測定法)
1H‐NMR(400MHz)測定(溶媒:CDCl3):4.61(s, 2H×2:a), 5.32(s, 2H×2:b), 6.55(ddd, 1H×2:c), 6.77(dd, 1H×2:d), 6.80(dd, 1H×2:e), 6.87(ddd, 1H×2:f), 6.94(ddd, 1H×2:g), 6.98-7.01(m, 3H×2:h,i), 7.12(ddd, 1H×2:j), 7.26(t, 1H×2:k), 7.84(ddd, 2H×2:l).
Figure 0007079863000013
重合:ベンゾオキサジン化合物「化合物1」の重合
得られたベンゾオキサジン化合物「化合物1」を170℃で融解させ、オーブン中180℃で2時間、200℃で2時間硬化させた硬化物のガラス転移温度は、動的粘弾性測定のtanδ値で235℃であった。 Hereinafter, the present invention will be described in more detail with reference to Examples.
<Example 1> (Synthesis of benzoxazine compound "Compound 1" and polymerization of the compound)
Step (1): Synthesis of diimine compound "Compound 1B" 180 g of the primary diamine compound "Compound 1A" and 900 g of ethyl acetate were placed in a 2-liter four-necked flask, and 112 g of salicylaldehyde was added dropwise at room temperature. After the dropping, the mixture was stirred under reflux with ethyl acetate for 21 hours, and as a result, crystals were precipitated during stirring. The reaction completion solution was cooled to 4 ° C., filtered, and the separated crystals were dried to obtain 234 g of crystals of the diimine compound "Compound 1B" having a purity of 99.7% (gel permeation chromatography analysis method).
Yield 87.0% (yield with respect to "Compound 1A")
Melting point 164 ° C (differential scanning calorimetry)
1H-NMR (400MHz) measurement (solvent: CDCL3): 6.93-7.14 (m, 7H × 2: b, c, e, f, g, i), 7.37-7.41 (m, 3H × 2: d, h, j), 7.91 (d, 2H × 2: a), 8.60 (s, 1H × 2: l), 12.94 (s, 1H × 2: k).
Figure 0007079863000011
Step (2): Synthesis of the secondary diamine compound "Compound 1C" 147 g of the diimine compound "Compound 1B" and 1487 g of ethanol obtained in the step (1) were charged in a 3-liter four-necked flask, and sodium borohydride 26. 2 g of powder was added every 2 hours in 3 divided doses at room temperature. After the addition, the mixture was stirred at room temperature for 22 hours to obtain a slightly turbid yellow transparent solution. This solution was added dropwise to a mixed solution of 1769 g of water and 282 g of ethanol, and the resulting precipitate was filtered off. This precipitate was dispersed in 2463 g of water, stirred at room temperature for 3 hours and filtered, and further dispersed in 1531 g of water and stirred at room temperature for 3 hours. Washed with water.
The obtained powder was dried to obtain 128 g of a secondary diamine compound "Compound 1C" having a purity of 93.7% (high performance liquid chromatography analysis method).
Yield 86.1% (Yield with respect to dimin compound "Compound 1B")
1H-NMR (400MHz) measurement (solvent: DMSO-d6): 4.15 (s, 2H × 2: a), 6.21 (ddd, 1H × 2: b), 6.26 (dd, 1H × 2: c), 6.30 ( s, 1H × 2: d), 6.48 (ddd, 1H × 2: e), 6.71 (ddd, 1H × 2: f), 6.78 (dd, 1H × 2: g), 7.02-7.13 (m, 5H ×) 2: h, i, j, k), 7.86 (ddd, 2H × 2: l).
Figure 0007079863000012
Step (3): Synthesis of benzoxazine compound "Compound 1" 36 g of the secondary diamine compound "Compound 1C" synthesized in step (2) and 480 g of ethyl acetate were placed in a 1-liter four-necked flask, and 12 g of a 35% formalin aqueous solution was charged. Was added dropwise at 40 ° C. After the completion of the dropping, the mixture was stirred at 40 ° C. for 16.5 hours, and crystals were precipitated during the stirring. After cooling the reaction completion solution to room temperature, the crystals were separated by filtration and dried to obtain 31.5 g of crystals of the benzoxazine compound "Compound 1" having a purity of 100% (gel permeation chromatography analysis method).
Yield 84.4% (Yield with respect to the secondary diamine compound "Compound 1C")
Melting point 139 ° C (differential scanning calorimetry)
1H-NMR (400MHz) measurement (solvent: CDCl3): 4.61 (s, 2H × 2: a), 5.32 (s, 2H × 2: b), 6.55 (ddd, 1H × 2: c), 6.77 (dd, 1H × 2: d), 6.80 (dd, 1H × 2: e), 6.87 (ddd, 1H × 2: f), 6.94 (ddd, 1H × 2: g), 6.98-7.01 (m, 3H × 2: h, i), 7.12 (ddd, 1H × 2: j), 7.26 (t, 1H × 2: k), 7.84 (ddd, 2H × 2: l).
Figure 0007079863000013
Polymerization: Polymerization of the benzoxazine compound "Compound 1" The glass transition temperature of the cured product obtained by melting the obtained benzoxazine compound "Compound 1" at 170 ° C and curing it in an oven at 180 ° C for 2 hours and at 200 ° C for 2 hours. Was 235 ° C. in the tan δ value of the dynamic viscoelasticity measurement.

<比較例1>下記化学式で表されるベンゾオキサジン化合物「比較化合物1」の合成及び重合

Figure 0007079863000014
工程(1):ジイミン化合物<ビス{4-{4-[2-(2-ヒドロキシフェニル)-1-アザビニル]フェノキシ}フェニル}スルホン>の合成
ビス{4-(4-アミノフェニルオキシ)フェニル}スルホン400g、1,4-ジオキサン2000gを5リッター四つ口フラスコに仕込み、60℃でサリチルアルデヒド249gを滴下した。滴下後60℃で22時間撹拌したが、撹拌中に結晶が析出した。反応終了液を15℃まで冷却後、ろ過、乾燥して、純度100%(ゲルパーミエーションクロマトグラフィー分析法)のビス{4-{4-[2-(2-ヒドロキシフェニル)-1-アザビニル]フェノキシ}フェニル}スルホンの結晶575gを得た。
収率 97.0%(原料第一級ジアミン対する収率)
融点 209℃(示差走査熱量測定法)
1H‐NMR(400MHz)測定(溶媒:CDCl3):6.96(t, 1H×2:g), 7.03-7.07(m, 3H×2:b,e), 7.10(d, 2H×2:d), 7.30(d, 2H×2:c), 7.38-7.42(m, 2H×2: h,f), 7.90(d, 2H×2:a), 8.63(s, 1H×2:i), 13.10(s, 1H×2:j).
Figure 0007079863000015
工程(2):第二級ジアミン化合物<ビス{4-(4-{[(2-ヒドロキシフェニル)メチル]アミノ}フェノキシ)フェニル}スルホン>の合成
5リッター四つ口フラスコに工程(1)で得られたビス{4-{4-[2-(2-ヒドロキシフェニル)-1-アザビニル]フェノキシ}フェニル}スルホン300g、エタノール3000gを仕込み、水素化ホウ素ナトリウム53.3gの粉末を2時間毎に3回に分けて室温で添加した。添加後室温で27時間撹拌した後、水素化ホウ素ナトリウムの粉末を17.8g追加した。追加後、室温で23時間撹拌するとクリーム色のスラリー液となった。この液を5℃まで冷却し、析出物をろ別した後、この析出物を2186gの水に分散させ室温で3時間撹拌し、ろ別した。さらに1440gの水に分散し室温で1.5時間撹拌した後、ろ別し、漏斗の上からろ液のpHが8になるまで水を掛けて洗浄した。得られた析出物を乾燥して、純度91.4%(高速液体クロマトグラフィー分析法)のビス{4-(4-{[(2-ヒドロキシフェニル)メチル]アミノ}フェノキシ)フェニル}スルホンの粉末242gを得た。
収率 80.1%(ビス{4-{4-[2-(2-ヒドロキシフェニル)-1-アザビニル]フェノキシ}フェニル}スルホンに対する収率)
融点 143℃(示差走査熱量測定法)
工程(3):ベンゾオキサジン化合物「比較化合物」の合成
5リッター四つ口フラスコに工程(2)で合成したビス{4-(4-{[(2-ヒドロキシフェニル)メチル]アミノ}フェノキシ)フェニル}スルホン244g、1,4-ジオキサン1222gを仕込み、35%ホルマリン水溶液81gを40℃で滴下した。滴下終了後40℃で3.5時間撹拌した。
この液を68℃まで加熱し反応で析出した結晶を溶解した後、トルエン1221gを加え再度加熱した。この溶液を66.5℃から5℃まで冷却後、析出した結晶をろ別、乾燥することにより、純度100%(ゲルパーミエーションクロマトグラフィー分析法)のベンゾオキサジン化合物「比較化合物」の結晶184gを得た。
収率 72.6%:ビス{4-(4-{[(2-ヒドロキシフェニル)メチル]アミノ}フェノキシ)フェニル}スルホンに対する収率
融点 188℃(示差走査熱量測定法)
1H‐NMR(400MHz)測定(溶媒:CDCl3):4.62(s, 2H×2:a), 5.34(s, 2H×2:b), 6.82(dd, 1H×2:c), 6.91-6.94(m, 5H×2:d,e,f), 7.02(dd, 1H×2:g), 7.12-7.14(m, 3H×2:h,i), 7.80(ddd, 2H×2:j).
Figure 0007079863000016
重合:ベンゾオキサジン化合物「比較化合物1」の重合
得られたベンゾオキサジン化合物「比較化合物1」を200℃で融解させ、オーブン中200℃で2時間硬化させた硬化物のガラス転移温度は、動的粘弾性測定のtanδ値で199℃であった。 <Comparative Example 1> Synthesis and polymerization of the benzoxazine compound "Comparative Compound 1" represented by the following chemical formula.
Figure 0007079863000014
Step (1): Synthesis of diimine compound <bis {4- {4- [2- (2-hydroxyphenyl) -1-azavinyl] phenoxy} phenyl} sulfone> Bis {4- (4-aminophenyloxy) phenyl} 400 g of sulfone and 2000 g of 1,4-dioxane were charged into a 5-liter four-mouthed flask, and 249 g of salicylaldehyde was added dropwise at 60 ° C. After the dropping, the mixture was stirred at 60 ° C. for 22 hours, but crystals were precipitated during the stirring. The reaction completion solution is cooled to 15 ° C., filtered, dried, and subjected to 100% purity (gel permeation chromatography analysis method) bis {4- {4- [2- (2-hydroxyphenyl) -1-azavinyl]. 575 g of phenoxy} phenyl} sulfone crystals were obtained.
Yield 97.0% (yield with respect to the raw material primary diamine)
Melting point 209 ° C (differential scanning calorimetry)
1H-NMR (400MHz) measurement (solvent: CDCl3): 6.96 (t, 1H × 2: g), 7.03-7.07 (m, 3H × 2: b, e), 7.10 (d, 2H × 2: d), 7.30 (d, 2H × 2: c), 7.38-7.42 (m, 2H × 2: h, f), 7.90 (d, 2H × 2: a), 8.63 (s, 1H × 2: i), 13.10 ( s, 1H × 2: j).
Figure 0007079863000015
Step (2): Synthesis of secondary diamine compound <bis {4- (4- {[(2-hydroxyphenyl) methyl] amino} phenoxy) phenyl} sulfone> in a 5-liter four-necked flask in step (1) 300 g of the obtained bis {4- {4- [2- (2-hydroxyphenyl) -1-azavinyl] phenoxy} phenyl} compound and 3000 g of ethanol were charged, and a powder of 53.3 g of boron hydride was added every 2 hours. It was added in 3 portions at room temperature. After the addition, the mixture was stirred at room temperature for 27 hours, and then 17.8 g of sodium borohydride powder was added. After the addition, the mixture was stirred at room temperature for 23 hours to obtain a cream-colored slurry liquid. The solution was cooled to 5 ° C., and the precipitate was filtered off. Then, the precipitate was dispersed in 2186 g of water, stirred at room temperature for 3 hours, and filtered off. Further, the mixture was dispersed in 1440 g of water, stirred at room temperature for 1.5 hours, filtered off, and washed with water from the top of the funnel until the pH of the filtrate became 8. The resulting precipitate was dried to a powder of bis {4- (4-{[(2-hydroxyphenyl) methyl] amino} phenoxy) phenyl} sulfone with a purity of 91.4% (high performance liquid chromatography analysis). 242 g was obtained.
Yield 80.1% (Yield for bis {4- {4- [2- (2-hydroxyphenyl) -1-azavinyl] phenoxy} phenyl} sulfone)
Melting point 143 ° C (differential scanning calorimetry)
Step (3): Synthesis of benzoxazine compound "comparative compound" Bis {4- (4- {[(2-hydroxyphenyl) methyl] amino} phenoxy) phenyl synthesized in step (2) in a 5-liter four-necked flask. } 244 g of sulfone and 1222 g of 1,4-dioxane were charged, and 81 g of a 35% formalin aqueous solution was added dropwise at 40 ° C. After completion of the dropping, the mixture was stirred at 40 ° C. for 3.5 hours.
This liquid was heated to 68 ° C. to dissolve the crystals precipitated by the reaction, and then 1221 g of toluene was added and heated again. After cooling this solution from 66.5 ° C to 5 ° C, the precipitated crystals are filtered off and dried to obtain 184 g of crystals of a benzoxazine compound "comparative compound" having a purity of 100% (gel permeation chromatography analysis method). Obtained.
Yield 72.6%: Yield for bis {4- (4-{[(2-hydroxyphenyl) methyl] amino} phenoxy) phenyl} sulfone Melting point 188 ° C (differential scanning calorimetry)
1H-NMR (400MHz) measurement (solvent: CDCl3): 4.62 (s, 2H × 2: a), 5.34 (s, 2H × 2: b), 6.82 (dd, 1H × 2: c), 6.91-6.94 ( m, 5H × 2: d, e, f), 7.02 (dd, 1H × 2: g), 7.12-7.14 (m, 3H × 2: h, i), 7.80 (ddd, 2H × 2: j).
Figure 0007079863000016
Polymerization: Polymerization of the benzoxazine compound "Comparative Compound 1" The glass transition temperature of the cured product obtained by melting the obtained benzoxazine compound "Comparative Compound 1" at 200 ° C. and curing it in an oven at 200 ° C. for 2 hours is dynamic. The tan δ value of the viscoelasticity measurement was 199 ° C.

<比較例2>下記化学式で表されるベンゾオキサジン化合物「比較化合物2」の合成及び重合
なお、「比較化合物2」は、特許文献3の化合物(II-c)に相当する化合物である。

Figure 0007079863000017
工程(1):ジイミン化合物<ビス{4-{3-[2-(2-ヒドロキシ-5-メチルフェニル)-1-アザビニル]フェノキシ}フェニル}スルホン>の合成
ビス{4-(3-アミノフェニルオキシ)フェニル}スルホン36.2g、酢酸エチル204.4gおよび5-メチルサリチルアルデヒド25.1gを500ミリリッター四つ口フラスコに仕込んだ。酢酸エチル還流下で33.5時間撹拌した。途中、常圧下80℃で蒸留を行い、酢酸エチルを78.4g留出させた。結晶は反応中に析出した。反応終了液を4℃まで冷却後、ろ別して分離した結晶を乾燥して、純度99.7%(ゲルパーミエーションクロマトグラフィー分析法)のビス{4-{3-[2-(2-ヒドロキシ-5-メチルフェニル)-1-アザビニル]フェノキシ}フェニル}スルホンの結晶54.0gを得た。
収率 96.4%(ビス{4-(3-アミノフェニルオキシ)フェニル}スルホンに対する収率)
融点 167.0℃(示差走査熱量測定法)
1H‐NMR(400MHz)測定(溶媒:CDCl3):2.34(s,3H×2:a), 6.94-6.99(m,3H×2:b,c,d), 7.09-7.24(m,5H×2:e,f,g,h), 7.45(t, 1H×2:i), 7.92(d, 2H×2:j), 8.57(s, 1H×2:k), 12.72(s, 1H×2:l).
Figure 0007079863000018
工程(2):第二級ジアミン化合物<ビス{4-(3-{[(2-ヒドロキシ-5-メチルフェニル)メチル]アミノ}フェノキシ)フェニル}スルホン>酢酸ブチル溶液の合成
1リッター四つ口フラスコに工程(1)で得られたビス{4-{3-[2-(2-ヒドロキシ-5-メチルフェニル)-1-アザビニル]フェノキシ}フェニル}スルホン54.0g、エタノール540.0gを仕込み、30~32℃で水素化ホウ素ナトリウム6.11gの粉末を2時間毎に2回に分けて室温で添加した。添加後、30℃で23時間撹拌すると僅かに濁りのある黄色透明の溶液となった。この溶液を、2リッター四つ口フラスコに仕込んだ水648.0gとエタノール108.0gの混合液に滴下し、生成した沈殿をろ別、乾燥し、粉末62.8gを得た。この粉末62.8g、水125.6g、酢酸ブチル502.4gを1リッター四つ口フラスコに仕込み、室温~30℃で溶解後、撹拌しながら酢酸5.3gで中和した。その後静置し中和分液水を分液し、水洗分液を2回繰り返し、ビス{4-(3-{[(2-ヒドロキシ-5-メチルフェニル)メチル]アミノ}フェノキシ)フェニル}スルホンの酢酸ブチル溶液554.3gを取得した。
純度 97.0%(酢酸ブチル除去値:高速液体クロマトグラフィー分析法)
溶液中の第二ジアミン化合物分子量 M+1:674 M-1:672(高速液体クロマトグラフィー質量分析)
工程(3):ベンゾオキサジン化合物「比較化合物2」の合成
1リッター四つ口フラスコに工程(2)で合成したビス{4-(3-{[(2-ヒドロキシ-5-メチルフェニル)メチル]アミノ}フェノキシ)フェニル}スルホンの酢酸ブチル溶液554.3gを仕込み、35%ホルマリン水溶液19.7gを40℃で滴下した。滴下終了後40℃で23.5時間撹拌して反応を完結させたが、撹拌中に結晶が析出した。反応終了液を5℃まで冷却した後、結晶をろ別し乾燥することにより、純度99.7%(ゲルパーミエーションクロマトグラフィー分析法)のベンゾオキサジン化合物「比較化合物2」の結晶46.8gを得た。
収率 82.9%(ビス{4-{3-[2-(2-ヒドロキシ-5-メチルフェニル)-1-アザビニル]フェノキシ}フェニル}スルホンに対する収率)
融点 157℃(示差走査熱量測定法)
1H‐NMR(400MHz)測定(溶媒:CDCl3):2.27(s,3H×2a), 4.59(s, 2H×2:b), 5.32(s, 2H×2:c), 6.59(ddd, 1H×2:d), 6.77(d, 1H×2:e), 6.80(t, 1H×2:f), 6.83(d, 1H×2:g), 6.94-6.97(m, 2H×2:h,i), 7.01(ddd, 2H×2:j), 7.27(t, 1H×2:k), 7.85(ddd, 2H×2:l).
Figure 0007079863000019
重合:ベンゾオキサジン化合物「比較化合物2」の重合
得られたベンゾオキサジン化合物「比較化合物2」を180℃で融解させ、オーブン中180℃で2時間、200℃で2時間硬化させた硬化物のガラス転移温度は、動的粘弾性測定のtanδ値で203℃であった。 <Comparative Example 2> Synthesis and polymerization of the benzoxazine compound "Comparative Compound 2" represented by the following chemical formula "Comparative Compound 2" is a compound corresponding to the compound (II-c) of Patent Document 3.
Figure 0007079863000017
Step (1): Synthesis of diimine compound <bis {4- {3- [2- (2-hydroxy-5-methylphenyl) -1-azavinyl] phenoxy} phenyl} sulfone> Bis {4- (3-aminophenyl) 36.2 g of oxy) phenyl} sulfone, 204.4 g of ethyl acetate and 25.1 g of 5-methylsalicylic aldehyde were charged into a 500 milliliter four-necked flask. The mixture was stirred under reflux with ethyl acetate for 33.5 hours. On the way, distillation was carried out at 80 ° C. under normal pressure to distill 78.4 g of ethyl acetate. Crystals precipitated during the reaction. After cooling the reaction completion solution to 4 ° C., the separated crystals are dried by filtration and bis {4- {3- [2- (2-hydroxy-) with a purity of 99.7% (gel permeation chromatography analysis method). 54.0 g of crystals of 5-methylphenyl) -1-azavinyl] phenoxy} phenyl} sulfone was obtained.
Yield 96.4% (Yield for bis {4- (3-aminophenyloxy) phenyl} sulfone)
Melting point 167.0 ° C (differential scanning calorimetry)
1H-NMR (400MHz) measurement (solvent: CDCl3): 2.34 (s, 3H × 2: a), 6.94-6.99 (m, 3H × 2: b, c, d), 7.09-7.24 (m, 5H × 2) : e, f, g, h), 7.45 (t, 1H × 2: i), 7.92 (d, 2H × 2: j), 8.57 (s, 1H × 2: k), 12.72 (s, 1H × 2) : l).
Figure 0007079863000018
Step (2): Secondary diamine compound <bis {4- (3-{[(2-hydroxy-5-methylphenyl) methyl] amino} phenoxy) phenyl} sulfone> Synthesis of butyl acetate solution 1 liter 4 mouths The flask was charged with 54.0 g of the bis {4- {3- [2- (2-hydroxy-5-methylphenyl) -1-azavinyl] phenoxy} phenyl} sulfone obtained in the step (1) and 540.0 g of ethanol. , A powder of 6.11 g of sodium boron hydride at 30-32 ° C. was added every 2 hours in 2 portions at room temperature. After the addition, the mixture was stirred at 30 ° C. for 23 hours to obtain a slightly turbid yellow transparent solution. This solution was added dropwise to a mixed solution of 648.0 g of water and 108.0 g of ethanol charged in a 2-liter four-necked flask, and the generated precipitate was filtered off and dried to obtain 62.8 g of powder. 62.8 g of this powder, 125.6 g of water, and 502.4 g of butyl acetate were placed in a 1-liter four-necked flask, dissolved at room temperature to 30 ° C., and then neutralized with 5.3 g of acetic acid with stirring. After that, let stand to separate the neutralized liquid, and repeat the washing with water twice to repeat bis {4- (3-{[(2-hydroxy-5-methylphenyl) methyl] amino} phenoxy) phenyl} sulfone. 554.3 g of a butyl acetate solution of the above was obtained.
Purity 97.0% (Butyl acetate removal value: High performance liquid chromatography analysis method)
Molecular Weight of Second Diamine Compound in Solution M + 1: 674 M-1: 672 (High Performance Liquid Chromatography Mass Spectrometry)
Step (3): Synthesis of benzoxazine compound "Comparative Compound 2" Bis {4- (3-{[(2-hydroxy-5-methylphenyl) methyl] synthesized in step (2) in a 1-liter four-necked flask] 554.3 g of a butyl acetate solution of amino} phenoxy) phenyl} sulfone was charged, and 19.7 g of a 35% formalin aqueous solution was added dropwise at 40 ° C. After the completion of the dropping, the reaction was completed by stirring at 40 ° C. for 23.5 hours, but crystals were precipitated during stirring. After cooling the reaction completion solution to 5 ° C., the crystals are separated and dried to obtain 46.8 g of crystals of the benzoxazine compound "Comparative Compound 2" having a purity of 99.7% (gel permeation chromatography analysis method). Obtained.
Yield 82.9% (Yield for bis {4- {3- [2- (2-hydroxy-5-methylphenyl) -1-azavinyl] phenoxy} phenyl} sulfone)
Melting point 157 ° C (differential scanning calorimetry)
1H-NMR (400MHz) measurement (solvent: CDCl3): 2.27 (s, 3H × 2a), 4.59 (s, 2H × 2: b), 5.32 (s, 2H × 2: c), 6.59 (ddd, 1H ×) 2: d), 6.77 (d, 1H × 2: e), 6.80 (t, 1H × 2: f), 6.83 (d, 1H × 2: g), 6.94-6.97 (m, 2H × 2: h, i), 7.01 (ddd, 2H × 2: j), 7.27 (t, 1H × 2: k), 7.85 (ddd, 2H × 2: l).
Figure 0007079863000019
Polymerization: Polymerization of the benzoxazine compound "Comparative Compound 2" The obtained benzoxazine compound "Comparative Compound 2" was melted at 180 ° C. and cured in an oven at 180 ° C. for 2 hours and at 200 ° C. for 2 hours. The transition temperature was 203 ° C. as the tan δ value of the dynamic viscoelasticity measurement.

Claims (1)

一般式(1)で表されるベンゾオキサジン化合物。
Figure 0007079863000020
(式中、Xはスルホニル基を示す。)
A benzoxazine compound represented by the general formula (1).
Figure 0007079863000020
(In the formula, X represents a sulfonyl group.)
JP2021002210A 2015-12-11 2021-01-08 New benzoxazine compound Active JP7079863B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015241890 2015-12-11
JP2015241890 2015-12-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016218479A Division JP6824699B2 (en) 2015-12-11 2016-11-09 New benzoxazine compound

Publications (2)

Publication Number Publication Date
JP2021059597A JP2021059597A (en) 2021-04-15
JP7079863B2 true JP7079863B2 (en) 2022-06-02

Family

ID=59079291

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016218479A Active JP6824699B2 (en) 2015-12-11 2016-11-09 New benzoxazine compound
JP2021002210A Active JP7079863B2 (en) 2015-12-11 2021-01-08 New benzoxazine compound

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016218479A Active JP6824699B2 (en) 2015-12-11 2016-11-09 New benzoxazine compound

Country Status (1)

Country Link
JP (2) JP6824699B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107196A (en) 2010-10-26 2012-06-07 Jfe Chemical Corp Heat-curable composition, varnish of the same, and heat-cured product of the same
CN103304558A (en) 2013-06-05 2013-09-18 哈尔滨工程大学 Spirofluorene xanthene benzoxazine containing benzoyloxy group and preparation method thereof
JP2014503669A (en) 2011-01-25 2014-02-13 サイテク・テクノロジー・コーポレーシヨン Benzoxazine resin
CN105130975A (en) 2015-07-30 2015-12-09 哈尔滨工程大学 Triamine type quinoxalinyl benzoxazine and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI295288B (en) * 2006-08-17 2008-04-01 Univ Nat Chunghsing New route for the synthesis of benzoxazine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107196A (en) 2010-10-26 2012-06-07 Jfe Chemical Corp Heat-curable composition, varnish of the same, and heat-cured product of the same
JP2014503669A (en) 2011-01-25 2014-02-13 サイテク・テクノロジー・コーポレーシヨン Benzoxazine resin
CN103304558A (en) 2013-06-05 2013-09-18 哈尔滨工程大学 Spirofluorene xanthene benzoxazine containing benzoyloxy group and preparation method thereof
CN105130975A (en) 2015-07-30 2015-12-09 哈尔滨工程大学 Triamine type quinoxalinyl benzoxazine and preparation method thereof

Also Published As

Publication number Publication date
JP6824699B2 (en) 2021-02-03
JP2021059597A (en) 2021-04-15
JP2017109989A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
Agag Preparation and properties of some thermosets derived from allyl‐functional naphthoxazines
TW201623262A (en) Process for making benzoxazines
CN105153144B (en) Main chain diamine type quinoxalinyl benzoxazine and preparation method thereof
Yu et al. Reusable proline-based ionic liquid catalyst for the simple synthesis of 2-arylbenzothiazoles in a biomass medium
JP7079863B2 (en) New benzoxazine compound
CN105061464B (en) Monophenol-diamine type asymmetric tri-functionality quinoxalinyl benzoxazine and preparation method thereof
CN108863973B (en) Novel amide type benzoxazine resin and one-step preparation method thereof
CN111100085A (en) Preparation method of 3-aryl-2H-benzo [ β ] [1,4] benzoxazine-2-one compound
Shimokawaji et al. Synthesis of partially bio‐based triepoxides from naturally occurring myo‐inositol and their polyadditions
CN105153194B (en) Monoamine list phenolic quinoxalinyl benzoxazine and preparation method thereof
KR20150055895A (en) Xanthene dye compounds and method for producing thereof
JP3732539B2 (en) Novel polyphenol and method for producing the same
JP6603035B2 (en) Benzoxazol-2-yl-diphenyl ether having amino group and / or nitro group and derivatives thereof, and production method thereof
CN114085173B (en) Preparation method of 2-nitro-4-methylsulfonyl benzaldehyde
CN111763198B (en) Preparation method of 5-substituted cyclopropyl formylaminoindole derivative
JP4323576B2 (en) Improved process for producing coupled 4,6-dibenzoylresorcinols
JP5963222B2 (en) Method for producing DFMB derivative
CN112851674B (en) Polysubstituted pyrrole compound and synthesis method thereof
CN111303088B (en) Synthetic method of difurane compound
JP2022180243A (en) Fluorine atom-containing benzoxazine compound, and method for producing the same, and cured product
JP3114244B2 (en) Sorbitol derivative
JP3114249B2 (en) Sorbitol derivative
JP6896245B2 (en) Benzoxazine compounds and benzoxazine resins
JP6431431B2 (en) Aromatic diamines and intermediates thereof, and methods for producing them
TW202302509A (en) Novel trisallyl ether compound having triphenylalkane skeleton

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7079863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150