JP7079380B2 - Contact hydrogenation method for C9 resin - Google Patents
Contact hydrogenation method for C9 resin Download PDFInfo
- Publication number
- JP7079380B2 JP7079380B2 JP2021518761A JP2021518761A JP7079380B2 JP 7079380 B2 JP7079380 B2 JP 7079380B2 JP 2021518761 A JP2021518761 A JP 2021518761A JP 2021518761 A JP2021518761 A JP 2021518761A JP 7079380 B2 JP7079380 B2 JP 7079380B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrate
- resin
- precipitate
- solution
- silica gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 title claims description 79
- 238000000034 method Methods 0.000 title claims description 22
- 238000005984 hydrogenation reaction Methods 0.000 title claims description 13
- 239000003054 catalyst Substances 0.000 claims description 78
- 239000000243 solution Substances 0.000 claims description 71
- 239000002244 precipitate Substances 0.000 claims description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 45
- 239000000741 silica gel Substances 0.000 claims description 43
- 229910002027 silica gel Inorganic materials 0.000 claims description 43
- 238000009903 catalytic hydrogenation reaction Methods 0.000 claims description 40
- 238000000975 co-precipitation Methods 0.000 claims description 37
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical class [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 28
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 229910002651 NO3 Inorganic materials 0.000 claims description 17
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical class [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 15
- 239000004115 Sodium Silicate Substances 0.000 claims description 14
- 238000005119 centrifugation Methods 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- WFLYOQCSIHENTM-UHFFFAOYSA-N molybdenum(4+) tetranitrate Chemical compound [N+](=O)([O-])[O-].[Mo+4].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-] WFLYOQCSIHENTM-UHFFFAOYSA-N 0.000 claims description 14
- 230000007935 neutral effect Effects 0.000 claims description 14
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 13
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 13
- 239000004927 clay Substances 0.000 claims description 12
- MWFSXYMZCVAQCC-UHFFFAOYSA-N gadolinium(iii) nitrate Chemical compound [Gd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O MWFSXYMZCVAQCC-UHFFFAOYSA-N 0.000 claims description 10
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 7
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 3
- 239000005909 Kieselgur Substances 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 10
- 238000002329 infrared spectrum Methods 0.000 description 10
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 9
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 9
- 229910052794 bromium Inorganic materials 0.000 description 9
- CFYGEIAZMVFFDE-UHFFFAOYSA-N neodymium(3+);trinitrate Chemical compound [Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CFYGEIAZMVFFDE-UHFFFAOYSA-N 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000013466 adhesive and sealant Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- MRDDPVFURQTAIS-UHFFFAOYSA-N molybdenum;sulfanylidenenickel Chemical compound [Ni].[Mo]=S MRDDPVFURQTAIS-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- JRTYPQGPARWINR-UHFFFAOYSA-N palladium platinum Chemical compound [Pd].[Pt] JRTYPQGPARWINR-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Catalysts (AREA)
Description
本発明は、石油樹脂の接触水素化に関し、特に、C9樹脂の接触水素化方法に関する。 The present invention relates to catalytic hydrogenation of petroleum resin, and more particularly to a method of catalytic hydrogenation of C9 resin.
C9樹脂は、分解によりエチレンを生成する際に得られる副生成物である。C9樹脂の接触水素化により、樹脂中の二重結合及び一部のベンゼン環が飽和し、樹脂の重合過程で残留したハロゲン元素が脱離されるため、樹脂の色度、光熱安定性、酸化安定性及び耐紫外線性を改善し、製品品質を向上させ、用途を広げることができる。接着剤やシーリング剤の用途の発展に伴い、特に透明感圧テープ、屋外用シーリング剤、使い捨ての衛生用品、医療用テープ、トラフィックペイント、ポリオレフィン改質剤への使用には、色味が浅く、臭気がなく、安定性がよい石油樹脂が求められており、そのひとつにC9樹脂がある。このため、水素化C9樹脂に対する市場の需要は急速に増加しており、C9樹脂の接触水素化技術の発展も進んでいるが、C9樹脂の水素化後の製品の品質を左右する鍵は、触媒の選択にある。 The C9 resin is a by-product obtained when ethylene is produced by decomposition. The catalytic hydrogenation of the C9 resin saturates the double bonds and some benzene rings in the resin and desorbs the halogen elements remaining in the resin polymerization process, resulting in resin chromaticity, photothermal stability, and oxidation stability. It can improve the properties and UV resistance, improve the product quality, and expand the applications. With the development of adhesives and sealants, the color is lighter, especially for transparent pressure sensitive tapes, outdoor sealants, disposable hygiene products, medical tapes, traffic paints, polyolefin modifiers. Petroleum resin that has no odor and has good stability is required, and one of them is C9 resin. For this reason, the market demand for hydrogenated C9 resin is increasing rapidly, and the development of contact hydrogenation technology for C9 resin is also progressing, but the key that influences the quality of the product after hydrogenation of C9 resin is. It is in the selection of catalyst.
C9樹脂は、原料成分が複雑である(通常、発色基、ゲル、S、Cl等の不純物が多い)。樹脂の水素化触媒は主に貴金属と非貴金属の2種類の触媒に分けられる。貴金属触媒は主に、パラジウム系及びパラジウム-白金系触媒であり、これらの系の触媒は活性が高く、開始温度が低く、歩留まりが高く、品質が良いという利点があるが、硫黄等の被毒物質に対して敏感であり、非常に被毒、失活しやすいという欠点がある。非貴金属触媒は主に、珪藻土又はアルミナ-珪藻土に担持されたニッケル系触媒、ニッケル-タングステン系又は硫化ニッケル-モリブデン系触媒であり、このタイプの触媒は高い硫黄耐性を有するが、これらの触媒の欠点は、触媒活性が高いこと、製品の臭素価が依然と高いこと、水素化分解が顕著なこと、製品の樹脂の収率が80%程度しかないこと、軟化点が120℃から90℃に低下すること、触媒寿命が短いことである。このため、従来技術では、異なる触媒を採用し、C9樹脂を多段で接触水素化していた。 The raw material component of the C9 resin is complicated (usually, there are many impurities such as color-developing groups, gels, S, and Cl). Resin hydrogenation catalysts are mainly divided into two types of catalysts, precious metals and non-precious metals. Precious metal catalysts are mainly palladium-based and palladium-platinum-based catalysts, and these catalysts have the advantages of high activity, low starting temperature, high yield, and good quality, but are poisoned by sulfur and the like. It is sensitive to substances and has the disadvantage of being extremely poisonous and easily deactivated. Non-precious metal catalysts are mainly nickel-based catalysts, nickel-tungsten-based or nickel sulfide-molybdenum-based catalysts supported on diatomaceous soil or alumina-diatomaceous soil, and although this type of catalyst has high sulfur resistance, these catalysts Disadvantages are high catalytic activity, still high bromine value of the product, remarkable hydrocracking, product resin yield of only about 80%, softening point from 120 ° C to 90 ° C. It is reduced and the catalyst life is short. For this reason, in the prior art, different catalysts were used and the C9 resin was catalytically hydrogenated in multiple stages.
中国特許CN102924659Aには、一段目の触媒が、主に原料樹脂中の硫黄を除去するためのNi/Al2O3であり、二段目の触媒が、主に水素化脱色処理のための貴金属Pt-Pd/Al2O3水素化触媒である、二段固定床による樹脂の水素添加方法が開示されている。これにおいて、一段目の水素化脱硫の水素化反応圧力は、2.0~6.0MPa、反応温度は250~350℃、液時空間速度は1~5h-1であり、二段目の水素化脱色の水素化反応圧力は6.0~12.0MPa、反応温度は250~350℃、液時空間速度は1~5h-1であって、固定床の高圧接触水素化処理が採用されている。この方法は、二段触媒の利点を十分に活かして、貴金属触媒の寿命を向上させている。しかし、欠点として、触媒活性の点で依然改良の余地があること、Al2O3を担体としているため、触媒の担体への分散が不均一になって触媒反応効果が劣ること、二段の触媒が異なる加圧条件を採用しているため、同一の固定床で完了できず、生産効率が低く、かつ実動過程では圧力干渉があって、最終的なC9樹脂の品質に影響すること、が挙げられる。 In the Chinese patent CN102924659A, the first-stage catalyst is mainly Ni / Al 2 O3 for removing sulfur in the raw material resin, and the second -stage catalyst is mainly a noble metal for hydrogenation decolorization treatment. A method for hydrogenating a resin using a two-stage fixed bed, which is a Pt-Pd / Al 2 O 3 hydrogenation catalyst, is disclosed. In this, the hydrogenation reaction pressure of the first stage hydrogenation desulfurization is 2.0 to 6.0 MPa, the reaction temperature is 250 to 350 ° C., the liquid spatiotemporal space velocity is 1 to 5 h -1 , and the second stage hydrogen. The decolorization hydrogenation reaction pressure is 6.0 to 12.0 MPa, the reaction temperature is 250 to 350 ° C., the liquid spatiotemporal space velocity is 1 to 5 h -1 , and the high-pressure contact hydrogenation treatment of the fixed floor is adopted. There is. This method takes full advantage of the two-stage catalyst to improve the life of the noble metal catalyst. However, the disadvantages are that there is still room for improvement in terms of catalytic activity , and because Al2O3 is used as a carrier, the dispersion of the catalyst on the carrier becomes non-uniform and the catalytic reaction effect is inferior. Since the catalyst adopts different pressurizing conditions, it cannot be completed on the same fixed bed, the production efficiency is low, and there is pressure interference in the actual operation process, which affects the quality of the final C9 resin. Can be mentioned.
以上を総括すると、現在のところ、C9樹脂の水素化触媒には、担体に対する触媒の分散が不均一で、触媒反応効果が劣る等の問題がある。よって、触媒効率が高く、かつプロセスが簡単なC9樹脂の接触水素化方法の開発が求められている。 To summarize the above, at present, the hydrogenation catalyst of C9 resin has problems such as non-uniform dispersion of the catalyst on the carrier and inferior catalytic reaction effect. Therefore, there is a need for the development of a catalytic hydrogenation method for C9 resin, which has high catalytic efficiency and a simple process.
本発明が解決しようとする課題は、従来技術の現状に対して、色度がよく、臭素価が低く、プロセスが簡単なC9樹脂の接触水素化方法を提供することである。 An object to be solved by the present invention is to provide a method for catalytic hydrogenation of a C9 resin having a good chromaticity, a low bromine value, and a simple process, as opposed to the current state of the prior art.
本発明が上述の技術的課題を解決するために採用した手段は、以下の通りである。 The means adopted by the present invention to solve the above-mentioned technical problems are as follows.
本発明は、1)固定床の前半にZr-Mo-Y/シリカゲル共沈触媒を入れ、固定床の後半にNi-Nd-Gd/シリカゲル共沈触媒を入れ、水素ガスを導入して還元し、2)前処理後のC9樹脂を固定床内で接触水素化する、ことを特徴とするC9樹脂の接触水素化方法である。 In the present invention, 1) a Zr-Mo-Y / silica gel co-precipitation catalyst is placed in the first half of the fixed bed, a Ni-Nd-Gd / silica gel co-precipitation catalyst is placed in the second half of the fixed bed, and hydrogen gas is introduced for reduction. 2) A method for catalytic hydrogenation of C9 resin, which comprises contact hydrogenating the pretreated C9 resin in a fixed bed.
好ましくは、Zr-Mo-Y/シリカゲル共沈触媒の作製は、ケイ酸ナトリウム飽和溶液を5~7mol/Lの硝酸でpH1~2に調整し、Zr:Moのモル比が1:0.1~1:0.5、Zr:Yのモル比が1:0.05~1:0.3である硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの水溶液を入れて、調製した溶液中の硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの重量をケイ酸ナトリウムの重量の5~10%にし、調製した溶液を飽和炭酸ナトリウム溶液でpH9~10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を100~150℃で3~5時間乾燥させ、乾燥後の沈殿物をマッフル炉において500~700℃で3~5時間焼成するステップを含み、
Ni-Nd-Gd/シリカゲル共沈触媒の作製は、ケイ酸ナトリウム飽和溶液を5~7mol/Lの硝酸でpH1~2に調整し、Ni:Ndのモル比が1:0.03~1:0.1、Ni:Gdのモル比が1:0.01~1:0.08である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの水溶液を入れて、調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量をケイ酸ナトリウムの重量の5~10%にし、調製した溶液を飽和炭酸ナトリウム溶液でpH9~10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を100~150℃で3~5時間乾燥させ、乾燥後の沈殿物をマッフル炉において500~700℃で3~5時間焼成するステップを含む。
Preferably, for the preparation of the Zr-Mo-Y / silica gel co-precipitation catalyst, the saturated sodium silicate solution is adjusted to pH 1 to 2 with 5 to 7 mol / L nitrate, and the molar ratio of Zr: Mo is 1: 0.1. Aqueous solution of zirconium nitrate, molybdenum nitrate and yttrium nitrate having a molar ratio of ~ 1: 0.5 and Zr: Y of 1: 0.05 to 1: 0.3 is added, and zirconium nitrate and nitrate in the prepared solution are added. The weight of molybdenum and yttrium nitrate should be 5-10% of the weight of sodium silicate, the prepared solution should be adjusted to pH 9-10 with saturated aqueous sodium carbonate solution to form a precipitate, and the precipitate should be separated and separated by centrifugation. The resulting precipitate is washed with deionized water until neutral, then the precipitate is dried at 100-150 ° C for 3-5 hours, and the dried precipitate is placed in a muffle furnace at 500-700 ° C for 3-5. Including the step of baking for hours
To prepare a Ni-Nd-Gd / silica gel co-precipitation catalyst, adjust the pH of a saturated sodium silicate solution to 1 to 2 with 5 to 7 mol / L nitrate, and the molar ratio of Ni: Nd is 1: 0.03 to 1: 1. An aqueous solution of nickel nitrate, neodymite nitrate and gadrinium nitrate having a molar ratio of 0.1 and Ni: Gd of 1: 0.01 to 1: 0.08 was added to the prepared solution, and nickel nitrate, neodymite nitrate and nitrate were added. The weight of gadrinium is adjusted to 5 to 10% of the weight of sodium silicate, the prepared solution is adjusted to pH 9 to 10 with a saturated sodium carbonate solution to form a precipitate, and the precipitate is separated by centrifugation and the separated precipitate. Is washed with deionized water until neutral, then the solution is dried at 100-150 ° C. for 3-5 hours, and the dried solution is baked in a muffle furnace at 500-700 ° C. for 3-5 hours. Including steps.
好ましくは、Zr-Mo-Y/シリカゲル共沈触媒及びNi-Nd-Gd/シリカゲル共沈触媒の水素ガス還元条件は、高純度の水素ガスを導入して、還元温度350~500℃、還元時間5~10時間で還元することである。 Preferably, the hydrogen gas reduction conditions of the Zr-Mo-Y / silica gel coprecipitation catalyst and the Ni-Nd-Gd / silica gel coprecipitation catalyst are such that a high-purity hydrogen gas is introduced, the reduction temperature is 350 to 500 ° C., and the reduction time. It is to reduce in 5 to 10 hours.
好ましくは、接触水素化の条件は、反応温度が250~450℃、反応圧力が10~25MPa、体積空間速度が0.1~1.0h-1、水素とC9樹脂の体積比が400:1~900:1である。 Preferably, the conditions for catalytic hydrogenation are a reaction temperature of 250 to 450 ° C., a reaction pressure of 10 to 25 MPa, a volumetric space velocity of 0.1 to 1.0 h -1 , and a volume ratio of hydrogen to C9 resin of 400: 1. ~ 900: 1.
好ましくは、C9樹脂の前処理の条件は、シクロヘキサン又はエチルシクロヘキサンを用いて溶解度5~20wt%でC9樹脂を溶解し、溶液を白土又は珪藻土の濾過カラムに通すことである。 Preferably, the pretreatment condition for the C9 resin is to dissolve the C9 resin with cyclohexane or ethylcyclohexane at a solubility of 5-20 wt% and pass the solution through a filtration column of white clay or diatomaceous earth.
好ましくは、Zr-Mo-Y/シリカゲル共沈触媒及びNi-Nd-Gd/シリカゲル共沈触媒は、表面積が90~150m2/gであり、50~100nmの孔径が10~20%を占める。 Preferably, the Zr-Mo-Y / silica gel co-precipitation catalyst and the Ni-Nd-Gd / silica gel co-precipitation catalyst have a surface area of 90 to 150 m 2 / g and a pore size of 50 to 100 nm occupying 10 to 20%.
従来技術と比較して、本発明の利点は以下の通りである。 The advantages of the present invention over the prior art are as follows.
1)固定床の前段及び後段に、同一の触媒反応条件下で反応可能な異なる触媒を入れている。Zr-Mo-Y/シリカゲル触媒は、C9樹脂中の硫黄とハロゲン元素の大部分を脱離することができ、一定の臭素除去効果も有している。一方、Ni-Nd-Gd/シリカゲル触媒は、高度水素添加を主な作用とし、また、他のヘテロ原子を脱離する作用もあるので、C9樹脂中に残留する硫黄と窒素を引き続き除去することができる。2種類の異なる触媒が果たす作用の重点は異なるが、両者は同一の条件下で活性を発揮することができ、かつ相補的な作用を有するので、2種類の触媒の相乗的な作用によって、良好な触媒反応効果が得られると共に、生産プロセスが簡略化され、生産コストが低減される。 1) Different catalysts capable of reacting under the same catalytic reaction conditions are placed in the front and rear stages of the fixed bed. The Zr-Mo-Y / silica gel catalyst can desorb most of the sulfur and halogen elements in the C9 resin, and also has a certain bromine removing effect. On the other hand, the Ni-Nd-Gd / silica gel catalyst mainly has the action of high hydrogenation and also has the action of desorbing other heteroatoms, so that sulfur and nitrogen remaining in the C9 resin should be continuously removed. Can be done. Although the emphasis of the action of the two different catalysts is different, both can exert their activity under the same conditions and have complementary actions, so that the synergistic action of the two catalysts is good. A catalyst reaction effect can be obtained, the production process can be simplified, and the production cost can be reduced.
2)Zr-Mo-Y/シリカゲル触媒及びNi-Nd-Gd/シリカゲル触媒を沈殿法により作製することで、金属触媒をシリカゲルの表面に均一に分散させることができる。共沈触媒の表面積は90~150m2/gであり、50~100nmの孔径が10~20%を占め、均一に分散した金属触媒がC9樹脂と十分に接触するため、触媒の使用量が減少すると共に、触媒反応効率が向上する。 2) By producing the Zr-Mo-Y / silica gel catalyst and the Ni-Nd-Gd / silica gel catalyst by the precipitation method, the metal catalyst can be uniformly dispersed on the surface of the silica gel. The surface area of the co-precipitation catalyst is 90 to 150 m 2 / g, the pore size of 50 to 100 nm occupies 10 to 20%, and the uniformly dispersed metal catalyst sufficiently contacts the C9 resin, so that the amount of the catalyst used is reduced. At the same time, the catalytic reaction efficiency is improved.
3)Zr-Mo-Y/シリカゲル触媒とNi-Nd-Gd/シリカゲル触媒の相乗作用により、C9樹脂中の臭素価を32.5gBr/100gから6.0gBr/100g以下に下げ、ガードナー色数を6.0以下に抑えることができる。これは、触媒がC9樹脂の接触水素化に有効であることを示している。 3) The synergistic action of the Zr-Mo-Y / silica gel catalyst and the Ni-Nd-Gd / silica gel catalyst reduces the bromine value in the C9 resin from 32.5 gBr / 100 g to 6.0 g Br / 100 g or less, and reduces the number of Gardner colors. It can be suppressed to 6.0 or less. This indicates that the catalyst is effective for catalytic hydrogenation of the C9 resin.
以下、図面及び実施例を参照しながら、本発明の具体的な実施形態についてさらに詳述する。 Hereinafter, specific embodiments of the present invention will be described in more detail with reference to the drawings and examples.
C9樹脂の接触水素化方法は、以下のステップ1及びステップ2を含む。 The method for catalytic hydrogenation of C9 resin includes the following steps 1 and 2.
ステップ1)固定床の前半にZr-Mo-Y/シリカゲル共沈触媒を入れ、固定床の後半にNi-Nd-Gd/シリカゲル共沈触媒を入れ、固定床内に99.999%の高純度の水素ガスを導入して、還元温度350℃、還元時間10時間で還元する。 Step 1) Put the Zr-Mo-Y / silica gel co-precipitation catalyst in the first half of the fixed bed, put the Ni-Nd-Gd / silica gel co-precipitation catalyst in the second half of the fixed bed, and put the high purity of 99.9999% in the fixed bed. Hydrogen gas is introduced and reduced at a reduction temperature of 350 ° C. and a reduction time of 10 hours.
ここで、Zr-Mo-Y/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1に調整し、Zr:Moのモル比が1:0.1、Zr:Yのモル比が1:0.3である硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの水溶液を入れる。調製した溶液中の硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの重量は、ケイ酸ナトリウムの重量の5%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH9に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において500℃で3時間焼成する。 Here, the preparation of the Zr-Mo-Y / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1 with 6 mol / L nitric acid, and zirconium nitrate, molybdenum nitrate and molybdenum nitrate having a Zr: Mo molar ratio of 1: 0.1 and a Zr: Y molar ratio of 1: 0.3. Add an aqueous solution of yttrium nitrate. The weight of zirconium nitrate, molybdenum nitrate and yttrium nitrate in the prepared solution is 5% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 9 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, the separated precipitate is washed with deionized water until it becomes neutral, and then the precipitate is settled. The product is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 500 ° C. for 3 hours in a muffle furnace.
ここで、Ni-Nd-Gd/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH2に調整し、Ni:Ndのモル比が1:0.1、Ni:Gdのモル比が1:0.01である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの水溶液を入れる。調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量は、ケイ酸ナトリウムの重量の10%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において700℃で5時間焼成する。 Here, the preparation of the Ni-Nd-Gd / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 2 with 6 mol / L nitrate, and nickel nitrate, neodymium nitrate and Ni: Nd having a molar ratio of 1: 0.1 and Ni: Gd having a molar ratio of 1: 0.01. Add an aqueous solution of gadolinium nitrate. The weight of nickel nitrate, neodymium nitrate and gadolinium nitrate in the prepared solution is 10% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 10 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, the separated precipitate is washed with deionized water until it becomes neutral, and then the precipitate is settled. The product is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 700 ° C. for 5 hours in a muffle furnace.
ステップ2)前処理後のC9樹脂を固定床内で接触水素化する。 Step 2) The pretreated C9 resin is catalytically hydrogenated in a fixed floor.
シクロヘキサンを用いて溶解度5wt%でC9樹脂を溶解し、溶液を白土の濾過カラムに通し、不溶性のゲル、アスファルテン及び少量の遊離重金属を白土に吸着させる。そして、前処理後のC9樹脂溶液を接触水素化する。 The C9 resin is dissolved with cyclohexane at a solubility of 5 wt% and the solution is passed through a filtration column of white clay to adsorb insoluble gels, asphaltene and small amounts of free heavy metals onto the white clay. Then, the pretreated C9 resin solution is catalytically hydrogenated.
接触水素化の条件は、反応温度が450℃、反応圧力が10MPa、体積空間速度が0.1h-1、水素とC9樹脂との体積比が400:1である。 The conditions for catalytic hydrogenation are a reaction temperature of 450 ° C., a reaction pressure of 10 MPa, a volumetric space velocity of 0.1 h -1 , and a volume ratio of hydrogen to C9 resin of 400: 1.
図2からわかるように、3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークは、図1中の3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークよりも著しく小さい。また、C9樹脂の臭素価は、34gBr/100gから3.2gBr/100gに低下し、ガードナー色数は3.2である。これは、触媒がC9樹脂の接触水素化に有効であることを示している。 As can be seen from FIG. 2, the absorption peak of the carbon-hydrogen bond on the carbon - carbon double bond at 3041 cm-1 is the absorption of the carbon-hydrogen bond on the carbon-carbon double bond at 3041 cm -1 in FIG. Significantly smaller than the peak. Further, the bromine value of the C9 resin is lowered from 34 gBr / 100 g to 3.2 g Br / 100 g, and the number of Gardner colors is 3.2. This indicates that the catalyst is effective for catalytic hydrogenation of the C9 resin.
C9樹脂の接触水素化方法は、以下のステップ1及びステップ2を含む。 The method for catalytic hydrogenation of C9 resin includes the following steps 1 and 2.
ステップ1)固定床の前半にZr-Mo-Y/シリカゲル共沈触媒を入れ、固定床の後半にNi-Nd-Gd/シリカゲル共沈触媒を入れ、固定床内に99.999%の高純度の水素ガスを導入して、還元温度500℃、還元時間5時間で還元するステップを含む。 Step 1) Put the Zr-Mo-Y / silica gel co-precipitation catalyst in the first half of the fixed bed, put the Ni-Nd-Gd / silica gel co-precipitation catalyst in the second half of the fixed bed, and put the high purity of 99.9999% in the fixed bed. Including the step of introducing the hydrogen gas of the above and reducing it at a reduction temperature of 500 ° C. and a reduction time of 5 hours.
ここで、Zr-Mo-Y/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH2に調整し、Zr:Moのモル比が1:0.5、Zr:Yのモル比が1:0.05である硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの水溶液を入れる。調製した溶液中の硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの重量は、ケイ酸ナトリウムの重量の10%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において700℃で5時間焼成する。 Here, the preparation of the Zr-Mo-Y / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 2 with 6 mol / L nitric acid, and zirconium nitrate, molybdenum nitrate and molybdenum nitrate having a Zr: Mo molar ratio of 1: 0.5 and a Zr: Y molar ratio of 1: 0.05. Add an aqueous solution of yttrium nitrate. The weight of zirconium nitrate, molybdenum nitrate and yttrium nitrate in the prepared solution is 10% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 10 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, the separated precipitate is washed with deionized water until it becomes neutral, and then the precipitate is settled. The product is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 700 ° C. for 5 hours in a muffle furnace.
ここで、Ni-Nd-Gd/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1に調整し、Ni:Ndのモル比が1:0.03、Ni:Gdのモル比が1:0.08である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの水溶液を入れる。調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量は、ケイ酸ナトリウムの重量の5%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH9に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において500℃で3時間焼成する。 Here, the preparation of the Ni-Nd-Gd / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1 with 6 mol / L nitrate, and nickel nitrate, neodymium nitrate and Ni: Nd having a molar ratio of 1: 0.03 and Ni: Gd having a molar ratio of 1: 0.08. Add an aqueous solution of gadolinium nitrate. The weight of nickel nitrate, neodymium nitrate and gadolinium nitrate in the prepared solution is 5% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 9 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, the separated precipitate is washed with deionized water until it becomes neutral, and then the precipitate is settled. The product is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 500 ° C. for 3 hours in a muffle furnace.
ステップ2)前処理後のC9樹脂を固定床内で接触水素化する。 Step 2) The pretreated C9 resin is catalytically hydrogenated in a fixed floor.
エチルシクロヘキサンを用いて溶解度20wt%でC9樹脂を溶解し、溶液を白土の濾過カラムに通し、不溶性のゲル、アスファルテン及び少量の遊離重金属を白土に吸着させる。そして前処理後のC9樹脂溶液を接触水素化する。 The C9 resin is dissolved with ethylcyclohexane at a solubility of 20 wt% and the solution is passed through a filtration column of white clay to adsorb insoluble gel, asphaltene and a small amount of free heavy metals on the white clay. Then, the pretreated C9 resin solution is catalytically hydrogenated.
接触水素化の条件は、反応温度が250℃、反応圧力が25MPa、体積空間速度が1.0h-1、水素とC9樹脂との体積比が900:1である。 The conditions for catalytic hydrogenation are a reaction temperature of 250 ° C., a reaction pressure of 25 MPa, a volumetric space velocity of 1.0 h -1 , and a volume ratio of hydrogen to C9 resin of 900: 1.
図4からわかるように、3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークは、図3中の3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークよりも著しく小さい。また、C9樹脂の臭素価は34gBr/100gから5.3gBr/100gに低下し、ガードナー色数は5.9である。これは、触媒がC9樹脂の接触水素化に有効であることを示している。 As can be seen from FIG. 4, the absorption peak of the carbon-hydrogen bond on the carbon - carbon double bond at 3041 cm -1 is the absorption of the carbon-hydrogen bond on the carbon-carbon double bond at 3041 cm-1 in FIG. Significantly smaller than the peak. Further, the bromine value of the C9 resin is lowered from 34 gBr / 100 g to 5.3 g Br / 100 g, and the number of Gardner colors is 5.9. This indicates that the catalyst is effective for catalytic hydrogenation of the C9 resin.
C9樹脂の接触水素化方法は、以下のステップ1及びステップ2を含む。 The method for catalytic hydrogenation of C9 resin includes the following steps 1 and 2.
ステップ1)固定床の前半にZr-Mo-Y/シリカゲル共沈触媒を入れ、固定床の後半にNi-Nd-Gd/シリカゲル共沈触媒を入れ、固定床内に99.999%の高純度の水素ガスを導入して、還元温度400℃、還元時間7時間で還元する。 Step 1) Put the Zr-Mo-Y / silica gel co-precipitation catalyst in the first half of the fixed bed, put the Ni-Nd-Gd / silica gel co-precipitation catalyst in the second half of the fixed bed, and put the high purity of 99.9999% in the fixed bed. Hydrogen gas is introduced and reduced at a reduction temperature of 400 ° C. and a reduction time of 7 hours.
ここで、Zr-Mo-Y/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1.5に調整し、Zr:Moのモル比が1:0.2、Zr:Yのモル比が1:0.1である硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの水溶液を入れる。調製した溶液中の硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの重量は、ケイ酸ナトリウムの重量の7%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH9.5に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において600℃で4時間焼成する。 Here, the preparation of the Zr-Mo-Y / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1.5 with 6 mol / L nitric acid, and the molar ratio of Zr: Mo is 1: 0.2 and the molar ratio of Zr: Y is 1: 0.1. Add an aqueous solution of molybdenum and yttrium nitrate. The weight of zirconium nitrate, molybdenum nitrate and yttrium nitrate in the prepared solution is 7% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 9.5 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, and the separated precipitate is washed with deionized water until it becomes neutral. The precipitate is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 600 ° C. for 4 hours in a muffle furnace.
ここで、Ni-Nd-Gd/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1.5に調整し、Ni:Ndのモル比が1:0.06、Ni:Gdのモル比が1:0.05である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの水溶液を入れる。調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量は、ケイ酸ナトリウムの重量の6%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH9.7に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において550℃で4時間焼成する。 Here, the preparation of the Ni-Nd-Gd / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1.5 with 6 mol / L nitrate, and the molar ratio of Ni: Nd is 1: 0.06 and the molar ratio of Ni: Gd is 1: 0.05. Nickel nitrate and nitrate. Add an aqueous solution of neodymium and gadolinium nitrate. The weight of nickel nitrate, neodymium nitrate and gadolinium nitrate in the prepared solution is 6% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 9.7 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, and the separated precipitate is washed with deionized water until it becomes neutral. The precipitate is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 550 ° C. for 4 hours in a muffle furnace.
ステップ2)前処理後のC9樹脂を固定床内で接触水素化する。 Step 2) The pretreated C9 resin is catalytically hydrogenated in a fixed floor.
シクロヘキサンを用いて溶解度15wt%でC9樹脂を溶解し、溶液を白土の濾過カラムに通し、不溶性のゲル、アスファルテン及び少量の遊離重金属を白土に吸着させる。そして、前処理後のC9樹脂溶液を接触水素化する。 The C9 resin is dissolved with cyclohexane at a solubility of 15 wt% and the solution is passed through a filtration column of white clay to adsorb insoluble gels, asphaltene and small amounts of free heavy metals onto the white clay. Then, the pretreated C9 resin solution is catalytically hydrogenated.
接触水素化の条件は、反応温度が350℃、反応圧力が18MPa、体積空間速度が0.6h-1、水素とC9樹脂との体積比が600:1である。 The conditions for catalytic hydrogenation are a reaction temperature of 350 ° C., a reaction pressure of 18 MPa, a volumetric space velocity of 0.6 h -1 , and a volume ratio of hydrogen to C9 resin of 600: 1.
図6からわかるように、3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークは、図5中の3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークよりも著しく小さい。また、C9樹脂の臭素価は34gBr/100gから1.3gBr/100gに低下し、ガードナー色数は0.6である。これは、触媒がC9樹脂の接触水素化に有効であることを示している。 As can be seen from FIG. 6, the absorption peak of the carbon-hydrogen bond on the carbon - carbon double bond at 3041 cm -1 is the absorption of the carbon-hydrogen bond on the carbon-carbon double bond at 3041 cm-1 in FIG. Significantly smaller than the peak. Further, the bromine value of the C9 resin is reduced from 34 gBr / 100 g to 1.3 g Br / 100 g, and the Gardner color number is 0.6. This indicates that the catalyst is effective for catalytic hydrogenation of the C9 resin.
C9樹脂の接触水素化方法は、以下のステップ1及びステップ2を含む。 The method for catalytic hydrogenation of C9 resin includes the following steps 1 and 2.
ステップ1)固定床の前半にZr-Mo-Y/シリカゲル共沈触媒を入れ、固定床の後半にNi-Nd-Gd/シリカゲル共沈触媒を入れ、固定床内に99.999%の高純度の水素ガスを導入して、還元温度500℃、還元時間8時間で還元する。 Step 1) Put the Zr-Mo-Y / silica gel co-precipitation catalyst in the first half of the fixed bed, put the Ni-Nd-Gd / silica gel co-precipitation catalyst in the second half of the fixed bed, and put the high purity of 99.9999% in the fixed bed. Hydrogen gas is introduced and reduced at a reduction temperature of 500 ° C. and a reduction time of 8 hours.
ここで、Zr-Mo-Y/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1に調整し、Zr:Moのモル比が1:0.3、Zr:Yのモル比が1:0.09である硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの水溶液を入れる。調製した溶液中の硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの重量は、ケイ酸ナトリウムの重量の6%である。調製した溶液を飽和炭酸ナトリウム溶液でpH9.5に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において650℃で5時間焼成する。 Here, the preparation of the Zr-Mo-Y / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1 with 6 mol / L nitric acid, and zirconium nitrate, molybdenum nitrate and molybdenum nitrate having a Zr: Mo molar ratio of 1: 0.3 and a Zr: Y molar ratio of 1: 0.09. Add an aqueous solution of yttrium nitrate. The weight of zirconium nitrate, molybdenum nitrate and yttrium nitrate in the prepared solution is 6% by weight of sodium silicate. The prepared solution is adjusted to pH 9.5 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, and the separated precipitate is washed with deionized water until it becomes neutral, and then the precipitate is settled. The product is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 650 ° C. for 5 hours in a muffle furnace.
ここで、Ni-Nd-Gd/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH2に調整し、Ni:Ndのモル比が1:0.08、Ni:Gdのモル比が1:0.06である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウム水溶液を入れる。調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量は、ケイ酸ナトリウムの重量の8%である。調製した溶液を飽和炭酸ナトリウム溶液でpH10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において600℃で4時間焼成する。 Here, the preparation of the Ni-Nd-Gd / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 2 with 6 mol / L nitrate, and nickel nitrate, neodymium nitrate and Ni: Nd having a molar ratio of 1: 0.08 and Ni: Gd having a molar ratio of 1: 0.06. Add an aqueous solution of gadrinium nitrate. The weight of nickel nitrate, neodymium nitrate and gadolinium nitrate in the prepared solution is 8% by weight of sodium silicate. The prepared solution is adjusted to pH 10 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by centrifugation, the separated precipitate is washed with deionized water until neutral, and then the precipitate is removed. It is dried at 125 ° C. for 4 hours, and the dried precipitate is calcined at 600 ° C. for 4 hours in a muffle furnace.
ステップ2)前処理後のC9樹脂を固定床内で接触水素化する。 Step 2) The pretreated C9 resin is catalytically hydrogenated in a fixed floor.
シクロヘキサンを用いて溶解度10wt%でC9樹脂を溶解し、溶液を白土の濾過カラムに通し、不溶性のゲル、アスファルテン及び少量の遊離重金属を白土に吸着させる。そして、前処理後のC9樹脂溶液を接触水素化する。 The C9 resin is dissolved with cyclohexane at a solubility of 10 wt%, the solution is passed through a filtration column of white clay, and insoluble gel, asphaltene and a small amount of free heavy metal are adsorbed on the white clay. Then, the pretreated C9 resin solution is catalytically hydrogenated.
接触水素化の条件は、反応温度が400℃、反応圧力が20MPa、体積空間速度が0.7h-1、水素とC9樹脂との体積比が700:1である。 The conditions for catalytic hydrogenation are a reaction temperature of 400 ° C., a reaction pressure of 20 MPa, a volumetric space velocity of 0.7 h -1 , and a volume ratio of hydrogen to C9 resin of 700: 1.
図8からわかるように、3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークは、図7中の3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークよりも著しく小さい。また、C9樹脂の臭素価は34gBr/100gから0.6gBr/100gに低下し、ガードナー色数は0.7である。これは、触媒がC9樹脂の接触水素化に有効であることを示している。 As can be seen from FIG. 8, the absorption peak of the carbon-hydrogen bond on the carbon - carbon double bond at 3041 cm -1 is the absorption of the carbon-hydrogen bond on the carbon-carbon double bond at 3041 cm-1 in FIG. Significantly smaller than the peak. Further, the bromine value of the C9 resin is reduced from 34 gBr / 100 g to 0.6 gBr / 100 g, and the Gardner color number is 0.7. This indicates that the catalyst is effective for catalytic hydrogenation of the C9 resin.
C9樹脂の接触水素化方法は、以下のステップ1及びステップ2を含む。 The method for catalytic hydrogenation of C9 resin includes the following steps 1 and 2.
ステップ1)固定床の前半にZr-Mo-Y/シリカゲル共沈触媒を入れ、固定床の後半にNi-Nd-Gd/シリカゲル共沈触媒を入れ、固定床内に99.999%の高純度の水素ガスを導入して、還元温度450℃、還元時間6時間で還元する。 Step 1) Put the Zr-Mo-Y / silica gel co-precipitation catalyst in the first half of the fixed bed, put the Ni-Nd-Gd / silica gel co-precipitation catalyst in the second half of the fixed bed, and put the high purity of 99.9999% in the fixed bed. Hydrogen gas is introduced and reduced at a reduction temperature of 450 ° C. and a reduction time of 6 hours.
ここで、Zr-Mo-Y/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1.5に調整し、Zr:Moのモル比が1:0.3、Zr:Yのモル比が1:0.02である硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウム水溶液を入れる。調製した溶液中の硝酸ジルコニウム、硝酸モリブデン及び硝酸イットリウムの重量は、ケイ酸ナトリウムの重量の9%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において600℃で5時間焼成する。 Here, the preparation of the Zr-Mo-Y / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1.5 with 6 mol / L nitric acid, and the molar ratio of Zr: Mo is 1: 0.3 and the molar ratio of Zr: Y is 1: 0.02. Add an aqueous solution of molybdenum and yttrium nitrate. The weight of zirconium nitrate, molybdenum nitrate and yttrium nitrate in the prepared solution is 9% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 10 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, the separated precipitate is washed with deionized water until it becomes neutral, and then the precipitate is settled. The product is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 600 ° C. for 5 hours in a muffle furnace.
ここで、Ni-Nd-Gd/シリカゲル共沈触媒の作製は、以下のステップを含む。ケイ酸ナトリウム飽和溶液を6mol/Lの硝酸でpH1に調整し、Ni:Ndのモル比が1:0.08、Ni:Gdのモル比が1:0.07である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの水溶液を入れる。調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量は、ケイ酸ナトリウムの重量の6%である。そして、調製した溶液を飽和炭酸ナトリウム溶液でpH9.5に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を125℃で4時間乾燥させ、乾燥後の沈殿物をマッフル炉において550℃で4時間焼成する。 Here, the preparation of the Ni-Nd-Gd / silica gel coprecipitation catalyst includes the following steps. The saturated sodium silicate solution is adjusted to pH 1 with 6 mol / L nitrate, and nickel nitrate, neodymium nitrate and Ni: Nd having a molar ratio of 1: 0.08 and Ni: Gd having a molar ratio of 1: 0.07. Add an aqueous solution of gadolinium nitrate. The weight of nickel nitrate, neodymium nitrate and gadolinium nitrate in the prepared solution is 6% by weight of sodium silicate. Then, the prepared solution is adjusted to pH 9.5 with a saturated sodium carbonate solution to form a precipitate, the precipitate is separated by a centrifugation method, and the separated precipitate is washed with deionized water until it becomes neutral. The precipitate is dried at 125 ° C. for 4 hours, and the dried precipitate is fired at 550 ° C. for 4 hours in a muffle furnace.
ステップ2)前処理後のC9樹脂を固定床内で接触水素化する。 Step 2) The pretreated C9 resin is catalytically hydrogenated in a fixed floor.
エチルシクロヘキサンを用いて溶解度15wt%でC9樹脂を溶解し、溶液を白土の濾過カラムに通し、不溶性のゲル、アスファルテン及び少量の遊離重金属を白土に吸着させる。そして、前処理後のC9樹脂溶液を接触水素化にする。 The C9 resin is dissolved with ethylcyclohexane at a solubility of 15 wt% and the solution is passed through a filtration column of white clay to adsorb insoluble gels, asphaltene and small amounts of free heavy metals onto the white clay. Then, the C9 resin solution after the pretreatment is subjected to catalytic hydrogenation.
接触水素化の条件は、反応温度が300℃、反応圧力が20MPa、体積空間速度が0.8h-1、水素とC9樹脂との体積比が700:1である。 The conditions for catalytic hydrogenation are a reaction temperature of 300 ° C., a reaction pressure of 20 MPa, a volumetric space velocity of 0.8 h -1 , and a volume ratio of hydrogen to C9 resin of 700: 1.
図10からわかるように、3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークは、図9中の3041cm-1における炭素-炭素二重結合上の炭素-水素結合の吸収ピークよりも著しく小さい。また、C9樹脂の臭素価は34gBr/100gから1.5gBr/100gに低下し、ガードナー色数は1.7である。これは、触媒がC9樹脂の接触水素化に有効であることを示している。 As can be seen from FIG. 10, the absorption peak of the carbon-hydrogen bond on the carbon - carbon double bond at 3041 cm -1 is the absorption of the carbon-hydrogen bond on the carbon-carbon double bond at 3041 cm-1 in FIG. Significantly smaller than the peak. Further, the bromine value of the C9 resin is reduced from 34 gBr / 100 g to 1.5 g Br / 100 g, and the number of Gardner colors is 1.7. This indicates that the catalyst is effective for catalytic hydrogenation of the C9 resin.
Claims (6)
2)前処理後のC9樹脂を前記固定床内で接触水素化する、
ことを特徴とするC9樹脂の接触水素化方法。 1) Put the Zr-Mo-Y / silica gel coprecipitation catalyst in the first half of the fixed bed, put the Ni-Nd-Gd / silica gel coprecipitation catalyst in the second half of the fixed bed, introduce hydrogen gas and reduce it.
2) The pretreated C9 resin is catalytically hydrogenated in the fixed floor.
A method for catalytic hydrogenation of a C9 resin.
前記Ni-Nd-Gd/シリカゲル共沈触媒の作製は、ケイ酸ナトリウム飽和溶液を5~7mol/Lの硝酸でpH1~2に調整し、Ni:Ndのモル比が1:0.03~1:0.1、Ni:Gdのモル比が1:0.01~1:0.08である硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの水溶液を入れて、調製した溶液中の硝酸ニッケル、硝酸ネオジム及び硝酸ガドリニウムの重量をケイ酸ナトリウムの重量の5~10%にし、調製した溶液を飽和炭酸ナトリウム溶液でpH9~10に調整して沈殿を形成し、沈殿物を遠心方法で分離し、分離した沈殿物を脱イオン水で中性になるまで洗浄してから、沈殿物を100~150℃で3~5時間乾燥させ、乾燥後の沈殿物をマッフル炉において500~700℃で3~5時間焼成するステップを含む、
ことを特徴とする請求項1に記載のC9樹脂の接触水素化方法。 To prepare the Zr-Mo-Y / silica gel co-precipitation catalyst, a saturated sodium silicate solution was adjusted to pH 1-2 with 5-7 mol / L nitrate, and the molar ratio of Zr: Mo was 1: 0.1-1. Aqueous solutions of zirconium nitrate, molybdenum nitrate and yttrium nitrate having a molar ratio of: 0.5 and Zr: Y of 1: 0.05 to 1: 0.3 are added to prepare a solution containing zirconium nitrate, molybdenum nitrate and The weight of ittrium nitrate is adjusted to 5 to 10% of the weight of sodium silicate, the prepared solution is adjusted to pH 9 to 10 with a saturated sodium carbonate solution to form a precipitate, and the precipitate is separated by centrifugation and the separated precipitate. The solution is washed with deionized water until neutral, the precipitate is dried at 100-150 ° C for 3-5 hours, and the dried precipitate is baked in a muffle furnace at 500-700 ° C for 3-5 hours. Including the steps to do
To prepare the Ni-Nd-Gd / silica gel co-precipitation catalyst, a saturated sodium silicate solution was adjusted to pH 1 to 2 with 5 to 7 mol / L nitrate, and the molar ratio of Ni: Nd was 1: 0.03 to 1. Nickel nitrate, neodymite and The weight of gadolinium nitrate is 5 to 10% of the weight of sodium silicate, the prepared solution is adjusted to pH 9 to 10 with saturated sodium carbonate solution to form a precipitate, and the precipitate is separated by centrifugation and separated. The solution is washed with deionized water until neutral, the precipitate is dried at 100-150 ° C for 3-5 hours, and the dried precipitate is baked in a muffle furnace at 500-700 ° C for 3-5 hours. Including steps to do,
The method for catalytic hydrogenation of a C9 resin according to claim 1.
ことを特徴とする請求項1に記載のC9樹脂の接触水素化方法。 The hydrogen gas reduction conditions of the Zr-Mo-Y / silica gel coprecipitation catalyst and the Ni-Nd-Gd / silica gel coprecipitation catalyst are such that a high-purity hydrogen gas is introduced, the reduction temperature is 350 to 500 ° C., and the reduction time is 5 to 5. It is to reduce in 10 hours,
The method for catalytic hydrogenation of a C9 resin according to claim 1.
ことを特徴とする請求項1に記載のC9樹脂の接触水素化方法。 The conditions for contact hydrogenation are a reaction temperature of 250 to 450 ° C., a reaction pressure of 10 to 25 MPa, a volumetric space velocity of 0.1 to 1.0 h -1 , and a volume ratio of hydrogen to C9 resin of 400: 1 to 900. 1
The method for catalytic hydrogenation of a C9 resin according to claim 1.
ことを特徴とする請求項1に記載のC9樹脂の接触水素化方法。 The condition for the pretreatment of the C9 resin is to dissolve the C9 resin with cyclohexane or ethylcyclohexane at a solubility of 5 to 20 wt% and pass the solution through a filtration column of white clay or diatomaceous earth.
The method for catalytic hydrogenation of a C9 resin according to claim 1.
ことを特徴とする請求項1~5のいずれか1項に記載のC9樹脂の接触水素化方法。 The Zr-Mo-Y / silica gel co-precipitation catalyst and the Ni-Nd-Gd / silica gel co-precipitation catalyst have a surface area of 90 to 150 m 2 / g and a pore size of 50 to 100 nm occupying 10 to 20%.
The method for catalytic hydrogenation of a C9 resin according to any one of claims 1 to 5.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010128078.7A CN111333752B (en) | 2020-02-28 | 2020-02-28 | Hydrogenation catalysis method of carbon nine resin |
CN202010128078.7 | 2020-02-28 | ||
PCT/CN2020/086585 WO2021169016A1 (en) | 2020-02-28 | 2020-04-24 | Hydrogenation catalysis method for c9 resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022525826A JP2022525826A (en) | 2022-05-20 |
JP7079380B2 true JP7079380B2 (en) | 2022-06-01 |
Family
ID=71180568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021518761A Active JP7079380B2 (en) | 2020-02-28 | 2020-04-24 | Contact hydrogenation method for C9 resin |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7079380B2 (en) |
CN (1) | CN111333752B (en) |
DE (1) | DE112020000194B4 (en) |
WO (1) | WO2021169016A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115646555B (en) * | 2022-10-24 | 2024-01-30 | 宁波能之光新材料科技股份有限公司 | Catalyst for hydrogenation reaction of carbon five petroleum resin and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000103820A (en) | 1998-09-30 | 2000-04-11 | Arakawa Chem Ind Co Ltd | Production of hydrogenated 9c petroleum resin and hydrogenated 9c petroleum resin obtained thereby |
JP2002275212A (en) | 2001-03-21 | 2002-09-25 | Arakawa Chem Ind Co Ltd | Method for producing hydrogenated petroleum resin and hydrogenation catalyst used for the production method |
JP2002534569A (en) | 1999-01-15 | 2002-10-15 | エクソンモービル・ケミカル・パテンツ・インク | Method of hydrogenating hydrocarbon resins |
JP2004115721A (en) | 2002-09-27 | 2004-04-15 | Arakawa Chem Ind Co Ltd | Modifier for thermoplastic vinyl resin and modifier for polycarbonate resin as well as composition of thermoplastic vinyl resin and composition of polycarbonate resin |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09202810A (en) * | 1996-01-26 | 1997-08-05 | New Japan Chem Co Ltd | Production of liquid 9c-based petroleum resin improved in hue and 9c-based liquid petroleum resin composition |
JP2004083679A (en) * | 2002-08-26 | 2004-03-18 | Idemitsu Petrochem Co Ltd | Method of producing hydrogenated petroleum resin |
CN102453217B (en) * | 2010-10-15 | 2013-11-20 | 中国石油化工股份有限公司 | Hydrogenation and decoloration method for petroleum resin |
CN102633941B (en) * | 2012-04-20 | 2014-01-29 | 大连理工大学 | Method for preparing high-grade resin by catalytic hydrogenation |
CN102924659A (en) * | 2012-11-12 | 2013-02-13 | 中国石油化工股份有限公司 | Preparation method for C9 hydrogenation petroleum resin |
CN104174409A (en) * | 2013-05-23 | 2014-12-03 | 中国石油化工股份有限公司 | Petroleum resin hydrogenation catalyst and application thereof |
CN104877077B (en) * | 2015-06-24 | 2018-02-16 | 大连理工大学 | A kind of method for preparing hydrogenation C9 Petropols |
CN105664968B (en) * | 2015-12-29 | 2018-12-25 | 广东工业大学 | A kind of catalyst and preparation method thereof for the reaction of C9 hydrogenation of petroleum resin |
CN107880159A (en) * | 2016-09-29 | 2018-04-06 | 中国石油化工股份有限公司 | A kind of two-part preparation method of hydrogenated petroleum resin |
CN111019019A (en) | 2018-10-09 | 2020-04-17 | 南京雪郎化工科技有限公司 | Hydrogenation decoloring method for petroleum resin |
EP3647020A1 (en) | 2018-11-05 | 2020-05-06 | Basf Se | Catalyst, catalyst carrier or absorbent monolith of stacked strands |
CN109647411A (en) * | 2019-01-10 | 2019-04-19 | 北京石油化工学院 | A kind of hydrogenation catalyst and the preparation method and application thereof for Petropols |
-
2020
- 2020-02-28 CN CN202010128078.7A patent/CN111333752B/en active Active
- 2020-04-24 WO PCT/CN2020/086585 patent/WO2021169016A1/en active Application Filing
- 2020-04-24 DE DE112020000194.6T patent/DE112020000194B4/en active Active
- 2020-04-24 JP JP2021518761A patent/JP7079380B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000103820A (en) | 1998-09-30 | 2000-04-11 | Arakawa Chem Ind Co Ltd | Production of hydrogenated 9c petroleum resin and hydrogenated 9c petroleum resin obtained thereby |
JP2002534569A (en) | 1999-01-15 | 2002-10-15 | エクソンモービル・ケミカル・パテンツ・インク | Method of hydrogenating hydrocarbon resins |
JP2002275212A (en) | 2001-03-21 | 2002-09-25 | Arakawa Chem Ind Co Ltd | Method for producing hydrogenated petroleum resin and hydrogenation catalyst used for the production method |
JP2004115721A (en) | 2002-09-27 | 2004-04-15 | Arakawa Chem Ind Co Ltd | Modifier for thermoplastic vinyl resin and modifier for polycarbonate resin as well as composition of thermoplastic vinyl resin and composition of polycarbonate resin |
Also Published As
Publication number | Publication date |
---|---|
DE112020000194B4 (en) | 2022-10-27 |
WO2021169016A1 (en) | 2021-09-02 |
CN111333752B (en) | 2021-06-08 |
JP2022525826A (en) | 2022-05-20 |
CN111333752A (en) | 2020-06-26 |
DE112020000194T5 (en) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2492095A1 (en) | Process for increasing the selectivity of the hydrogenation of 4,4'-diaminodiphenylmethane to 4,4'-diaminodicyclohexylmethane in the presence of an n-alkyl-4,4'-diaminodiphenylmethane | |
CA2722995A1 (en) | A method for preparing ethylene glycol from polyhydroxy compound | |
CN113797947B (en) | Application of C modified platinum-based catalyst in catalyzing hydrogenation reaction of halogenated nitrobenzene | |
JP7079380B2 (en) | Contact hydrogenation method for C9 resin | |
TWI738491B (en) | Preparation method of tetramethylpiperidinol | |
CN102558444B (en) | Method for preparing dicyclopentadiene hydrogenated petroleum resin | |
CN105061176B (en) | A kind of fixed bed synthetic method of 3,3,5 trimethylcyclohexanone | |
CN112517059B (en) | Dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method thereof | |
WO2021169015A1 (en) | Method for hydrogenation catalysis of c9 resin | |
CN105413694B (en) | It is a kind of to be used to be catalyzed catalyst of hydrogenation of petroleum resin and its preparation method and application | |
CN114471638B (en) | Catalyst for synthesizing succinic acid (anhydride), preparation method and application | |
US11958930B2 (en) | Catalytic hydrogenation method for carbon nine resin | |
CN107674017B (en) | Synthesis method of light stabilizer intermediate 1,2,2,6, 6-pentamethyl-4-piperidinol | |
CN115254120B (en) | Pre-reduction type high nickel content hydrogenation catalyst and preparation method and application thereof | |
CN114433127B (en) | Hydrogenation catalyst, preparation method and application thereof, and method for preparing succinic acid by maleic anhydride hydrogenation | |
CN111097443A (en) | Catalyst for preparing gamma-butyrolactone through maleic anhydride gas-phase hydrogenation, preparation method and application of catalyst and method for preparing gamma-butyrolactone | |
CN111760574B (en) | C9 petroleum resin hydrogenation catalyst, preparation method and application thereof | |
CN110845301B (en) | Production method of 1, 2-pentanediol | |
CN109569634B (en) | Hydrogenation method for C-V petroleum resin | |
CN107715876B (en) | Preparation method and application of catalyst for removing trace phenylacetylene in styrene | |
KR20150091361A (en) | Method for producing hydrogenated unsaturated polyhydroxyhydrocarbon polymer | |
CN109395739B (en) | Petroleum resin hydrogenation catalyst and preparation method thereof | |
CN116253836A (en) | Catalytic hydrogenation method of carbon nine resin | |
CN109400808B (en) | Hydrogenation method for carbon-nine petroleum resin | |
KR101840058B1 (en) | Method of Preparing Modified Red Mud Using hydrochloric acid and phosphoric acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7079380 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |