JP7077483B2 - 暗算問題に対する問題添削方法、装置、電子機器及び記憶媒体 - Google Patents
暗算問題に対する問題添削方法、装置、電子機器及び記憶媒体 Download PDFInfo
- Publication number
- JP7077483B2 JP7077483B2 JP2021517407A JP2021517407A JP7077483B2 JP 7077483 B2 JP7077483 B2 JP 7077483B2 JP 2021517407 A JP2021517407 A JP 2021517407A JP 2021517407 A JP2021517407 A JP 2021517407A JP 7077483 B2 JP7077483 B2 JP 7077483B2
- Authority
- JP
- Japan
- Prior art keywords
- searched
- mental arithmetic
- test paper
- question
- calculation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003340 mental effect Effects 0.000 title claims description 395
- 238000012937 correction Methods 0.000 title claims description 103
- 238000000034 method Methods 0.000 title claims description 82
- 238000012360 testing method Methods 0.000 claims description 395
- 238000004364 calculation method Methods 0.000 claims description 269
- 239000013598 vector Substances 0.000 claims description 220
- 238000001514 detection method Methods 0.000 claims description 45
- 238000013528 artificial neural network Methods 0.000 claims description 33
- 238000004891 communication Methods 0.000 claims description 27
- 238000012549 training Methods 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 12
- 238000012790 confirmation Methods 0.000 claims description 11
- 238000002372 labelling Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000003062 neural network model Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 description 15
- 238000013527 convolutional neural network Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000007781 pre-processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 206010033307 Overweight Diseases 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B7/00—Electrically-operated teaching apparatus or devices working with questions and answers
- G09B7/02—Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
- G06F40/284—Lexical analysis, e.g. tokenisation or collocates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/1444—Selective acquisition, locating or processing of specific regions, e.g. highlighted text, fiducial marks or predetermined fields
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/148—Segmentation of character regions
- G06V30/153—Segmentation of character regions using recognition of characters or words
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/40—Document-oriented image-based pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/40—Document-oriented image-based pattern recognition
- G06V30/41—Analysis of document content
- G06V30/413—Classification of content, e.g. text, photographs or tables
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/02—Counting; Calculating
- G09B19/025—Counting; Calculating with electrically operated apparatus or devices
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Educational Technology (AREA)
- Educational Administration (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Entrepreneurship & Innovation (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Description
ステップS11:被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別することと、
ステップS12:各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すことと、
ステップS13:探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、集約した試験紙を所定の条件と比較し、所定の条件を満たす目標試験紙が存在する場合、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定することと、
ステップS14:前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定することと、
ステップS15:各被添削暗算問題に対し、予め設けられた暗算エンジンを用いて該被添削暗算問題に対し計算を行い、前記暗算エンジンの計算結果を該被添削暗算問題の解答として出力することにより、前記被検索試験紙上の被添削暗算問題の添削を完成すること。
ステップS15中の予め設けられた暗算エンジンを用いて該被添削暗算問題に対し計算を行うことが、
前記予め訓練された第1識別モデルを介し該被添削暗算問題中の数字、アルファベット、文字、記号、及び計算タイプを識別することであって、前記計算タイプが四則の組合せ計算、推定、余りのある除算、分数計算、単位変換、垂直演算、再帰方程式演算のうちの1つを含むことと;
識別された数字、アルファベット、文字、記号、及び計算タイプに基づき計算を行い、該被添削暗算問題の計算結果を得ることとを含む。
ステップS121、各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに入力し、各被検索問題の語幹の特徴ベクトルを得て、各被検索問題の特徴ベクトルとすることであって、前記語幹ベクトル化モデルがニューラルネットワークに基づくモデルであることと;
ステップS122、各被検索問題に対し、問題データベースにおいて検索を行い、該被検索問題の特徴ベクトルに一致する特徴ベクトルを探し、問題データベース中の一致する特徴ベクトルに対応する問題を該被検索問題に最も近い問題として確定すること。
問題サンプル訓練セット中の各問題サンプルに対しラベリング処理を行い、各問題サンプル中の語幹の文字内容をラベリングすることと;
ニューラルネットワークモデルを用いて各問題サンプル中の語幹の文字内容に対し2次元特徴ベクトル抽出を行うことにより、前記語幹ベクトル化モデルを訓練すること。
ステップS122が以下を含む:
各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索することと;
一致する特徴ベクトルの前記インデックス情報テーブル中の対応する問題を該被検索問題に最も近い問題として確定すること。
前記各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索することが以下を含む:
各被検索問題に対し、前記インデックス情報テーブル中の該被検索問題の特徴ベクトルの長さと同一又は近いグループ内において、該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索すること。
出現頻度が最も高く且つ第1所定閾値よりも大きい試験紙を、前記被検索試験紙に一致する目標試験紙として確定すること。
予め訓練された検出モデルを用いて前記被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出することであって、前記検出モデルがニューラルネットワークに基づくモデルであること。
予め訓練された第2識別モデルを用いて各被検索問題の領域中の語幹の文字内容を識別することであって、前記第2識別モデルがニューラルネットワークに基づくモデルであること。
予め設けられた暗算エンジンを用いて前記被検索試験紙中の計算式及び/又は公式を含む領域に対し計算処理を行い、各領域の計算結果を得ることと;
ここで、ステップS15において、各被添削暗算問題に対し、前記暗算エンジンの該被添削暗算問題の領域に対応する計算結果を、該被添削暗算問題の解答とすることにより、前記被検索試験紙上の被添削暗算問題の添削を完成すること。
被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別するために用いられる、検出識別モジュールと;
各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すために用いられる、問題検索モジュールと;
探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、集約した試験紙を所定の条件と比較し、所定の条件を満たす目標試験紙が存在する場合、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定するために用いられる、試験紙確定モジュールと;
前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定するために用いられる、暗算問題確定モジュールと;
各被添削暗算問題に対し、予め設けられた暗算エンジンを用いて該被添削暗算問題に対し計算を行い、前記暗算エンジンの計算結果を該被添削暗算問題の解答として出力することにより、前記被検索試験紙上の被添削暗算問題の添削を完成するために用いられる、暗算問題添削モジュール。
前記暗算問題添削モジュールが、前記予め訓練された第1識別モデルを用いて該被添削暗算問題中の数字、アルファベット、文字、記号、及び計算タイプを識別し、前記計算タイプが四則の組合せ計算、推定、余りのある除算、分数計算、単位変換、垂直演算、再帰方程式演算のうちの1つを含み;識別された数字、アルファベット、文字、記号、及び計算タイプに基づき計算を行い、該被添削暗算問題の計算結果を得るために用いられる。
各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに入力し、各被検索問題の語幹の特徴ベクトルを得て、各被検索問題の特徴ベクトルとするために用いられる、特徴ベクトル取得ユニットであって、語幹ベクトル化モデルがニューラルネットワークに基づくモデルであることと;
各被検索問題に対し、問題データベースにおいて検索を行い、該被検索問題の特徴ベクトルに一致する特徴ベクトルを探し、問題データベース中の一致する特徴ベクトルに対応する問題を該被検索問題に最も近い問題として確定するために用いられる、問題検索ユニット。
問題サンプル訓練セット中の各問題サンプルに対しラベリング処理を行い、各問題サンプル中の語幹の文字内容をラベリングすることと、
ニューラルネットワークモデルを用いて各問題サンプル中の語幹の文字内容に対し2次元特徴ベクトル抽出を行うことにより、前記語幹ベクトル化モデルを訓練する。
予め問題データベース中の試験紙上の各問題の特徴ベクトルに対しインデックス情報テーブルを構築するために用いられる、前処理モジュールと;
具体的には、各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索し;一致する特徴ベクトルの前記インデックス情報テーブル中の対応する問題を該被検索問題に最も近い問題として確定するために用いられる、前記問題検索ユニット。
予め設けられた暗算エンジンを用いて前記被検索試験紙中の計算式及び/又は公式を含む領域に対し計算処理を行い、各領域の計算結果を取得するために用いられる、計算モジュール;
ここで、前記暗算問題添削モジュールは各被添削暗算問題に対し、前記暗算エンジンの該被添削暗算問題の領域に対応する計算結果を、該被添削暗算問題の解答とすることにより、前記被検索試験紙上の被添削暗算問題の添削を完成する。
メモリは、コンピュータプログラムを格納するために用いられ;
プロセッサは、メモリに格納されたプログラムを実行するとき、上記のいずれか1つの暗算問題に対する問題添削方法の方法ステップを実現するために用いられる。
ステップS41:被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別することと;
ステップS42:予め設けられた暗算エンジンを用いて前記被検索試験紙中の計算式及び/又は公式を含む領域に対し計算処理を行い、各領域の計算結果を得ることと;
ステップS43:各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すことと;
ステップS44:探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、集約した試験紙を所定の条件と比較し、所定の条件を満たす目標試験紙が存在する場合、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定することと;
ステップS45:前記被検索試験紙中に問題タイプが暗算問題の被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定することと;
ステップS46:各被添削暗算問題に対し、前記暗算エンジンの該被添削暗算問題の領域に対応する計算結果を、該被添削暗算問題の解答とすることにより、前記被検索試験紙上の被添削暗算問題の添削を完成すること。
被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別するために用いられる、検出識別モジュールと;
予め設けられた暗算エンジンを用いて前記被検索試験紙中の計算式及び/又は公式を含む領域に対し計算処理を行い、各領域の計算結果を得るために用いられる、計算モジュールと、
各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すために用いられる、問題検索モジュールと;
探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、集約した試験紙を所定の条件と比較し、所定の条件を満たす目標試験紙が存在する場合、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定するために用いられる、試験紙確定モジュールと;
前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定するために用いられる、暗算問題確定モジュールと;
各被添削暗算問題に対し、前記暗算エンジンの該被添削暗算問題領域に対応する計算結果を、該被添削暗算問題の解答とすることにより、前記被検索試験紙上の被添削暗算問題の添削を完成するために用いられる、暗算問題添削モジュール。
図1は、本発明の1つの実施例の提供する暗算問題に対する問題添削方法の概略フロー図である。図1を参照し、暗算問題に対する問題添削方法は以下のステップを含んでよい:
ステップS11:被検索試験紙の画像に対し検出を行い、被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別する。
ステップS121:各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに入力し、各被検索問題の語幹の特徴ベクトルを得て、各被検索問題の特徴ベクトルとすることであって、前記語幹ベクトル化モデルはニューラルネットワークに基づくモデルである。
被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別するために用いることのできる、検出識別モジュール21と;
各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すために用いることのできる、問題検索モジュール22と;
探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定するために用いることのできる、試験紙確定モジュール23と;
前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定するために用いることのできる、暗算問題確定モジュール24と;
各被添削暗算問題に対し、予め設けられた暗算エンジンを用いて該被添削暗算問題に対し計算を行い、前記暗算エンジンの計算結果を該被添削暗算問題の解答として出力し、前記被検索試験紙上の被添削暗算問題の添削を完成するために用いることのできる、暗算問題添削モジュール25。
前記暗算問題添削モジュール25は、具体的には、前記予め訓練された第1識別モデルを介し該被添削暗算問題中の数字、アルファベット、文字、記号、及び計算タイプを識別するために用いられてよく、前記計算タイプは四則の組合せ計算、推定、余りのある除算、分数計算、単位変換、垂直演算、再帰方程式演算を含む;識別された数字、アルファベット、文字、記号、及び計算タイプに基づき計算を行い、該被添削暗算問題の計算結果を得る。
各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに出力し、各被検索問題の語幹の特徴ベクトルを得て、各被検索問題の特徴ベクトルとするために用いることのできる、特徴ベクトル取得ユニットであって、前記語幹ベクトル化モデルはニューラルネットワークに基づくモデルである;
各被検索問題に対し、問題データベースにおいて検索を行い、該被検索問題の特徴ベクトルに一致する特徴ベクトルを探し、問題データベース中の一致する特徴ベクトルに対応する問題を該被検索問題に最も近い問題として確定するために用いることのできる、問題検索ユニット。
問題サンプル訓練セット中の各問題サンプルに対しラベリング処理を行い、各問題サンプル中の語幹の文字内容をラベリングする;
ニューラルネットワークモデルを用いて各問題サンプル中の語幹の文字内容に対し2次元特徴ベクトル抽出を行うことにより、前記語幹ベクトル化モデルを訓練する。
予め問題データベース中の試験紙上の各問題の特徴ベクトルに対しインデックス情報テーブルを構築するために用いることのできる、前処理モジュール;
前記問題検索ユニットは、具体的には、各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索するために用いることができる;一致する特徴ベクトルの前記インデックス情報テーブルにおいて対応する問題を該被検索問題に最も近い問題として確定する。
前記問題検索ユニットは、具体的には、各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルの長さと同一又は近いグループ内において、該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索するために用いられてよい。
メモリ303は、コンピュータプログラムを格納するために用いられ;
プロセッサ301は、メモリ303に格納されたプログラムを実行するとき、以下のステップを実現するために用いられる:
ステップS11:被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、また各被検索問題の領域中の語幹の文字内容を識別することと;
ステップS12:各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すことと;
ステップS13:探し出された被検索問題に最も近い問題の存在する全ての試験紙を集約し、所定の条件を満たす標試験紙を前記被検索試験紙に一致する目標試験紙として確定することと;
ステップS14:前記被検索試験紙に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定することと;
ステップS15:各被添削暗算問題に対し、予め設けられた暗算エンジンを用いて該被添削暗算問題に対し計算を行い、前記暗算エンジンの計算結果を該被添削暗算問題の解答として出力し、前記被検索試験紙上の被添削暗算問題の添削を完成すること。
図4は、本発明のもう1つの実施例の提供する暗算問題に対する問題添削方法の概略フロー図である。図4を参照し、暗算問題に対する問題添削方法は以下のステップを含んでよい:
ステップS41:被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別すること。
ステップS431、各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに入力し、各被検索問題の語幹の特徴ベクトルを取得し、各被検索問題の特徴ベクトルとすることであって、前記語幹ベクトル化モデルはニューラルネットワークに基づくモデルである。
被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、また各被検索問題の領域中の語幹の文字内容を識別するために用いることのできる、検出識別モジュール51と;
予め設けられた暗算エンジンを用いて前記被検索試験紙上中の計算式及び/又は公式を含む領域に対し計算処理を行い、各領域の計算結果を得るために用いることのできる、計算モジュール52と;
各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すために用いることのできる、問題検索モジュール53と;
探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定するために用いることのできる、試験紙確定モジュール54と;
前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定するために用いることのできる、暗算問題確定モジュール55と;
各被添削暗算問題に対し、前記暗算エンジンの該被添削暗算問題領域に対応する計算結果を、該被添削暗算問題の解答とし、前記暗算エンジンの被添削暗算問題領域以外の全ての計算結果を破棄し、前記被検索試験紙上の被添削暗算問題の添削を完成するために用いることのできる、暗算問題添削モジュール56。
前記計算モジュール52は、具体的には、前記予め訓練された第1識別モデルを介し前記被検索試験紙中の計算式及び/又は公式を含む領域内の数字、アルファベット、文字、記号、及び計算タイプを識別するために用いられてもよく、前記計算タイプは四則の組合せ計算、推定、余りのある除算、分数計算、単位変換、垂直演算、再帰方程式演算を含む;識別された数字、アルファベット、文字、記号、及び計算タイプに基づき計算を行い、各領域の計算結果を得る。
各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに入力し、各被検索問題の語幹の特徴ベクトルを取得し、各被検索問題の特徴ベクトルとするために用いることのできる、特徴ベクトル取得ユニットであって、前記語幹ベクトル化モデルはニューラルネットワークに基づくモデルである;
各被検索問題に対し、問題データベースにおいて検索を行い、該被検索問題の特徴ベクトルに一致する特徴ベクトルを探し、問題データベース中の一致する特徴ベクトルに対応する問題を該被検索問題に最も近い問題として確定するために用いることのできる、問題検索ユニット。
問題サンプル訓練セット中の各問題サンプルに対しラベリング処理を行い、各問題サンプル中の語幹の文字内容をラベリングすることと;
ニューラルネットワークモデルを用いて各問題サンプル中の語幹の文字内容に対し2次元特徴ベクトル抽出を行うことにより、前記語幹ベクトル化モデルを訓練すること。
予め問題データベース中の試験紙上の各問題の特徴ベクトルに対しインデックス情報テーブルを構築するために用いることのできる、前処理モジュール;
前記問題検索ユニットは、具体的には、各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索し、一致する特徴ベクトルの前記インデックス情報テーブル中の対応する問題を該被検索問題に最も近い問題として確定するために用いられてよい。
前記問題検索ユニットは、具体的には、各被検索問題に対し、前記インデックス情報テーブル中の該被検索問題の特徴ベクトルの長さと同一又は近いグループ内において、該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索するために用いられてよい。
メモリ303は、コンピュータプログラムを格納するために用いられ;
プロセッサ301は、メモリ303に格納されたプログラムを実行するとき、以下のステップを実現する:
ステップS41:被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別することと;
ステップS42:予め設けられた暗算エンジンを用いて前記被検索試験紙中の計算式及び/又は公式を含む領域に対し計算処理を行い、各領域の計算結果を得ることと;
ステップS43:各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すことと;
ステップS44:探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定することと;
ステップS45:前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定することと;
ステップS46:各被添削暗算問題に対し、前記暗算エンジンの該被添削暗算問題領域に対応する計算結果を、該被添削暗算問題の解答とし、前記暗算エンジンの被添削暗算問題領域以外の全ての計算結果を破棄し、前記被検索試験紙上の被添削暗算問題の添削を完成すること。
Claims (20)
- 検出識別モジュールと暗算エンジンと問題検索モジュールと試験紙確定モジュールと暗算問題確定モジュールと暗算問題添削モジュールとを備える問題添削装置による、試験紙中の暗算問題に対する問題添削方法であって、
ステップS11:前記検出識別モジュールにより、被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別することと、
ステップ12:前記暗算エンジンにより、前記被検索試験紙中の計算式及び/又は公式を含む領域に対して、各領域の計算結果を得るため、計算処理を行うことと、
ステップS13:前記問題検索モジュールにより、各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すことと、
ステップS14:前記試験紙確定モジュールにより、探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、所定の条件を満たす試験紙を前記被検索試験紙に一致する目標試験紙として確定することと、
ステップS15:前記暗算問題確定モジュールにより、前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定することと、
ステップS16:前記暗算問題添削モジュールにより、各被添削暗算問題に対し、前記暗算エンジンの前記被添削暗算問題の領域に対応する前記計算結果を該被添削暗算問題の解答として用い、前記暗算エンジンの前記被添削暗算問題の前記領域外の前記計算結果を破棄することにより、前記被検索試験紙上の被添削暗算問題の添削することと
を含むことを特徴とする、暗算問題に対する問題添削方法。 - ステップS15において、前記目標問題の問題タイプが暗算問題であり、且つ前記目標問題の前記目標試験紙における位置が、該被検索問題の前記被検索試験紙における位置と同一である場合、該被検索問題を被添削暗算問題として確定することを特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - ステップS14において、所定の条件を満たす目標試験紙が存在せず、且つ前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる場合、問題タイプが暗算問題である被検索問題を被添削暗算問題として確定し、各該被添削暗算問題に対し、前記暗算エンジンの前記被添削暗算問題の前記領域に対応する前記計算結果を前記被添削暗算問題の前記解答として用い、前記暗算エンジンの前記被添削暗算問題の前記領域外の前記計算結果を破棄することにより、前記試験紙上の被添削暗算問題の添削を完成することを特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - ステップS16が、前記暗算エンジンの前記計算結果が該被添削暗算問題の前記目標試験紙上の対応する参考解答と一致するか否かを検証し、一致する場合は前記暗算エンジンの計算結果を該被添削暗算問題の前記解答として用いることも含むことを特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - 前記暗算エンジンの計算結果が該被添削暗算問題の前記目標試験紙上の対応する参考解答と一致しないとき、前記試験紙の試験官に前記被添削暗算問題に注意を払うよう警告するため、該被添削暗算問題の参考解答と一致しないことを表すために用いられるプロンプト情報を出力することを特徴とする、
請求項4に記載の試験紙中の暗算問題に対する問題添削方法。 - 前記予め設けられた暗算エンジンが予め訓練された第1識別モデルを含み、前記第1識別モデルがニューラルネットワークに基づくモデルであり、
ステップS12中の予め設けられた暗算エンジンを用いて前記被検索試験紙中の前記計算式及び/又は前記公式を含む前記領域に対し計算処理を実行することが、
前記予め訓練された第1識別モデルを介し前記被検索試験紙中の前記計算式及び/又は前記公式を含む前記領域中の数字、アルファベット、文字、記号、及び計算タイプを識別することであって、前記計算タイプが混合算術計算、推定、余りのある除算、分数計算、単位変換、垂直演算、再帰方程式演算のうちの1つを含むことと、
識別された数字、アルファベット、文字、記号、及び計算タイプに基づき計算を行い、各領域の計算結果を得ることと
を含むこと
を特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - 前記ステップS13が、
ステップS131:各被検索問題の語幹の文字内容を予め訓練された語幹ベクトル化モデルに入力し、各被検索問題の語幹の特徴ベクトルを得て、各被検索問題の特徴ベクトルとすることであって、前記語幹ベクトル化モデルがニューラルネットワークに基づくモデルであることと、
ステップS132:各被検索問題に対し、問題データベースにおいて検索を行い、該被検索問題の特徴ベクトルに一致する特徴ベクトルを探し、問題データベース中の一致する特徴ベクトルに対応する問題を該被検索問題に最も近い問題として確定することと
を更に含むこと
を特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - 前記語幹ベクトル化モデルが、
問題サンプル訓練セット中の各問題サンプルに対しラベリング処理を行い、各問題サンプル中の語幹の文字内容をラベリングすることと、
ニューラルネットワークモデルを用いて各問題サンプル中の語幹の文字内容に対し2次元特徴ベクトル抽出を行うことにより、前記語幹ベクトル化モデルを訓練すること
というステップを介し訓練されることを特徴とする、
請求項7に記載の試験紙中の暗算問題に対する問題添削方法。 - 問題データベース中の試験紙上の各問題の特徴ベクトルに対し予めインデックス情報テーブルを構築することを更に含み、
ステップS132が、
各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索することと、
一致する特徴ベクトルの前記インデックス情報テーブル中の対応する問題を、該被検索問題に最も近い問題として確定することと
を更に含むこと
を特徴とする、
請求項7に記載の試験紙中の暗算問題に対する問題添削方法。 - 前記インデックス情報テーブルを構築する前に、異なる長さの特徴ベクトルを長さに従いグループ分けすることと、
前記各被検索問題に対し、前記インデックス情報テーブルにおいて該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索することが、
各被検索問題に対し、前記インデックス情報テーブル中の該被検索問題の特徴ベクトルの長さと同一又は近いグループ内において、該被検索問題の特徴ベクトルに一致する特徴ベクトルを検索することを含むこと
を特徴とする、
請求項9に記載の試験紙中の暗算問題に対する問題添削方法。 - ステップS14中、前記所定の条件を満たす前記試験紙を前記被検索試験紙に一致する前記目標試験紙として確定することが、
出現頻度が最も高く且つ前記出現頻度の閾値よりも大きいという条件を満たす前記試験紙を前記被検索試験紙に一致する前記目標試験紙として確定することを含み、
前記出現頻度は、前記試験紙の被検索問題における最も近い問題の数と前記被検索試験紙中の被検索問題の総数との割合、或いは、前記試験紙の被検索試験紙に一致する問題の数と前記被検索試験紙中の被検索問題の総数との割合である、
ことを特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - ステップS11中、被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出することが、
予め訓練された検出モデルを用いて前記被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出することであって、前記検出モデルがニューラルネットワークに基づくモデルであることを含む
ことを特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - ステップS11中、各被検索問題の領域中の語幹の文字内容を識別することが、
予め訓練された第2識別モデルを用いて各被検索問題の領域中の語幹の文字内容を識別することであって、前記第2識別モデルがニューラルネットワークに基づくモデルであることを含む
ことを特徴とする、
請求項1に記載の試験紙中の暗算問題に対する問題添削方法。 - 試験紙中の暗算問題に対する問題添削装置であって、
被検索試験紙の画像に対し検出を行い、前記被検索試験紙上の各被検索問題の領域を検出し、各被検索問題の問題タイプを確定し、各被検索問題の領域中の語幹の文字内容を識別するために用いられる、検出識別モジュールと、
前記被検索試験紙中の計算式及び/又は公式を含む領域に対して、各領域の計算結果を得るため、計算処理を行うため予め設けられた暗算エンジンを用いるよう構成された、計算モジュールと、
各被検索問題の語幹の文字内容に基づき、該被検索問題の特徴ベクトルを取得し、該被検索問題の特徴ベクトルに基づき問題データベースにおいて検索を行い、該被検索問題に最も近い問題を探すために用いられる、問題検索モジュールと、
探し出された被検索問題に最も近い問題が存在する全ての試験紙を集約し、所定の条件を満たす前記試験紙を前記被検索試験紙に一致する目標試験紙として確定するために用いられる、試験紙確定モジュールと、
前記被検索試験紙中に問題タイプが暗算問題である被検索問題が含まれる状況において、問題タイプが暗算問題である各被検索問題に対し、該被検索問題の特徴ベクトルを前記目標試験紙中の各問題の特徴ベクトルと最短編集距離マッチングを行い、前記目標試験紙中の該被検索問題に一致する目標問題を確定し、前記目標問題の問題タイプが暗算問題である場合、該被検索問題を被添削暗算問題として確定するために用いられる、暗算問題確定モジュールと、
各被添削暗算問題に対し、前記暗算エンジンの前記被添削暗算問題の領域に対応する前記計算結果を該被添削暗算問題の解答として用い、前記暗算エンジンの前記被添削暗算問題の前記領域外の前記計算結果を破棄することにより、前記被検索試験紙上の被添削暗算問題を添削する、暗算問題添削モジュールと
を含むことを特徴とする、
暗算問題に対する問題添削装置。 - 前記暗算問題確定モジュールが、前記目標問題の問題タイプが暗算問題であり、且つ前記目標問題の前記目標試験紙における位置が該被検索問題の前記被検索試験紙における位置と同一である場合、該被検索問題を被添削暗算問題として確定するためにも用いられることを特徴とする、
請求項14に記載の試験紙中の暗算問題に対する問題添削装置。 - 前記試験紙確定モジュールが、所定の条件を満たす目標試験紙が存在せず、且つ前記被検索試験紙中に問題タイプが暗算問題である被検索問題を含むとき、問題タイプが暗算問題である被検索問題を被添削暗算問題として確定し、該各被添削暗算問題に対し、前記暗算エンジンの前記被添削暗算問題の領域に対応する前記計算結果を前記被添削暗算問題の解答として用い、前記暗算エンジンの前記被添削暗算問題の前記領域外の前記計算結果を破棄することにより、試験紙中の前記被添削暗算問題の添削を完成するためにも用いられることを特徴とする、
請求項14に記載の試験紙中の暗算問題に対する問題添削装置。 - 前記暗算問題添削モジュールが、前記暗算エンジンの計算結果が該被添削暗算問題の前記目標試験紙上の対応する参考解答と一致するか否かを検証し、一致する場合は前記暗算エンジンの計算結果を該被添削暗算問題の前記解答として出力するためにも用いられ、
これらが一致しない場合、前記試験紙の試験官に前記被添削暗算問題に注意を払うよう警告するため、該被添削暗算問題の参考解答が一致しないことを表すために用いられるプロンプト情報を出力するためにも用いられる
ことを特徴とする、
請求項14に記載の試験紙中の暗算問題に対する問題添削装置。 - 前記予め設けられた暗算エンジンが予め訓練された第1識別モデルを含み、前記第1識別モデルがニューラルネットワークに基づくモデルであり、
前記計算モジュールが、前記予め訓練された第1識別モデルを介し前記被検索試験紙中の前記計算式及び/又は前記公式を含む前記領域中の数字、アルファベット、文字、記号、及び計算タイプを識別するために用いられ、前記計算タイプが四則の組合せ計算、推定、余りのある除算、分数計算、単位変換、垂直演算、再帰方程式演算のうちの1つを含むことと、識別された数字、アルファベット、文字、記号、及び計算タイプに基づき計算を行い、各領域の計算結果を得る
ことを特徴とする、
請求項14に記載の試験紙中の暗算問題に対する問題添削装置。 - 電子機器であって、
プロセッサと、通信インターフェイスと、メモリと、通信バスとを含み、前記プロセッサ、前記通信インターフェイス、前記メモリが前記通信バスを介し相互間の通信を完成し、
前記メモリが、コンピュータプログラムを格納するために用いられ、
前記プロセッサが、メモリに格納されたプログラムを実行するとき、請求項1~13のいずれか1項に記載の方法ステップを実現するために用いられる
ことを特徴とする、
電子機器。 - コンピュータ読み取り可能な記憶媒体であって、
前記コンピュータ読み取り可能な記憶媒体がコンピュータプログラムを格納し、前記コンピュータプログラムが実行されるとき、請求項1~13のいずれか1項に記載の方法を実現することを特徴とする、
コンピュータ読み取り可能な記憶媒体。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811125659.4 | 2018-09-26 | ||
CN201811125657.5 | 2018-09-26 | ||
CN201811125659.4A CN109189895B (zh) | 2018-09-26 | 2018-09-26 | 一种针对口算题的题目批改方法及装置 |
CN201811125657.5A CN109284355B (zh) | 2018-09-26 | 2018-09-26 | 一种批改试卷中口算题的方法及装置 |
PCT/CN2019/105321 WO2020063347A1 (zh) | 2018-09-26 | 2019-09-11 | 针对口算题的题目批改方法、装置、电子设备和存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021530066A JP2021530066A (ja) | 2021-11-04 |
JP7077483B2 true JP7077483B2 (ja) | 2022-05-30 |
Family
ID=69951164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021517407A Active JP7077483B2 (ja) | 2018-09-26 | 2019-09-11 | 暗算問題に対する問題添削方法、装置、電子機器及び記憶媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11721229B2 (ja) |
EP (1) | EP3859558A4 (ja) |
JP (1) | JP7077483B2 (ja) |
WO (1) | WO2020063347A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021234860A1 (ja) * | 2020-05-20 | 2021-11-25 | 日本電信電話株式会社 | 推定装置、学習装置、推定方法、学習方法及びプログラム |
CN111639630B (zh) * | 2020-06-23 | 2023-07-18 | 北京字节跳动网络技术有限公司 | 一种作业批改方法及装置 |
KR102645590B1 (ko) * | 2022-08-03 | 2024-03-11 | 주식회사 프로키언 | 인공지능 기반의 수학 문제 코드 제공 모델 생성 방법과 해당 모델을 이용한 수학 문제 생성 방법 및 장치 |
WO2024029708A1 (ko) * | 2022-08-03 | 2024-02-08 | 주식회사 프로키언 | 인공지능 기반의 수학 문제 코드 제공 모델 생성 방법과 해당 모델을 이용한 수학 문제 생성 방법 및 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007286409A (ja) | 2006-04-18 | 2007-11-01 | Hitachi Ltd | 採点支援装置 |
WO2013069375A1 (ja) | 2011-11-08 | 2013-05-16 | シャープ株式会社 | 照合装置、照合装置の制御方法、入力装置、試験システム、制御プログラム、および記録媒体 |
KR101459285B1 (ko) | 2014-04-04 | 2014-11-12 | 김종명 | 문장유사도 판단방법 및 장치, 시험채점방법 및 장치 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110134909A (ko) * | 2009-03-13 | 2011-12-15 | 인벤션 머신 코포레이션 | 텍스트 문서들 및 사용자 질문들의 의미적 라벨링에 기초한 질문-응답 시스템 및 방법 |
JP5623369B2 (ja) | 2011-11-04 | 2014-11-12 | 日本電信電話株式会社 | テキスト要約装置、方法及びプログラム |
WO2014040179A1 (en) * | 2012-09-17 | 2014-03-20 | Crowdmark Inc. | System and method for enabling crowd-sourced examination marking |
CN103164994B (zh) * | 2013-03-15 | 2015-01-07 | 南京信息工程大学 | 一种运算类习题的批改及反馈方法 |
CN105955962B (zh) * | 2016-05-10 | 2019-11-05 | 北京新唐思创教育科技有限公司 | 题目相似度的计算方法及装置 |
CN106096564A (zh) * | 2016-06-17 | 2016-11-09 | 福建网龙计算机网络信息技术有限公司 | 一种数学自动批改方法 |
CN107832758A (zh) | 2017-11-06 | 2018-03-23 | 泉州市雄蓝教育科技有限公司 | 智能生成答题卡以及服务器终端自动阅卷评分的考试系统 |
CN108052504B (zh) | 2017-12-26 | 2020-11-20 | 浙江讯飞智能科技有限公司 | 数学主观题解答结果的结构分析方法及系统 |
CN109189895B (zh) | 2018-09-26 | 2021-06-04 | 杭州大拿科技股份有限公司 | 一种针对口算题的题目批改方法及装置 |
CN109284355B (zh) | 2018-09-26 | 2020-09-22 | 杭州大拿科技股份有限公司 | 一种批改试卷中口算题的方法及装置 |
-
2019
- 2019-09-11 EP EP19865656.3A patent/EP3859558A4/en not_active Withdrawn
- 2019-09-11 US US16/756,468 patent/US11721229B2/en active Active
- 2019-09-11 JP JP2021517407A patent/JP7077483B2/ja active Active
- 2019-09-11 WO PCT/CN2019/105321 patent/WO2020063347A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007286409A (ja) | 2006-04-18 | 2007-11-01 | Hitachi Ltd | 採点支援装置 |
WO2013069375A1 (ja) | 2011-11-08 | 2013-05-16 | シャープ株式会社 | 照合装置、照合装置の制御方法、入力装置、試験システム、制御プログラム、および記録媒体 |
KR101459285B1 (ko) | 2014-04-04 | 2014-11-12 | 김종명 | 문장유사도 판단방법 및 장치, 시험채점방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
WO2020063347A1 (zh) | 2020-04-02 |
US20210192965A1 (en) | 2021-06-24 |
JP2021530066A (ja) | 2021-11-04 |
EP3859558A1 (en) | 2021-08-04 |
US11721229B2 (en) | 2023-08-08 |
EP3859558A4 (en) | 2022-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7077483B2 (ja) | 暗算問題に対する問題添削方法、装置、電子機器及び記憶媒体 | |
CN109271401B (zh) | 一种题目搜索、批改方法、装置、电子设备和存储介质 | |
CN109284355B (zh) | 一种批改试卷中口算题的方法及装置 | |
US11508251B2 (en) | Method and system for intelligent identification and correction of questions | |
CN109583429B (zh) | 一种批改试卷中应用题的方法及装置 | |
CN109670504B (zh) | 一种手写答案识别批改方法及装置 | |
CN109710590B (zh) | 一种错题本生成方法及装置 | |
CN109189895B (zh) | 一种针对口算题的题目批改方法及装置 | |
AU2019278845B2 (en) | Post-filtering of named entities with machine learning | |
CN109712043B (zh) | 一种答案批改方法及装置 | |
CN108121702B (zh) | 数学主观题评阅方法及系统 | |
CN107491536B (zh) | 一种试题校验方法、试题校验装置及电子设备 | |
CN104933158A (zh) | 数学问题求解模型的训练方法和装置、推理方法和装置 | |
CN112347997A (zh) | 一种试题检测识别方法、装置、电子设备及介质 | |
CN116311312A (zh) | 视觉问答模型的训练方法和视觉问答方法 | |
US11749128B2 (en) | Answer correction method and device | |
CN113849603A (zh) | 负样本确定方法、相关设备及可读存储介质 | |
CN106600489B (zh) | 一种标记失误试题的方法及装置 | |
WO2023024898A1 (zh) | 题目辅助方法、题目辅助装置和题目辅助系统 | |
CN111639160A (zh) | 领域识别的方法、交互的方法、电子设备及存储介质 | |
CN116385230A (zh) | 一种儿童阅读能力评测方法和系统 | |
Tjahyadi et al. | Android Based Automated Scoring of Multiple-Choice Test | |
TWI453703B (zh) | 學習診斷分析方法及學習診斷分析系統 | |
CN117216132B (zh) | 一种数学试题相似性判断方法、系统和应用 | |
CN112712075B (zh) | 算式检测方法、电子设备和存储装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210413 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220518 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7077483 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |